Properties

Label 169.4.b.c.168.1
Level $169$
Weight $4$
Character 169.168
Analytic conductor $9.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.4.b.c.168.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +2.00000 q^{3} -8.00000 q^{4} -17.0000i q^{5} -8.00000i q^{6} +20.0000i q^{7} -23.0000 q^{9} +O(q^{10})\) \(q-4.00000i q^{2} +2.00000 q^{3} -8.00000 q^{4} -17.0000i q^{5} -8.00000i q^{6} +20.0000i q^{7} -23.0000 q^{9} -68.0000 q^{10} -32.0000i q^{11} -16.0000 q^{12} +80.0000 q^{14} -34.0000i q^{15} -64.0000 q^{16} +13.0000 q^{17} +92.0000i q^{18} -30.0000i q^{19} +136.000i q^{20} +40.0000i q^{21} -128.000 q^{22} -78.0000 q^{23} -164.000 q^{25} -100.000 q^{27} -160.000i q^{28} +197.000 q^{29} -136.000 q^{30} +74.0000i q^{31} +256.000i q^{32} -64.0000i q^{33} -52.0000i q^{34} +340.000 q^{35} +184.000 q^{36} -227.000i q^{37} -120.000 q^{38} +165.000i q^{41} +160.000 q^{42} +156.000 q^{43} +256.000i q^{44} +391.000i q^{45} +312.000i q^{46} -162.000i q^{47} -128.000 q^{48} -57.0000 q^{49} +656.000i q^{50} +26.0000 q^{51} +93.0000 q^{53} +400.000i q^{54} -544.000 q^{55} -60.0000i q^{57} -788.000i q^{58} -864.000i q^{59} +272.000i q^{60} +145.000 q^{61} +296.000 q^{62} -460.000i q^{63} +512.000 q^{64} -256.000 q^{66} -862.000i q^{67} -104.000 q^{68} -156.000 q^{69} -1360.00i q^{70} -654.000i q^{71} +215.000i q^{73} -908.000 q^{74} -328.000 q^{75} +240.000i q^{76} +640.000 q^{77} -76.0000 q^{79} +1088.00i q^{80} +421.000 q^{81} +660.000 q^{82} -628.000i q^{83} -320.000i q^{84} -221.000i q^{85} -624.000i q^{86} +394.000 q^{87} -266.000i q^{89} +1564.00 q^{90} +624.000 q^{92} +148.000i q^{93} -648.000 q^{94} -510.000 q^{95} +512.000i q^{96} -238.000i q^{97} +228.000i q^{98} +736.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 16 q^{4} - 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} - 16 q^{4} - 46 q^{9} - 136 q^{10} - 32 q^{12} + 160 q^{14} - 128 q^{16} + 26 q^{17} - 256 q^{22} - 156 q^{23} - 328 q^{25} - 200 q^{27} + 394 q^{29} - 272 q^{30} + 680 q^{35} + 368 q^{36} - 240 q^{38} + 320 q^{42} + 312 q^{43} - 256 q^{48} - 114 q^{49} + 52 q^{51} + 186 q^{53} - 1088 q^{55} + 290 q^{61} + 592 q^{62} + 1024 q^{64} - 512 q^{66} - 208 q^{68} - 312 q^{69} - 1816 q^{74} - 656 q^{75} + 1280 q^{77} - 152 q^{79} + 842 q^{81} + 1320 q^{82} + 788 q^{87} + 3128 q^{90} + 1248 q^{92} - 1296 q^{94} - 1020 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) −8.00000 −1.00000
\(5\) − 17.0000i − 1.52053i −0.649615 0.760263i \(-0.725070\pi\)
0.649615 0.760263i \(-0.274930\pi\)
\(6\) − 8.00000i − 0.544331i
\(7\) 20.0000i 1.07990i 0.841698 + 0.539949i \(0.181557\pi\)
−0.841698 + 0.539949i \(0.818443\pi\)
\(8\) 0 0
\(9\) −23.0000 −0.851852
\(10\) −68.0000 −2.15035
\(11\) − 32.0000i − 0.877124i −0.898701 0.438562i \(-0.855488\pi\)
0.898701 0.438562i \(-0.144512\pi\)
\(12\) −16.0000 −0.384900
\(13\) 0 0
\(14\) 80.0000 1.52721
\(15\) − 34.0000i − 0.585251i
\(16\) −64.0000 −1.00000
\(17\) 13.0000 0.185468 0.0927342 0.995691i \(-0.470439\pi\)
0.0927342 + 0.995691i \(0.470439\pi\)
\(18\) 92.0000i 1.20470i
\(19\) − 30.0000i − 0.362235i −0.983461 0.181118i \(-0.942029\pi\)
0.983461 0.181118i \(-0.0579715\pi\)
\(20\) 136.000i 1.52053i
\(21\) 40.0000i 0.415653i
\(22\) −128.000 −1.24044
\(23\) −78.0000 −0.707136 −0.353568 0.935409i \(-0.615032\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(24\) 0 0
\(25\) −164.000 −1.31200
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) − 160.000i − 1.07990i
\(29\) 197.000 1.26145 0.630724 0.776007i \(-0.282758\pi\)
0.630724 + 0.776007i \(0.282758\pi\)
\(30\) −136.000 −0.827670
\(31\) 74.0000i 0.428735i 0.976753 + 0.214368i \(0.0687691\pi\)
−0.976753 + 0.214368i \(0.931231\pi\)
\(32\) 256.000i 1.41421i
\(33\) − 64.0000i − 0.337605i
\(34\) − 52.0000i − 0.262292i
\(35\) 340.000 1.64201
\(36\) 184.000 0.851852
\(37\) − 227.000i − 1.00861i −0.863526 0.504305i \(-0.831749\pi\)
0.863526 0.504305i \(-0.168251\pi\)
\(38\) −120.000 −0.512278
\(39\) 0 0
\(40\) 0 0
\(41\) 165.000i 0.628504i 0.949340 + 0.314252i \(0.101754\pi\)
−0.949340 + 0.314252i \(0.898246\pi\)
\(42\) 160.000 0.587822
\(43\) 156.000 0.553251 0.276625 0.960978i \(-0.410784\pi\)
0.276625 + 0.960978i \(0.410784\pi\)
\(44\) 256.000i 0.877124i
\(45\) 391.000i 1.29526i
\(46\) 312.000i 1.00004i
\(47\) − 162.000i − 0.502769i −0.967887 0.251384i \(-0.919114\pi\)
0.967887 0.251384i \(-0.0808858\pi\)
\(48\) −128.000 −0.384900
\(49\) −57.0000 −0.166181
\(50\) 656.000i 1.85545i
\(51\) 26.0000 0.0713868
\(52\) 0 0
\(53\) 93.0000 0.241029 0.120514 0.992712i \(-0.461546\pi\)
0.120514 + 0.992712i \(0.461546\pi\)
\(54\) 400.000i 1.00802i
\(55\) −544.000 −1.33369
\(56\) 0 0
\(57\) − 60.0000i − 0.139424i
\(58\) − 788.000i − 1.78396i
\(59\) − 864.000i − 1.90650i −0.302190 0.953248i \(-0.597718\pi\)
0.302190 0.953248i \(-0.402282\pi\)
\(60\) 272.000i 0.585251i
\(61\) 145.000 0.304350 0.152175 0.988354i \(-0.451372\pi\)
0.152175 + 0.988354i \(0.451372\pi\)
\(62\) 296.000 0.606323
\(63\) − 460.000i − 0.919914i
\(64\) 512.000 1.00000
\(65\) 0 0
\(66\) −256.000 −0.477446
\(67\) − 862.000i − 1.57179i −0.618359 0.785896i \(-0.712202\pi\)
