Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.97132279097\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{17}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 13) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0.438447 | −3.68466 | −7.80776 | 17.8078 | −1.61553 | −5.43845 | −6.93087 | −13.4233 | 7.80776 | ||||||||||||||||||||||||
1.2 | 4.56155 | 8.68466 | 12.8078 | −2.80776 | 39.6155 | −9.56155 | 21.9309 | 48.4233 | −12.8078 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.4.a.j | 2 | |
3.b | odd | 2 | 1 | 1521.4.a.l | 2 | ||
13.b | even | 2 | 1 | 169.4.a.f | 2 | ||
13.c | even | 3 | 2 | 169.4.c.f | 4 | ||
13.d | odd | 4 | 2 | 169.4.b.e | 4 | ||
13.e | even | 6 | 2 | 13.4.c.b | ✓ | 4 | |
13.f | odd | 12 | 4 | 169.4.e.g | 8 | ||
39.d | odd | 2 | 1 | 1521.4.a.t | 2 | ||
39.h | odd | 6 | 2 | 117.4.g.d | 4 | ||
52.i | odd | 6 | 2 | 208.4.i.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.4.c.b | ✓ | 4 | 13.e | even | 6 | 2 | |
117.4.g.d | 4 | 39.h | odd | 6 | 2 | ||
169.4.a.f | 2 | 13.b | even | 2 | 1 | ||
169.4.a.j | 2 | 1.a | even | 1 | 1 | trivial | |
169.4.b.e | 4 | 13.d | odd | 4 | 2 | ||
169.4.c.f | 4 | 13.c | even | 3 | 2 | ||
169.4.e.g | 8 | 13.f | odd | 12 | 4 | ||
208.4.i.e | 4 | 52.i | odd | 6 | 2 | ||
1521.4.a.l | 2 | 3.b | odd | 2 | 1 | ||
1521.4.a.t | 2 | 39.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 5T_{2} + 2 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(169))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 5T + 2 \)
$3$
\( T^{2} - 5T - 32 \)
$5$
\( T^{2} - 15T - 50 \)
$7$
\( T^{2} + 15T + 52 \)
$11$
\( T^{2} + 17T - 884 \)
$13$
\( T^{2} \)
$17$
\( T^{2} - 70T + 137 \)
$19$
\( T^{2} - 141T + 4864 \)
$23$
\( T^{2} - 145T + 628 \)
$29$
\( T^{2} - 34T - 15011 \)
$31$
\( T^{2} - 140T - 37600 \)
$37$
\( T^{2} - 190T + 797 \)
$41$
\( T^{2} + 538T + 70661 \)
$43$
\( T^{2} - 455T + 11768 \)
$47$
\( T^{2} + 60T - 82400 \)
$53$
\( T^{2} - 545T - 41450 \)
$59$
\( T^{2} - 809T + 150764 \)
$61$
\( T^{2} - 502T - 106999 \)
$67$
\( T^{2} - 475T + 21212 \)
$71$
\( T^{2} + 127T - 42824 \)
$73$
\( T^{2} + 585T + 54850 \)
$79$
\( T^{2} - 240T + 7600 \)
$83$
\( T^{2} + 260T - 25600 \)
$89$
\( T^{2} + 921T + 145654 \)
$97$
\( T^{2} - 415T - 891778 \)
show more
show less