Properties

Label 169.4.c.g.146.2
Level $169$
Weight $4$
Character 169.146
Analytic conductor $9.971$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(22,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.22");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.2
Root \(-0.780776 - 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 169.146
Dual form 169.4.c.g.22.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.780776 + 1.35234i) q^{2} +(-4.34233 - 7.52113i) q^{3} +(2.78078 - 4.81645i) q^{4} -3.56155 q^{5} +(6.78078 - 11.7446i) q^{6} +(13.5885 - 23.5360i) q^{7} +21.1771 q^{8} +(-24.2116 + 41.9358i) q^{9} +O(q^{10})\) \(q+(0.780776 + 1.35234i) q^{2} +(-4.34233 - 7.52113i) q^{3} +(2.78078 - 4.81645i) q^{4} -3.56155 q^{5} +(6.78078 - 11.7446i) q^{6} +(13.5885 - 23.5360i) q^{7} +21.1771 q^{8} +(-24.2116 + 41.9358i) q^{9} +(-2.78078 - 4.81645i) q^{10} +(-7.63068 - 13.2167i) q^{11} -48.3002 q^{12} +42.4384 q^{14} +(15.4654 + 26.7869i) q^{15} +(-5.71165 - 9.89286i) q^{16} +(-22.2732 + 38.5783i) q^{17} -75.6155 q^{18} +(-11.9848 + 20.7584i) q^{19} +(-9.90388 + 17.1540i) q^{20} -236.024 q^{21} +(11.9157 - 20.6386i) q^{22} +(-61.3693 - 106.295i) q^{23} +(-91.9579 - 159.276i) q^{24} -112.315 q^{25} +186.054 q^{27} +(-75.5734 - 130.897i) q^{28} +(109.955 + 190.447i) q^{29} +(-24.1501 + 41.8292i) q^{30} +27.0928 q^{31} +(93.6274 - 162.167i) q^{32} +(-66.2699 + 114.783i) q^{33} -69.5616 q^{34} +(-48.3963 + 83.8249i) q^{35} +(134.654 + 233.228i) q^{36} +(-47.0961 - 81.5729i) q^{37} -37.4299 q^{38} -75.4233 q^{40} +(80.1771 + 138.871i) q^{41} +(-184.282 - 319.185i) q^{42} +(75.6510 - 131.031i) q^{43} -84.8769 q^{44} +(86.2311 - 149.357i) q^{45} +(95.8314 - 165.985i) q^{46} +466.948 q^{47} +(-49.6037 + 85.9161i) q^{48} +(-197.797 - 342.594i) q^{49} +(-87.6932 - 151.889i) q^{50} +386.870 q^{51} -120.847 q^{53} +(145.267 + 251.609i) q^{54} +(27.1771 + 47.0721i) q^{55} +(287.766 - 498.425i) q^{56} +208.169 q^{57} +(-171.700 + 297.393i) q^{58} +(219.816 - 380.733i) q^{59} +172.024 q^{60} +(68.6525 - 118.910i) q^{61} +(21.1534 + 36.6388i) q^{62} +(658.002 + 1139.69i) q^{63} +201.022 q^{64} -206.968 q^{66} +(-256.140 - 443.648i) q^{67} +(123.874 + 214.555i) q^{68} +(-532.972 + 923.134i) q^{69} -151.147 q^{70} +(-205.359 + 355.693i) q^{71} +(-512.732 + 888.078i) q^{72} -308.004 q^{73} +(73.5431 - 127.380i) q^{74} +(487.710 + 844.739i) q^{75} +(66.6543 + 115.449i) q^{76} -414.759 q^{77} -586.462 q^{79} +(20.3423 + 35.2339i) q^{80} +(-154.193 - 267.070i) q^{81} +(-125.201 + 216.854i) q^{82} +1354.20 q^{83} +(-656.329 + 1136.80i) q^{84} +(79.3272 - 137.399i) q^{85} +236.266 q^{86} +(954.918 - 1653.97i) q^{87} +(-161.596 - 279.892i) q^{88} +(-219.941 - 380.949i) q^{89} +269.309 q^{90} -682.617 q^{92} +(-117.646 - 203.769i) q^{93} +(364.582 + 631.474i) q^{94} +(42.6847 - 73.9320i) q^{95} -1626.24 q^{96} +(755.634 - 1308.80i) q^{97} +(308.870 - 534.979i) q^{98} +739.006 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 5 q^{3} + 7 q^{4} - 6 q^{5} + 23 q^{6} + 9 q^{7} - 6 q^{8} - 35 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} - 5 q^{3} + 7 q^{4} - 6 q^{5} + 23 q^{6} + 9 q^{7} - 6 q^{8} - 35 q^{9} - 7 q^{10} - 80 q^{11} - 86 q^{12} + 178 q^{14} + 33 q^{15} + 39 q^{16} - 19 q^{17} - 220 q^{18} + 84 q^{19} - 19 q^{20} - 606 q^{21} - 142 q^{22} - 196 q^{23} - 273 q^{24} - 474 q^{25} + 670 q^{27} - 125 q^{28} + 44 q^{29} - 43 q^{30} - 172 q^{31} + 123 q^{32} + 106 q^{33} - 270 q^{34} - 107 q^{35} + 250 q^{36} - 209 q^{37} - 628 q^{38} - 178 q^{40} + 230 q^{41} - 197 q^{42} - 287 q^{43} - 356 q^{44} + 180 q^{45} + 4 q^{46} + 870 q^{47} - 285 q^{48} - 383 q^{49} + 144 q^{50} + 962 q^{51} - 236 q^{53} - 91 q^{54} + 18 q^{55} + 1015 q^{56} + 1212 q^{57} - 794 q^{58} + 368 q^{59} + 350 q^{60} + 1058 q^{61} + 332 q^{62} + 1560 q^{63} + 1538 q^{64} - 1636 q^{66} - 68 q^{67} + 211 q^{68} - 796 q^{69} - 250 q^{70} + 131 q^{71} - 1350 q^{72} + 912 q^{73} - 147 q^{74} + 516 q^{75} - 22 q^{76} + 1524 q^{77} - 2016 q^{79} + 69 q^{80} - 122 q^{81} - 72 q^{82} + 3916 q^{83} - 1409 q^{84} + 173 q^{85} + 2718 q^{86} + 2558 q^{87} + 1242 q^{88} + 720 q^{89} + 500 q^{90} - 1576 q^{92} - 652 q^{93} + 811 q^{94} + 146 q^{95} - 3726 q^{96} + 928 q^{97} + 650 q^{98} - 260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.780776 + 1.35234i 0.276046 + 0.478126i 0.970399 0.241509i \(-0.0776424\pi\)
−0.694352 + 0.719635i \(0.744309\pi\)
\(3\) −4.34233 7.52113i −0.835682 1.44744i −0.893474 0.449114i \(-0.851740\pi\)
0.0577926 0.998329i \(-0.481594\pi\)
\(4\) 2.78078 4.81645i 0.347597 0.602056i
\(5\) −3.56155 −0.318555 −0.159277 0.987234i \(-0.550916\pi\)
−0.159277 + 0.987234i \(0.550916\pi\)
\(6\) 6.78078 11.7446i 0.461373 0.799122i
\(7\) 13.5885 23.5360i 0.733712 1.27083i −0.221574 0.975144i \(-0.571119\pi\)
0.955286 0.295683i \(-0.0955473\pi\)
\(8\) 21.1771 0.935904
\(9\) −24.2116 + 41.9358i −0.896728 + 1.55318i
\(10\) −2.78078 4.81645i −0.0879359 0.152309i
\(11\) −7.63068 13.2167i −0.209158 0.362272i 0.742292 0.670077i \(-0.233739\pi\)
−0.951450 + 0.307805i \(0.900406\pi\)
\(12\) −48.3002 −1.16192
\(13\) 0 0
\(14\) 42.4384 0.810154
\(15\) 15.4654 + 26.7869i 0.266211 + 0.461090i
\(16\) −5.71165 9.89286i −0.0892445 0.154576i
\(17\) −22.2732 + 38.5783i −0.317767 + 0.550389i −0.980022 0.198890i \(-0.936266\pi\)
0.662255 + 0.749279i \(0.269600\pi\)
\(18\) −75.6155 −0.990153
\(19\) −11.9848 + 20.7584i −0.144711 + 0.250647i −0.929265 0.369413i \(-0.879559\pi\)