0.618359 0.785896i \(-0.287798\pi\)
\(68\) −104.000 −0.185468
\(69\) −156.000 −0.272177
\(70\) − 1360.00i − 2.32216i
\(71\) − 654.000i − 1.09318i −0.837402 0.546588i \(-0.815926\pi\)
0.837402 0.546588i \(-0.184074\pi\)
\(72\) 0 0
\(73\) 215.000i 0.344710i 0.985035 + 0.172355i \(0.0551377\pi\)
−0.985035 + 0.172355i \(0.944862\pi\)
\(74\) −908.000 −1.42639
\(75\) −328.000 −0.504989
\(76\) 240.000i 0.362235i
\(77\) 640.000 0.947205
\(78\) 0 0
\(79\) −76.0000 −0.108236 −0.0541182 0.998535i \(-0.517235\pi\)
−0.0541182 + 0.998535i \(0.517235\pi\)
\(80\) 1088.00i 1.52053i
\(81\) 421.000 0.577503
\(82\) 660.000 0.888839
\(83\) − 628.000i − 0.830505i −0.909706 0.415253i \(-0.863693\pi\)
0.909706 0.415253i \(-0.136307\pi\)
\(84\) − 320.000i − 0.415653i
\(85\) − 221.000i − 0.282010i
\(86\) − 624.000i − 0.782415i
\(87\) 394.000 0.485531
\(88\) 0 0
\(89\) − 266.000i − 0.316808i −0.987374 0.158404i \(-0.949365\pi\)
0.987374 0.158404i \(-0.0506349\pi\)
\(90\) 1564.00 1.83178
\(91\) 0 0
\(92\) 624.000 0.707136
\(93\) 148.000i 0.165020i
\(94\) −648.000 −0.711022
\(95\) −510.000 −0.550788
\(96\) 512.000i 0.544331i
\(97\) − 238.000i − 0.249126i −0.992212 0.124563i \(-0.960247\pi\)
0.992212 0.124563i \(-0.0397529\pi\)
\(98\) 228.000i 0.235015i
\(99\) 736.000i 0.747180i
\(100\) 1312.00 1.31200
\(101\) 819.000 0.806867 0.403433 0.915009i \(-0.367817\pi\)
0.403433 + 0.915009i \(0.367817\pi\)
\(102\) − 104.000i − 0.100956i
\(103\) −1638.00 −1.56696 −0.783480 0.621417i \(-0.786557\pi\)
−0.783480 + 0.621417i \(0.786557\pi\)
\(104\) 0 0
\(105\) 680.000 0.632011
\(106\) − 372.000i − 0.340866i
\(107\) 522.000 0.471623 0.235811 0.971799i \(-0.424225\pi\)
0.235811 + 0.971799i \(0.424225\pi\)
\(108\) 800.000 0.712778
\(109\) 1634.00i 1.43586i 0.696115 + 0.717930i \(0.254910\pi\)
−0.696115 + 0.717930i \(0.745090\pi\)
\(110\) 2176.00i 1.88612i
\(111\) − 454.000i − 0.388214i
\(112\) − 1280.00i − 1.07990i
\(113\) 327.000 0.272226 0.136113 0.990693i \(-0.456539\pi\)
0.136113 + 0.990693i \(0.456539\pi\)
\(114\) −240.000 −0.197176
\(115\) 1326.00i 1.07522i
\(116\) −1576.00 −1.26145
\(117\) 0 0
\(118\) −3456.00 −2.69619
\(119\) 260.000i 0.200287i
\(120\) 0 0
\(121\) 307.000 0.230654
\(122\) − 580.000i − 0.430416i
\(123\) 330.000i 0.241911i
\(124\) − 592.000i − 0.428735i
\(125\) 663.000i 0.474404i
\(126\) −1840.00 −1.30095
\(127\) 2158.00 1.50781 0.753904 0.656985i \(-0.228169\pi\)
0.753904 + 0.656985i \(0.228169\pi\)
\(128\) 0 0
\(129\) 312.000 0.212946
\(130\) 0 0
\(131\) 730.000 0.486873 0.243437 0.969917i \(-0.421725\pi\)
0.243437 + 0.969917i \(0.421725\pi\)
\(132\) 512.000i 0.337605i
\(133\) 600.000 0.391177
\(134\) −3448.00 −2.22285
\(135\) 1700.00i 1.08380i
\(136\) 0 0
\(137\) 1671.00i 1.04207i 0.853536 + 0.521033i \(0.174453\pi\)
−0.853536 + 0.521033i \(0.825547\pi\)
\(138\) 624.000i 0.384916i
\(139\) 912.000 0.556510 0.278255 0.960507i \(-0.410244\pi\)
0.278255 + 0.960507i \(0.410244\pi\)
\(140\) −2720.00 −1.64201
\(141\) − 324.000i − 0.193516i
\(142\) −2616.00 −1.54598
\(143\) 0 0
\(144\) 1472.00 0.851852
\(145\) − 3349.00i − 1.91806i
\(146\) 860.000 0.487494
\(147\) −114.000 −0.0639630
\(148\) 1816.00i 1.00861i
\(149\) 2115.00i 1.16287i 0.813593 + 0.581435i \(0.197508\pi\)
−0.813593 + 0.581435i \(0.802492\pi\)
\(150\) 1312.00i 0.714162i
\(151\) 514.000i 0.277011i 0.990362 + 0.138506i \(0.0442299\pi\)
−0.990362 + 0.138506i \(0.955770\pi\)
\(152\) 0 0
\(153\) −299.000 −0.157992
\(154\) − 2560.00i − 1.33955i
\(155\) 1258.00 0.651903
\(156\) 0 0
\(157\) 2901.00 1.47468 0.737341 0.675521i \(-0.236081\pi\)
0.737341 + 0.675521i \(0.236081\pi\)
\(158\) 304.000i 0.153069i
\(159\) 186.000 0.0927721
\(160\) 4352.00 2.15035
\(161\) − 1560.00i − 0.763635i
\(162\) − 1684.00i − 0.816713i
\(163\) 2360.00i 1.13405i 0.823702 + 0.567023i \(0.191905\pi\)
−0.823702 + 0.567023i \(0.808095\pi\)
\(164\) − 1320.00i − 0.628504i
\(165\) −1088.00 −0.513337
\(166\) −2512.00 −1.17451
\(167\) 280.000i 0.129743i 0.997894 + 0.0648714i \(0.0206637\pi\)
−0.997894 + 0.0648714i \(0.979336\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −884.000 −0.398822
\(171\) 690.000i 0.308571i
\(172\) −1248.00 −0.553251
\(173\) −1326.00 −0.582739 −0.291370 0.956611i \(-0.594111\pi\)
−0.291370 + 0.956611i \(0.594111\pi\)
\(174\) − 1576.00i − 0.686645i
\(175\) − 3280.00i − 1.41683i
\(176\) 2048.00i 0.877124i
\(177\) − 1728.00i − 0.733810i
\(178\) −1064.00 −0.448035
\(179\) −4264.00 −1.78048 −0.890241 0.455490i \(-0.849464\pi\)
−0.890241 + 0.455490i \(0.849464\pi\)
\(180\) − 3128.00i − 1.29526i
\(181\) 403.000 0.165496 0.0827479 0.996571i \(-0.473630\pi\)
0.0827479 + 0.996571i \(0.473630\pi\)
\(182\) 0 0
\(183\) 290.000 0.117144
\(184\) 0 0
\(185\) −3859.00 −1.53362
\(186\) 592.000 0.233374
\(187\) − 416.000i − 0.162679i
\(188\) 1296.00i 0.502769i
\(189\) − 2000.00i − 0.769728i
\(190\) 2040.00i 0.778932i
\(191\) −1246.00 −0.472028 −0.236014 0.971750i \(-0.575841\pi\)
−0.236014 + 0.971750i \(0.575841\pi\)
\(192\) 1024.00 0.384900
\(193\) 267.000i 0.0995807i 0.998760 + 0.0497904i \(0.0158553\pi\)
−0.998760 + 0.0497904i \(0.984145\pi\)
\(194\) −952.000 −0.352318
\(195\) 0 0
