Properties

Label 169.4.c.g.146.1
Level $169$
Weight $4$
Character 169.146
Analytic conductor $9.971$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(22,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.22");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.1
Root \(1.28078 + 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 169.146
Dual form 169.4.c.g.22.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 - 2.21837i) q^{2} +(1.84233 + 3.19101i) q^{3} +(0.719224 - 1.24573i) q^{4} +0.561553 q^{5} +(4.71922 - 8.17394i) q^{6} +(-9.08854 + 15.7418i) q^{7} -24.1771 q^{8} +(6.71165 - 11.6249i) q^{9} +O(q^{10})\) \(q+(-1.28078 - 2.21837i) q^{2} +(1.84233 + 3.19101i) q^{3} +(0.719224 - 1.24573i) q^{4} +0.561553 q^{5} +(4.71922 - 8.17394i) q^{6} +(-9.08854 + 15.7418i) q^{7} -24.1771 q^{8} +(6.71165 - 11.6249i) q^{9} +(-0.719224 - 1.24573i) q^{10} +(-32.3693 - 56.0653i) q^{11} +5.30019 q^{12} +46.5616 q^{14} +(1.03457 + 1.79192i) q^{15} +(25.2116 + 43.6679i) q^{16} +(12.7732 - 22.1238i) q^{17} -34.3845 q^{18} +(53.9848 - 93.5045i) q^{19} +(0.403882 - 0.699544i) q^{20} -66.9763 q^{21} +(-82.9157 + 143.614i) q^{22} +(-36.6307 - 63.4462i) q^{23} +(-44.5421 - 77.1493i) q^{24} -124.685 q^{25} +148.946 q^{27} +(13.0734 + 22.6438i) q^{28} +(-87.9545 - 152.342i) q^{29} +(2.65009 - 4.59010i) q^{30} -113.093 q^{31} +(-32.1274 + 55.6462i) q^{32} +(119.270 - 206.581i) q^{33} -65.4384 q^{34} +(-5.10370 + 8.83986i) q^{35} +(-9.65435 - 16.7218i) q^{36} +(-57.4039 - 99.4264i) q^{37} -276.570 q^{38} -13.5767 q^{40} +(34.8229 + 60.3151i) q^{41} +(85.7817 + 148.578i) q^{42} +(-219.151 + 379.581i) q^{43} -93.1231 q^{44} +(3.76894 - 6.52800i) q^{45} +(-93.8314 + 162.521i) q^{46} -31.9479 q^{47} +(-92.8963 + 160.901i) q^{48} +(6.29686 + 10.9065i) q^{49} +(159.693 + 276.597i) q^{50} +94.1298 q^{51} +2.84658 q^{53} +(-190.767 - 330.417i) q^{54} +(-18.1771 - 31.4836i) q^{55} +(219.734 - 380.591i) q^{56} +397.831 q^{57} +(-225.300 + 390.231i) q^{58} +(-35.8163 + 62.0356i) q^{59} +2.97633 q^{60} +(460.348 - 797.345i) q^{61} +(144.847 + 250.882i) q^{62} +(121.998 + 211.307i) q^{63} +567.978 q^{64} -611.032 q^{66} +(222.140 + 384.758i) q^{67} +(-18.3736 - 31.8240i) q^{68} +(134.972 - 233.778i) q^{69} +26.1468 q^{70} +(270.859 - 469.142i) q^{71} +(-162.268 + 281.056i) q^{72} +764.004 q^{73} +(-147.043 + 254.686i) q^{74} +(-229.710 - 397.870i) q^{75} +(-77.6543 - 134.501i) q^{76} +1176.76 q^{77} -421.538 q^{79} +(14.1577 + 24.5218i) q^{80} +(93.1932 + 161.415i) q^{81} +(89.2007 - 154.500i) q^{82} +603.797 q^{83} +(-48.1710 + 83.4346i) q^{84} +(7.17283 - 12.4237i) q^{85} +1122.73 q^{86} +(324.082 - 561.327i) q^{87} +(782.596 + 1355.50i) q^{88} +(579.941 + 1004.49i) q^{89} -19.3087 q^{90} -105.383 q^{92} +(-208.354 - 360.880i) q^{93} +(40.9181 + 70.8722i) q^{94} +(30.3153 - 52.5077i) q^{95} -236.757 q^{96} +(-291.634 + 505.126i) q^{97} +(16.1298 - 27.9375i) q^{98} -869.006 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 5 q^{3} + 7 q^{4} - 6 q^{5} + 23 q^{6} + 9 q^{7} - 6 q^{8} - 35 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} - 5 q^{3} + 7 q^{4} - 6 q^{5} + 23 q^{6} + 9 q^{7} - 6 q^{8} - 35 q^{9} - 7 q^{10} - 80 q^{11} - 86 q^{12} + 178 q^{14} + 33 q^{15} + 39 q^{16} - 19 q^{17} - 220 q^{18} + 84 q^{19} - 19 q^{20} - 606 q^{21} - 142 q^{22} - 196 q^{23} - 273 q^{24} - 474 q^{25} + 670 q^{27} - 125 q^{28} + 44 q^{29} - 43 q^{30} - 172 q^{31} + 123 q^{32} + 106 q^{33} - 270 q^{34} - 107 q^{35} + 250 q^{36} - 209 q^{37} - 628 q^{38} - 178 q^{40} + 230 q^{41} - 197 q^{42} - 287 q^{43} - 356 q^{44} + 180 q^{45} + 4 q^{46} + 870 q^{47} - 285 q^{48} - 383 q^{49} + 144 q^{50} + 962 q^{51} - 236 q^{53} - 91 q^{54} + 18 q^{55} + 1015 q^{56} + 1212 q^{57} - 794 q^{58} + 368 q^{59} + 350 q^{60} + 1058 q^{61} + 332 q^{62} + 1560 q^{63} + 1538 q^{64} - 1636 q^{66} - 68 q^{67} + 211 q^{68} - 796 q^{69} - 250 q^{70} + 131 q^{71} - 1350 q^{72} + 912 q^{73} - 147 q^{74} + 516 q^{75} - 22 q^{76} + 1524 q^{77} - 2016 q^{79} + 69 q^{80} - 122 q^{81} - 72 q^{82} + 3916 q^{83} - 1409 q^{84} + 173 q^{85} + 2718 q^{86} + 2558 q^{87} + 1242 q^{88} + 720 q^{89} + 500 q^{90} - 1576 q^{92} - 652 q^{93} + 811 q^{94} + 146 q^{95} - 3726 q^{96} + 928 q^{97} + 650 q^{98} - 260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28078 2.21837i −0.452823 0.784312i 0.545737 0.837956i \(-0.316250\pi\)
−0.998560 + 0.0536442i \(0.982916\pi\)
\(3\) 1.84233 + 3.19101i 0.354556 + 0.614110i 0.987042 0.160462i \(-0.0512985\pi\)
−0.632486 + 0.774572i \(0.717965\pi\)
\(4\) 0.719224 1.24573i 0.0899029 0.155716i
\(5\) 0.561553 0.0502268 0.0251134 0.999685i \(-0.492005\pi\)
0.0251134 + 0.999685i \(0.492005\pi\)
\(6\) 4.71922 8.17394i 0.321102 0.556166i
\(7\) −9.08854 + 15.7418i −0.490735 + 0.849978i −0.999943 0.0106654i \(-0.996605\pi\)
0.509208 + 0.860643i \(0.329938\pi\)
\(8\) −24.1771 −1.06849
\(9\) 6.71165 11.6249i 0.248579 0.430552i
\(10\) −0.719224 1.24573i −0.0227438 0.0393935i
\(11\) −32.3693 56.0653i −0.887247 1.53676i −0.843116 0.537731i \(-0.819282\pi\)
−0.0441305 0.999026i \(-0.514052\pi\)
\(12\) 5.30019 0.127503
\(13\) 0 0
\(14\) 46.5616 0.888864
\(15\) 1.03457 + 1.79192i 0.0178082 + 0.0308448i
\(16\) 25.2116 + 43.6679i 0.393932 + 0.682310i
\(17\) 12.7732 22.1238i 0.182233 0.315636i −0.760408 0.649446i \(-0.775001\pi\)
0.942641 + 0.333810i \(0.108334\pi\)
\(18\) −34.3845 −0.450250
\(19\) 53.9848 93.5045i 0.651841 1.12902i −0.330835 0.943689i \(-0.607330\pi\)
0.982676 0.185333i \(-0.0593363\pi\)