0.784554 + 0.620061i \(0.212892\pi\)
\(20\) −9.90388 + 17.1540i −0.110729 + 0.191788i
\(21\) −236.024 −2.45260
\(22\) 11.9157 20.6386i 0.115474 0.200008i
\(23\) −61.3693 106.295i −0.556365 0.963652i −0.997796 0.0663568i \(-0.978862\pi\)
0.441431 0.897295i \(-0.354471\pi\)
\(24\) −91.9579 159.276i −0.782117 1.35467i
\(25\) −112.315 −0.898523
\(26\) 0 0
\(27\) 186.054 1.32615
\(28\) −75.5734 130.897i −0.510072 0.883471i
\(29\) 109.955 + 190.447i 0.704071 + 1.21949i 0.967026 + 0.254678i \(0.0819694\pi\)
−0.262955 + 0.964808i \(0.584697\pi\)
\(30\) −24.1501 + 41.8292i −0.146973 + 0.254564i
\(31\) 27.0928 0.156968 0.0784840 0.996915i \(-0.474992\pi\)
0.0784840 + 0.996915i \(0.474992\pi\)
\(32\) 93.6274 162.167i 0.517223 0.895856i
\(33\) −66.2699 + 114.783i −0.349579 + 0.605488i
\(34\) −69.5616 −0.350874
\(35\) −48.3963 + 83.8249i −0.233728 + 0.404828i
\(36\) 134.654 + 233.228i 0.623400 + 1.07976i
\(37\) −47.0961 81.5729i −0.209258 0.362446i 0.742223 0.670153i \(-0.233772\pi\)
−0.951481 + 0.307707i \(0.900438\pi\)
\(38\) −37.4299 −0.159788
\(39\) 0 0
\(40\) −75.4233 −0.298137
\(41\) 80.1771 + 138.871i 0.305404 + 0.528975i 0.977351 0.211624i \(-0.0678752\pi\)
−0.671947 + 0.740599i \(0.734542\pi\)
\(42\) −184.282 319.185i −0.677031 1.17265i
\(43\) 75.6510 131.031i 0.268295 0.464700i −0.700127 0.714018i \(-0.746873\pi\)
0.968422 + 0.249318i \(0.0802066\pi\)
\(44\) −84.8769 −0.290811
\(45\) 86.2311 149.357i 0.285657 0.494773i
\(46\) 95.8314 165.985i 0.307165 0.532025i
\(47\) 466.948 1.44918 0.724589 0.689181i \(-0.242030\pi\)
0.724589 + 0.689181i \(0.242030\pi\)
\(48\) −49.6037 + 85.9161i −0.149160 + 0.258353i
\(49\) −197.797 342.594i −0.576667 0.998817i
\(50\) −87.6932 151.889i −0.248034 0.429607i
\(51\) 386.870 1.06221
\(52\) 0 0
\(53\) −120.847 −0.313199 −0.156600 0.987662i \(-0.550053\pi\)
−0.156600 + 0.987662i \(0.550053\pi\)
\(54\) 145.267 + 251.609i 0.366079 + 0.634068i
\(55\) 27.1771 + 47.0721i 0.0666283 + 0.115404i
\(56\) 287.766 498.425i 0.686684 1.18937i
\(57\) 208.169 0.483730
\(58\) −171.700 + 297.393i −0.388712 + 0.673269i
\(59\) 219.816 380.733i 0.485045 0.840122i −0.514808 0.857306i \(-0.672137\pi\)
0.999852 + 0.0171836i \(0.00546997\pi\)
\(60\) 172.024 0.370136
\(61\) 68.6525 118.910i 0.144099 0.249587i −0.784937 0.619575i \(-0.787305\pi\)
0.929037 + 0.369988i \(0.120638\pi\)
\(62\) 21.1534 + 36.6388i 0.0433304 + 0.0750505i
\(63\) 658.002 + 1139.69i 1.31588 + 2.27917i
\(64\) 201.022 0.392621
\(65\) 0 0
\(66\) −206.968 −0.386000
\(67\) −256.140 443.648i −0.467052 0.808958i 0.532239 0.846594i \(-0.321351\pi\)
−0.999292 + 0.0376358i \(0.988017\pi\)
\(68\) 123.874 + 214.555i 0.220910 + 0.382627i
\(69\) −532.972 + 923.134i −0.929887 + 1.61061i
\(70\) −151.147 −0.258078
\(71\) −205.359 + 355.693i −0.343263 + 0.594549i −0.985037 0.172345i \(-0.944866\pi\)
0.641774 + 0.766894i \(0.278199\pi\)
\(72\) −512.732 + 888.078i −0.839251 + 1.45362i
\(73\) −308.004 −0.493823 −0.246912 0.969038i \(-0.579416\pi\)
−0.246912 + 0.969038i \(0.579416\pi\)
\(74\) 73.5431 127.380i 0.115530 0.200104i
\(75\) 487.710 + 844.739i 0.750879 + 1.30056i
\(76\) 66.6543 + 115.449i 0.100602 + 0.174248i
\(77\) −414.759 −0.613847
\(78\) 0 0
\(79\) −586.462 −0.835217 −0.417608 0.908627i \(-0.637132\pi\)
−0.417608 + 0.908627i \(0.637132\pi\)
\(80\) 20.3423 + 35.2339i 0.0284293 + 0.0492409i
\(81\) −154.193 267.070i −0.211513 0.366352i
\(82\) −125.201 + 216.854i −0.168611 + 0.292043i
\(83\) 1354.20 1.79088 0.895440 0.445182i \(-0.146861\pi\)
0.895440 + 0.445182i \(0.146861\pi\)
\(84\) −656.329 + 1136.80i −0.852516 + 1.47660i
\(85\) 79.3272 137.399i 0.101226 0.175329i
\(86\) 236.266 0.296247
\(87\) 954.918 1653.97i 1.17676 2.03820i
\(88\) −161.596 279.892i −0.195752 0.339052i
\(89\) −219.941 380.949i −0.261952 0.453714i 0.704809 0.709398i \(-0.251033\pi\)
−0.966761 + 0.255683i \(0.917700\pi\)
\(90\) 269.309 0.315418
\(91\) 0 0
\(92\) −682.617 −0.773563
\(93\) −117.646 203.769i −0.131175 0.227202i
\(94\) 364.582 + 631.474i 0.400040 + 0.692889i
\(95\) 42.6847 73.9320i 0.0460985 0.0798449i
\(96\) −1626.24 −1.72894
\(97\) 755.634 1308.80i 0.790959 1.36998i −0.134414 0.990925i \(-0.542915\pi\)
0.925374 0.379056i \(-0.123751\pi\)
\(98\) 308.870 534.979i 0.318374 0.551439i
\(99\) 739.006 0.750231
\(100\) −312.324 + 540.961i −0.312324 + 0.540961i
\(101\) −168.130 291.209i −0.165639 0.286895i 0.771243 0.636541i \(-0.219635\pi\)
−0.936882 + 0.349646i \(0.886302\pi\)
\(102\) 302.059 + 523.182i 0.293219 + 0.507870i
\(103\) 322.712 0.308716 0.154358 0.988015i \(-0.450669\pi\)
0.154358 + 0.988015i \(0.450669\pi\)
\(104\) 0 0
\(105\) 840.611 0.781288
\(106\) −94.3542 163.426i −0.0864574 0.149749i
\(107\) −717.309 1242.42i −0.648083 1.12251i −0.983580 0.180471i \(-0.942238\pi\)
0.335498 0.942041i \(-0.391096\pi\)
\(108\) 517.375 896.119i 0.460967 0.798417i
\(109\) 849.147 0.746179 0.373089 0.927795i \(-0.378298\pi\)
0.373089 + 0.927795i \(0.378298\pi\)
\(110\) −42.4384 + 73.5055i −0.0367850 + 0.0637134i
\(111\) −409.014 + 708.433i −0.349747 + 0.605779i
\(112\) −310.452 −0.261919
\(113\) −807.263 + 1398.22i −0.672044 + 1.16401i 0.305280 + 0.952263i \(0.401250\pi\)
−0.977324 + 0.211751i \(0.932083\pi\)
\(114\) 162.533 + 281.516i 0.133532 + 0.231284i
\(115\) 218.570 + 378.574i 0.177233 + 0.306976i
\(116\) 1223.04 0.978931
\(117\) 0 0
\(118\) 686.509 0.535579
\(119\) 605.321 + 1048.45i 0.466300 + 0.807654i
\(120\) 327.513 + 567.269i 0.249147 + 0.431536i
