Defining parameters
Level: | \( N \) | = | \( 169 = 13^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 43 \) | ||
Sturm bound: | \(9464\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(169))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3663 | 3610 | 53 |
Cusp forms | 3435 | 3405 | 30 |
Eisenstein series | 228 | 205 | 23 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
169.4.a | \(\chi_{169}(1, \cdot)\) | 169.4.a.a | 1 | 1 |
169.4.a.b | 1 | |||
169.4.a.c | 1 | |||
169.4.a.d | 1 | |||
169.4.a.e | 1 | |||
169.4.a.f | 2 | |||
169.4.a.g | 2 | |||
169.4.a.h | 2 | |||
169.4.a.i | 2 | |||
169.4.a.j | 2 | |||
169.4.a.k | 9 | |||
169.4.a.l | 9 | |||
169.4.b | \(\chi_{169}(168, \cdot)\) | 169.4.b.a | 2 | 1 |
169.4.b.b | 2 | |||
169.4.b.c | 2 | |||
169.4.b.d | 2 | |||
169.4.b.e | 4 | |||
169.4.b.f | 4 | |||
169.4.b.g | 18 | |||
169.4.c | \(\chi_{169}(22, \cdot)\) | 169.4.c.a | 2 | 2 |
169.4.c.b | 2 | |||
169.4.c.c | 2 | |||
169.4.c.d | 2 | |||
169.4.c.e | 2 | |||
169.4.c.f | 4 | |||
169.4.c.g | 4 | |||
169.4.c.h | 4 | |||
169.4.c.i | 4 | |||
169.4.c.j | 4 | |||
169.4.c.k | 18 | |||
169.4.c.l | 18 | |||
169.4.e | \(\chi_{169}(23, \cdot)\) | 169.4.e.a | 2 | 2 |
169.4.e.b | 2 | |||
169.4.e.c | 4 | |||
169.4.e.d | 4 | |||
169.4.e.e | 4 | |||
169.4.e.f | 8 | |||
169.4.e.g | 8 | |||
169.4.e.h | 36 | |||
169.4.g | \(\chi_{169}(14, \cdot)\) | 169.4.g.a | 540 | 12 |
169.4.h | \(\chi_{169}(12, \cdot)\) | 169.4.h.a | 528 | 12 |
169.4.i | \(\chi_{169}(3, \cdot)\) | 169.4.i.a | 1080 | 24 |
169.4.k | \(\chi_{169}(4, \cdot)\) | 169.4.k.a | 1056 | 24 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(169))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(169)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)