\(20\) 0.403882 0.699544i 0.00451554 0.00782114i
\(21\) −66.9763 −0.695973
\(22\) −82.9157 + 143.614i −0.803531 + 1.39176i
\(23\) −36.6307 63.4462i −0.332088 0.575193i 0.650833 0.759221i \(-0.274420\pi\)
−0.982921 + 0.184027i \(0.941086\pi\)
\(24\) −44.5421 77.1493i −0.378839 0.656168i
\(25\) −124.685 −0.997477
\(26\) 0 0
\(27\) 148.946 1.06165
\(28\) 13.0734 + 22.6438i 0.0882371 + 0.152831i
\(29\) −87.9545 152.342i −0.563198 0.975488i −0.997215 0.0745830i \(-0.976237\pi\)
0.434017 0.900905i \(-0.357096\pi\)
\(30\) 2.65009 4.59010i 0.0161280 0.0279344i
\(31\) −113.093 −0.655228 −0.327614 0.944812i \(-0.606245\pi\)
−0.327614 + 0.944812i \(0.606245\pi\)
\(32\) −32.1274 + 55.6462i −0.177480 + 0.307405i
\(33\) 119.270 206.581i 0.629158 1.08973i
\(34\) −65.4384 −0.330077
\(35\) −5.10370 + 8.83986i −0.0246481 + 0.0426917i
\(36\) −9.65435 16.7218i −0.0446961 0.0774158i
\(37\) −57.4039 99.4264i −0.255058 0.441773i 0.709853 0.704349i \(-0.248761\pi\)
−0.964911 + 0.262576i \(0.915428\pi\)
\(38\) −276.570 −1.18067
\(39\) 0 0
\(40\) −13.5767 −0.0536666
\(41\) 34.8229 + 60.3151i 0.132645 + 0.229747i 0.924695 0.380708i \(-0.124320\pi\)
−0.792051 + 0.610455i \(0.790986\pi\)
\(42\) 85.7817 + 148.578i 0.315153 + 0.545860i
\(43\) −219.151 + 379.581i −0.777214 + 1.34617i 0.156327 + 0.987705i \(0.450035\pi\)
−0.933541 + 0.358469i \(0.883299\pi\)
\(44\) −93.1231 −0.319064
\(45\) 3.76894 6.52800i 0.0124854 0.0216253i
\(46\) −93.8314 + 162.521i −0.300754 + 0.520921i
\(47\) −31.9479 −0.0991506 −0.0495753 0.998770i \(-0.515787\pi\)
−0.0495753 + 0.998770i \(0.515787\pi\)
\(48\) −92.8963 + 160.901i −0.279342 + 0.483835i
\(49\) 6.29686 + 10.9065i 0.0183582 + 0.0317973i
\(50\) 159.693 + 276.597i 0.451680 + 0.782334i
\(51\) 94.1298 0.258447
\(52\) 0 0
\(53\) 2.84658 0.00737752 0.00368876 0.999993i \(-0.498826\pi\)
0.00368876 + 0.999993i \(0.498826\pi\)
\(54\) −190.767 330.417i −0.480741 0.832669i
\(55\) −18.1771 31.4836i −0.0445636 0.0771864i
\(56\) 219.734 380.591i 0.524344 0.908190i
\(57\) 397.831 0.924457
\(58\) −225.300 + 390.231i −0.510058 + 0.883446i
\(59\) −35.8163 + 62.0356i −0.0790319 + 0.136887i −0.902832 0.429992i \(-0.858516\pi\)
0.823801 + 0.566880i \(0.191850\pi\)
\(60\) 2.97633 0.00640405
\(61\) 460.348 797.345i 0.966253 1.67360i 0.260044 0.965597i \(-0.416263\pi\)
0.706209 0.708003i \(-0.250404\pi\)
\(62\) 144.847 + 250.882i 0.296702 + 0.513903i
\(63\) 121.998 + 211.307i 0.243973 + 0.422574i
\(64\) 567.978 1.10933
\(65\) 0 0
\(66\) −611.032 −1.13959
\(67\) 222.140 + 384.758i 0.405056 + 0.701577i 0.994328 0.106357i \(-0.0339188\pi\)
−0.589272 + 0.807935i \(0.700585\pi\)
\(68\) −18.3736 31.8240i −0.0327665 0.0567533i
\(69\) 134.972 233.778i 0.235488 0.407877i
\(70\) 26.1468 0.0446448
\(71\) 270.859 469.142i 0.452748 0.784182i −0.545808 0.837910i \(-0.683777\pi\)
0.998556 + 0.0537283i \(0.0171105\pi\)
\(72\) −162.268 + 281.056i −0.265604 + 0.460039i
\(73\) 764.004 1.22493 0.612465 0.790498i \(-0.290178\pi\)
0.612465 + 0.790498i \(0.290178\pi\)
\(74\) −147.043 + 254.686i −0.230992 + 0.400090i
\(75\) −229.710 397.870i −0.353662 0.612561i
\(76\) −77.6543 134.501i −0.117205 0.203005i
\(77\) 1176.76 1.74161
\(78\) 0 0
\(79\) −421.538 −0.600338 −0.300169 0.953886i \(-0.597043\pi\)
−0.300169 + 0.953886i \(0.597043\pi\)
\(80\) 14.1577 + 24.5218i 0.0197859 + 0.0342703i
\(81\) 93.1932 + 161.415i 0.127837 + 0.221420i
\(82\) 89.2007 154.500i 0.120129 0.208069i
\(83\) 603.797 0.798498 0.399249 0.916842i \(-0.369271\pi\)
0.399249 + 0.916842i \(0.369271\pi\)
\(84\) −48.1710 + 83.4346i −0.0625700 + 0.108374i
\(85\) 7.17283 12.4237i 0.00915297 0.0158534i
\(86\) 1122.73 1.40776
\(87\) 324.082 561.327i 0.399371 0.691731i
\(88\) 782.596 + 1355.50i 0.948011 + 1.64200i
\(89\) 579.941 + 1004.49i 0.690715 + 1.19635i 0.971604 + 0.236613i \(0.0760375\pi\)
−0.280889 + 0.959740i \(0.590629\pi\)
\(90\) −19.3087 −0.0226146
\(91\) 0 0
\(92\) −105.383 −0.119423
\(93\) −208.354 360.880i −0.232315 0.402382i
\(94\) 40.9181 + 70.8722i 0.0448977 + 0.0777650i
\(95\) 30.3153 52.5077i 0.0327399 0.0567071i
\(96\) −236.757 −0.251707
\(97\) −291.634 + 505.126i −0.305268 + 0.528740i −0.977321 0.211763i \(-0.932079\pi\)
0.672053 + 0.740503i \(0.265413\pi\)
\(98\) 16.1298 27.9375i 0.0166260 0.0287971i
\(99\) −869.006 −0.882206
\(100\) −89.6761 + 155.324i −0.0896761 + 0.155324i
\(101\) −460.870 798.251i −0.454043 0.786425i 0.544590 0.838702i \(-0.316685\pi\)
−0.998633 + 0.0522775i \(0.983352\pi\)
\(102\) −120.559 208.815i −0.117031 0.202703i
\(103\) −930.712 −0.890347 −0.445174 0.895444i \(-0.646858\pi\)
−0.445174 + 0.895444i \(0.646858\pi\)
\(104\) 0 0
\(105\) −37.6107 −0.0349565
\(106\) −3.64584 6.31478i −0.00334071 0.00578628i
\(107\) −428.691 742.515i −0.387319 0.670857i 0.604769 0.796401i \(-0.293266\pi\)
−0.992088 + 0.125545i \(0.959932\pi\)
\(108\) 107.125 185.547i 0.0954459 0.165317i
\(109\) 671.853 0.590384 0.295192 0.955438i \(-0.404616\pi\)
0.295192 + 0.955438i \(0.404616\pi\)
\(110\) −46.5616 + 80.6470i −0.0403588 + 0.0699035i
\(111\) 211.514 366.352i 0.180865 0.313267i
\(112\) −916.548 −0.773265
\(113\) −320.737 + 555.532i −0.267012 + 0.462479i −0.968089 0.250607i \(-0.919370\pi\)
0.701077 + 0.713086i \(0.252703\pi\)
\(114\) −509.533 882.537i −0.418615 0.725063i
\(115\) −20.5701 35.6284i −0.0166797 0.0288901i
\(116\) −253.036 −0.202533
\(117\) 0 0
\(118\) 183.491 0.143150
\(119\) 232.179 + 402.147i 0.178856 + 0.309788i
\(120\) −25.0128 43.3234i −0.0190279 0.0329572i