\(121\) 549.045 950.974i 0.412506 0.714481i
\(122\) 214.409 0.159112
\(123\) 696.311 1206.05i 0.510441 0.884109i
\(124\) 75.3390 130.491i 0.0545616 0.0945035i
\(125\) 845.211 0.604784
\(126\) −1027.50 + 1779.69i −0.726487 + 1.25831i
\(127\) −432.587 749.263i −0.302251 0.523514i 0.674394 0.738371i \(-0.264405\pi\)
−0.976646 + 0.214857i \(0.931071\pi\)
\(128\) −592.066 1025.49i −0.408842 0.708134i
\(129\) −1314.01 −0.896836
\(130\) 0 0
\(131\) −281.400 −0.187680 −0.0938400 0.995587i \(-0.529914\pi\)
−0.0938400 + 0.995587i \(0.529914\pi\)
\(132\) 368.563 + 638.371i 0.243025 + 0.420932i
\(133\) 325.713 + 564.152i 0.212353 + 0.367806i
\(134\) 399.976 692.779i 0.257856 0.446620i
\(135\) −662.641 −0.422452
\(136\) −471.681 + 816.976i −0.297400 + 0.515111i
\(137\) 1320.72 2287.55i 0.823624 1.42656i −0.0793428 0.996847i \(-0.525282\pi\)
0.902967 0.429711i \(-0.141384\pi\)
\(138\) −1664.53 −1.02677
\(139\) 999.318 1730.87i 0.609791 1.05619i −0.381483 0.924376i \(-0.624587\pi\)
0.991274 0.131814i \(-0.0420801\pi\)
\(140\) 269.159 + 466.196i 0.162486 + 0.281434i
\(141\) −2027.64 3511.98i −1.21105 2.09760i
\(142\) −641.359 −0.379026
\(143\) 0 0
\(144\) 553.153 0.320112
\(145\) −391.609 678.286i −0.224285 0.388473i
\(146\) −240.482 416.527i −0.136318 0.236110i
\(147\) −1717.80 + 2975.31i −0.963820 + 1.66939i
\(148\) −523.855 −0.290950
\(149\) 876.491 1518.13i 0.481912 0.834696i −0.517872 0.855458i \(-0.673276\pi\)
0.999784 + 0.0207617i \(0.00660911\pi\)
\(150\) −761.585 + 1319.10i −0.414554 + 0.718029i
\(151\) −2794.64 −1.50613 −0.753063 0.657949i \(-0.771424\pi\)
−0.753063 + 0.657949i \(0.771424\pi\)
\(152\) −253.804 + 439.601i −0.135436 + 0.234582i
\(153\) −1078.54 1868.09i −0.569901 0.987098i
\(154\) −323.834 560.898i −0.169450 0.293496i
\(155\) −96.4924 −0.0500030
\(156\) 0 0
\(157\) 3244.87 1.64949 0.824743 0.565508i \(-0.191320\pi\)
0.824743 + 0.565508i \(0.191320\pi\)
\(158\) −457.896 793.099i −0.230558 0.399339i
\(159\) 524.756 + 908.903i 0.261735 + 0.453338i
\(160\) −333.459 + 577.568i −0.164764 + 0.285380i
\(161\) −3335.68 −1.63285
\(162\) 240.781 417.045i 0.116775 0.202260i
\(163\) −1640.73 + 2841.83i −0.788418 + 1.36558i 0.138517 + 0.990360i \(0.455766\pi\)
−0.926936 + 0.375221i \(0.877567\pi\)
\(164\) 891.818 0.424630
\(165\) 236.024 408.805i 0.111360 0.192881i
\(166\) 1057.33 + 1831.35i 0.494366 + 0.856266i
\(167\) 1563.26 + 2707.65i 0.724364 + 1.25463i 0.959235 + 0.282608i \(0.0911996\pi\)
−0.234872 + 0.972026i \(0.575467\pi\)
\(168\) −4998.29 −2.29540
\(169\) 0 0
\(170\) 247.747 0.111773
\(171\) −580.346 1005.19i −0.259533 0.449524i
\(172\) −420.737 728.738i −0.186517 0.323057i
\(173\) −48.7849 + 84.4980i −0.0214396 + 0.0371345i −0.876546 0.481318i \(-0.840158\pi\)
0.855107 + 0.518452i \(0.173492\pi\)
\(174\) 2982.31 1.29936
\(175\) −1526.20 + 2643.46i −0.659257 + 1.14187i
\(176\) −87.1675 + 150.979i −0.0373324 + 0.0646616i
\(177\) −3818.06 −1.62137
\(178\) 343.450 594.873i 0.144622 0.250492i
\(179\) 17.3575 + 30.0640i 0.00724782 + 0.0125536i 0.869627 0.493710i \(-0.164360\pi\)
−0.862379 + 0.506264i \(0.831026\pi\)
\(180\) −479.579 830.654i −0.198587 0.343963i
\(181\) −1229.35 −0.504843 −0.252422 0.967617i \(-0.581227\pi\)
−0.252422 + 0.967617i \(0.581227\pi\)
\(182\) 0 0
\(183\) −1192.45 −0.481684
\(184\) −1299.62 2251.01i −0.520704 0.901885i
\(185\) 167.735 + 290.526i 0.0666602 + 0.115459i
\(186\) 183.710 318.195i 0.0724209 0.125437i
\(187\) 679.839 0.265854
\(188\) 1298.48 2249.03i 0.503730 0.872486i
\(189\) 2528.20 4378.97i 0.973014 1.68531i
\(190\) 133.309 0.0509012
\(191\) −2140.40 + 3707.28i −0.810858 + 1.40445i 0.101407 + 0.994845i \(0.467666\pi\)
−0.912265 + 0.409602i \(0.865668\pi\)
\(192\) −872.903 1511.91i −0.328106 0.568296i
\(193\) −236.160 409.041i −0.0880786 0.152557i 0.818620 0.574335i \(-0.194739\pi\)
−0.906699 + 0.421778i \(0.861406\pi\)
\(194\) 2359.93 0.873365
\(195\) 0 0
\(196\) −2200.12 −0.801791
\(197\) 2242.18 + 3883.58i 0.810908 + 1.40453i 0.912229 + 0.409681i \(0.134360\pi\)
−0.101321 + 0.994854i \(0.532307\pi\)
\(198\) 576.998 + 999.390i 0.207098 + 0.358705i
\(199\) 183.120 317.173i 0.0652314 0.112984i −0.831565 0.555427i \(-0.812555\pi\)
0.896797 + 0.442443i \(0.145888\pi\)
\(200\) −2378.51 −0.840931
\(201\) −2224.49 + 3852.93i −0.780614 + 1.35206i
\(202\) 262.543 454.739i 0.0914480 0.158393i
\(203\) 5976.49 2.06634
\(204\) 1075.80 1863.34i 0.369221 0.639509i
\(205\) −285.555 494.596i −0.0972879 0.168508i
\(206\) 251.966 + 436.418i 0.0852199 + 0.147605i
\(207\) 5943.41 1.99563
\(208\) 0 0
\(209\) 365.810 0.121070
\(210\) 656.329 + 1136.80i 0.215671 + 0.373554i
\(211\) −1061.28 1838.19i −0.346262 0.599744i 0.639320 0.768941i \(-0.279216\pi\)
−0.985582 + 0.169197i \(0.945883\pi\)
\(212\) −336.047 + 582.051i −0.108867 + 0.188563i
\(213\) 3566.95 1.14743
\(214\) 1120.12 1940.10i 0.357801 0.619730i
\(215\) −269.435 + 466.675i −0.0854666 + 0.148033i
\(216\) 3940.08 1.24115
\(217\) 368.152 637.657i 0.115169 0.199479i
\(218\) 662.994 + 1148.34i 0.205980 + 0.356768i
\(219\) 1337.45 + 2316.54i 0.412679 + 0.714781i
\(220\) 302.294 0.0926392
\(221\) 0 0
\(222\) −1277.39 −0.386185
\(223\) 2963.21 + 5132.43i 0.889826 + 1.54122i 0.840081 + 0.542461i \(0.182507\pi\)
0.0497449 + 0.998762i \(0.484159\pi\)
\(224\) −2544.52 4407.24i −0.758986 1.31460i
\(225\) 2719.34 4710.03i 0.805730 1.39557i
\(226\) −2521.17 −0.742060
\(227\) 447.830 775.665i 0.130941 0.226796i −0.793099 0.609093i \(-0.791534\pi\)
