Properties

Label 169.4.a.h
Level $169$
Weight $4$
Character orbit 169.a
Self dual yes
Analytic conductor $9.971$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.97132279097\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{2} - 7 q^{3} + 4 q^{4} + 8 \beta q^{5} - 14 \beta q^{6} - 13 \beta q^{7} - 8 \beta q^{8} + 22 q^{9} + 48 q^{10} - 13 \beta q^{11} - 28 q^{12} - 78 q^{14} - 56 \beta q^{15} - 80 q^{16} - 27 q^{17} + \cdots - 286 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 8 q^{4} + 44 q^{9} + 96 q^{10} - 56 q^{12} - 156 q^{14} - 160 q^{16} - 54 q^{17} - 156 q^{22} - 114 q^{23} + 134 q^{25} + 70 q^{27} - 138 q^{29} - 672 q^{30} - 624 q^{35} + 176 q^{36} - 612 q^{38}+ \cdots - 2448 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−3.46410 −7.00000 4.00000 −13.8564 24.2487 22.5167 13.8564 22.0000 48.0000
1.2 3.46410 −7.00000 4.00000 13.8564 −24.2487 −22.5167 −13.8564 22.0000 48.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.4.a.h 2
3.b odd 2 1 1521.4.a.q 2
13.b even 2 1 inner 169.4.a.h 2
13.c even 3 2 169.4.c.i 4
13.d odd 4 2 169.4.b.b 2
13.e even 6 2 169.4.c.i 4
13.f odd 12 2 13.4.e.a 2
13.f odd 12 2 169.4.e.b 2
39.d odd 2 1 1521.4.a.q 2
39.k even 12 2 117.4.q.c 2
52.l even 12 2 208.4.w.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.e.a 2 13.f odd 12 2
117.4.q.c 2 39.k even 12 2
169.4.a.h 2 1.a even 1 1 trivial
169.4.a.h 2 13.b even 2 1 inner
169.4.b.b 2 13.d odd 4 2
169.4.c.i 4 13.c even 3 2
169.4.c.i 4 13.e even 6 2
169.4.e.b 2 13.f odd 12 2
208.4.w.a 2 52.l even 12 2
1521.4.a.q 2 3.b odd 2 1
1521.4.a.q 2 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 12 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 12 \) Copy content Toggle raw display
$3$ \( (T + 7)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 192 \) Copy content Toggle raw display
$7$ \( T^{2} - 507 \) Copy content Toggle raw display
$11$ \( T^{2} - 507 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 27)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 7803 \) Copy content Toggle raw display
$23$ \( (T + 57)^{2} \) Copy content Toggle raw display
$29$ \( (T + 69)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 5292 \) Copy content Toggle raw display
$37$ \( T^{2} - 1587 \) Copy content Toggle raw display
$41$ \( T^{2} - 154587 \) Copy content Toggle raw display
$43$ \( (T - 85)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 117612 \) Copy content Toggle raw display
$53$ \( (T - 426)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 363 \) Copy content Toggle raw display
$61$ \( (T + 17)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 27075 \) Copy content Toggle raw display
$71$ \( T^{2} - 340707 \) Copy content Toggle raw display
$73$ \( T^{2} - 1009200 \) Copy content Toggle raw display
$79$ \( (T + 1244)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 181548 \) Copy content Toggle raw display
$89$ \( T^{2} - 93987 \) Copy content Toggle raw display
$97$ \( T^{2} - 1525107 \) Copy content Toggle raw display
show more
show less