\(121\) −1430.05 + 2476.91i −1.07441 + 1.86094i
\(122\) −2358.41 −1.75017
\(123\) −128.311 + 222.240i −0.0940599 + 0.162917i
\(124\) −81.3390 + 140.883i −0.0589069 + 0.102030i
\(125\) −140.211 −0.100327
\(126\) 312.505 541.274i 0.220953 0.382703i
\(127\) 276.587 + 479.063i 0.193253 + 0.334724i 0.946326 0.323212i \(-0.104763\pi\)
−0.753073 + 0.657937i \(0.771430\pi\)
\(128\) −470.434 814.816i −0.324851 0.562658i
\(129\) −1614.99 −1.10227
\(130\) 0 0
\(131\) 2056.40 1.37152 0.685758 0.727830i \(-0.259471\pi\)
0.685758 + 0.727830i \(0.259471\pi\)
\(132\) −171.563 297.157i −0.113126 0.195941i
\(133\) 981.287 + 1699.64i 0.639762 + 1.10810i
\(134\) 569.024 985.578i 0.366837 0.635380i
\(135\) 83.6411 0.0533235
\(136\) −308.819 + 534.890i −0.194713 + 0.337253i
\(137\) 904.283 1566.26i 0.563928 0.976752i −0.433221 0.901288i \(-0.642623\pi\)
0.997149 0.0754639i \(-0.0240438\pi\)
\(138\) −691.474 −0.426537
\(139\) −746.818 + 1293.53i −0.455714 + 0.789320i −0.998729 0.0504032i \(-0.983949\pi\)
0.543015 + 0.839723i \(0.317283\pi\)
\(140\) 7.34140 + 12.7157i 0.00443187 + 0.00767622i
\(141\) −58.8585 101.946i −0.0351545 0.0608894i
\(142\) −1387.64 −0.820058
\(143\) 0 0
\(144\) 676.847 0.391694
\(145\) −49.3911 85.5479i −0.0282876 0.0489956i
\(146\) −978.518 1694.84i −0.554676 0.960727i
\(147\) −23.2018 + 40.1867i −0.0130180 + 0.0225479i
\(148\) −165.145 −0.0917218
\(149\) 1379.51 2389.38i 0.758482 1.31373i −0.185143 0.982712i \(-0.559275\pi\)
0.943625 0.331018i \(-0.107392\pi\)
\(150\) −588.415 + 1019.16i −0.320292 + 0.554763i
\(151\) −976.355 −0.526190 −0.263095 0.964770i \(-0.584743\pi\)
−0.263095 + 0.964770i \(0.584743\pi\)
\(152\) −1305.20 + 2260.67i −0.696483 + 1.20634i
\(153\) −171.458 296.975i −0.0905986 0.156921i
\(154\) −1507.17 2610.49i −0.788642 1.36597i
\(155\) −63.5076 −0.0329100
\(156\) 0 0
\(157\) −564.875 −0.287146 −0.143573 0.989640i \(-0.545859\pi\)
−0.143573 + 0.989640i \(0.545859\pi\)
\(158\) 539.896 + 935.127i 0.271847 + 0.470853i
\(159\) 5.24435 + 9.08347i 0.00261575 + 0.00453061i
\(160\) −18.0412 + 31.2483i −0.00891427 + 0.0154400i
\(161\) 1331.68 0.651869
\(162\) 238.719 413.474i 0.115775 0.200528i
\(163\) −754.266 + 1306.43i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(164\) 100.182 0.0477005
\(165\) 66.9763 116.006i 0.0316006 0.0547339i
\(166\) −773.329 1339.45i −0.361578 0.626272i
\(167\) −296.260 513.138i −0.137277 0.237771i 0.789188 0.614152i \(-0.210502\pi\)
−0.926465 + 0.376381i \(0.877168\pi\)
\(168\) 1619.29 0.743638
\(169\) 0 0
\(170\) −36.7471 −0.0165787
\(171\) −724.654 1255.14i −0.324068 0.561303i
\(172\) 315.237 + 546.007i 0.139748 + 0.242050i
\(173\) 2247.78 3893.28i 0.987838 1.71099i 0.359262 0.933237i \(-0.383028\pi\)
0.628576 0.777748i \(-0.283638\pi\)
\(174\) −1660.31 −0.723377
\(175\) 1133.20 1962.76i 0.489497 0.847834i
\(176\) 1632.17 2827.00i 0.699030 1.21076i
\(177\) −263.941 −0.112085
\(178\) 1485.55 2573.05i 0.625543 1.08347i
\(179\) 77.1425 + 133.615i 0.0322117 + 0.0557924i 0.881682 0.471844i \(-0.156412\pi\)
−0.849470 + 0.527637i \(0.823078\pi\)
\(180\) −5.42143 9.39019i −0.00224494 0.00388835i
\(181\) 1071.35 0.439959 0.219979 0.975505i \(-0.429401\pi\)
0.219979 + 0.975505i \(0.429401\pi\)
\(182\) 0 0
\(183\) 3392.45 1.37037
\(184\) 885.623 + 1533.94i 0.354831 + 0.614586i
\(185\) −32.2353 55.8332i −0.0128107 0.0221889i
\(186\) −533.710 + 924.413i −0.210395 + 0.364415i
\(187\) −1653.84 −0.646742
\(188\) −22.9777 + 39.7985i −0.00891393 + 0.0154394i
\(189\) −1353.70 + 2344.68i −0.520991 + 0.902383i
\(190\) −155.309 −0.0593015
\(191\) −338.601 + 586.475i −0.128274 + 0.222177i −0.923008 0.384781i \(-0.874277\pi\)
0.794734 + 0.606958i \(0.207610\pi\)
\(192\) 1046.40 + 1812.42i 0.393321 + 0.681252i
\(193\) −660.840 1144.61i −0.246468 0.426895i 0.716075 0.698023i \(-0.245937\pi\)
−0.962543 + 0.271128i \(0.912603\pi\)
\(194\) 1494.07 0.552929
\(195\) 0 0
\(196\) 18.1154 0.00660183
\(197\) −633.683 1097.57i −0.229178 0.396948i 0.728387 0.685166i \(-0.240270\pi\)
−0.957565 + 0.288218i \(0.906937\pi\)
\(198\) 1113.00 + 1927.78i 0.399483 + 0.691925i
\(199\) −1198.12 + 2075.21i −0.426796 + 0.739233i −0.996586 0.0825573i \(-0.973691\pi\)
0.569790 + 0.821790i \(0.307025\pi\)
\(200\) 3014.51 1.06579
\(201\) −818.510 + 1417.70i −0.287230 + 0.497497i
\(202\) −1180.54 + 2044.76i −0.411202 + 0.712222i
\(203\) 3197.51 1.10552
\(204\) 67.7003 117.260i 0.0232352 0.0402445i
\(205\) 19.5549 + 33.8701i 0.00666231 + 0.0115395i
\(206\) 1192.03 + 2064.66i 0.403170 + 0.698310i
\(207\) −983.409 −0.330201
\(208\) 0 0
\(209\) −6989.81 −2.31337
\(210\) 48.1710 + 83.4346i 0.0158291 + 0.0274168i
\(211\) 45.7769 + 79.2880i 0.0149356 + 0.0258692i 0.873397 0.487010i \(-0.161912\pi\)
−0.858461 + 0.512879i \(0.828579\pi\)
\(212\) 2.04733 3.54608i 0.000663261 0.00114880i
\(213\) 1996.05 0.642099
\(214\) −1098.12 + 1901.99i −0.350774 + 0.607558i
\(215\) −123.065 + 213.155i −0.0390370 + 0.0676141i
\(216\) −3601.08 −1.13436
\(217\) 1027.85 1780.29i 0.321543 0.556929i
\(218\) −860.494 1490.42i −0.267339 0.463045i
\(219\) 1407.55 + 2437.94i 0.434307 + 0.752241i
\(220\) −52.2935 −0.0160256
\(221\) 0 0
\(222\) −1083.61 −0.327599
\(223\) −617.709 1069.90i −0.185493 0.321282i 0.758250 0.651964i \(-0.226055\pi\)
−0.943742 + 0.330682i \(0.892721\pi\)
\(224\) −583.982 1011.49i −0.174192 0.301709i
\(225\) −836.839 + 1449.45i −0.247952 + 0.429466i
\(226\) 1643.17 0.483637
\(227\) −1650.83 + 2859.32i −0.482685 + 0.836035i −0.999802 0.0198797i \(-0.993672\pi\)