0.924039 + 0.382297i \(0.124867\pi\)
\(228\) 578.870 1002.63i 0.168143 0.291232i
\(229\) 627.717 0.181138 0.0905692 0.995890i \(-0.471131\pi\)
0.0905692 + 0.995890i \(0.471131\pi\)
\(230\) −341.309 + 591.164i −0.0978488 + 0.169479i
\(231\) 1801.02 + 3119.46i 0.512981 + 0.888509i
\(232\) 2328.52 + 4033.11i 0.658942 + 1.14132i
\(233\) 2303.72 0.647734 0.323867 0.946103i \(-0.395017\pi\)
0.323867 + 0.946103i \(0.395017\pi\)
\(234\) 0 0
\(235\) −1663.06 −0.461643
\(236\) −1222.52 2117.47i −0.337200 0.584048i
\(237\) 2546.61 + 4410.86i 0.697976 + 1.20893i
\(238\) −945.240 + 1637.20i −0.257440 + 0.445900i
\(239\) 544.622 0.147400 0.0737001 0.997280i \(-0.476519\pi\)
0.0737001 + 0.997280i \(0.476519\pi\)
\(240\) 176.666 305.995i 0.0475156 0.0822995i
\(241\) −2713.05 + 4699.14i −0.725157 + 1.25601i 0.233752 + 0.972296i \(0.424900\pi\)
−0.958909 + 0.283713i \(0.908434\pi\)
\(242\) 1714.73 0.455483
\(243\) 1172.61 2031.03i 0.309561 0.536175i
\(244\) −381.814 661.322i −0.100177 0.173511i
\(245\) 704.464 + 1220.17i 0.183700 + 0.318178i
\(246\) 2174.65 0.563621
\(247\) 0 0
\(248\) 573.746 0.146907
\(249\) −5880.39 10185.1i −1.49661 2.59220i
\(250\) 659.921 + 1143.02i 0.166948 + 0.289163i
\(251\) 2610.61 4521.71i 0.656494 1.13708i −0.325022 0.945706i \(-0.605372\pi\)
0.981517 0.191375i \(-0.0612948\pi\)
\(252\) 7319.02 1.82958
\(253\) −936.580 + 1622.20i −0.232736 + 0.403111i
\(254\) 675.508 1170.01i 0.166871 0.289028i
\(255\) −1377.86 −0.338372
\(256\) 1728.63 2994.07i 0.422029 0.730975i
\(257\) −329.103 570.023i −0.0798789 0.138354i 0.823319 0.567579i \(-0.192120\pi\)
−0.903198 + 0.429225i \(0.858787\pi\)
\(258\) −1025.95 1776.99i −0.247568 0.428801i
\(259\) −2559.87 −0.614141
\(260\) 0 0
\(261\) −10648.7 −2.52544
\(262\) −219.711 380.550i −0.0518083 0.0897346i
\(263\) −1623.23 2811.51i −0.380580 0.659184i 0.610565 0.791966i \(-0.290942\pi\)
−0.991145 + 0.132782i \(0.957609\pi\)
\(264\) −1403.40 + 2430.76i −0.327172 + 0.566679i
\(265\) 430.401 0.0997711
\(266\) −508.618 + 880.953i −0.117238 + 0.203063i
\(267\) −1910.11 + 3308.42i −0.437817 + 0.758321i
\(268\) −2849.07 −0.649384
\(269\) 1292.90 2239.37i 0.293047 0.507572i −0.681482 0.731835i \(-0.738664\pi\)
0.974529 + 0.224263i \(0.0719976\pi\)
\(270\) −517.375 896.119i −0.116616 0.201985i
\(271\) −494.466 856.441i −0.110836 0.191974i 0.805271 0.592907i \(-0.202020\pi\)
−0.916108 + 0.400932i \(0.868686\pi\)
\(272\) 508.867 0.113436
\(273\) 0 0
\(274\) 4124.74 0.909433
\(275\) 857.043 + 1484.44i 0.187933 + 0.325510i
\(276\) 2964.15 + 5134.06i 0.646452 + 1.11969i
\(277\) −4071.20 + 7051.53i −0.883086 + 1.52955i −0.0351939 + 0.999381i \(0.511205\pi\)
−0.847892 + 0.530169i \(0.822128\pi\)
\(278\) 3120.97 0.673322
\(279\) −655.961 + 1136.16i −0.140758 + 0.243799i
\(280\) −1024.89 + 1775.17i −0.218747 + 0.378880i
\(281\) 1534.21 0.325705 0.162853 0.986650i \(-0.447930\pi\)
0.162853 + 0.986650i \(0.447930\pi\)
\(282\) 3166.27 5484.14i 0.668612 1.15807i
\(283\) 3482.50 + 6031.87i 0.731495 + 1.26699i 0.956244 + 0.292570i \(0.0945105\pi\)
−0.224749 + 0.974417i \(0.572156\pi\)
\(284\) 1142.12 + 1978.20i 0.238634 + 0.413327i
\(285\) −741.403 −0.154095
\(286\) 0 0
\(287\) 4357.96 0.896314
\(288\) 4533.75 + 7852.68i 0.927616 + 1.60668i
\(289\) 1464.31 + 2536.26i 0.298048 + 0.516234i
\(290\) 611.518 1059.18i 0.123826 0.214473i
\(291\) −13124.9 −2.64396
\(292\) −856.490 + 1483.48i −0.171652 + 0.297309i
\(293\) −320.015 + 554.281i −0.0638070 + 0.110517i −0.896164 0.443723i \(-0.853658\pi\)
0.832357 + 0.554240i \(0.186991\pi\)
\(294\) −5364.87 −1.06424
\(295\) −782.887 + 1356.00i −0.154513 + 0.267625i
\(296\) −997.358 1727.48i −0.195846 0.339214i
\(297\) −1419.72 2459.03i −0.277375 0.480428i
\(298\) 2737.37 0.532120
\(299\) 0 0
\(300\) 5424.85 1.04401
\(301\) −2055.97 3561.05i −0.393702 0.681912i
\(302\) −2181.99 3779.32i −0.415760 0.720118i
\(303\) −1460.15 + 2529.05i −0.276843 + 0.479506i
\(304\) 273.813 0.0516587
\(305\) −244.509 + 423.503i −0.0459035 + 0.0795072i
\(306\) 1684.20 2917.12i 0.314638 0.544969i
\(307\) −100.406 −0.0186660 −0.00933299 0.999956i \(-0.502971\pi\)
−0.00933299 + 0.999956i \(0.502971\pi\)
\(308\) −1153.35 + 1997.67i −0.213371 + 0.369570i
\(309\) −1401.32 2427.16i −0.257988 0.446849i
\(310\) −75.3390 130.491i −0.0138031 0.0239077i
\(311\) −3878.92 −0.707245 −0.353623 0.935388i \(-0.615050\pi\)
−0.353623 + 0.935388i \(0.615050\pi\)
\(312\) 0 0
\(313\) −3789.39 −0.684311 −0.342155 0.939643i \(-0.611157\pi\)
−0.342155 + 0.939643i \(0.611157\pi\)
\(314\) 2533.52 + 4388.19i 0.455334 + 0.788662i
\(315\) −2343.51 4059.08i −0.419180 0.726041i
\(316\) −1630.82 + 2824.66i −0.290319 + 0.502847i
\(317\) 4406.81 0.780791 0.390396 0.920647i \(-0.372338\pi\)
0.390396 + 0.920647i \(0.372338\pi\)
\(318\) −819.434 + 1419.30i −0.144502 + 0.250284i
\(319\) 1678.06 2906.48i 0.294524 0.510130i
\(320\) −715.950 −0.125071
\(321\) −6229.58 + 10790.0i −1.08318 + 1.87613i
\(322\) −2604.42 4510.99i −0.450741 0.780706i
\(323\) −533.882 924.710i −0.0919690 0.159295i
\(324\) −1715.11 −0.294086
\(325\) 0 0
\(326\) −5124.19 −0.870559
\(327\) −3687.27 6386.55i −0.623568 1.08005i
\(328\) 1697.92 + 2940.88i 0.285829 + 0.495070i
\(329\) 6345.14 10990.1i 1.06328 1.84165i
\(330\) 737.127 0.122962
\(331\) 2065.75 3577.98i 0.343032 0.594149i −0.641962 0.766736i \(-0.721879\pi\)
0.984994 + 0.172587i \(0.0552127\pi\)
\(332\) 3765.73 6522.44i 0.622505 1.07821i
\(333\) 4561.10 0.750591
