Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.97132279097\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 13) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−3.46410 | −7.00000 | 4.00000 | −13.8564 | 24.2487 | 22.5167 | 13.8564 | 22.0000 | 48.0000 | ||||||||||||||||||||||||
1.2 | 3.46410 | −7.00000 | 4.00000 | 13.8564 | −24.2487 | −22.5167 | −13.8564 | 22.0000 | 48.0000 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \(-1\) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.4.a.h | 2 | |
3.b | odd | 2 | 1 | 1521.4.a.q | 2 | ||
13.b | even | 2 | 1 | inner | 169.4.a.h | 2 | |
13.c | even | 3 | 2 | 169.4.c.i | 4 | ||
13.d | odd | 4 | 2 | 169.4.b.b | 2 | ||
13.e | even | 6 | 2 | 169.4.c.i | 4 | ||
13.f | odd | 12 | 2 | 13.4.e.a | ✓ | 2 | |
13.f | odd | 12 | 2 | 169.4.e.b | 2 | ||
39.d | odd | 2 | 1 | 1521.4.a.q | 2 | ||
39.k | even | 12 | 2 | 117.4.q.c | 2 | ||
52.l | even | 12 | 2 | 208.4.w.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.4.e.a | ✓ | 2 | 13.f | odd | 12 | 2 | |
117.4.q.c | 2 | 39.k | even | 12 | 2 | ||
169.4.a.h | 2 | 1.a | even | 1 | 1 | trivial | |
169.4.a.h | 2 | 13.b | even | 2 | 1 | inner | |
169.4.b.b | 2 | 13.d | odd | 4 | 2 | ||
169.4.c.i | 4 | 13.c | even | 3 | 2 | ||
169.4.c.i | 4 | 13.e | even | 6 | 2 | ||
169.4.e.b | 2 | 13.f | odd | 12 | 2 | ||
208.4.w.a | 2 | 52.l | even | 12 | 2 | ||
1521.4.a.q | 2 | 3.b | odd | 2 | 1 | ||
1521.4.a.q | 2 | 39.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 12 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(169))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 12 \)
$3$
\( (T + 7)^{2} \)
$5$
\( T^{2} - 192 \)
$7$
\( T^{2} - 507 \)
$11$
\( T^{2} - 507 \)
$13$
\( T^{2} \)
$17$
\( (T + 27)^{2} \)
$19$
\( T^{2} - 7803 \)
$23$
\( (T + 57)^{2} \)
$29$
\( (T + 69)^{2} \)
$31$
\( T^{2} - 5292 \)
$37$
\( T^{2} - 1587 \)
$41$
\( T^{2} - 154587 \)
$43$
\( (T - 85)^{2} \)
$47$
\( T^{2} - 117612 \)
$53$
\( (T - 426)^{2} \)
$59$
\( T^{2} - 363 \)
$61$
\( (T + 17)^{2} \)
$67$
\( T^{2} - 27075 \)
$71$
\( T^{2} - 340707 \)
$73$
\( T^{2} - 1009200 \)
$79$
\( (T + 1244)^{2} \)
$83$
\( T^{2} - 181548 \)
$89$
\( T^{2} - 93987 \)
$97$
\( T^{2} - 1525107 \)
show more
show less