0.517118 + 0.855914i \(0.327005\pi\)
\(228\) 286.130 495.591i 0.0831114 0.143953i
\(229\) 211.283 0.0609694 0.0304847 0.999535i \(-0.490295\pi\)
0.0304847 + 0.999535i \(0.490295\pi\)
\(230\) −52.6913 + 91.2640i −0.0151059 + 0.0261642i
\(231\) 2167.98 + 3755.05i 0.617500 + 1.06954i
\(232\) 2126.48 + 3683.18i 0.601769 + 1.04230i
\(233\) −256.724 −0.0721827 −0.0360913 0.999348i \(-0.511491\pi\)
−0.0360913 + 0.999348i \(0.511491\pi\)
\(234\) 0 0
\(235\) −17.9404 −0.00498002
\(236\) 51.5198 + 89.2349i 0.0142104 + 0.0246131i
\(237\) −776.612 1345.13i −0.212854 0.368674i
\(238\) 594.740 1030.12i 0.161980 0.280558i
\(239\) −3549.62 −0.960694 −0.480347 0.877078i \(-0.659489\pi\)
−0.480347 + 0.877078i \(0.659489\pi\)
\(240\) −52.1662 + 90.3545i −0.0140305 + 0.0243015i
\(241\) 2515.05 4356.19i 0.672235 1.16434i −0.305034 0.952341i \(-0.598668\pi\)
0.977269 0.212003i \(-0.0679987\pi\)
\(242\) 7326.27 1.94608
\(243\) 1667.39 2888.00i 0.440176 0.762408i
\(244\) −662.186 1146.94i −0.173738 0.300923i
\(245\) 3.53602 + 6.12457i 0.000922074 + 0.00159708i
\(246\) 657.349 0.170370
\(247\) 0 0
\(248\) 2734.25 0.700102
\(249\) 1112.39 + 1926.72i 0.283113 + 0.490366i
\(250\) 179.579 + 311.040i 0.0454303 + 0.0786876i
\(251\) 359.392 622.485i 0.0903770 0.156538i −0.817293 0.576223i \(-0.804526\pi\)
0.907670 + 0.419685i \(0.137859\pi\)
\(252\) 350.976 0.0877357
\(253\) −2371.42 + 4107.42i −0.589288 + 1.02068i
\(254\) 708.492 1227.14i 0.175019 0.303141i
\(255\) 52.8588 0.0129810
\(256\) 1066.87 1847.87i 0.260466 0.451141i
\(257\) −640.397 1109.20i −0.155435 0.269222i 0.777782 0.628534i \(-0.216345\pi\)
−0.933217 + 0.359312i \(0.883011\pi\)
\(258\) 2068.45 + 3582.65i 0.499131 + 0.864520i
\(259\) 2086.87 0.500663
\(260\) 0 0
\(261\) −2361.28 −0.559998
\(262\) −2633.79 4561.86i −0.621054 1.07570i
\(263\) −2612.77 4525.46i −0.612587 1.06103i −0.990803 0.135315i \(-0.956795\pi\)
0.378215 0.925718i \(-0.376538\pi\)
\(264\) −2883.60 + 4994.54i −0.672247 + 1.16437i
\(265\) 1.59851 0.000370549
\(266\) 2513.62 4353.71i 0.579398 1.00355i
\(267\) −2136.89 + 3701.19i −0.489795 + 0.848350i
\(268\) 639.074 0.145663
\(269\) −3221.90 + 5580.50i −0.730270 + 1.26487i 0.226497 + 0.974012i \(0.427273\pi\)
−0.956768 + 0.290854i \(0.906061\pi\)
\(270\) −107.125 185.547i −0.0241461 0.0418223i
\(271\) 1964.97 + 3403.42i 0.440455 + 0.762890i 0.997723 0.0674426i \(-0.0214839\pi\)
−0.557269 + 0.830332i \(0.688151\pi\)
\(272\) 1288.13 0.287149
\(273\) 0 0
\(274\) −4632.74 −1.02144
\(275\) 4035.96 + 6990.48i 0.885009 + 1.53288i
\(276\) −194.149 336.277i −0.0423421 0.0733387i
\(277\) 2942.20 5096.04i 0.638194 1.10538i −0.347635 0.937630i \(-0.613015\pi\)
0.985829 0.167754i \(-0.0536516\pi\)
\(278\) 3826.03 0.825431
\(279\) −759.039 + 1314.69i −0.162876 + 0.282110i
\(280\) 123.392 213.722i 0.0263361 0.0456155i
\(281\) 3529.79 0.749358 0.374679 0.927155i \(-0.377753\pi\)
0.374679 + 0.927155i \(0.377753\pi\)
\(282\) −150.769 + 261.140i −0.0318375 + 0.0551442i
\(283\) 1305.50 + 2261.19i 0.274219 + 0.474961i 0.969938 0.243353i \(-0.0782474\pi\)
−0.695719 + 0.718314i \(0.744914\pi\)
\(284\) −389.617 674.836i −0.0814067 0.141001i
\(285\) 223.403 0.0464325
\(286\) 0 0
\(287\) −1265.96 −0.260373
\(288\) 431.255 + 746.955i 0.0882359 + 0.152829i
\(289\) 2130.19 + 3689.60i 0.433582 + 0.750987i
\(290\) −126.518 + 219.136i −0.0256186 + 0.0443727i
\(291\) −2149.15 −0.432939
\(292\) 549.490 951.744i 0.110125 0.190742i
\(293\) 2745.51 4755.37i 0.547422 0.948163i −0.451028 0.892510i \(-0.648943\pi\)
0.998450 0.0556531i \(-0.0177241\pi\)
\(294\) 118.865 0.0235795
\(295\) −20.1127 + 34.8363i −0.00396952 + 0.00687541i
\(296\) 1387.86 + 2403.84i 0.272526 + 0.472028i
\(297\) −4821.28 8350.70i −0.941950 1.63150i
\(298\) −7067.37 −1.37383
\(299\) 0 0
\(300\) −660.852 −0.127181
\(301\) −3983.53 6899.67i −0.762813 1.32123i
\(302\) 1250.49 + 2165.92i 0.238271 + 0.412697i
\(303\) 1698.15 2941.28i 0.321967 0.557664i
\(304\) 5444.19 1.02712
\(305\) 258.509 447.751i 0.0485318 0.0840596i
\(306\) −439.200 + 760.716i −0.0820502 + 0.142115i
\(307\) −7307.59 −1.35852 −0.679261 0.733897i \(-0.737700\pi\)
−0.679261 + 0.733897i \(0.737700\pi\)
\(308\) 846.353 1465.93i 0.156576 0.271198i
\(309\) −1714.68 2969.91i −0.315678 0.546771i
\(310\) 81.3390 + 140.883i 0.0149024 + 0.0258117i
\(311\) 7904.92 1.44131 0.720654 0.693295i \(-0.243842\pi\)
0.720654 + 0.693295i \(0.243842\pi\)
\(312\) 0 0
\(313\) 10002.4 1.80629 0.903145 0.429336i \(-0.141252\pi\)
0.903145 + 0.429336i \(0.141252\pi\)
\(314\) 723.478 + 1253.10i 0.130026 + 0.225212i
\(315\) 68.5084 + 118.660i 0.0122540 + 0.0212246i
\(316\) −303.180 + 525.123i −0.0539722 + 0.0934825i
\(317\) −6230.81 −1.10397 −0.551983 0.833856i \(-0.686129\pi\)
−0.551983 + 0.833856i \(0.686129\pi\)
\(318\) 13.4337 23.2678i 0.00236894 0.00410312i
\(319\) −5694.06 + 9862.40i −0.999392 + 1.73100i
\(320\) 318.950 0.0557182
\(321\) 1579.58 2735.91i 0.274653 0.475713i
\(322\) −1705.58 2954.15i −0.295181 0.511269i
\(323\) −1379.12 2388.70i −0.237573 0.411489i
\(324\) 268.107 0.0459717
\(325\) 0 0
\(326\) 3864.19 0.656495
\(327\) 1237.77 + 2143.89i 0.209324 + 0.362561i
\(328\) −841.917 1458.24i −0.141729 0.245482i
\(329\) 290.360 502.918i 0.0486567 0.0842758i
\(330\) −343.127 −0.0572379
\(331\) 2317.25 4013.60i 0.384797 0.666488i −0.606944 0.794745i \(-0.707605\pi\)
0.991741 + 0.128257i \(0.0409381\pi\)
\(332\) 434.265 752.170i 0.0717874 0.124339i
\(333\) −1541.10 −0.253609
\(334\) −758.886 + 1314.43i −0.124325 + 0.215337i