\(334\) −2441.11 + 4228.13i −0.399916 + 0.692674i
\(335\) 912.257 + 1580.07i 0.148782 + 0.257698i
\(336\) 1348.08 + 2334.95i 0.218881 + 0.379113i
\(337\) −4560.82 −0.737221 −0.368611 0.929584i \(-0.620166\pi\)
−0.368611 + 0.929584i \(0.620166\pi\)
\(338\) 0 0
\(339\) 14021.6 2.24646
\(340\) −441.182 764.150i −0.0703720 0.121888i
\(341\) −206.737 358.078i −0.0328311 0.0568652i
\(342\) 906.240 1569.65i 0.143286 0.248179i
\(343\) −1429.34 −0.225007
\(344\) 1602.07 2774.86i 0.251098 0.434914i
\(345\) 1898.21 3287.79i 0.296220 0.513069i
\(346\) −152.360 −0.0236733
\(347\) −5034.70 + 8720.36i −0.778896 + 1.34909i 0.153683 + 0.988120i \(0.450887\pi\)
−0.932579 + 0.360967i \(0.882447\pi\)
\(348\) −5310.82 9198.62i −0.818075 1.41695i
\(349\) −2939.66 5091.64i −0.450878 0.780944i 0.547563 0.836765i \(-0.315556\pi\)
−0.998441 + 0.0558207i \(0.982222\pi\)
\(350\) −4766.49 −0.727942
\(351\) 0 0
\(352\) −2857.76 −0.432725
\(353\) 4571.28 + 7917.69i 0.689249 + 1.19381i 0.972081 + 0.234644i \(0.0753925\pi\)
−0.282833 + 0.959169i \(0.591274\pi\)
\(354\) −2981.05 5163.33i −0.447574 0.775220i
\(355\) 731.398 1266.82i 0.109348 0.189397i
\(356\) −2446.43 −0.364215
\(357\) 5257.00 9105.39i 0.779356 1.34988i
\(358\) −27.1046 + 46.9466i −0.00400146 + 0.00693074i
\(359\) −2754.32 −0.404924 −0.202462 0.979290i \(-0.564894\pi\)
−0.202462 + 0.979290i \(0.564894\pi\)
\(360\) 1826.12 3162.94i 0.267347 0.463059i
\(361\) 3142.23 + 5442.50i 0.458117 + 0.793483i
\(362\) −959.845 1662.50i −0.139360 0.241379i
\(363\) −9536.54 −1.37889
\(364\) 0 0
\(365\) 1096.97 0.157310
\(366\) −931.034 1612.60i −0.132967 0.230306i
\(367\) −1520.09 2632.88i −0.216208 0.374483i 0.737438 0.675415i \(-0.236036\pi\)
−0.953646 + 0.300932i \(0.902702\pi\)
\(368\) −701.040 + 1214.24i −0.0993049 + 0.172001i
\(369\) −7764.88 −1.09546
\(370\) −261.928 + 453.672i −0.0368026 + 0.0637440i
\(371\) −1642.13 + 2844.25i −0.229798 + 0.398022i
\(372\) −1308.59 −0.182385
\(373\) 2692.36 4663.31i 0.373740 0.647337i −0.616397 0.787435i \(-0.711408\pi\)
0.990138 + 0.140098i \(0.0447418\pi\)
\(374\) 530.802 + 919.376i 0.0733880 + 0.127112i
\(375\) −3670.18 6356.95i −0.505407 0.875390i
\(376\) 9888.59 1.35629
\(377\) 0 0
\(378\) 7895.84 1.07439
\(379\) 1712.13 + 2965.50i 0.232049 + 0.401920i 0.958411 0.285392i \(-0.0921239\pi\)
−0.726362 + 0.687312i \(0.758791\pi\)
\(380\) −237.393 411.177i −0.0320474 0.0555077i
\(381\) −3756.87 + 6507.09i −0.505171 + 0.874983i
\(382\) −6684.69 −0.895336
\(383\) 191.493 331.675i 0.0255478 0.0442501i −0.852969 0.521962i \(-0.825200\pi\)
0.878517 + 0.477712i \(0.158534\pi\)
\(384\) −5141.89 + 8906.01i −0.683323 + 1.18355i
\(385\) 1477.19 0.195544
\(386\) 368.776 638.739i 0.0486275 0.0842253i
\(387\) 3663.27 + 6344.97i 0.481175 + 0.833419i
\(388\) −4202.50 7278.94i −0.549870 0.952403i
\(389\) 8588.34 1.11940 0.559699 0.828696i \(-0.310917\pi\)
0.559699 + 0.828696i \(0.310917\pi\)
\(390\) 0 0
\(391\) 5467.56 0.707178
\(392\) −4188.76 7255.15i −0.539705 0.934796i
\(393\) 1221.93 + 2116.45i 0.156841 + 0.271656i
\(394\) −3501.29 + 6064.41i −0.447696 + 0.775433i
\(395\) 2088.72 0.266063
\(396\) 2055.01 3559.38i 0.260778 0.451681i
\(397\) 3619.58 6269.30i 0.457586 0.792562i −0.541247 0.840864i \(-0.682048\pi\)
0.998833 + 0.0483020i \(0.0153810\pi\)
\(398\) 571.904 0.0720275
\(399\) 2828.71 4899.46i 0.354918 0.614737i
\(400\) 641.505 + 1111.12i 0.0801882 + 0.138890i
\(401\) −2134.81 3697.60i −0.265854 0.460472i 0.701933 0.712243i \(-0.252321\pi\)
−0.967787 + 0.251770i \(0.918987\pi\)
\(402\) −6947.32 −0.861942
\(403\) 0 0
\(404\) −1870.12 −0.230302
\(405\) 549.167 + 951.185i 0.0673786 + 0.116703i
\(406\) 4666.30 + 8082.27i 0.570405 + 0.987971i
\(407\) −718.751 + 1244.91i −0.0875360 + 0.151617i
\(408\) 8192.78 0.994125
\(409\) −6781.26 + 11745.5i −0.819834 + 1.41999i 0.0859711 + 0.996298i \(0.472601\pi\)
−0.905805 + 0.423696i \(0.860733\pi\)
\(410\) 445.909 772.337i 0.0537119 0.0930317i
\(411\) −22939.9 −2.75315
\(412\) 897.390 1554.33i 0.107309 0.185864i
\(413\) −5973.96 10347.2i −0.711767 1.23282i
\(414\) 4640.47 + 8037.54i 0.550886 + 0.954163i
\(415\) −4823.06 −0.570494
\(416\) 0 0
\(417\) −17357.5 −2.03837
\(418\) 285.616 + 494.701i 0.0334209 + 0.0578867i
\(419\) 7288.44 + 12624.0i 0.849794 + 1.47189i 0.881392 + 0.472386i \(0.156607\pi\)
−0.0315973 + 0.999501i \(0.510059\pi\)
\(420\) 2337.55 4048.76i 0.271573 0.470379i
\(421\) 15848.4 1.83469 0.917343 0.398099i \(-0.130330\pi\)
0.917343 + 0.398099i \(0.130330\pi\)
\(422\) 1657.24 2870.42i 0.191169 0.331114i
\(423\) −11305.6 + 19581.8i −1.29952 + 2.25083i
\(424\) −2559.18 −0.293124
\(425\) 2501.62 4332.94i 0.285521 0.494537i
\(426\) 2784.99 + 4823.75i 0.316745 + 0.548618i
\(427\) −1865.77 3231.62i −0.211455 0.366250i
\(428\) −7978.70 −0.901087
\(429\) 0 0
\(430\) −841.474 −0.0943709
\(431\) −5347.36 9261.90i −0.597618 1.03510i −0.993172 0.116662i \(-0.962781\pi\)
0.395554 0.918443i \(-0.370553\pi\)
\(432\) −1062.67 1840.61i −0.118352 0.204991i
\(433\) 8039.50 13924.8i 0.892272 1.54546i 0.0551273 0.998479i \(-0.482444\pi\)
0.837145 0.546981i \(-0.184223\pi\)
\(434\) 1149.78 0.127168
\(435\) −3400.99 + 5890.69i −0.374862 + 0.649280i
\(436\) 2361.29 4089.87i 0.259370 0.449241i
\(437\) 2942.01 0.322049
\(438\) −2088.50 + 3617.40i −0.227837 + 0.394625i
\(439\) −3017.90 5227.16i −0.328101 0.568288i 0.654034 0.756465i \(-0.273075\pi\)
−0.982135 + 0.188177i \(0.939742\pi\)
\(440\) 575.531 + 996.849i 0.0623577 + 0.108007i
