Properties

Label 169.4
Level 169
Weight 4
Dimension 3405
Nonzero newspaces 8
Newform subspaces 43
Sturm bound 9464
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 169 = 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 43 \)
Sturm bound: \(9464\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(169))\).

Total New Old
Modular forms 3663 3610 53
Cusp forms 3435 3405 30
Eisenstein series 228 205 23

Trace form

\( 3405 q - 66 q^{2} - 66 q^{3} - 66 q^{4} - 66 q^{5} - 66 q^{6} + 6 q^{7} + 78 q^{8} - 66 q^{9} - 246 q^{10} - 186 q^{11} - 534 q^{12} - 216 q^{13} - 366 q^{14} - 210 q^{15} - 66 q^{16} + 312 q^{17} + 1590 q^{18}+ \cdots - 10458 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
169.4.a \(\chi_{169}(1, \cdot)\) 169.4.a.a 1 1
169.4.a.b 1
169.4.a.c 1
169.4.a.d 1
169.4.a.e 1
169.4.a.f 2
169.4.a.g 2
169.4.a.h 2
169.4.a.i 2
169.4.a.j 2
169.4.a.k 9
169.4.a.l 9
169.4.b \(\chi_{169}(168, \cdot)\) 169.4.b.a 2 1
169.4.b.b 2
169.4.b.c 2
169.4.b.d 2
169.4.b.e 4
169.4.b.f 4
169.4.b.g 18
169.4.c \(\chi_{169}(22, \cdot)\) 169.4.c.a 2 2
169.4.c.b 2
169.4.c.c 2
169.4.c.d 2
169.4.c.e 2
169.4.c.f 4
169.4.c.g 4
169.4.c.h 4
169.4.c.i 4
169.4.c.j 4
169.4.c.k 18
169.4.c.l 18
169.4.e \(\chi_{169}(23, \cdot)\) 169.4.e.a 2 2
169.4.e.b 2
169.4.e.c 4
169.4.e.d 4
169.4.e.e 4
169.4.e.f 8
169.4.e.g 8
169.4.e.h 36
169.4.g \(\chi_{169}(14, \cdot)\) 169.4.g.a 540 12
169.4.h \(\chi_{169}(12, \cdot)\) 169.4.h.a 528 12
169.4.i \(\chi_{169}(3, \cdot)\) 169.4.i.a 1080 24
169.4.k \(\chi_{169}(4, \cdot)\) 169.4.k.a 1056 24

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(169))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(169)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)