\(196\) 456.000 0.166181
\(197\) − 1278.00i − 0.462202i −0.972930 0.231101i \(-0.925767\pi\)
0.972930 0.231101i \(-0.0742327\pi\)
\(198\) 2944.00 1.05667
\(199\) −4238.00 −1.50967 −0.754834 0.655916i \(-0.772283\pi\)
−0.754834 + 0.655916i \(0.772283\pi\)
\(200\) 0 0
\(201\) − 1724.00i − 0.604983i
\(202\) − 3276.00i − 1.14108i
\(203\) 3940.00i 1.36224i
\(204\) −208.000 −0.0713868
\(205\) 2805.00 0.955657
\(206\) 6552.00i 2.21602i
\(207\) 1794.00 0.602375
\(208\) 0 0
\(209\) −960.000 −0.317725
\(210\) − 2720.00i − 0.893799i
\(211\) 3070.00 1.00165 0.500823 0.865549i \(-0.333031\pi\)
0.500823 + 0.865549i \(0.333031\pi\)
\(212\) −744.000 −0.241029
\(213\) − 1308.00i − 0.420764i
\(214\) − 2088.00i − 0.666975i
\(215\) − 2652.00i − 0.841232i
\(216\) 0 0
\(217\) −1480.00 −0.462991
\(218\) 6536.00 2.03061
\(219\) 430.000i 0.132679i
\(220\) 4352.00 1.33369
\(221\) 0 0
\(222\) −1816.00 −0.549018
\(223\) 5378.00i 1.61497i 0.589891 + 0.807483i \(0.299171\pi\)
−0.589891 + 0.807483i \(0.700829\pi\)
\(224\) −5120.00 −1.52721
\(225\) 3772.00 1.11763
\(226\) − 1308.00i − 0.384986i
\(227\) 3974.00i 1.16195i 0.813920 + 0.580977i \(0.197329\pi\)
−0.813920 + 0.580977i \(0.802671\pi\)
\(228\) 480.000i 0.139424i
\(229\) − 6298.00i − 1.81740i −0.417455 0.908698i \(-0.637078\pi\)
0.417455 0.908698i \(-0.362922\pi\)
\(230\) 5304.00 1.52059
\(231\) 1280.00 0.364579
\(232\) 0 0
\(233\) −4030.00 −1.13311 −0.566554 0.824025i \(-0.691724\pi\)
−0.566554 + 0.824025i \(0.691724\pi\)
\(234\) 0 0
\(235\) −2754.00 −0.764473
\(236\) 6912.00i 1.90650i
\(237\) −152.000 −0.0416602
\(238\) 1040.00 0.283249
\(239\) 984.000i 0.266317i 0.991095 + 0.133158i \(0.0425119\pi\)
−0.991095 + 0.133158i \(0.957488\pi\)
\(240\) 2176.00i 0.585251i
\(241\) 943.000i 0.252050i 0.992027 + 0.126025i \(0.0402219\pi\)
−0.992027 + 0.126025i \(0.959778\pi\)
\(242\) − 1228.00i − 0.326194i
\(243\) 3542.00 0.935059
\(244\) −1160.00 −0.304350
\(245\) 969.000i 0.252682i
\(246\) 1320.00 0.342114
\(247\) 0 0
\(248\) 0 0
\(249\) − 1256.00i − 0.319662i
\(250\) 2652.00 0.670909
\(251\) 2730.00 0.686518 0.343259 0.939241i \(-0.388469\pi\)
0.343259 + 0.939241i \(0.388469\pi\)
\(252\) 3680.00i 0.919914i
\(253\) 2496.00i 0.620246i
\(254\) − 8632.00i − 2.13236i
\(255\) − 442.000i − 0.108546i
\(256\) 4096.00 1.00000
\(257\) 1885.00 0.457522 0.228761 0.973483i \(-0.426533\pi\)
0.228761 + 0.973483i \(0.426533\pi\)
\(258\) − 1248.00i − 0.301151i
\(259\) 4540.00 1.08920
\(260\) 0 0
\(261\) −4531.00 −1.07457
\(262\) − 2920.00i − 0.688543i
\(263\) 4032.00 0.945338 0.472669 0.881240i \(-0.343291\pi\)
0.472669 + 0.881240i \(0.343291\pi\)
\(264\) 0 0
\(265\) − 1581.00i − 0.366491i
\(266\) − 2400.00i − 0.553208i
\(267\) − 532.000i − 0.121940i
\(268\) 6896.00i 1.57179i
\(269\) 4006.00 0.907993 0.453997 0.891003i \(-0.349998\pi\)
0.453997 + 0.891003i \(0.349998\pi\)
\(270\) 6800.00 1.53272
\(271\) − 4296.00i − 0.962965i −0.876456 0.481482i \(-0.840099\pi\)
0.876456 0.481482i \(-0.159901\pi\)
\(272\) −832.000 −0.185468
\(273\) 0 0
\(274\) 6684.00 1.47371
\(275\) 5248.00i 1.15079i
\(276\) 1248.00 0.272177
\(277\) 5551.00 1.20407 0.602035 0.798470i \(-0.294357\pi\)
0.602035 + 0.798470i \(0.294357\pi\)
\(278\) − 3648.00i − 0.787023i
\(279\) − 1702.00i − 0.365219i
\(280\) 0 0
\(281\) − 5557.00i − 1.17973i −0.807504 0.589863i \(-0.799182\pi\)
0.807504 0.589863i \(-0.200818\pi\)
\(282\) −1296.00 −0.273673
\(283\) −3120.00 −0.655352 −0.327676 0.944790i \(-0.606266\pi\)
−0.327676 + 0.944790i \(0.606266\pi\)
\(284\) 5232.00i 1.09318i
\(285\) −1020.00 −0.211999
\(286\) 0 0
\(287\) −3300.00 −0.678721
\(288\) − 5888.00i − 1.20470i
\(289\) −4744.00 −0.965601
\(290\) −13396.0 −2.71255
\(291\) − 476.000i − 0.0958887i
\(292\) − 1720.00i − 0.344710i
\(293\) 8301.00i 1.65512i 0.561379 + 0.827559i \(0.310271\pi\)
−0.561379 + 0.827559i \(0.689729\pi\)
\(294\) 456.000i 0.0904573i
\(295\) −14688.0 −2.89888
\(296\) 0 0
\(297\) 3200.00i 0.625195i
\(298\) 8460.00 1.64455
\(299\) 0 0
\(300\) 2624.00 0.504989
\(301\) 3120.00i 0.597455i
\(302\) 2056.00 0.391753
\(303\) 1638.00 0.310563
\(304\) 1920.00i 0.362235i
\(305\) − 2465.00i − 0.462772i
\(306\) 1196.00i 0.223434i
\(307\) 8678.00i 1.61329i 0.591037 + 0.806644i \(0.298719\pi\)
−0.591037 + 0.806644i \(0.701281\pi\)
\(308\) −5120.00 −0.947205
\(309\) −3276.00 −0.603123
\(310\) − 5032.00i − 0.921930i
\(311\) −8658.00 −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(312\) 0 0
\(313\) −5250.00 −0.948075 −0.474038 0.880505i \(-0.657204\pi\)
−0.474038 + 0.880505i \(0.657204\pi\)
\(314\) − 11604.0i − 2.08551i
\(315\) −7820.00 −1.39875
\(316\) 608.000 0.108236
\(317\) − 6413.00i − 1.13625i −0.822944 0.568123i \(-0.807670\pi\)
0.822944 0.568123i \(-0.192330\pi\)
\(318\) − 744.000i − 0.131200i
\(319\) − 6304.00i − 1.10645i
\(320\) − 8704.00i − 1.52053i
\(321\) 1044.00 0.181528
\(322\) −6240.00 −1.07994
\(323\) − 390.000i − 0.0671832i
\(324\) −3368.00 −0.577503
\(325\) 0 0
\(326\) 9440.00 1.60378
\(327\) 3268.00i 0.552663i
\(328\) 0 0
\(329\) 3240.00 0.542939
\(330\) 4352.00i 0.725969i
\(331\) − 3488.00i − 0.579208i −0.957147 0.289604i \(-0.906476\pi\)