\(441\) 19156.0 2.06845
\(442\) 0 0
\(443\) 10201.3 1.09409 0.547043 0.837105i \(-0.315753\pi\)
0.547043 + 0.837105i \(0.315753\pi\)
\(444\) 2274.75 + 3939.98i 0.243142 + 0.421134i
\(445\) 783.332 + 1356.77i 0.0834461 + 0.144533i
\(446\) −4627.21 + 8014.56i −0.491266 + 0.850897i
\(447\) −15224.0 −1.61090
\(448\) 2731.59 4731.26i 0.288071 0.498953i
\(449\) 2911.27 5042.47i 0.305994 0.529997i −0.671488 0.741015i \(-0.734345\pi\)
0.977482 + 0.211018i \(0.0676779\pi\)
\(450\) 8492.78 0.889675
\(451\) 1223.61 2119.36i 0.127755 0.221279i
\(452\) 4489.64 + 7776.28i 0.467201 + 0.809216i
\(453\) 12135.3 + 21018.9i 1.25864 + 2.18003i
\(454\) 1398.62 0.144583
\(455\) 0 0
\(456\) 4408.40 0.452724
\(457\) −2310.80 4002.42i −0.236531 0.409684i 0.723186 0.690654i \(-0.242677\pi\)
−0.959717 + 0.280970i \(0.909344\pi\)
\(458\) 490.106 + 848.889i 0.0500026 + 0.0866070i
\(459\) −4144.02 + 7177.65i −0.421408 + 0.729900i
\(460\) 2431.18 0.246422
\(461\) −2563.88 + 4440.78i −0.259028 + 0.448650i −0.965982 0.258610i \(-0.916736\pi\)
0.706954 + 0.707260i \(0.250069\pi\)
\(462\) −2812.39 + 4871.20i −0.283213 + 0.490539i
\(463\) 6486.27 0.651064 0.325532 0.945531i \(-0.394457\pi\)
0.325532 + 0.945531i \(0.394457\pi\)
\(464\) 1256.04 2175.53i 0.125669 0.217665i
\(465\) 419.002 + 725.733i 0.0417866 + 0.0723764i
\(466\) 1798.69 + 3115.43i 0.178804 + 0.309698i
\(467\) 12978.0 1.28598 0.642990 0.765875i \(-0.277694\pi\)
0.642990 + 0.765875i \(0.277694\pi\)
\(468\) 0 0
\(469\) −13922.3 −1.37073
\(470\) −1298.48 2249.03i −0.127435 0.220723i
\(471\) −14090.3 24405.1i −1.37844 2.38754i
\(472\) 4655.07 8062.81i 0.453955 0.786273i
\(473\) −2309.08 −0.224464
\(474\) −3976.67 + 6887.79i −0.385347 + 0.667440i
\(475\) 1346.08 2331.48i 0.130026 0.225212i
\(476\) 6733.04 0.648337
\(477\) 2925.89 5067.80i 0.280854 0.486454i
\(478\) 425.228 + 736.516i 0.0406893 + 0.0704759i
\(479\) 2904.48 + 5030.71i 0.277055 + 0.479873i 0.970651 0.240491i \(-0.0773084\pi\)
−0.693597 + 0.720363i \(0.743975\pi\)
\(480\) 5791.95 0.550761
\(481\) 0 0
\(482\) −8473.14 −0.800707
\(483\) 14484.6 + 25088.1i 1.36454 + 2.36345i
\(484\) −3053.54 5288.89i −0.286772 0.496703i
\(485\) −2691.23 + 4661.35i −0.251964 + 0.436414i
\(486\) 3662.20 0.341812
\(487\) 2693.57 4665.40i 0.250631 0.434106i −0.713069 0.701094i \(-0.752695\pi\)
0.963700 + 0.266989i \(0.0860286\pi\)
\(488\) 1453.86 2518.16i 0.134863 0.233589i
\(489\) 28498.4 2.63547
\(490\) −1100.06 + 1905.36i −0.101419 + 0.175664i
\(491\) −7629.53 13214.7i −0.701255 1.21461i −0.968026 0.250849i \(-0.919290\pi\)
0.266772 0.963760i \(-0.414043\pi\)
\(492\) −3872.57 6707.48i −0.354855 0.614628i
\(493\) −9796.16 −0.894922
\(494\) 0 0
\(495\) −2632.01 −0.238990
\(496\) −154.744 268.025i −0.0140085 0.0242635i
\(497\) 5581.07 + 9666.69i 0.503712 + 0.872456i
\(498\) 9182.55 15904.6i 0.826264 1.43113i
\(499\) 1856.04 0.166509 0.0832544 0.996528i \(-0.473469\pi\)
0.0832544 + 0.996528i \(0.473469\pi\)
\(500\) 2350.34 4070.91i 0.210221 0.364114i
\(501\) 13576.4 23515.0i 1.21067 2.09695i
\(502\) 8153.20 0.724891
\(503\) −524.732 + 908.862i −0.0465142 + 0.0805649i −0.888345 0.459176i \(-0.848145\pi\)
0.841831 + 0.539741i \(0.181478\pi\)
\(504\) 13934.6 + 24135.4i 1.23154 + 2.13308i
\(505\) 598.803 + 1037.16i 0.0527651 + 0.0913919i
\(506\) −2925.04 −0.256984
\(507\) 0 0
\(508\) −4811.71 −0.420246
\(509\) 275.553 + 477.272i 0.0239954 + 0.0415613i 0.877774 0.479075i \(-0.159028\pi\)
−0.853778 + 0.520637i \(0.825695\pi\)
\(510\) −1075.80 1863.34i −0.0934063 0.161784i
\(511\) −4185.32 + 7249.19i −0.362324 + 0.627564i
\(512\) −4074.36 −0.351686
\(513\) −2229.83 + 3862.18i −0.191909 + 0.332396i
\(514\) 513.911 890.121i 0.0441005 0.0763843i
\(515\) −1149.36 −0.0983431
\(516\) −3653.96 + 6328.84i −0.311738 + 0.539945i
\(517\) −3563.13 6171.52i −0.303107 0.524997i
\(518\) −1998.69 3461.83i −0.169531 0.293637i
\(519\) 847.361 0.0716667
\(520\) 0 0
\(521\) −8995.30 −0.756413 −0.378206 0.925721i \(-0.623459\pi\)
−0.378206 + 0.925721i \(0.623459\pi\)
\(522\) −8314.27 14400.7i −0.697137 1.20748i
\(523\) −1331.96 2307.02i −0.111362 0.192885i 0.804958 0.593332i \(-0.202188\pi\)
−0.916320 + 0.400448i \(0.868855\pi\)
\(524\) −782.512 + 1355.35i −0.0652370 + 0.112994i
\(525\) 26509.1 2.20372
\(526\) 2534.76 4390.32i 0.210115 0.363930i
\(527\) −603.443 + 1045.19i −0.0498793 + 0.0863935i
\(528\) 1514.04 0.124792
\(529\) −1448.89 + 2509.54i −0.119083 + 0.206258i
\(530\) 336.047 + 582.051i 0.0275414 + 0.0477032i
\(531\) 10644.2 + 18436.3i 0.869906 + 1.50672i
\(532\) 3622.94 0.295253
\(533\) 0 0
\(534\) −5965.49 −0.483431
\(535\) 2554.73 + 4424.93i 0.206450 + 0.357582i
\(536\) −5424.30 9395.16i −0.437116 0.757107i
\(537\) 150.744 261.096i 0.0121137 0.0209816i
\(538\) 4037.86 0.323577
\(539\) −3018.65 + 5228.46i −0.241229 + 0.417821i
\(540\) −1842.66 + 3191.57i −0.146843 + 0.254340i
\(541\) −6169.23 −0.490270 −0.245135 0.969489i \(-0.578832\pi\)
−0.245135 + 0.969489i \(0.578832\pi\)
\(542\) 772.135 1337.38i 0.0611920 0.105988i
\(543\) 5338.23 + 9246.08i 0.421888 + 0.730732i
\(544\) 4170.76 + 7223.97i 0.328713 + 0.569348i
\(545\) −3024.28 −0.237699
\(546\) 0 0
\(547\) 5140.42 0.401807 0.200904 0.979611i \(-0.435612\pi\)
0.200904 + 0.979611i \(0.435612\pi\)
\(548\) −7345.24 12722.3i −0.572578 0.991735i
\(549\) 3324.38 + 5757.99i 0.258435 + 0.447623i
\(550\) −1338.32 + 2318.03i −0.103756 + 0.179711i
\(551\) −5271.15 −0.407547
\(552\) −11286.8 + 19549.3i −0.870285 + 1.50738i
