Properties

Label 169.4.c.e
Level $169$
Weight $4$
Character orbit 169.c
Analytic conductor $9.971$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 5 - 5 \zeta_{6} ) q^{2} + ( 7 - 7 \zeta_{6} ) q^{3} -17 \zeta_{6} q^{4} -7 q^{5} -35 \zeta_{6} q^{6} + 13 \zeta_{6} q^{7} -45 q^{8} -22 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( 5 - 5 \zeta_{6} ) q^{2} + ( 7 - 7 \zeta_{6} ) q^{3} -17 \zeta_{6} q^{4} -7 q^{5} -35 \zeta_{6} q^{6} + 13 \zeta_{6} q^{7} -45 q^{8} -22 \zeta_{6} q^{9} + ( -35 + 35 \zeta_{6} ) q^{10} + ( 26 - 26 \zeta_{6} ) q^{11} -119 q^{12} + 65 q^{14} + ( -49 + 49 \zeta_{6} ) q^{15} + ( -89 + 89 \zeta_{6} ) q^{16} -77 \zeta_{6} q^{17} -110 q^{18} + 126 \zeta_{6} q^{19} + 119 \zeta_{6} q^{20} + 91 q^{21} -130 \zeta_{6} q^{22} + ( 96 - 96 \zeta_{6} ) q^{23} + ( -315 + 315 \zeta_{6} ) q^{24} -76 q^{25} + 35 q^{27} + ( 221 - 221 \zeta_{6} ) q^{28} + ( 82 - 82 \zeta_{6} ) q^{29} + 245 \zeta_{6} q^{30} + 196 q^{31} + 85 \zeta_{6} q^{32} -182 \zeta_{6} q^{33} -385 q^{34} -91 \zeta_{6} q^{35} + ( -374 + 374 \zeta_{6} ) q^{36} + ( 131 - 131 \zeta_{6} ) q^{37} + 630 q^{38} + 315 q^{40} + ( -336 + 336 \zeta_{6} ) q^{41} + ( 455 - 455 \zeta_{6} ) q^{42} + 201 \zeta_{6} q^{43} -442 q^{44} + 154 \zeta_{6} q^{45} -480 \zeta_{6} q^{46} -105 q^{47} + 623 \zeta_{6} q^{48} + ( 174 - 174 \zeta_{6} ) q^{49} + ( -380 + 380 \zeta_{6} ) q^{50} -539 q^{51} -432 q^{53} + ( 175 - 175 \zeta_{6} ) q^{54} + ( -182 + 182 \zeta_{6} ) q^{55} -585 \zeta_{6} q^{56} + 882 q^{57} -410 \zeta_{6} q^{58} + 294 \zeta_{6} q^{59} + 833 q^{60} + 56 \zeta_{6} q^{61} + ( 980 - 980 \zeta_{6} ) q^{62} + ( 286 - 286 \zeta_{6} ) q^{63} -287 q^{64} -910 q^{66} + ( -478 + 478 \zeta_{6} ) q^{67} + ( -1309 + 1309 \zeta_{6} ) q^{68} -672 \zeta_{6} q^{69} -455 q^{70} -9 \zeta_{6} q^{71} + 990 \zeta_{6} q^{72} + 98 q^{73} -655 \zeta_{6} q^{74} + ( -532 + 532 \zeta_{6} ) q^{75} + ( 2142 - 2142 \zeta_{6} ) q^{76} + 338 q^{77} + 1304 q^{79} + ( 623 - 623 \zeta_{6} ) q^{80} + ( 839 - 839 \zeta_{6} ) q^{81} + 1680 \zeta_{6} q^{82} -308 q^{83} -1547 \zeta_{6} q^{84} + 539 \zeta_{6} q^{85} + 1005 q^{86} -574 \zeta_{6} q^{87} + ( -1170 + 1170 \zeta_{6} ) q^{88} + ( 1190 - 1190 \zeta_{6} ) q^{89} + 770 q^{90} -1632 q^{92} + ( 1372 - 1372 \zeta_{6} ) q^{93} + ( -525 + 525 \zeta_{6} ) q^{94} -882 \zeta_{6} q^{95} + 595 q^{96} -70 \zeta_{6} q^{97} -870 \zeta_{6} q^{98} -572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 7 q^{3} - 17 q^{4} - 14 q^{5} - 35 q^{6} + 13 q^{7} - 90 q^{8} - 22 q^{9} + O(q^{10}) \) \( 2 q + 5 q^{2} + 7 q^{3} - 17 q^{4} - 14 q^{5} - 35 q^{6} + 13 q^{7} - 90 q^{8} - 22 q^{9} - 35 q^{10} + 26 q^{11} - 238 q^{12} + 130 q^{14} - 49 q^{15} - 89 q^{16} - 77 q^{17} - 220 q^{18} + 126 q^{19} + 119 q^{20} + 182 q^{21} - 130 q^{22} + 96 q^{23} - 315 q^{24} - 152 q^{25} + 70 q^{27} + 221 q^{28} + 82 q^{29} + 245 q^{30} + 392 q^{31} + 85 q^{32} - 182 q^{33} - 770 q^{34} - 91 q^{35} - 374 q^{36} + 131 q^{37} + 1260 q^{38} + 630 q^{40} - 336 q^{41} + 455 q^{42} + 201 q^{43} - 884 q^{44} + 154 q^{45} - 480 q^{46} - 