0.957147 0.289604i \(-0.0935236\pi\)
\(332\) 5024.00i 0.830505i
\(333\) 5221.00i 0.859186i
\(334\) 1120.00 0.183484
\(335\) −14654.0 −2.38995
\(336\) − 2560.00i − 0.415653i
\(337\) 1833.00 0.296290 0.148145 0.988966i \(-0.452670\pi\)
0.148145 + 0.988966i \(0.452670\pi\)
\(338\) 0 0
\(339\) 654.000 0.104780
\(340\) 1768.00i 0.282010i
\(341\) 2368.00 0.376054
\(342\) 2760.00 0.436385
\(343\) 5720.00i 0.900440i
\(344\) 0 0
\(345\) 2652.00i 0.413852i
\(346\) 5304.00i 0.824118i
\(347\) 7230.00 1.11852 0.559260 0.828992i \(-0.311085\pi\)
0.559260 + 0.828992i \(0.311085\pi\)
\(348\) −3152.00 −0.485531
\(349\) − 5258.00i − 0.806459i −0.915099 0.403230i \(-0.867888\pi\)
0.915099 0.403230i \(-0.132112\pi\)
\(350\) −13120.0 −2.00370
\(351\) 0 0
\(352\) 8192.00 1.24044
\(353\) − 3163.00i − 0.476911i −0.971153 0.238455i \(-0.923359\pi\)
0.971153 0.238455i \(-0.0766411\pi\)
\(354\) −6912.00 −1.03776
\(355\) −11118.0 −1.66220
\(356\) 2128.00i 0.316808i
\(357\) 520.000i 0.0770905i
\(358\) 17056.0i 2.51798i
\(359\) − 10068.0i − 1.48014i −0.672532 0.740068i \(-0.734793\pi\)
0.672532 0.740068i \(-0.265207\pi\)
\(360\) 0 0
\(361\) 5959.00 0.868786
\(362\) − 1612.00i − 0.234047i
\(363\) 614.000 0.0887786
\(364\) 0 0
\(365\) 3655.00 0.524141
\(366\) − 1160.00i − 0.165667i
\(367\) 7438.00 1.05793 0.528965 0.848644i \(-0.322580\pi\)
0.528965 + 0.848644i \(0.322580\pi\)
\(368\) 4992.00 0.707136
\(369\) − 3795.00i − 0.535392i
\(370\) 15436.0i 2.16886i
\(371\) 1860.00i 0.260287i
\(372\) − 1184.00i − 0.165020i
\(373\) −9683.00 −1.34415 −0.672073 0.740485i \(-0.734596\pi\)
−0.672073 + 0.740485i \(0.734596\pi\)
\(374\) −1664.00 −0.230063
\(375\) 1326.00i 0.182598i
\(376\) 0 0
\(377\) 0 0
\(378\) −8000.00 −1.08856
\(379\) 1062.00i 0.143935i 0.997407 + 0.0719674i \(0.0229278\pi\)
−0.997407 + 0.0719674i \(0.977072\pi\)
\(380\) 4080.00 0.550788
\(381\) 4316.00 0.580355
\(382\) 4984.00i 0.667549i
\(383\) 3532.00i 0.471219i 0.971848 + 0.235609i \(0.0757086\pi\)
−0.971848 + 0.235609i \(0.924291\pi\)
\(384\) 0 0
\(385\) − 10880.0i − 1.44025i
\(386\) 1068.00 0.140828
\(387\) −3588.00 −0.471288
\(388\) 1904.00i 0.249126i
\(389\) 11063.0 1.44194 0.720972 0.692964i \(-0.243696\pi\)
0.720972 + 0.692964i \(0.243696\pi\)
\(390\) 0 0
\(391\) −1014.00 −0.131151
\(392\) 0 0
\(393\) 1460.00 0.187398
\(394\) −5112.00 −0.653652
\(395\) 1292.00i 0.164576i
\(396\) − 5888.00i − 0.747180i
\(397\) − 5986.00i − 0.756747i −0.925653 0.378374i \(-0.876483\pi\)
0.925653 0.378374i \(-0.123517\pi\)
\(398\) 16952.0i 2.13499i
\(399\) 1200.00 0.150564
\(400\) 10496.0 1.31200
\(401\) 5935.00i 0.739102i 0.929211 + 0.369551i \(0.120488\pi\)
−0.929211 + 0.369551i \(0.879512\pi\)
\(402\) −6896.00 −0.855575
\(403\) 0 0
\(404\) −6552.00 −0.806867
\(405\) − 7157.00i − 0.878109i
\(406\) 15760.0 1.92649
\(407\) −7264.00 −0.884676
\(408\) 0 0
\(409\) 15089.0i 1.82421i 0.409954 + 0.912106i \(0.365545\pi\)
−0.409954 + 0.912106i \(0.634455\pi\)
\(410\) − 11220.0i − 1.35150i
\(411\) 3342.00i 0.401092i
\(412\) 13104.0 1.56696
\(413\) 17280.0 2.05882
\(414\) − 7176.00i − 0.851887i
\(415\) −10676.0 −1.26281
\(416\) 0 0
\(417\) 1824.00 0.214201
\(418\) 3840.00i 0.449331i
\(419\) −10814.0 −1.26086 −0.630428 0.776248i \(-0.717120\pi\)
−0.630428 + 0.776248i \(0.717120\pi\)
\(420\) −5440.00 −0.632011
\(421\) 6535.00i 0.756524i 0.925699 + 0.378262i \(0.123478\pi\)
−0.925699 + 0.378262i \(0.876522\pi\)
\(422\) − 12280.0i − 1.41654i
\(423\) 3726.00i 0.428284i
\(424\) 0 0
\(425\) −2132.00 −0.243335
\(426\) −5232.00 −0.595050
\(427\) 2900.00i 0.328667i
\(428\) −4176.00 −0.471623
\(429\) 0 0
\(430\) −10608.0 −1.18968
\(431\) − 1980.00i − 0.221284i −0.993860 0.110642i \(-0.964709\pi\)
0.993860 0.110642i \(-0.0352906\pi\)
\(432\) 6400.00 0.712778
\(433\) 6929.00 0.769022 0.384511 0.923120i \(-0.374370\pi\)
0.384511 + 0.923120i \(0.374370\pi\)
\(434\) 5920.00i 0.654767i
\(435\) − 6698.00i − 0.738263i
\(436\) − 13072.0i − 1.43586i
\(437\) 2340.00i 0.256150i
\(438\) 1720.00 0.187636
\(439\) 4576.00 0.497496 0.248748 0.968568i \(-0.419981\pi\)
0.248748 + 0.968568i \(0.419981\pi\)
\(440\) 0 0
\(441\) 1311.00 0.141561
\(442\) 0 0
\(443\) −8812.00 −0.945081 −0.472540 0.881309i \(-0.656663\pi\)
−0.472540 + 0.881309i \(0.656663\pi\)
\(444\) 3632.00i 0.388214i
\(445\) −4522.00 −0.481715
\(446\) 21512.0 2.28391
\(447\) 4230.00i 0.447589i
\(448\) 10240.0i 1.07990i
\(449\) 1918.00i 0.201595i 0.994907 + 0.100797i \(0.0321394\pi\)
−0.994907 + 0.100797i \(0.967861\pi\)
\(450\) − 15088.0i − 1.58057i
\(451\) 5280.00 0.551276
\(452\) −2616.00 −0.272226
\(453\) 1028.00i 0.106622i
\(454\) 15896.0 1.64325
\(455\) 0 0
\(456\) 0 0
\(457\) 11761.0i 1.20384i 0.798555 + 0.601922i \(0.205598\pi\)
−0.798555 + 0.601922i \(0.794402\pi\)
\(458\) −25192.0 −2.57019
\(459\) −1300.00 −0.132198
\(460\) − 10608.0i − 1.07522i
\(461\) − 901.000i − 0.0910277i −0.998964 0.0455138i \(-0.985507\pi\)
0.998964 0.0455138i \(-0.0144925\pi\)
\(462\) − 5120.00i − 0.515593i
\(463\) 1372.00i 0.137715i 0.997626 + 0.0688577i \(0.0219354\pi\)
−0.997626 + 0.0688577i \(0.978065\pi\)
\(464\) −12608.0 −1.26145
\(465\) 2516.00 0.250918
\(466\) 16120.0i 1.60246i