\(335\) 124.743 + 216.062i 0.0203447 + 0.0352380i
\(336\) −1688.58 2924.71i −0.274166 0.474870i
\(337\) 3029.82 0.489747 0.244874 0.969555i \(-0.421254\pi\)
0.244874 + 0.969555i \(0.421254\pi\)
\(338\) 0 0
\(339\) −2363.61 −0.378684
\(340\) −10.3177 17.8708i −0.00164576 0.00285054i
\(341\) 3660.74 + 6340.58i 0.581349 + 1.00693i
\(342\) −1856.24 + 3215.10i −0.293491 + 0.508342i
\(343\) −6463.66 −1.01751
\(344\) 5298.43 9177.15i 0.830443 1.43837i
\(345\) 75.7937 131.278i 0.0118278 0.0204864i
\(346\) −11515.6 −1.78926
\(347\) −1420.80 + 2460.90i −0.219805 + 0.380714i −0.954748 0.297415i \(-0.903876\pi\)
0.734943 + 0.678129i \(0.237209\pi\)
\(348\) −466.175 807.440i −0.0718093 0.124377i
\(349\) −3782.84 6552.07i −0.580202 1.00494i −0.995455 0.0952339i \(-0.969640\pi\)
0.415252 0.909706i \(-0.363693\pi\)
\(350\) −5805.51 −0.886622
\(351\) 0 0
\(352\) 4159.76 0.629875
\(353\) 1169.72 + 2026.01i 0.176368 + 0.305478i 0.940634 0.339423i \(-0.110232\pi\)
−0.764266 + 0.644901i \(0.776899\pi\)
\(354\) 338.050 + 585.520i 0.0507547 + 0.0879097i
\(355\) 152.102 263.448i 0.0227401 0.0393870i
\(356\) 1668.43 0.248389
\(357\) −855.502 + 1481.77i −0.126829 + 0.219674i
\(358\) 197.605 342.261i 0.0291724 0.0505281i
\(359\) −2531.68 −0.372192 −0.186096 0.982532i \(-0.559583\pi\)
−0.186096 + 0.982532i \(0.559583\pi\)
\(360\) −91.1221 + 157.828i −0.0133404 + 0.0231063i
\(361\) −2399.23 4155.58i −0.349793 0.605858i
\(362\) −1372.16 2376.64i −0.199223 0.345065i
\(363\) −10538.5 −1.52376
\(364\) 0 0
\(365\) 429.028 0.0615243
\(366\) −4344.97 7525.70i −0.620533 1.07479i
\(367\) −3288.91 5696.55i −0.467792 0.810239i 0.531531 0.847039i \(-0.321617\pi\)
−0.999323 + 0.0368000i \(0.988284\pi\)
\(368\) 1847.04 3199.17i 0.261640 0.453174i
\(369\) 934.876 0.131891
\(370\) −82.5725 + 143.020i −0.0116020 + 0.0200952i
\(371\) −25.8713 + 44.8104i −0.00362041 + 0.00627073i
\(372\) −599.413 −0.0835433
\(373\) −1451.36 + 2513.83i −0.201471 + 0.348958i −0.949003 0.315268i \(-0.897905\pi\)
0.747532 + 0.664226i \(0.231239\pi\)
\(374\) 2118.20 + 3668.83i 0.292859 + 0.507247i
\(375\) −258.315 447.415i −0.0355716 0.0616117i
\(376\) 772.407 0.105941
\(377\) 0 0
\(378\) 6935.16 0.943667
\(379\) 932.867 + 1615.77i 0.126433 + 0.218989i 0.922292 0.386493i \(-0.126314\pi\)
−0.795859 + 0.605482i \(0.792980\pi\)
\(380\) −43.6070 75.5296i −0.00588682 0.0101963i
\(381\) −1019.13 + 1765.18i −0.137038 + 0.237357i
\(382\) 1734.69 0.232342
\(383\) −5417.99 + 9384.24i −0.722837 + 1.25199i 0.237021 + 0.971504i \(0.423829\pi\)
−0.959858 + 0.280486i \(0.909504\pi\)
\(384\) 1733.39 3002.32i 0.230356 0.398988i
\(385\) 660.813 0.0874757
\(386\) −1692.78 + 2931.97i −0.223213 + 0.386616i
\(387\) 2941.73 + 5095.22i 0.386399 + 0.669263i
\(388\) 419.501 + 726.597i 0.0548890 + 0.0950705i
\(389\) −9520.34 −1.24088 −0.620438 0.784256i \(-0.713045\pi\)
−0.620438 + 0.784256i \(0.713045\pi\)
\(390\) 0 0
\(391\) −1871.56 −0.242069
\(392\) −152.240 263.687i −0.0196155 0.0339750i
\(393\) 3788.57 + 6561.99i 0.486280 + 0.842261i
\(394\) −1623.21 + 2811.49i −0.207554 + 0.359494i
\(395\) −236.716 −0.0301531
\(396\) −625.009 + 1082.55i −0.0793129 + 0.137374i
\(397\) 5054.42 8754.51i 0.638978 1.10674i −0.346680 0.937983i \(-0.612691\pi\)
0.985657 0.168758i \(-0.0539757\pi\)
\(398\) 6138.10 0.773053
\(399\) −3615.71 + 6262.59i −0.453664 + 0.785768i
\(400\) −3143.51 5444.71i −0.392938 0.680589i
\(401\) −1042.19 1805.12i −0.129787 0.224797i 0.793807 0.608169i \(-0.208096\pi\)
−0.923594 + 0.383373i \(0.874763\pi\)
\(402\) 4193.32 0.520258
\(403\) 0 0
\(404\) −1325.88 −0.163279
\(405\) 52.3329 + 90.6432i 0.00642084 + 0.0111212i
\(406\) −4095.30 7093.27i −0.500607 0.867076i
\(407\) −3716.25 + 6436.73i −0.452599 + 0.783924i
\(408\) −2275.78 −0.276147
\(409\) 4858.26 8414.76i 0.587349 1.01732i −0.407229 0.913326i \(-0.633505\pi\)
0.994578 0.103992i \(-0.0331617\pi\)
\(410\) 50.0909 86.7600i 0.00603369 0.0104507i
\(411\) 6663.95 0.799777
\(412\) −669.390 + 1159.42i −0.0800449 + 0.138642i
\(413\) −651.035 1127.63i −0.0775674 0.134351i
\(414\) 1259.53 + 2181.56i 0.149523 + 0.258981i
\(415\) 339.064 0.0401060
\(416\) 0 0
\(417\) −5503.54 −0.646305
\(418\) 8952.38 + 15506.0i 1.04755 + 1.81441i
\(419\) −6690.94 11589.1i −0.780129 1.35122i −0.931866 0.362802i \(-0.881820\pi\)
0.151737 0.988421i \(-0.451513\pi\)
\(420\) −27.0505 + 46.8529i −0.00314269 + 0.00544330i
\(421\) −9463.37 −1.09553 −0.547763 0.836633i \(-0.684521\pi\)
−0.547763 + 0.836633i \(0.684521\pi\)
\(422\) 117.260 203.100i 0.0135264 0.0234284i
\(423\) −214.423 + 371.391i −0.0246468 + 0.0426895i
\(424\) −68.8221 −0.00788278
\(425\) −1592.62 + 2758.50i −0.181773 + 0.314840i
\(426\) −2556.49 4427.97i −0.290757 0.503606i
\(427\) 8367.77 + 14493.4i 0.948349 + 1.64259i
\(428\) −1233.30 −0.139285
\(429\) 0 0
\(430\) 630.474 0.0707074
\(431\) −2426.14 4202.20i −0.271144 0.469635i 0.698011 0.716087i \(-0.254069\pi\)
−0.969155 + 0.246452i \(0.920735\pi\)
\(432\) 3755.17 + 6504.15i 0.418220 + 0.724378i
\(433\) 4104.00 7108.33i 0.455486 0.788925i −0.543230 0.839584i \(-0.682799\pi\)
0.998716 + 0.0506587i \(0.0161321\pi\)
\(434\) −5265.78 −0.582409
\(435\) 181.989 315.215i 0.0200591 0.0347434i
\(436\) 483.213 836.949i 0.0530773 0.0919325i
\(437\) −7910.01 −0.865874
\(438\) 3605.50 6244.92i 0.393328 0.681264i
\(439\) 1496.90 + 2592.71i 0.162741 + 0.281875i 0.935851 0.352397i \(-0.114633\pi\)
−0.773110 + 0.634272i \(0.781300\pi\)
\(440\) 439.469 + 761.182i 0.0476156 + 0.0824726i
\(441\) 169.049 0.0182539