210 q^{47} + 623 q^{48} + 174 q^{49} - 380 q^{50} - 1078 q^{51} - 864 q^{53} + 175 q^{54} - 182 q^{55} - 585 q^{56} + 1764 q^{57} - 410 q^{58} + 294 q^{59} + 1666 q^{60} + 56 q^{61} + 980 q^{62} + 286 q^{63} - 574 q^{64} - 1820 q^{66} - 478 q^{67} - 1309 q^{68} - 672 q^{69} - 910 q^{70} - 9 q^{71} + 990 q^{72} + 196 q^{73} - 655 q^{74} - 532 q^{75} + 2142 q^{76} + 676 q^{77} + 2608 q^{79} + 623 q^{80} + 839 q^{81} + 1680 q^{82} - 616 q^{83} - 1547 q^{84} + 539 q^{85} + 2010 q^{86} - 574 q^{87} - 1170 q^{88} + 1190 q^{89} + 1540 q^{90} - 3264 q^{92} + 1372 q^{93} - 525 q^{94} - 882 q^{95} + 1190 q^{96} - 70 q^{97} - 870 q^{98} - 1144 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
0.500000 + 0.866025i
0.500000 0.866025i
2.50000 4.33013i 3.50000 6.06218i −8.50000 14.7224i −7.00000 −17.5000 30.3109i 6.50000 + 11.2583i −45.0000 −11.0000 19.0526i −17.5000 + 30.3109i
146.1 2.50000 + 4.33013i 3.50000 + 6.06218i −8.50000 + 14.7224i −7.00000 −17.5000 + 30.3109i 6.50000 11.2583i −45.0000 −11.0000 + 19.0526i −17.5000 30.3109i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.4.c.e 2
13.b even 2 1 169.4.c.a 2
13.c even 3 1 13.4.a.a 1
13.c even 3 1 inner 169.4.c.e 2
13.d odd 4 2 169.4.e.e 4
13.e even 6 1 169.4.a.e 1
13.e even 6 1 169.4.c.a 2
13.f odd 12 2 169.4.b.a 2
13.f odd 12 2 169.4.e.e 4
39.h odd 6 1 1521.4.a.a 1
39.i odd 6 1 117.4.a.b 1
52.j odd 6 1 208.4.a.g 1
65.n even 6 1 325.4.a.d 1
65.q odd 12 2 325.4.b.b 2
91.n odd 6 1 637.4.a.a 1
104.n odd 6 1 832.4.a.a 1
104.r even 6 1 832.4.a.r 1
143.k odd 6 1 1573.4.a.a 1
156.p even 6 1 1872.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.a 1 13.c even 3 1
117.4.a.b 1 39.i odd 6 1
169.4.a.e 1 13.e even 6 1
169.4.b.a 2 13.f odd 12 2
169.4.c.a 2 13.b even 2 1
169.4.c.a 2 13.e even 6 1
169.4.c.e 2 1.a even 1 1 trivial
169.4.c.e 2 13.c even 3 1 inner
169.4.e.e 4 13.d odd 4 2
169.4.e.e 4 13.f odd 12 2
208.4.a.g 1 52.j odd 6 1
325.4.a.d 1 65.n even 6 1
325.4.b.b 2 65.q odd 12 2
637.4.a.a 1 91.n odd 6 1
832.4.a.a 1 104.n odd 6 1
832.4.a.r 1 104.r even 6 1
1521.4.a.a 1 39.h odd 6 1
1573.4.a.a 1 143.k odd 6 1
1872.4.a.k 1 156.p even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 5 T_{2} + 25 \) acting on \(S_{4}^{\mathrm{new}}(169, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 25 - 5 T + T^{2} \)
$3$ \( 49 - 7 T + T^{2} \)
$5$ \( ( 7 + T )^{2} \)
$7$ \( 169 - 13 T + T^{2} \)
$11$ \( 676 - 26 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( 5929 + 77 T + T^{2} \)
$19$ \( 15876 - 126 T + T^{2} \)
$23$ \( 9216 - 96 T + T^{2} \)
$29$ \( 6724 - 82 T + T^{2} \)
$31$ \( ( -196 + T )^{2} \)
$37$ \( 17161 - 131 T + T^{2} \)
$41$ \( 112896 + 336 T + T^{2} \)
$43$ \( 40401 - 201 T + T^{2} \)
$47$ \( ( 105 + T )^{2} \)
$53$ \( ( 432 + T )^{2} \)
$59$ \( 86436 - 294 T + T^{2} \)
$61$ \( 3136 - 56 T + T^{2} \)
$67$ \( 228484 + 478 T + T^{2} \)
$71$ \( 81 + 9 T + T^{2} \)
$73$ \( ( -98 + T )^{2} \)
$79$ \( ( -1304 + T )^{2} \)
$83$ \( ( 308 + T )^{2} \)
$89$ \( 1416100 - 1190 T + T^{2} \)
$97$ \( 4900 + 70 T + T^{2} \)
show more
show less