\(467\) 6396.00 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(468\) 0 0
\(469\) 17240.0 1.69738
\(470\) 11016.0i 1.08113i
\(471\) 5802.00 0.567605
\(472\) 0 0
\(473\) − 4992.00i − 0.485269i
\(474\) 608.000i 0.0589164i
\(475\) 4920.00i 0.475253i
\(476\) − 2080.00i − 0.200287i
\(477\) −2139.00 −0.205321
\(478\) 3936.00 0.376629
\(479\) 3270.00i 0.311921i 0.987763 + 0.155960i \(0.0498472\pi\)
−0.987763 + 0.155960i \(0.950153\pi\)
\(480\) 8704.00 0.827670
\(481\) 0 0
\(482\) 3772.00 0.356452
\(483\) − 3120.00i − 0.293923i
\(484\) −2456.00 −0.230654
\(485\) −4046.00 −0.378803
\(486\) − 14168.0i − 1.32237i
\(487\) − 19920.0i − 1.85351i −0.375661 0.926757i \(-0.622584\pi\)
0.375661 0.926757i \(-0.377416\pi\)
\(488\) 0 0
\(489\) 4720.00i 0.436494i
\(490\) 3876.00 0.357347
\(491\) −6552.00 −0.602215 −0.301108 0.953590i \(-0.597356\pi\)
−0.301108 + 0.953590i \(0.597356\pi\)
\(492\) − 2640.00i − 0.241911i
\(493\) 2561.00 0.233959
\(494\) 0 0
\(495\) 12512.0 1.13611
\(496\) − 4736.00i − 0.428735i
\(497\) 13080.0 1.18052
\(498\) −5024.00 −0.452070
\(499\) − 1746.00i − 0.156637i −0.996928 0.0783183i \(-0.975045\pi\)
0.996928 0.0783183i \(-0.0249551\pi\)
\(500\) − 5304.00i − 0.474404i
\(501\) 560.000i 0.0499380i
\(502\) − 10920.0i − 0.970883i
\(503\) 14692.0 1.30235 0.651177 0.758926i \(-0.274276\pi\)
0.651177 + 0.758926i \(0.274276\pi\)
\(504\) 0 0
\(505\) − 13923.0i − 1.22686i
\(506\) 9984.00 0.877160
\(507\) 0 0
\(508\) −17264.0 −1.50781
\(509\) − 8077.00i − 0.703353i −0.936122 0.351677i \(-0.885612\pi\)
0.936122 0.351677i \(-0.114388\pi\)
\(510\) −1768.00 −0.153507
\(511\) −4300.00 −0.372252
\(512\) − 16384.0i − 1.41421i
\(513\) 3000.00i 0.258193i
\(514\) − 7540.00i − 0.647033i
\(515\) 27846.0i 2.38260i
\(516\) −2496.00 −0.212946
\(517\) −5184.00 −0.440990
\(518\) − 18160.0i − 1.54036i
\(519\) −2652.00 −0.224296
\(520\) 0 0
\(521\) 11247.0 0.945758 0.472879 0.881127i \(-0.343215\pi\)
0.472879 + 0.881127i \(0.343215\pi\)
\(522\) 18124.0i 1.51967i
\(523\) 2732.00 0.228417 0.114208 0.993457i \(-0.463567\pi\)
0.114208 + 0.993457i \(0.463567\pi\)
\(524\) −5840.00 −0.486873
\(525\) − 6560.00i − 0.545337i
\(526\) − 16128.0i − 1.33691i
\(527\) 962.000i 0.0795168i
\(528\) 4096.00i 0.337605i
\(529\) −6083.00 −0.499959
\(530\) −6324.00 −0.518296
\(531\) 19872.0i 1.62405i
\(532\) −4800.00 −0.391177
\(533\) 0 0
\(534\) −2128.00 −0.172449
\(535\) − 8874.00i − 0.717115i
\(536\) 0 0
\(537\) −8528.00 −0.685308
\(538\) − 16024.0i − 1.28410i
\(539\) 1824.00i 0.145761i
\(540\) − 13600.0i − 1.08380i
\(541\) − 18375.0i − 1.46026i −0.683306 0.730132i \(-0.739458\pi\)
0.683306 0.730132i \(-0.260542\pi\)
\(542\) −17184.0 −1.36184
\(543\) 806.000 0.0636994
\(544\) 3328.00i 0.262292i
\(545\) 27778.0 2.18326
\(546\) 0 0
\(547\) −10346.0 −0.808708 −0.404354 0.914603i \(-0.632504\pi\)
−0.404354 + 0.914603i \(0.632504\pi\)
\(548\) − 13368.0i − 1.04207i
\(549\) −3335.00 −0.259261
\(550\) 20992.0 1.62746
\(551\) − 5910.00i − 0.456941i
\(552\) 0 0
\(553\) − 1520.00i − 0.116884i
\(554\) − 22204.0i − 1.70281i
\(555\) −7718.00 −0.590290
\(556\) −7296.00 −0.556510
\(557\) 345.000i 0.0262444i 0.999914 + 0.0131222i \(0.00417704\pi\)
−0.999914 + 0.0131222i \(0.995823\pi\)
\(558\) −6808.00 −0.516498
\(559\) 0 0
\(560\) −21760.0 −1.64201
\(561\) − 832.000i − 0.0626151i
\(562\) −22228.0 −1.66838
\(563\) 8580.00 0.642280 0.321140 0.947032i \(-0.395934\pi\)
0.321140 + 0.947032i \(0.395934\pi\)
\(564\) 2592.00i 0.193516i
\(565\) − 5559.00i − 0.413927i
\(566\) 12480.0i 0.926808i
\(567\) 8420.00i 0.623645i
\(568\) 0 0
\(569\) 19682.0 1.45011 0.725055 0.688691i \(-0.241814\pi\)
0.725055 + 0.688691i \(0.241814\pi\)
\(570\) 4080.00i 0.299811i
\(571\) −26624.0 −1.95128 −0.975639 0.219382i \(-0.929596\pi\)
−0.975639 + 0.219382i \(0.929596\pi\)
\(572\) 0 0
\(573\) −2492.00 −0.181684
\(574\) 13200.0i 0.959856i
\(575\) 12792.0 0.927762
\(576\) −11776.0 −0.851852
\(577\) 14101.0i 1.01739i 0.860948 + 0.508694i \(0.169871\pi\)
−0.860948 + 0.508694i \(0.830129\pi\)
\(578\) 18976.0i 1.36557i
\(579\) 534.000i 0.0383286i
\(580\) 26792.0i 1.91806i
\(581\) 12560.0 0.896862
\(582\) −1904.00 −0.135607
\(583\) − 2976.00i − 0.211412i
\(584\) 0 0
\(585\) 0 0
\(586\) 33204.0 2.34069
\(587\) − 1408.00i − 0.0990023i −0.998774 0.0495012i \(-0.984237\pi\)
0.998774 0.0495012i \(-0.0157632\pi\)
\(588\) 912.000 0.0639630
\(589\) 2220.00 0.155303
\(590\) 58752.0i 4.09963i
\(591\) − 2556.00i − 0.177902i
\(592\) 14528.0i 1.00861i
\(593\) − 1241.00i − 0.0859389i −0.999076 0.0429694i \(-0.986318\pi\)
0.999076 0.0429694i \(-0.0136818\pi\)
\(594\) 12800.0 0.884159
\(595\) 4420.00 0.304542
\(596\) − 16920.0i − 1.16287i
\(597\) −8476.00 −0.581071
\(598\) 0 0
\(599\) 11078.0 0.755651 0.377825 0.925877i \(-0.376672\pi\)
0.377825 + 0.925877i \(0.376672\pi\)
\(600\) 0 0
\(601\) −13817.0 −0.937782 −0.468891 0.883256i \(-0.655346\pi\)
−0.468891 + 0.883256i \(0.655346\pi\)
\(602\) 12480.0 0.844928
\(603\) 19826.0i 1.33893i
\(604\) − 4112.00i − 0.277011i
\(605\) − 5219.00i − 0.350715i
\(606\) − 6552.00i − 0.439203i
\(607\) 8270.00 0.552997 0.276498 0.961014i \(-0.410826\pi\)
0.276498 + 0.961014i \(0.410826\pi\)