\(442\) 0 0
\(443\) 9743.67 1.04500 0.522501 0.852639i \(-0.324999\pi\)
0.522501 + 0.852639i \(0.324999\pi\)
\(444\) −304.251 526.979i −0.0325206 0.0563273i
\(445\) 325.668 + 564.073i 0.0346924 + 0.0600890i
\(446\) −1582.29 + 2740.61i −0.167990 + 0.290968i
\(447\) 10166.0 1.07570
\(448\) −5162.09 + 8941.01i −0.544388 + 0.942908i
\(449\) 280.729 486.237i 0.0295065 0.0511068i −0.850895 0.525336i \(-0.823940\pi\)
0.880402 + 0.474229i \(0.157273\pi\)
\(450\) 4287.22 0.449114
\(451\) 2254.39 3904.71i 0.235377 0.407685i
\(452\) 461.363 + 799.104i 0.0480104 + 0.0831564i
\(453\) −1798.77 3115.56i −0.186564 0.323138i
\(454\) 8457.38 0.874283
\(455\) 0 0
\(456\) −9618.40 −0.987770
\(457\) −6879.20 11915.1i −0.704148 1.21962i −0.966998 0.254783i \(-0.917996\pi\)
0.262851 0.964837i \(-0.415337\pi\)
\(458\) −270.606 468.704i −0.0276083 0.0478190i
\(459\) 1902.52 3295.26i 0.193468 0.335097i
\(460\) −59.1779 −0.00599823
\(461\) −6004.62 + 10400.3i −0.606644 + 1.05074i 0.385145 + 0.922856i \(0.374151\pi\)
−0.991789 + 0.127882i \(0.959182\pi\)
\(462\) 5553.39 9618.75i 0.559236 0.968625i
\(463\) 13635.7 1.36870 0.684348 0.729156i \(-0.260087\pi\)
0.684348 + 0.729156i \(0.260087\pi\)
\(464\) 4434.96 7681.57i 0.443724 0.768552i
\(465\) −117.002 202.653i −0.0116685 0.0202104i
\(466\) 328.806 + 569.509i 0.0326860 + 0.0566138i
\(467\) 8821.95 0.874157 0.437079 0.899423i \(-0.356013\pi\)
0.437079 + 0.899423i \(0.356013\pi\)
\(468\) 0 0
\(469\) −8075.72 −0.795100
\(470\) 22.9777 + 39.7985i 0.00225507 + 0.00390589i
\(471\) −1040.69 1802.52i −0.101809 0.176339i
\(472\) 865.933 1499.84i 0.0844445 0.146262i
\(473\) 28375.1 2.75832
\(474\) −1989.33 + 3445.62i −0.192770 + 0.333888i
\(475\) −6731.08 + 11658.6i −0.650196 + 1.12617i
\(476\) 667.956 0.0643187
\(477\) 19.1053 33.0913i 0.00183390 0.00317641i
\(478\) 4546.27 + 7874.37i 0.435024 + 0.753484i
\(479\) 7310.02 + 12661.3i 0.697293 + 1.20775i 0.969402 + 0.245480i \(0.0789456\pi\)
−0.272109 + 0.962267i \(0.587721\pi\)
\(480\) −132.951 −0.0126424
\(481\) 0 0
\(482\) −12884.9 −1.21761
\(483\) 2453.39 + 4249.39i 0.231124 + 0.400319i
\(484\) 2057.04 + 3562.91i 0.193186 + 0.334608i
\(485\) −163.768 + 283.655i −0.0153326 + 0.0265569i
\(486\) −8542.20 −0.797288
\(487\) 4899.43 8486.06i 0.455882 0.789610i −0.542857 0.839825i \(-0.682657\pi\)
0.998738 + 0.0502150i \(0.0159907\pi\)
\(488\) −11129.9 + 19277.5i −1.03243 + 1.78822i
\(489\) −5558.43 −0.514030
\(490\) 9.05771 15.6884i 0.000835072 0.00144639i
\(491\) 5418.03 + 9384.31i 0.497989 + 0.862542i 0.999997 0.00232091i \(-0.000738769\pi\)
−0.502009 + 0.864863i \(0.667405\pi\)
\(492\) 184.568 + 319.681i 0.0169125 + 0.0292934i
\(493\) −4493.84 −0.410532
\(494\) 0 0
\(495\) −487.993 −0.0443104
\(496\) −2851.26 4938.52i −0.258115 0.447069i
\(497\) 4923.43 + 8527.63i 0.444358 + 0.769651i
\(498\) 2849.45 4935.40i 0.256400 0.444098i
\(499\) 2589.96 0.232349 0.116175 0.993229i \(-0.462937\pi\)
0.116175 + 0.993229i \(0.462937\pi\)
\(500\) −100.843 + 174.665i −0.00901969 + 0.0156226i
\(501\) 1091.62 1890.74i 0.0973451 0.168607i
\(502\) −1841.20 −0.163699
\(503\) 8533.73 14780.9i 0.756462 1.31023i −0.188183 0.982134i \(-0.560260\pi\)
0.944644 0.328096i \(-0.106407\pi\)
\(504\) −2949.56 5108.79i −0.260682 0.451515i
\(505\) −258.803 448.260i −0.0228051 0.0394996i
\(506\) 12149.0 1.06737
\(507\) 0 0
\(508\) 795.712 0.0694961
\(509\) 506.447 + 877.192i 0.0441019 + 0.0763867i 0.887234 0.461320i \(-0.152624\pi\)
−0.843132 + 0.537707i \(0.819291\pi\)
\(510\) −67.7003 117.260i −0.00587808 0.0101811i
\(511\) −6943.68 + 12026.8i −0.601116 + 1.04116i
\(512\) −12992.6 −1.12148
\(513\) 8040.83 13927.1i 0.692030 1.19863i
\(514\) −1640.41 + 2841.28i −0.140769 + 0.243820i
\(515\) −522.644 −0.0447193
\(516\) −1161.54 + 2011.85i −0.0990969 + 0.171641i
\(517\) 1034.13 + 1791.17i 0.0879711 + 0.152370i
\(518\) −2672.81 4629.45i −0.226712 0.392676i
\(519\) 16564.6 1.40098
\(520\) 0 0
\(521\) −14367.7 −1.20818 −0.604089 0.796917i \(-0.706463\pi\)
−0.604089 + 0.796917i \(0.706463\pi\)
\(522\) 3024.27 + 5238.19i 0.253580 + 0.439213i
\(523\) 8109.96 + 14046.9i 0.678057 + 1.17443i 0.975565 + 0.219709i \(0.0705109\pi\)
−0.297509 + 0.954719i \(0.596156\pi\)
\(524\) 1479.01 2561.72i 0.123303 0.213568i
\(525\) 8350.92 0.694217
\(526\) −6692.76 + 11592.2i −0.554787 + 0.960919i
\(527\) −1444.56 + 2502.05i −0.119404 + 0.206814i
\(528\) 12028.0 0.991382
\(529\) 3399.89 5888.78i 0.279435 0.483996i
\(530\) −2.04733 3.54608i −0.000167793 0.000290626i
\(531\) 480.772 + 832.722i 0.0392914 + 0.0680547i
\(532\) 2823.06 0.230066
\(533\) 0 0
\(534\) 10947.5 0.887161
\(535\) −240.733 416.961i −0.0194538 0.0336950i
\(536\) −5370.70 9302.32i −0.432796 0.749625i
\(537\) −284.244 + 492.325i −0.0228418 + 0.0395631i
\(538\) 16506.1 1.32273
\(539\) 407.650 706.071i 0.0325765 0.0564242i
\(540\) 60.1566 104.194i 0.00479394 0.00830335i
\(541\) 17592.2 1.39806 0.699029 0.715094i \(-0.253616\pi\)
0.699029 + 0.715094i \(0.253616\pi\)
\(542\) 5033.36 8718.04i 0.398896 0.690908i
\(543\) 1973.77 + 3418.67i 0.155990 + 0.270183i
\(544\) 820.738 + 1421.56i 0.0646854 + 0.112038i
\(545\) 377.281 0.0296531
\(546\) 0 0
\(547\) 10504.6 0.821103 0.410552 0.911837i \(-0.365336\pi\)
0.410552 + 0.911837i \(0.365336\pi\)
\(548\) −1300.76 2252.99i −0.101398 0.175626i
\(549\) −6179.38 10703.0i −0.480382 0.832045i
\(550\) 10338.3 17906.5i 0.801504 1.38825i
\(551\) −18992.8 −1.46846
\(552\) −3263.22 + 5652.06i −0.251616 + 0.435811i
\(553\) 3831.16 6635.77i 0.294607 0.510274i