\(553\) −7969.16 + 13803.0i −0.612809 + 1.06142i
\(554\) −12714.8 −0.975090
\(555\) 1456.72 2523.12i 0.111413 0.192974i
\(556\) −5557.76 9626.32i −0.423923 0.734257i
\(557\) −1389.28 2406.30i −0.105683 0.183049i 0.808334 0.588724i \(-0.200370\pi\)
−0.914017 + 0.405675i \(0.867036\pi\)
\(558\) −2048.64 −0.155422
\(559\) 0 0
\(560\) 1105.69 0.0834356
\(561\) −2952.08 5113.16i −0.222170 0.384809i
\(562\) 1197.87 + 2074.78i 0.0899097 + 0.155728i
\(563\) −2453.07 + 4248.85i −0.183632 + 0.318059i −0.943115 0.332468i \(-0.892119\pi\)
0.759483 + 0.650527i \(0.225452\pi\)
\(564\) −22553.7 −1.68383
\(565\) 2875.11 4979.84i 0.214083 0.370802i
\(566\) −5438.11 + 9419.08i −0.403853 + 0.699494i
\(567\) −8381.04 −0.620759
\(568\) −4348.91 + 7532.54i −0.321261 + 0.556440i
\(569\) 4681.58 + 8108.73i 0.344924 + 0.597426i 0.985340 0.170602i \(-0.0545713\pi\)
−0.640416 + 0.768028i \(0.721238\pi\)
\(570\) −578.870 1002.63i −0.0425372 0.0736766i
\(571\) 7199.32 0.527640 0.263820 0.964572i \(-0.415018\pi\)
0.263820 + 0.964572i \(0.415018\pi\)
\(572\) 0 0
\(573\) 37177.3 2.71048
\(574\) 3402.59 + 5893.46i 0.247424 + 0.428551i
\(575\) 6892.72 + 11938.5i 0.499906 + 0.865863i
\(576\) −4867.07 + 8430.01i −0.352074 + 0.609810i
\(577\) −11449.6 −0.826086 −0.413043 0.910711i \(-0.635534\pi\)
−0.413043 + 0.910711i \(0.635534\pi\)
\(578\) −2286.60 + 3960.50i −0.164550 + 0.285009i
\(579\) −2050.97 + 3552.38i −0.147211 + 0.254978i
\(580\) −4355.91 −0.311843
\(581\) 18401.6 31872.6i 1.31399 2.27590i
\(582\) −10247.6 17749.3i −0.729855 1.26415i
\(583\) 922.142 + 1597.20i 0.0655081 + 0.113463i
\(584\) −6522.62 −0.462171
\(585\) 0 0
\(586\) −999.439 −0.0704547
\(587\) 2719.70 + 4710.65i 0.191233 + 0.331226i 0.945659 0.325160i \(-0.105418\pi\)
−0.754426 + 0.656385i \(0.772085\pi\)
\(588\) 9553.63 + 16547.4i 0.670042 + 1.16055i
\(589\) −324.703 + 562.402i −0.0227150 + 0.0393436i
\(590\) −2445.04 −0.170611
\(591\) 19472.6 33727.5i 1.35532 2.34749i
\(592\) −537.993 + 931.831i −0.0373503 + 0.0646926i
\(593\) −28405.8 −1.96709 −0.983547 0.180651i \(-0.942180\pi\)
−0.983547 + 0.180651i \(0.942180\pi\)
\(594\) 2216.97 3839.90i 0.153137 0.265241i
\(595\) −2155.88 3734.10i −0.148542 0.257282i
\(596\) −4874.65 8443.14i −0.335022 0.580276i
\(597\) −3180.67 −0.218051
\(598\) 0 0
\(599\) −10482.3 −0.715020 −0.357510 0.933909i \(-0.616374\pi\)
−0.357510 + 0.933909i \(0.616374\pi\)
\(600\) 10328.3 + 17889.1i 0.702750 + 1.21720i
\(601\) −1599.77 2770.88i −0.108579 0.188064i 0.806616 0.591076i \(-0.201297\pi\)
−0.915195 + 0.403012i \(0.867963\pi\)
\(602\) 3210.51 5560.77i 0.217360 0.376479i
\(603\) 24806.3 1.67527
\(604\) −7771.28 + 13460.3i −0.523525 + 0.906772i
\(605\) −1955.45 + 3386.95i −0.131406 + 0.227602i
\(606\) −4560.20 −0.305686
\(607\) −5671.40 + 9823.15i −0.379234 + 0.656853i −0.990951 0.134224i \(-0.957146\pi\)
0.611717 + 0.791077i \(0.290479\pi\)
\(608\) 2244.22 + 3887.10i 0.149696 + 0.259281i
\(609\) −25951.9 44950.0i −1.72680 2.99091i
\(610\) −763.629 −0.0506859
\(611\) 0 0
\(612\) −11996.7 −0.792384
\(613\) −7192.70 12458.1i −0.473916 0.820846i 0.525638 0.850708i \(-0.323826\pi\)
−0.999554 + 0.0298622i \(0.990493\pi\)
\(614\) −78.3944 135.783i −0.00515267 0.00892469i
\(615\) −2479.95 + 4295.39i −0.162603 + 0.281637i
\(616\) −8783.39 −0.574502
\(617\) −11028.4 + 19101.7i −0.719588 + 1.24636i 0.241575 + 0.970382i \(0.422336\pi\)
−0.961163 + 0.275981i \(0.910997\pi\)
\(618\) 2188.24 3790.14i 0.142433 0.246702i
\(619\) 13621.4 0.884477 0.442238 0.896898i \(-0.354185\pi\)
0.442238 + 0.896898i \(0.354185\pi\)
\(620\) −268.324 + 464.751i −0.0173809 + 0.0301046i
\(621\) −11418.0 19776.6i −0.737824 1.27795i
\(622\) −3028.57 5245.63i −0.195232 0.338152i
\(623\) −11954.7 −0.768789
\(624\) 0 0
\(625\) 11029.2 0.705866
\(626\) −2958.67 5124.57i −0.188901 0.327187i
\(627\) −1588.47 2751.31i −0.101176 0.175242i
\(628\) 9023.27 15628.8i 0.573356 0.993082i
\(629\) 4195.92 0.265982
\(630\) 3659.51 6338.46i 0.231426 0.400842i
\(631\) 9368.74 16227.1i 0.591068 1.02376i −0.403021 0.915191i \(-0.632040\pi\)
0.994089 0.108569i \(-0.0346267\pi\)
\(632\) −12419.6 −0.781683
\(633\) −9216.83 + 15964.0i −0.578730 + 1.00239i
\(634\) 3440.73 + 5959.52i 0.215534 + 0.373317i
\(635\) 1540.68 + 2668.54i 0.0962836 + 0.166768i
\(636\) 5836.91 0.363913
\(637\) 0 0
\(638\) 5240.75 0.325209
\(639\) −9944.18 17223.8i −0.615627 1.06630i
\(640\) 2108.67 + 3652.33i 0.130239 + 0.225580i
\(641\) −14899.4 + 25806.5i −0.918081 + 1.59016i −0.115753 + 0.993278i \(0.536928\pi\)
−0.802327 + 0.596884i \(0.796405\pi\)
\(642\) −19455.6 −1.19603
\(643\) 11491.8 19904.3i 0.704807 1.22076i −0.261955 0.965080i \(-0.584367\pi\)
0.966761 0.255681i \(-0.0822996\pi\)
\(644\) −9275.77 + 16066.1i −0.567573 + 0.983064i
\(645\) 4679.90 0.285692
\(646\) 833.684 1443.98i 0.0507753 0.0879455i
\(647\) 12452.7 + 21568.7i 0.756672 + 1.31059i 0.944539 + 0.328400i \(0.106509\pi\)
−0.187866 + 0.982195i \(0.560157\pi\)
\(648\) −3265.36 5655.77i −0.197956 0.342870i
\(649\) −6709.39 −0.405804
\(650\) 0 0
\(651\) −6394.54 −0.384980
\(652\) 9125.03 + 15805.0i 0.548104 + 0.949344i
\(653\) −5038.92 8727.67i −0.301973 0.523033i 0.674610 0.738175i \(-0.264312\pi\)
−0.976583 + 0.215142i \(0.930979\pi\)
\(654\) 5757.87 9972.93i 0.344267 0.596288i
\(655\) 1002.22 0.0597864
\(656\) 915.886 1586.36i 0.0545112 0.0944162i
\(657\) 7457.28 12916.4i 0.442825 0.766996i
\(658\) 19816.5 1.17406
\(659\) −6167.30 + 10682.1i −0.364558 + 0.631433i −0.988705 0.149874i \(-0.952113\pi\)