\(608\) 7680.00 0.512278
\(609\) 7880.00i 0.524325i
\(610\) −9860.00 −0.654459
\(611\) 0 0
\(612\) 2392.00 0.157992
\(613\) − 22273.0i − 1.46753i −0.679402 0.733767i \(-0.737761\pi\)
0.679402 0.733767i \(-0.262239\pi\)
\(614\) 34712.0 2.28153
\(615\) 5610.00 0.367833
\(616\) 0 0
\(617\) 18989.0i 1.23901i 0.784993 + 0.619504i \(0.212666\pi\)
−0.784993 + 0.619504i \(0.787334\pi\)
\(618\) 13104.0i 0.852945i
\(619\) 72.0000i 0.00467516i 0.999997 + 0.00233758i \(0.000744076\pi\)
−0.999997 + 0.00233758i \(0.999256\pi\)
\(620\) −10064.0 −0.651903
\(621\) 7800.00 0.504031
\(622\) 34632.0i 2.23250i
\(623\) 5320.00 0.342121
\(624\) 0 0
\(625\) −9229.00 −0.590656
\(626\) 21000.0i 1.34078i
\(627\) −1920.00 −0.122293
\(628\) −23208.0 −1.47468
\(629\) − 2951.00i − 0.187065i
\(630\) 31280.0i 1.97813i
\(631\) − 23380.0i − 1.47503i −0.675331 0.737514i \(-0.735999\pi\)
0.675331 0.737514i \(-0.264001\pi\)
\(632\) 0 0
\(633\) 6140.00 0.385534
\(634\) −25652.0 −1.60689
\(635\) − 36686.0i − 2.29266i
\(636\) −1488.00 −0.0927721
\(637\) 0 0
\(638\) −25216.0 −1.56475
\(639\) 15042.0i 0.931224i
\(640\) 0 0
\(641\) −6383.00 −0.393313 −0.196656 0.980472i \(-0.563008\pi\)
−0.196656 + 0.980472i \(0.563008\pi\)
\(642\) − 4176.00i − 0.256719i
\(643\) 17104.0i 1.04901i 0.851406 + 0.524507i \(0.175750\pi\)
−0.851406 + 0.524507i \(0.824250\pi\)
\(644\) 12480.0i 0.763635i
\(645\) − 5304.00i − 0.323790i
\(646\) −1560.00 −0.0950114
\(647\) −6994.00 −0.424981 −0.212490 0.977163i \(-0.568157\pi\)
−0.212490 + 0.977163i \(0.568157\pi\)
\(648\) 0 0
\(649\) −27648.0 −1.67223
\(650\) 0 0
\(651\) −2960.00 −0.178205
\(652\) − 18880.0i − 1.13405i
\(653\) −5250.00 −0.314622 −0.157311 0.987549i \(-0.550283\pi\)
−0.157311 + 0.987549i \(0.550283\pi\)
\(654\) 13072.0 0.781584
\(655\) − 12410.0i − 0.740304i
\(656\) − 10560.0i − 0.628504i
\(657\) − 4945.00i − 0.293642i
\(658\) − 12960.0i − 0.767832i
\(659\) −4340.00 −0.256544 −0.128272 0.991739i \(-0.540943\pi\)
−0.128272 + 0.991739i \(0.540943\pi\)
\(660\) 8704.00 0.513337
\(661\) − 4179.00i − 0.245907i −0.992412 0.122953i \(-0.960763\pi\)
0.992412 0.122953i \(-0.0392365\pi\)
\(662\) −13952.0 −0.819124
\(663\) 0 0
\(664\) 0 0
\(665\) − 10200.0i − 0.594796i
\(666\) 20884.0 1.21507
\(667\) −15366.0 −0.892015
\(668\) − 2240.00i − 0.129743i
\(669\) 10756.0i 0.621601i
\(670\) 58616.0i 3.37990i
\(671\) − 4640.00i − 0.266953i
\(672\) −10240.0 −0.587822
\(673\) −22867.0 −1.30974 −0.654872 0.755740i \(-0.727278\pi\)
−0.654872 + 0.755740i \(0.727278\pi\)
\(674\) − 7332.00i − 0.419018i
\(675\) 16400.0 0.935165
\(676\) 0 0
\(677\) 5410.00 0.307124 0.153562 0.988139i \(-0.450925\pi\)
0.153562 + 0.988139i \(0.450925\pi\)
\(678\) − 2616.00i − 0.148181i
\(679\) 4760.00 0.269031
\(680\) 0 0
\(681\) 7948.00i 0.447236i
\(682\) − 9472.00i − 0.531821i
\(683\) − 13578.0i − 0.760685i −0.924846 0.380342i \(-0.875806\pi\)
0.924846 0.380342i \(-0.124194\pi\)
\(684\) − 5520.00i − 0.308571i
\(685\) 28407.0 1.58449
\(686\) 22880.0 1.27341
\(687\) − 12596.0i − 0.699516i
\(688\) −9984.00 −0.553251
\(689\) 0 0
\(690\) 10608.0 0.585275
\(691\) − 12744.0i − 0.701599i −0.936451 0.350799i \(-0.885910\pi\)
0.936451 0.350799i \(-0.114090\pi\)
\(692\) 10608.0 0.582739
\(693\) −14720.0 −0.806878
\(694\) − 28920.0i − 1.58183i
\(695\) − 15504.0i − 0.846187i
\(696\) 0 0
\(697\) 2145.00i 0.116568i
\(698\) −21032.0 −1.14051
\(699\) −8060.00 −0.436133
\(700\) 26240.0i 1.41683i
\(701\) −16406.0 −0.883946 −0.441973 0.897028i \(-0.645721\pi\)
−0.441973 + 0.897028i \(0.645721\pi\)
\(702\) 0 0
\(703\) −6810.00 −0.365354
\(704\) − 16384.0i − 0.877124i
\(705\) −5508.00 −0.294246
\(706\) −12652.0 −0.674454
\(707\) 16380.0i 0.871334i
\(708\) 13824.0i 0.733810i
\(709\) 709.000i 0.0375558i 0.999824 + 0.0187779i \(0.00597754\pi\)
−0.999824 + 0.0187779i \(0.994022\pi\)
\(710\) 44472.0i 2.35071i
\(711\) 1748.00 0.0922013
\(712\) 0 0
\(713\) − 5772.00i − 0.303174i
\(714\) 2080.00 0.109022
\(715\) 0 0
\(716\) 34112.0 1.78048
\(717\) 1968.00i 0.102505i
\(718\) −40272.0 −2.09323
\(719\) 7644.00 0.396486 0.198243 0.980153i \(-0.436477\pi\)
0.198243 + 0.980153i \(0.436477\pi\)
\(720\) − 25024.0i − 1.29526i
\(721\) − 32760.0i − 1.69216i
\(722\) − 23836.0i − 1.22865i
\(723\) 1886.00i 0.0970140i
\(724\) −3224.00 −0.165496
\(725\) −32308.0 −1.65502
\(726\) − 2456.00i − 0.125552i
\(727\) 15808.0 0.806446 0.403223 0.915102i \(-0.367890\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) − 14620.0i − 0.741247i
\(731\) 2028.00 0.102611
\(732\) −2320.00 −0.117144
\(733\) 2583.00i 0.130157i 0.997880 + 0.0650786i \(0.0207298\pi\)
−0.997880 + 0.0650786i \(0.979270\pi\)
\(734\) − 29752.0i − 1.49614i
\(735\) 1938.00i 0.0972574i
\(736\) − 19968.0i − 1.00004i
\(737\) −27584.0 −1.37866
\(738\) −15180.0 −0.757159
\(739\) 4076.00i 0.202893i 0.994841 + 0.101447i \(0.0323471\pi\)
−0.994841 + 0.101447i \(0.967653\pi\)
\(740\) 30872.0 1.53362
\(741\) 0 0
\(742\) 7440.00 0.368101
\(743\) 34056.0i 1.68155i 0.541383 + 0.840776i \(0.317901\pi\)
−0.541383 + 0.840776i \(0.682099\pi\)
\(744\) 0 0
\(745\) 35955.0 1.76817
\(746\) 38732.0i 1.90091i
\(747\) 14444.0i 0.707468i
