Properties

Label 169.4.c
Level $169$
Weight $4$
Character orbit 169.c
Rep. character $\chi_{169}(22,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $66$
Newform subspaces $12$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 12 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(169, [\chi])\).

Total New Old
Modular forms 106 86 20
Cusp forms 78 66 12
Eisenstein series 28 20 8

Trace form

\( 66 q - q^{2} + 7 q^{3} - 107 q^{4} - 4 q^{5} - 30 q^{6} + 35 q^{7} + 30 q^{8} - 204 q^{9} + 99 q^{10} - 15 q^{11} - 336 q^{12} - 132 q^{14} + 124 q^{15} - 331 q^{16} + 59 q^{17} + 614 q^{18} - 111 q^{19}+ \cdots - 5892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(169, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
169.4.c.a 169.c 13.c $2$ $9.971$ \(\Q(\sqrt{-3}) \) None 13.4.a.a \(-5\) \(7\) \(14\) \(-13\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-5+5\zeta_{6})q^{2}+(7-7\zeta_{6})q^{3}-17\zeta_{6}q^{4}+\cdots\)
169.4.c.b 169.c 13.c $2$ $9.971$ \(\Q(\sqrt{-3}) \) None 13.4.b.a \(-3\) \(1\) \(-18\) \(-15\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3+3\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
169.4.c.c 169.c 13.c $2$ $9.971$ \(\Q(\sqrt{-3}) \) None 13.4.b.a \(3\) \(1\) \(18\) \(15\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
169.4.c.d 169.c 13.c $2$ $9.971$ \(\Q(\sqrt{-3}) \) None 13.4.c.a \(4\) \(-2\) \(-34\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4-4\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}-8\zeta_{6}q^{4}+\cdots\)
169.4.c.e 169.c 13.c $2$ $9.971$ \(\Q(\sqrt{-3}) \) None 13.4.a.a \(5\) \(7\) \(-14\) \(13\) $\mathrm{SU}(2)[C_{3}]$ \(q+(5-5\zeta_{6})q^{2}+(7-7\zeta_{6})q^{3}-17\zeta_{6}q^{4}+\cdots\)
169.4.c.f 169.c 13.c $4$ $9.971$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 13.4.c.b \(-5\) \(-5\) \(30\) \(15\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+\beta _{1}+2\beta _{2}+\beta _{3})q^{2}+(-1+\cdots)q^{3}+\cdots\)
169.4.c.g 169.c 13.c $4$ $9.971$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 13.4.a.b \(-1\) \(-5\) \(-6\) \(9\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(3\beta _{1}-4\beta _{2})q^{3}+(4+\beta _{1}+\cdots)q^{4}+\cdots\)
169.4.c.h 169.c 13.c $4$ $9.971$ \(\Q(\zeta_{12})\) None 13.4.e.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{2}-2\beta_1 q^{3}+(-5\beta_1+5)q^{4}+\cdots\)
169.4.c.i 169.c 13.c $4$ $9.971$ \(\Q(\zeta_{12})\) None 13.4.e.a \(0\) \(14\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\beta_{2} q^{2}+7\beta_1 q^{3}+(4\beta_1-4)q^{4}+\cdots\)
169.4.c.j 169.c 13.c $4$ $9.971$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 13.4.a.b \(1\) \(-5\) \(6\) \(-9\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(3\beta _{1}-4\beta _{2})q^{3}+(4+\beta _{1}+\cdots)q^{4}+\cdots\)
169.4.c.k 169.c 13.c $18$ $9.971$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 169.4.a.k \(-5\) \(-1\) \(60\) \(-38\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{2}-\beta _{3})q^{2}+(\beta _{11}-\beta _{14}+\cdots)q^{3}+\cdots\)
169.4.c.l 169.c 13.c $18$ $9.971$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 169.4.a.k \(5\) \(-1\) \(-60\) \(38\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2}+\beta _{3})q^{2}+(\beta _{11}-\beta _{14})q^{3}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(169, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(169, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)