Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.97132279097\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{17})\) |
Defining polynomial: |
\( x^{4} + 9x^{2} + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 13) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 9x^{2} + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 5\nu ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} + 5 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} - 5 \)
|
\(\nu^{3}\) | \(=\) |
\( 4\beta_{2} - 5\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
168.1 |
|
− | 4.56155i | 8.68466 | −12.8078 | 2.80776i | − | 39.6155i | − | 9.56155i | 21.9309i | 48.4233 | 12.8078 | |||||||||||||||||||||||||||
168.2 | − | 0.438447i | −3.68466 | 7.80776 | − | 17.8078i | 1.61553i | − | 5.43845i | − | 6.93087i | −13.4233 | −7.80776 | |||||||||||||||||||||||||||
168.3 | 0.438447i | −3.68466 | 7.80776 | 17.8078i | − | 1.61553i | 5.43845i | 6.93087i | −13.4233 | −7.80776 | ||||||||||||||||||||||||||||||
168.4 | 4.56155i | 8.68466 | −12.8078 | − | 2.80776i | 39.6155i | 9.56155i | − | 21.9309i | 48.4233 | 12.8078 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.4.b.e | 4 | |
13.b | even | 2 | 1 | inner | 169.4.b.e | 4 | |
13.c | even | 3 | 2 | 169.4.e.g | 8 | ||
13.d | odd | 4 | 1 | 169.4.a.f | 2 | ||
13.d | odd | 4 | 1 | 169.4.a.j | 2 | ||
13.e | even | 6 | 2 | 169.4.e.g | 8 | ||
13.f | odd | 12 | 2 | 13.4.c.b | ✓ | 4 | |
13.f | odd | 12 | 2 | 169.4.c.f | 4 | ||
39.f | even | 4 | 1 | 1521.4.a.l | 2 | ||
39.f | even | 4 | 1 | 1521.4.a.t | 2 | ||
39.k | even | 12 | 2 | 117.4.g.d | 4 | ||
52.l | even | 12 | 2 | 208.4.i.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.4.c.b | ✓ | 4 | 13.f | odd | 12 | 2 | |
117.4.g.d | 4 | 39.k | even | 12 | 2 | ||
169.4.a.f | 2 | 13.d | odd | 4 | 1 | ||
169.4.a.j | 2 | 13.d | odd | 4 | 1 | ||
169.4.b.e | 4 | 1.a | even | 1 | 1 | trivial | |
169.4.b.e | 4 | 13.b | even | 2 | 1 | inner | |
169.4.c.f | 4 | 13.f | odd | 12 | 2 | ||
169.4.e.g | 8 | 13.c | even | 3 | 2 | ||
169.4.e.g | 8 | 13.e | even | 6 | 2 | ||
208.4.i.e | 4 | 52.l | even | 12 | 2 | ||
1521.4.a.l | 2 | 39.f | even | 4 | 1 | ||
1521.4.a.t | 2 | 39.f | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 21T_{2}^{2} + 4 \)
acting on \(S_{4}^{\mathrm{new}}(169, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 21T^{2} + 4 \)
$3$
\( (T^{2} - 5 T - 32)^{2} \)
$5$
\( T^{4} + 325T^{2} + 2500 \)
$7$
\( T^{4} + 121T^{2} + 2704 \)
$11$
\( T^{4} + 2057 T^{2} + 781456 \)
$13$
\( T^{4} \)
$17$
\( (T^{2} + 70 T + 137)^{2} \)
$19$
\( T^{4} + 10153 T^{2} + \cdots + 23658496 \)
$23$
\( (T^{2} + 145 T + 628)^{2} \)
$29$
\( (T^{2} - 34 T - 15011)^{2} \)
$31$
\( T^{4} + 94800 T^{2} + \cdots + 1413760000 \)
$37$
\( T^{4} + 34506 T^{2} + \cdots + 635209 \)
$41$
\( T^{4} + 148122 T^{2} + \cdots + 4992976921 \)
$43$
\( (T^{2} + 455 T + 11768)^{2} \)
$47$
\( T^{4} + 168400 T^{2} + \cdots + 6789760000 \)
$53$
\( (T^{2} - 545 T - 41450)^{2} \)
$59$
\( T^{4} + 352953 T^{2} + \cdots + 22729783696 \)
$61$
\( (T^{2} - 502 T - 106999)^{2} \)
$67$
\( T^{4} + 183201 T^{2} + \cdots + 449948944 \)
$71$
\( T^{4} + 101777 T^{2} + \cdots + 1833894976 \)
$73$
\( T^{4} + 232525 T^{2} + \cdots + 3008522500 \)
$79$
\( (T^{2} - 240 T + 7600)^{2} \)
$83$
\( T^{4} + 118800 T^{2} + \cdots + 655360000 \)
$89$
\( T^{4} + 556933 T^{2} + \cdots + 21215087716 \)
$97$
\( T^{4} + 1955781 T^{2} + \cdots + 795268001284 \)
show more
show less