\(748\) 3328.00i 0.162679i
\(749\) 10440.0i 0.509305i
\(750\) 5304.00 0.258233
\(751\) 364.000 0.0176865 0.00884324 0.999961i \(-0.497185\pi\)
0.00884324 + 0.999961i \(0.497185\pi\)
\(752\) 10368.0i 0.502769i
\(753\) 5460.00 0.264241
\(754\) 0 0
\(755\) 8738.00 0.421203
\(756\) 16000.0i 0.769728i
\(757\) −6914.00 −0.331960 −0.165980 0.986129i \(-0.553079\pi\)
−0.165980 + 0.986129i \(0.553079\pi\)
\(758\) 4248.00 0.203554
\(759\) 4992.00i 0.238733i
\(760\) 0 0
\(761\) 13982.0i 0.666028i 0.942922 + 0.333014i \(0.108066\pi\)
−0.942922 + 0.333014i \(0.891934\pi\)
\(762\) − 17264.0i − 0.820746i
\(763\) −32680.0 −1.55058
\(764\) 9968.00 0.472028
\(765\) 5083.00i 0.240230i
\(766\) 14128.0 0.666404
\(767\) 0 0
\(768\) 8192.00 0.384900
\(769\) 18066.0i 0.847174i 0.905855 + 0.423587i \(0.139229\pi\)
−0.905855 + 0.423587i \(0.860771\pi\)
\(770\) −43520.0 −2.03682
\(771\) 3770.00 0.176100
\(772\) − 2136.00i − 0.0995807i
\(773\) − 14434.0i − 0.671610i −0.941931 0.335805i \(-0.890992\pi\)
0.941931 0.335805i \(-0.109008\pi\)
\(774\) 14352.0i 0.666501i
\(775\) − 12136.0i − 0.562501i
\(776\) 0 0
\(777\) 9080.00 0.419232
\(778\) − 44252.0i − 2.03922i
\(779\) 4950.00 0.227666
\(780\) 0 0
\(781\) −20928.0 −0.958851
\(782\) 4056.00i 0.185476i
\(783\) −19700.0 −0.899132
\(784\) 3648.00 0.166181
\(785\) − 49317.0i − 2.24229i
\(786\) − 5840.00i − 0.265020i
\(787\) − 15398.0i − 0.697433i −0.937228 0.348716i \(-0.886618\pi\)
0.937228 0.348716i \(-0.113382\pi\)
\(788\) 10224.0i 0.462202i
\(789\) 8064.00 0.363861
\(790\) 5168.00 0.232746
\(791\) 6540.00i 0.293977i
\(792\) 0 0
\(793\) 0 0
\(794\) −23944.0 −1.07020
\(795\) − 3162.00i − 0.141062i
\(796\) 33904.0 1.50967
\(797\) 36842.0 1.63740 0.818702 0.574219i \(-0.194694\pi\)
0.818702 + 0.574219i \(0.194694\pi\)
\(798\) − 4800.00i − 0.212930i
\(799\) − 2106.00i − 0.0932477i
\(800\) − 41984.0i − 1.85545i
\(801\) 6118.00i 0.269874i
\(802\) 23740.0 1.04525
\(803\) 6880.00 0.302354
\(804\) 13792.0i 0.604983i
\(805\) −26520.0 −1.16113
\(806\) 0 0
\(807\) 8012.00 0.349487
\(808\) 0 0
\(809\) 41511.0 1.80402 0.902008 0.431719i \(-0.142093\pi\)
0.902008 + 0.431719i \(0.142093\pi\)
\(810\) −28628.0 −1.24183
\(811\) − 23066.0i − 0.998714i −0.866396 0.499357i \(-0.833570\pi\)
0.866396 0.499357i \(-0.166430\pi\)
\(812\) − 31520.0i − 1.36224i
\(813\) − 8592.00i − 0.370645i
\(814\) 29056.0i 1.25112i
\(815\) 40120.0 1.72435
\(816\) −1664.00 −0.0713868
\(817\) − 4680.00i − 0.200407i
\(818\) 60356.0 2.57983
\(819\) 0 0
\(820\) −22440.0 −0.955657
\(821\) − 28838.0i − 1.22589i −0.790127 0.612943i \(-0.789985\pi\)
0.790127 0.612943i \(-0.210015\pi\)
\(822\) 13368.0 0.567229
\(823\) −27456.0 −1.16289 −0.581443 0.813587i \(-0.697512\pi\)
−0.581443 + 0.813587i \(0.697512\pi\)
\(824\) 0 0
\(825\) 10496.0i 0.442938i
\(826\) − 69120.0i − 2.91161i
\(827\) − 33572.0i − 1.41162i −0.708399 0.705812i \(-0.750582\pi\)
0.708399 0.705812i \(-0.249418\pi\)
\(828\) −14352.0 −0.602375
\(829\) 45799.0 1.91878 0.959388 0.282090i \(-0.0910278\pi\)
0.959388 + 0.282090i \(0.0910278\pi\)
\(830\) 42704.0i 1.78588i
\(831\) 11102.0 0.463447
\(832\) 0 0
\(833\) −741.000 −0.0308213
\(834\) − 7296.00i − 0.302925i
\(835\) 4760.00 0.197277
\(836\) 7680.00 0.317725
\(837\) − 7400.00i − 0.305593i
\(838\) 43256.0i 1.78312i
\(839\) 32286.0i 1.32853i 0.747497 + 0.664265i \(0.231255\pi\)
−0.747497 + 0.664265i \(0.768745\pi\)
\(840\) 0 0
\(841\) 14420.0 0.591250
\(842\) 26140.0 1.06989
\(843\) − 11114.0i − 0.454077i
\(844\) −24560.0 −1.00165
\(845\) 0 0
\(846\) 14904.0 0.605686
\(847\) 6140.00i 0.249083i
\(848\) −5952.00 −0.241029
\(849\) −6240.00 −0.252245
\(850\) 8528.00i 0.344127i
\(851\) 17706.0i 0.713224i
\(852\) 10464.0i 0.420764i
\(853\) 20937.0i 0.840409i 0.907429 + 0.420205i \(0.138042\pi\)
−0.907429 + 0.420205i \(0.861958\pi\)
\(854\) 11600.0 0.464805
\(855\) 11730.0 0.469190
\(856\) 0 0
\(857\) 7189.00 0.286548 0.143274 0.989683i \(-0.454237\pi\)
0.143274 + 0.989683i \(0.454237\pi\)
\(858\) 0 0
\(859\) −32498.0 −1.29082 −0.645412 0.763835i \(-0.723314\pi\)
−0.645412 + 0.763835i \(0.723314\pi\)
\(860\) 21216.0i 0.841232i
\(861\) −6600.00 −0.261240
\(862\) −7920.00 −0.312942
\(863\) − 8428.00i − 0.332436i −0.986089 0.166218i \(-0.946844\pi\)
0.986089 0.166218i \(-0.0531556\pi\)
\(864\) − 25600.0i − 1.00802i
\(865\) 22542.0i 0.886071i
\(866\) − 27716.0i − 1.08756i
\(867\) −9488.00 −0.371660
\(868\) 11840.0 0.462991
\(869\) 2432.00i 0.0949367i
\(870\) −26792.0 −1.04406
\(871\) 0 0
\(872\) 0 0
\(873\) 5474.00i 0.212219i
\(874\) 9360.00 0.362250
\(875\) −13260.0 −0.512308
\(876\) − 3440.00i − 0.132679i
\(877\) 6847.00i 0.263634i 0.991274 + 0.131817i \(0.0420811\pi\)
−0.991274 + 0.131817i \(0.957919\pi\)
\(878\) − 18304.0i − 0.703565i
\(879\) 16602.0i 0.637055i
\(880\) 34816.0 1.33369
\(881\) −29731.0 −1.13696 −0.568481 0.822697i \(-0.692469\pi\)
−0.568481 + 0.822697i \(0.692469\pi\)
\(882\) − 5244.00i − 0.200198i
\(883\) 23738.0 0.904697 0.452348 0.891841i \(-0.350586\pi\)
0.452348 + 0.891841i \(0.350586\pi\)
\(884\) 0 0
\(885\) −29376.0 −1.11578
\(886\) 35248.0i 1.33655i
\(887\) 27588.0 1.04432 0.522161 0.852847i \(-0.325126\pi\)