0.624147 + 0.781307i \(0.285447\pi\)
\(660\) −1312.66 2273.59i −0.0774169 0.134090i
\(661\) 6374.56 + 11041.1i 0.375101 + 0.649694i 0.990342 0.138645i \(-0.0442747\pi\)
−0.615241 + 0.788339i \(0.710941\pi\)
\(662\) 6451.54 0.378771
\(663\) 0 0
\(664\) 28678.1 1.67609
\(665\) −1160.04 2009.26i −0.0676460 0.117166i
\(666\) 3561.20 + 6168.18i 0.207198 + 0.358877i
\(667\) 13495.7 23375.2i 0.783440 1.35696i
\(668\) 17388.3 1.00715
\(669\) 25734.5 44573.4i 1.48722 2.57594i
\(670\) −1424.54 + 2467.37i −0.0821413 + 0.142273i
\(671\) −2095.46 −0.120558
\(672\) −22098.3 + 38275.3i −1.26854 + 2.19718i
\(673\) 6809.12 + 11793.7i 0.390004 + 0.675506i 0.992450 0.122654i \(-0.0391404\pi\)
−0.602446 + 0.798160i \(0.705807\pi\)
\(674\) −3560.98 6167.80i −0.203507 0.352485i
\(675\) −20896.7 −1.19158
\(676\) 0 0
\(677\) 9655.67 0.548150 0.274075 0.961708i \(-0.411628\pi\)
0.274075 + 0.961708i \(0.411628\pi\)
\(678\) 10947.7 + 18962.0i 0.620126 + 1.07409i
\(679\) −20535.9 35569.3i −1.16067 2.01034i
\(680\) 1679.92 2909.70i 0.0947381 0.164091i
\(681\) −7778.51 −0.437699
\(682\) 322.830 559.158i 0.0181258 0.0313948i
\(683\) −8158.38 + 14130.7i −0.457060 + 0.791650i −0.998804 0.0488929i \(-0.984431\pi\)
0.541744 + 0.840543i \(0.317764\pi\)
\(684\) −6455.25 −0.360852
\(685\) −4703.80 + 8147.23i −0.262369 + 0.454437i
\(686\) −1116.00 1932.97i −0.0621123 0.107582i
\(687\) −2725.75 4721.14i −0.151374 0.262188i
\(688\) −1728.37 −0.0957753
\(689\) 0 0
\(690\) 5928.30 0.327082
\(691\) −1175.42 2035.89i −0.0647106 0.112082i 0.831855 0.554993i \(-0.187279\pi\)
−0.896566 + 0.442911i \(0.853946\pi\)
\(692\) 271.320 + 469.940i 0.0149047 + 0.0258157i
\(693\) 10042.0 17393.3i 0.550454 0.953414i
\(694\) −15723.9 −0.860045
\(695\) −3559.12 + 6164.58i −0.194252 + 0.336455i
\(696\) 20222.4 35026.2i 1.10133 1.90756i
\(697\) −7143.20 −0.388189
\(698\) 4590.44 7950.87i 0.248926 0.431153i
\(699\) −10003.5 17326.6i −0.541299 0.937558i
\(700\) 8488.05 + 14701.7i 0.458312 + 0.793819i
\(701\) −8076.90 −0.435179 −0.217589 0.976040i \(-0.569819\pi\)
−0.217589 + 0.976040i \(0.569819\pi\)
\(702\) 0 0
\(703\) 2257.76 0.121128
\(704\) −1533.93 2656.85i −0.0821197 0.142236i
\(705\) 7221.55 + 12508.1i 0.385786 + 0.668202i
\(706\) −7138.30 + 12363.9i −0.380529 + 0.659095i
\(707\) −9138.55 −0.486125
\(708\) −10617.2 + 18389.5i −0.563584 + 0.976156i
\(709\) 6812.44 11799.5i 0.360856 0.625021i −0.627246 0.778821i \(-0.715818\pi\)
0.988102 + 0.153801i \(0.0491513\pi\)
\(710\) 2284.23 0.120741
\(711\) 14199.2 24593.8i 0.748962 1.29724i
\(712\) −4657.71 8067.40i −0.245162 0.424633i
\(713\) −1662.67 2879.82i −0.0873315 0.151263i
\(714\) 16418.2 0.860553
\(715\) 0 0
\(716\) 193.069 0.0100773
\(717\) −2364.93 4096.18i −0.123180 0.213354i
\(718\) −2150.51 3724.79i −0.111778 0.193605i
\(719\) −8117.89 + 14060.6i −0.421066 + 0.729307i −0.996044 0.0888616i \(-0.971677\pi\)
0.574978 + 0.818169i \(0.305010\pi\)
\(720\) −1970.09 −0.101973
\(721\) 4385.19 7595.36i 0.226509 0.392325i
\(722\) −4906.75 + 8498.75i −0.252923 + 0.438076i
\(723\) 47123.8 2.42400
\(724\) −3418.54 + 5921.08i −0.175482 + 0.303944i
\(725\) −12349.6 21390.1i −0.632623 1.09574i
\(726\) −7445.91 12896.7i −0.380638 0.659285i
\(727\) 24181.2 1.23361 0.616803 0.787118i \(-0.288428\pi\)
0.616803 + 0.787118i \(0.288428\pi\)
\(728\) 0 0
\(729\) −28693.9 −1.45780
\(730\) 856.490 + 1483.48i 0.0434248 + 0.0752139i
\(731\) 3369.98 + 5836.98i 0.170511 + 0.295333i
\(732\) −3315.93 + 5743.36i −0.167432 + 0.290001i
\(733\) 3053.70 0.153876 0.0769379 0.997036i \(-0.475486\pi\)
0.0769379 + 0.997036i \(0.475486\pi\)
\(734\) 2373.71 4111.38i 0.119367 0.206749i
\(735\) 6118.03 10596.7i 0.307030 0.531791i
\(736\) −22983.4 −1.15106
\(737\) −3909.05 + 6770.67i −0.195375 + 0.338400i
\(738\) −6062.63 10500.8i −0.302396 0.523766i
\(739\) 4016.81 + 6957.32i 0.199947 + 0.346318i 0.948511 0.316744i \(-0.102590\pi\)
−0.748564 + 0.663062i \(0.769256\pi\)
\(740\) 1865.74 0.0926836
\(741\) 0 0
\(742\) −5128.54 −0.253739
\(743\) 8069.81 + 13977.3i 0.398456 + 0.690146i 0.993536 0.113521i \(-0.0362128\pi\)
−0.595080 + 0.803667i \(0.702880\pi\)
\(744\) −2491.40 4315.22i −0.122767 0.212639i
\(745\) −3121.67 + 5406.89i −0.153515 + 0.265897i
\(746\) 8408.53 0.412678
\(747\) −32787.5 + 56789.6i −1.60593 + 2.78156i
\(748\) 1890.48 3274.41i 0.0924102 0.160059i
\(749\) −38988.7 −1.90202
\(750\) 5731.19 9926.71i 0.279031 0.483296i
\(751\) 9245.56 + 16013.8i 0.449235 + 0.778097i 0.998336 0.0576584i \(-0.0183634\pi\)
−0.549102 + 0.835755i \(0.685030\pi\)
\(752\) −2667.04 4619.45i −0.129331 0.224008i
\(753\) −45344.5 −2.19448
\(754\) 0 0
\(755\) 9953.28 0.479784
\(756\) −14060.7 24353.9i −0.676434 1.17162i
\(757\) −80.3149 139.109i −0.00385613 0.00667902i 0.864091 0.503336i \(-0.167894\pi\)
−0.867947 + 0.496657i \(0.834561\pi\)
\(758\) −2673.59 + 4630.79i −0.128112 + 0.221897i
\(759\) 16267.7 0.777973
\(760\) 903.936 1565.66i 0.0431437 0.0747271i
\(761\) −13399.5 + 23208.7i −0.638282 + 1.10554i 0.347528 + 0.937670i \(0.387021\pi\)
−0.985810 + 0.167867i \(0.946312\pi\)
\(762\) −11733.1 −0.557803
\(763\) 11538.7 19985.6i 0.547481 0.948264i
\(764\) 11903.9 + 20618.2i 0.563703 + 0.976363i
\(765\) 3841.28 + 6653.30i 0.181545 + 0.314445i
\(766\) 598.052 0.0282095
\(767\) 0 0
\(768\) −30025.1 −1.41073
\(769\) 2572.91 + 4456.41i 0.120652 + 0.208976i 0.920025 0.391860i \(-0.128168\pi\)
−0.799373 + 0.600835i \(0.794835\pi\)
\(770\) 1153.35 +