\(554\) −15073.2 −1.15596
\(555\) 118.776 205.726i 0.00908426 0.0157344i
\(556\) 1074.26 + 1860.67i 0.0819401 + 0.141924i
\(557\) 253.779 + 439.558i 0.0193051 + 0.0334375i 0.875517 0.483188i \(-0.160521\pi\)
−0.856211 + 0.516626i \(0.827188\pi\)
\(558\) 3888.64 0.295016
\(559\) 0 0
\(560\) −514.690 −0.0388386
\(561\) −3046.92 5277.41i −0.229306 0.397170i
\(562\) −4520.87 7830.38i −0.339327 0.587731i
\(563\) 1721.57 2981.85i 0.128873 0.223215i −0.794367 0.607438i \(-0.792197\pi\)
0.923240 + 0.384223i \(0.125531\pi\)
\(564\) −169.330 −0.0126420
\(565\) −180.111 + 311.961i −0.0134112 + 0.0232288i
\(566\) 3344.11 5792.16i 0.248345 0.430146i
\(567\) −3387.96 −0.250936
\(568\) −6548.59 + 11342.5i −0.483755 + 0.837888i
\(569\) −11986.1 20760.5i −0.883098 1.52957i −0.847879 0.530190i \(-0.822121\pi\)
−0.0352188 0.999380i \(-0.511213\pi\)
\(570\) −286.130 495.591i −0.0210257 0.0364176i
\(571\) −7458.32 −0.546622 −0.273311 0.961926i \(-0.588119\pi\)
−0.273311 + 0.961926i \(0.588119\pi\)
\(572\) 0 0
\(573\) −2495.26 −0.181922
\(574\) 1621.41 + 2808.36i 0.117903 + 0.204214i
\(575\) 4567.28 + 7910.77i 0.331250 + 0.573742i
\(576\) 3812.07 6602.70i 0.275757 0.477626i
\(577\) 5669.57 0.409059 0.204530 0.978860i \(-0.434434\pi\)
0.204530 + 0.978860i \(0.434434\pi\)
\(578\) 5456.60 9451.10i 0.392672 0.680128i
\(579\) 2434.97 4217.49i 0.174774 0.302717i
\(580\) −142.093 −0.0101726
\(581\) −5487.64 + 9504.87i −0.391851 + 0.678706i
\(582\) 2752.58 + 4767.60i 0.196045 + 0.339559i
\(583\) −92.1420 159.595i −0.00654568 0.0113375i
\(584\) −18471.4 −1.30882
\(585\) 0 0
\(586\) −14065.6 −0.991541
\(587\) −508.696 881.087i −0.0357685 0.0619529i 0.847587 0.530657i \(-0.178055\pi\)
−0.883355 + 0.468704i \(0.844721\pi\)
\(588\) 33.3746 + 57.8064i 0.00234072 + 0.00405425i
\(589\) −6105.30 + 10574.7i −0.427104 + 0.739766i
\(590\) 103.040 0.00718996
\(591\) 2334.91 4044.18i 0.162513 0.281481i
\(592\) 2894.49 5013.41i 0.200951 0.348057i
\(593\) −10198.2 −0.706221 −0.353111 0.935582i \(-0.614876\pi\)
−0.353111 + 0.935582i \(0.614876\pi\)
\(594\) −12350.0 + 21390.8i −0.853073 + 1.47757i
\(595\) 130.381 + 225.827i 0.00898336 + 0.0155596i
\(596\) −1984.35 3437.00i −0.136380 0.236216i
\(597\) −8829.33 −0.605294
\(598\) 0 0
\(599\) 12516.3 0.853763 0.426881 0.904308i \(-0.359612\pi\)
0.426881 + 0.904308i \(0.359612\pi\)
\(600\) 5553.72 + 9619.33i 0.377883 + 0.654512i
\(601\) −4813.73 8337.63i −0.326716 0.565888i 0.655142 0.755505i \(-0.272609\pi\)
−0.981858 + 0.189617i \(0.939275\pi\)
\(602\) −10204.0 + 17673.9i −0.690838 + 1.19657i
\(603\) 5963.70 0.402754
\(604\) −702.218 + 1216.28i −0.0473060 + 0.0819364i
\(605\) −803.046 + 1390.92i −0.0539644 + 0.0934691i
\(606\) −8699.80 −0.583177
\(607\) −3333.60 + 5773.96i −0.222910 + 0.386092i −0.955690 0.294373i \(-0.904889\pi\)
0.732780 + 0.680466i \(0.238222\pi\)
\(608\) 3468.78 + 6008.11i 0.231378 + 0.400758i
\(609\) 5890.87 + 10203.3i 0.391971 + 0.678913i
\(610\) −1324.37 −0.0879053
\(611\) 0 0
\(612\) −493.268 −0.0325803
\(613\) 11542.7 + 19992.5i 0.760530 + 1.31728i 0.942578 + 0.333987i \(0.108394\pi\)
−0.182047 + 0.983290i \(0.558272\pi\)
\(614\) 9359.39 + 16210.9i 0.615170 + 1.06551i
\(615\) −72.0532 + 124.800i −0.00472433 + 0.00818278i
\(616\) −28450.6 −1.86089
\(617\) −1524.62 + 2640.72i −0.0994796 + 0.172304i −0.911469 0.411368i \(-0.865051\pi\)
0.811990 + 0.583672i \(0.198384\pi\)
\(618\) −4392.24 + 7607.58i −0.285893 + 0.495181i
\(619\) 7296.58 0.473787 0.236894 0.971536i \(-0.423871\pi\)
0.236894 + 0.971536i \(0.423871\pi\)
\(620\) −45.6761 + 79.1134i −0.00295871 + 0.00512463i
\(621\) −5455.99 9450.06i −0.352563 0.610657i
\(622\) −10124.4 17536.0i −0.652657 1.13044i
\(623\) −21083.3 −1.35583
\(624\) 0 0
\(625\) 15506.8 0.992438
\(626\) −12810.8 22189.0i −0.817929 1.41670i
\(627\) −12877.5 22304.5i −0.820222 1.42067i
\(628\) −406.271 + 703.683i −0.0258153 + 0.0447134i
\(629\) −2932.92 −0.185920
\(630\) 175.488 303.954i 0.0110978 0.0192219i
\(631\) 11914.8 20637.0i 0.751694 1.30197i −0.195307 0.980742i \(-0.562570\pi\)
0.947001 0.321230i \(-0.104096\pi\)
\(632\) 10191.6 0.641453
\(633\) −168.672 + 292.149i −0.0105910 + 0.0183442i
\(634\) 7980.27 + 13822.2i 0.499901 + 0.865853i
\(635\) 155.318 + 269.019i 0.00970648 + 0.0168121i
\(636\) 15.0874 0.000940653
\(637\) 0 0
\(638\) 29171.3 1.81019
\(639\) −3635.82 6297.43i −0.225088 0.389863i
\(640\) −264.174 457.562i −0.0163162 0.0282605i
\(641\) −6702.63 + 11609.3i −0.413008 + 0.715351i −0.995217 0.0976883i \(-0.968855\pi\)
0.582209 + 0.813039i \(0.302188\pi\)
\(642\) −8092.36 −0.497477
\(643\) −2625.76 + 4547.94i −0.161042 + 0.278932i −0.935243 0.354008i \(-0.884819\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(644\) 957.774 1658.91i 0.0586049 0.101507i
\(645\) −906.904 −0.0553633
\(646\) −3532.68 + 6118.79i −0.215157 + 0.372663i
\(647\) −10805.7 18716.1i −0.656595 1.13726i −0.981492 0.191506i \(-0.938663\pi\)
0.324897 0.945749i \(-0.394670\pi\)
\(648\) −2253.14 3902.55i −0.136592 0.236584i
\(649\) 4637.39 0.280483
\(650\) 0 0
\(651\) 7574.54 0.456021
\(652\) 1084.97 + 1879.23i 0.0651699 + 0.112878i
\(653\) 10797.9 + 18702.6i 0.647099 + 1.12081i 0.983813 + 0.179201i \(0.0573512\pi\)
−0.336714 + 0.941607i \(0.609316\pi\)
\(654\) 3170.63 5491.68i 0.189574 0.328351i
\(655\) 1154.78 0.0688869
\(656\) −1755.89 + 3041.28i −0.104506 + 0.181009i
\(657\) 5127.72 8881.48i 0.304492 0.527396i
\(658\) −1487.54 −0.0881314
\(659\) 8321.30 14412.9i 0.491884 0.851968i −0.508072 0.861315i \(-0.669642\pi\)