0.522161 + 0.852847i \(0.325126\pi\)
\(888\) 0 0
\(889\) 43160.0i 1.62828i
\(890\) 18088.0i 0.681248i
\(891\) − 13472.0i − 0.506542i
\(892\) − 43024.0i − 1.61497i
\(893\) −4860.00 −0.182121
\(894\) 16920.0 0.632986
\(895\) 72488.0i 2.70727i
\(896\) 0 0
\(897\) 0 0
\(898\) 7672.00 0.285098
\(899\) 14578.0i 0.540827i
\(900\) −30176.0 −1.11763
\(901\) 1209.00 0.0447033
\(902\) − 21120.0i − 0.779622i
\(903\) 6240.00i 0.229960i
\(904\) 0 0
\(905\) − 6851.00i − 0.251641i
\(906\) 4112.00 0.150786
\(907\) 37128.0 1.35922 0.679611 0.733572i \(-0.262148\pi\)
0.679611 + 0.733572i \(0.262148\pi\)
\(908\) − 31792.0i − 1.16195i
\(909\) −18837.0 −0.687331
\(910\) 0 0
\(911\) 20516.0 0.746131 0.373066 0.927805i \(-0.378307\pi\)
0.373066 + 0.927805i \(0.378307\pi\)
\(912\) 3840.00i 0.139424i
\(913\) −20096.0 −0.728456
\(914\) 47044.0 1.70249
\(915\) − 4930.00i − 0.178121i
\(916\) 50384.0i 1.81740i
\(917\) 14600.0i 0.525774i
\(918\) 5200.00i 0.186956i
\(919\) −21006.0 −0.753998 −0.376999 0.926214i \(-0.623044\pi\)
−0.376999 + 0.926214i \(0.623044\pi\)
\(920\) 0 0
\(921\) 17356.0i 0.620955i
\(922\) −3604.00 −0.128733
\(923\) 0 0
\(924\) −10240.0 −0.364579
\(925\) 37228.0i 1.32330i
\(926\) 5488.00 0.194759
\(927\) 37674.0 1.33482
\(928\) 50432.0i 1.78396i
\(929\) − 20427.0i − 0.721408i −0.932680 0.360704i \(-0.882536\pi\)
0.932680 0.360704i \(-0.117464\pi\)
\(930\) − 10064.0i − 0.354851i
\(931\) 1710.00i 0.0601965i
\(932\) 32240.0 1.13311
\(933\) −17316.0 −0.607610
\(934\) − 25584.0i − 0.896289i
\(935\) −7072.00 −0.247357
\(936\) 0 0
\(937\) 33191.0 1.15721 0.578603 0.815609i \(-0.303598\pi\)
0.578603 + 0.815609i \(0.303598\pi\)
\(938\) − 68960.0i − 2.40045i
\(939\) −10500.0 −0.364914
\(940\) 22032.0 0.764473
\(941\) 36422.0i 1.26177i 0.775877 + 0.630884i \(0.217308\pi\)
−0.775877 + 0.630884i \(0.782692\pi\)
\(942\) − 23208.0i − 0.802715i
\(943\) − 12870.0i − 0.444438i
\(944\) 55296.0i 1.90650i
\(945\) −34000.0 −1.17039
\(946\) −19968.0 −0.686275
\(947\) − 39630.0i − 1.35988i −0.733270 0.679938i \(-0.762007\pi\)
0.733270 0.679938i \(-0.237993\pi\)
\(948\) 1216.00 0.0416602
\(949\) 0 0
\(950\) 19680.0 0.672109
\(951\) − 12826.0i − 0.437341i
\(952\) 0 0
\(953\) −57642.0 −1.95929 −0.979647 0.200727i \(-0.935670\pi\)
−0.979647 + 0.200727i \(0.935670\pi\)
\(954\) 8556.00i 0.290368i
\(955\) 21182.0i 0.717731i
\(956\) − 7872.00i − 0.266317i
\(957\) − 12608.0i − 0.425871i
\(958\) 13080.0 0.441123
\(959\) −33420.0 −1.12533
\(960\) − 17408.0i − 0.585251i
\(961\) 24315.0 0.816186
\(962\) 0 0
\(963\) −12006.0 −0.401753
\(964\) − 7544.00i − 0.252050i
\(965\) 4539.00 0.151415
\(966\) −12480.0 −0.415670
\(967\) − 2162.00i − 0.0718979i −0.999354 0.0359489i \(-0.988555\pi\)
0.999354 0.0359489i \(-0.0114454\pi\)
\(968\) 0 0
\(969\) − 780.000i − 0.0258588i
\(970\) 16184.0i 0.535708i
\(971\) −19758.0 −0.653001 −0.326501 0.945197i \(-0.605870\pi\)
−0.326501 + 0.945197i \(0.605870\pi\)
\(972\) −28336.0 −0.935059
\(973\) 18240.0i 0.600974i
\(974\) −79680.0 −2.62126
\(975\) 0 0
\(976\) −9280.00 −0.304350
\(977\) 12489.0i 0.408965i 0.978870 + 0.204482i \(0.0655511\pi\)
−0.978870 + 0.204482i \(0.934449\pi\)
\(978\) 18880.0 0.617296
\(979\) −8512.00 −0.277880
\(980\) − 7752.00i − 0.252682i
\(981\) − 37582.0i − 1.22314i
\(982\) 26208.0i 0.851661i
\(983\) − 28658.0i − 0.929856i −0.885349 0.464928i \(-0.846080\pi\)
0.885349 0.464928i \(-0.153920\pi\)
\(984\) 0 0
\(985\) −21726.0 −0.702790
\(986\) − 10244.0i − 0.330868i
\(987\) 6480.00 0.208977
\(988\) 0 0
\(989\) −12168.0 −0.391223
\(990\) − 50048.0i − 1.60670i
\(991\) −42794.0 −1.37174 −0.685871 0.727723i \(-0.740579\pi\)
−0.685871 + 0.727723i \(0.740579\pi\)
\(992\) −18944.0 −0.606323
\(993\) − 6976.00i − 0.222937i
\(994\) − 52320.0i − 1.66951i
\(995\) 72046.0i 2.29549i
\(996\) 10048.0i 0.319662i
\(997\) −52583.0 −1.67033 −0.835166 0.549998i \(-0.814628\pi\)
−0.835166 + 0.549998i \(0.814628\pi\)
\(998\) −6984.00 −0.221518
\(999\) 22700.0i 0.718915i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.4.b.c.168.1 2
13.2 odd 12 169.4.c.d.22.1 2
13.3 even 3 169.4.e.c.147.2 4
13.4 even 6 169.4.e.c.23.2 4
13.5 odd 4 169.4.a.a.1.1 1
13.6 odd 12 169.4.c.d.146.1 2
13.7 odd 12 13.4.c.a.3.1 2
13.8 odd 4 169.4.a.d.1.1 1
13.9 even 3 169.4.e.c.23.1 4
13.10 even 6 169.4.e.c.147.1 4
13.11 odd 12 13.4.c.a.9.1 yes 2
13.12 even 2 inner 169.4.b.c.168.2 2
39.5 even 4 1521.4.a.k.1.1 1
39.8 even 4 1521.4.a.b.1.1 1
39.11 even 12 117.4.g.c.100.1 2
39.20 even 12 117.4.g.c.55.1 2
52.7 even 12 208.4.i.b.81.1 2
52.11 even 12 208.4.i.b.113.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.4.c.a.3.1 2 13.7 odd 12
13.4.c.a.9.1 yes 2 13.11 odd 12
117.4.g.c.55.1 2 39.20 even 12
117.4.g.c.100.1 2 39.11 even 12
169.4.a.a.1.1 1 13.5 odd 4
169.4.a.d.1.1 1 13.8 odd 4
169.4.b.c.168.1 2 1.1 even 1 trivial
169.4.b.c.168.2 2 13.12 even 2 inner
169.4.c.d.22.1 2 13.2 odd 12
169.4.c.d.146.1 2 13.6 odd 12
169.4.e.c.23.1 4 13.9 even 3
169.4.e.c.23.2 4 13.4 even 6
169.4.e.c.147.1 4 13.10 even 6
169.4.e.c.147.2 4 13.3 even 3
208.4.i.b.81.1 2 52.7 even 12
208.4.i.b.113.1 2 52.11 even 12
1521.4.a.b.1.1 1 39.8 even 4
1521.4.a.k.1.1 1 39.5 even 4