Properties

Label 169.4.a
Level $169$
Weight $4$
Character orbit 169.a
Rep. character $\chi_{169}(1,\cdot)$
Character field $\Q$
Dimension $33$
Newform subspaces $12$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(169))\).

Total New Old
Modular forms 53 44 9
Cusp forms 39 33 6
Eisenstein series 14 11 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(13\)Dim
\(+\)\(18\)
\(-\)\(15\)

Trace form

\( 33 q + 4 q^{2} + 2 q^{3} + 110 q^{4} + 10 q^{5} - 12 q^{6} + 22 q^{7} + 48 q^{8} + 159 q^{9} - 78 q^{10} - 54 q^{11} + 150 q^{12} - 186 q^{14} - 16 q^{15} + 274 q^{16} - 98 q^{17} + 220 q^{18} + 210 q^{19}+ \cdots + 702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(169))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 13
169.4.a.a 169.a 1.a $1$ $9.971$ \(\Q\) None 13.4.c.a \(-4\) \(2\) \(-17\) \(-20\) $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2q^{3}+8q^{4}-17q^{5}-8q^{6}+\cdots\)
169.4.a.b 169.a 1.a $1$ $9.971$ \(\Q\) None 13.4.b.a \(-3\) \(-1\) \(9\) \(-15\) $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-q^{3}+q^{4}+9q^{5}+3q^{6}-15q^{7}+\cdots\)
169.4.a.c 169.a 1.a $1$ $9.971$ \(\Q\) None 13.4.b.a \(3\) \(-1\) \(-9\) \(15\) $-$ $\mathrm{SU}(2)$ \(q+3q^{2}-q^{3}+q^{4}-9q^{5}-3q^{6}+15q^{7}+\cdots\)
169.4.a.d 169.a 1.a $1$ $9.971$ \(\Q\) None 13.4.c.a \(4\) \(2\) \(17\) \(20\) $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2q^{3}+8q^{4}+17q^{5}+8q^{6}+\cdots\)
169.4.a.e 169.a 1.a $1$ $9.971$ \(\Q\) None 13.4.a.a \(5\) \(-7\) \(7\) \(13\) $+$ $\mathrm{SU}(2)$ \(q+5q^{2}-7q^{3}+17q^{4}+7q^{5}-35q^{6}+\cdots\)
169.4.a.f 169.a 1.a $2$ $9.971$ \(\Q(\sqrt{17}) \) None 13.4.c.b \(-5\) \(5\) \(-15\) \(15\) $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+(1+3\beta )q^{3}+5\beta q^{4}+\cdots\)
169.4.a.g 169.a 1.a $2$ $9.971$ \(\Q(\sqrt{17}) \) None 13.4.a.b \(-1\) \(5\) \(3\) \(9\) $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(4-3\beta )q^{3}+(-4+\beta )q^{4}+\cdots\)
169.4.a.h 169.a 1.a $2$ $9.971$ \(\Q(\sqrt{3}) \) None 13.4.e.a \(0\) \(-14\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{2}-7q^{3}+4q^{4}+8\beta q^{5}-14\beta q^{6}+\cdots\)
169.4.a.i 169.a 1.a $2$ $9.971$ \(\Q(\sqrt{3}) \) None 13.4.e.b \(0\) \(4\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+2q^{3}-5q^{4}+\beta q^{5}+2\beta q^{6}+\cdots\)
169.4.a.j 169.a 1.a $2$ $9.971$ \(\Q(\sqrt{17}) \) None 13.4.c.b \(5\) \(5\) \(15\) \(-15\) $+$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}+(4-3\beta )q^{3}+(5-5\beta )q^{4}+\cdots\)
169.4.a.k 169.a 1.a $9$ $9.971$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 169.4.a.k \(-5\) \(1\) \(-30\) \(-38\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+\beta _{2}q^{3}+(5+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)
169.4.a.l 169.a 1.a $9$ $9.971$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 169.4.a.k \(5\) \(1\) \(30\) \(38\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+\beta _{2}q^{3}+(5+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(169))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(169)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)