0.999956 + 0.00934609i \(0.00297500\pi\)
\(660\) −96.3419 166.869i −0.00568198 0.00984147i
\(661\) −13490.6 23366.3i −0.793831 1.37495i −0.923579 0.383408i \(-0.874750\pi\)
0.129748 0.991547i \(-0.458583\pi\)
\(662\) −11871.5 −0.696980
\(663\) 0 0
\(664\) −14598.1 −0.853185
\(665\) 551.044 + 954.437i 0.0321332 + 0.0556564i
\(666\) 1973.80 + 3418.73i 0.114840 + 0.198908i
\(667\) −6443.67 + 11160.8i −0.374063 + 0.647896i
\(668\) −852.310 −0.0493665
\(669\) 2276.05 3942.23i 0.131535 0.227826i
\(670\) 319.537 553.454i 0.0184251 0.0319131i
\(671\) −59604.5 −3.42922
\(672\) 2151.77 3726.98i 0.123521 0.213945i
\(673\) −5574.62 9655.53i −0.319296 0.553036i 0.661046 0.750346i \(-0.270113\pi\)
−0.980341 + 0.197309i \(0.936780\pi\)
\(674\) −3880.52 6721.26i −0.221769 0.384115i
\(675\) −18571.3 −1.05898
\(676\) 0 0
\(677\) 3314.33 0.188154 0.0940769 0.995565i \(-0.470010\pi\)
0.0940769 + 0.995565i \(0.470010\pi\)
\(678\) 3027.26 + 5243.36i 0.171477 + 0.297006i
\(679\) −5301.06 9181.71i −0.299611 0.518942i
\(680\) −173.418 + 300.369i −0.00977982 + 0.0169391i
\(681\) −12165.5 −0.684556
\(682\) 9377.17 16241.7i 0.526496 0.911918i
\(683\) −12252.6 + 21222.2i −0.686433 + 1.18894i 0.286552 + 0.958065i \(0.407491\pi\)
−0.972984 + 0.230872i \(0.925842\pi\)
\(684\) −2084.75 −0.116539
\(685\) 507.803 879.540i 0.0283243 0.0490591i
\(686\) 8278.50 + 14338.8i 0.460750 + 0.798042i
\(687\) 389.253 + 674.206i 0.0216171 + 0.0374419i
\(688\) −22100.6 −1.22468
\(689\) 0 0
\(690\) −388.299 −0.0214236
\(691\) 10876.4 + 18838.5i 0.598782 + 1.03712i 0.993001 + 0.118105i \(0.0376818\pi\)
−0.394219 + 0.919017i \(0.628985\pi\)
\(692\) −3233.32 5600.27i −0.177619 0.307645i
\(693\) 7897.99 13679.7i 0.432929 0.749855i
\(694\) 7278.90 0.398132
\(695\) −419.378 + 726.383i −0.0228891 + 0.0396450i
\(696\) −7835.37 + 13571.3i −0.426722 + 0.739105i
\(697\) 1779.20 0.0966887
\(698\) −9689.94 + 16783.5i −0.525458 + 0.910120i
\(699\) −472.971 819.209i −0.0255928 0.0443281i
\(700\) −1630.05 2823.33i −0.0880145 0.152446i
\(701\) 34250.9 1.84542 0.922709 0.385496i \(-0.125970\pi\)
0.922709 + 0.385496i \(0.125970\pi\)
\(702\) 0 0
\(703\) −12395.8 −0.665028
\(704\) −18385.1 31843.9i −0.984252 1.70477i
\(705\) −33.0522 57.2480i −0.00176570 0.00305828i
\(706\) 2996.30 5189.74i 0.159727 0.276655i
\(707\) 16754.6 0.891259
\(708\) −189.833 + 328.800i −0.0100768 + 0.0174535i
\(709\) 2763.56 4786.62i 0.146386 0.253548i −0.783503 0.621388i \(-0.786569\pi\)
0.929889 + 0.367840i \(0.119903\pi\)
\(710\) −779.234 −0.0411889
\(711\) −2829.21 + 4900.34i −0.149232 + 0.258477i
\(712\) −14021.3 24285.6i −0.738020 1.27829i
\(713\) 4142.67 + 7175.31i 0.217593 + 0.376883i
\(714\) 4382.83 0.229724
\(715\) 0 0
\(716\) 221.931 0.0115837
\(717\) −6539.57 11326.9i −0.340620 0.589972i
\(718\) 3242.51 + 5616.19i 0.168537 + 0.291914i
\(719\) 1888.89 3271.65i 0.0979745 0.169697i −0.812872 0.582443i \(-0.802097\pi\)
0.910846 + 0.412746i \(0.135430\pi\)
\(720\) 380.085 0.0196735
\(721\) 8458.81 14651.1i 0.436925 0.756776i
\(722\) −6145.75 + 10644.7i −0.316788 + 0.548693i
\(723\) 18534.2 0.953380
\(724\) 770.538 1334.61i 0.0395536 0.0685088i
\(725\) 10966.6 + 18994.7i 0.561777 + 0.973027i
\(726\) 13497.4 + 23378.2i 0.689994 + 1.19510i
\(727\) 19076.8 0.973204 0.486602 0.873624i \(-0.338236\pi\)
0.486602 + 0.873624i \(0.338236\pi\)
\(728\) 0 0
\(729\) 17319.9 0.879944
\(730\) −549.490 951.744i −0.0278596 0.0482543i
\(731\) 5598.52 + 9696.92i 0.283268 + 0.490634i
\(732\) 2439.93 4226.08i 0.123200 0.213388i
\(733\) 7997.30 0.402984 0.201492 0.979490i \(-0.435421\pi\)
0.201492 + 0.979490i \(0.435421\pi\)
\(734\) −8424.71 + 14592.0i −0.423653 + 0.733789i
\(735\) −13.0290 + 22.5669i −0.000653855 + 0.00113251i
\(736\) 4707.39 0.235756
\(737\) 14381.0 24908.7i 0.718769 1.24494i
\(738\) −1197.37 2073.90i −0.0597232 0.103444i
\(739\) −14491.8 25100.6i −0.721367 1.24944i −0.960452 0.278445i \(-0.910181\pi\)
0.239086 0.970998i \(-0.423152\pi\)
\(740\) −92.7376 −0.00460689
\(741\) 0 0
\(742\) 132.541 0.00655761
\(743\) 9572.69 + 16580.4i 0.472662 + 0.818674i 0.999511 0.0312847i \(-0.00995986\pi\)
−0.526849 + 0.849959i \(0.676627\pi\)
\(744\) 5037.40 + 8725.02i 0.248226 + 0.429939i
\(745\) 774.667 1341.76i 0.0380961 0.0659844i
\(746\) 7435.47 0.364922
\(747\) 4052.47 7019.09i 0.198490 0.343795i
\(748\) −1189.48 + 2060.24i −0.0581440 + 0.100708i
\(749\) 15584.7 0.760284
\(750\) −661.688 + 1146.08i −0.0322152 + 0.0557984i
\(751\) 12758.4 + 22098.3i 0.619923 + 1.07374i 0.989499 + 0.144538i \(0.0461695\pi\)
−0.369576 + 0.929200i \(0.620497\pi\)
\(752\) −805.459 1395.10i −0.0390586 0.0676515i
\(753\) 2648.47 0.128175
\(754\) 0 0
\(755\) −548.275 −0.0264288
\(756\) 1947.23 + 3372.70i 0.0936773 + 0.162254i
\(757\) 8615.31 + 14922.2i 0.413645 + 0.716453i 0.995285 0.0969925i \(-0.0309223\pi\)
−0.581641 + 0.813446i \(0.697589\pi\)
\(758\) 2389.59 4138.89i 0.114504 0.198326i
\(759\) −17475.7 −0.835744
\(760\) −732.936 + 1269.48i −0.0349821 + 0.0605908i
\(761\) 1171.53 2029.15i 0.0558053 0.0966576i −0.836773 0.547550i \(-0.815561\pi\)
0.892579 + 0.450892i \(0.148894\pi\)
\(762\) 5221.11 0.248216
\(763\) −6106.17 + 10576.2i −0.289722 + 0.501814i
\(764\) 487.060 + 843.613i 0.0230644 + 0.0399488i
\(765\) −96.2829 166.767i −0.00455048 0.00788166i
\(766\) 27756.9 1.30927
\(767\) 0 0
\(768\) 7862.11 0.369400
\(769\) 3550.09 + 6148.93i 0.166475 + 0.288344i 0.937178 0.348851i \(-0.113428\pi\)
−0.770703 + 0.637195i \(0.780095\pi\)
\(770\)