Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.f (of order \(12\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.60491646769\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{12})\) |
Coefficient field: | 8.0.77720518656.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 121x^{4} + 14641 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 121x^{4} + 14641 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 11 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 11 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{4} ) / 121 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{5} ) / 121 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{6} ) / 1331 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} ) / 1331 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 11\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 11\beta_{3} \)
|
\(\nu^{4}\) | \(=\) |
\( 121\beta_{4} \)
|
\(\nu^{5}\) | \(=\) |
\( 121\beta_{5} \)
|
\(\nu^{6}\) | \(=\) |
\( 1331\beta_{6} \)
|
\(\nu^{7}\) | \(=\) |
\( 1331\beta_{7} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−0.858406 | − | 3.20361i | 1.50000 | − | 2.59808i | −6.06218 | + | 3.50000i | 2.34521 | − | 2.34521i | −9.61084 | − | 2.57522i | 2.57522 | − | 9.61084i | 7.03562 | + | 7.03562i | 0 | −9.52628 | − | 5.50000i | ||||||||||||||||||||||||||
19.2 | 0.858406 | + | 3.20361i | 1.50000 | − | 2.59808i | −6.06218 | + | 3.50000i | −2.34521 | + | 2.34521i | 9.61084 | + | 2.57522i | −2.57522 | + | 9.61084i | −7.03562 | − | 7.03562i | 0 | −9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
80.1 | −3.20361 | − | 0.858406i | 1.50000 | + | 2.59808i | 6.06218 | + | 3.50000i | −2.34521 | + | 2.34521i | −2.57522 | − | 9.61084i | 9.61084 | − | 2.57522i | −7.03562 | − | 7.03562i | 0 | 9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
80.2 | 3.20361 | + | 0.858406i | 1.50000 | + | 2.59808i | 6.06218 | + | 3.50000i | 2.34521 | − | 2.34521i | 2.57522 | + | 9.61084i | −9.61084 | + | 2.57522i | 7.03562 | + | 7.03562i | 0 | 9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
89.1 | −0.858406 | + | 3.20361i | 1.50000 | + | 2.59808i | −6.06218 | − | 3.50000i | 2.34521 | + | 2.34521i | −9.61084 | + | 2.57522i | 2.57522 | + | 9.61084i | 7.03562 | − | 7.03562i | 0 | −9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
89.2 | 0.858406 | − | 3.20361i | 1.50000 | + | 2.59808i | −6.06218 | − | 3.50000i | −2.34521 | − | 2.34521i | 9.61084 | − | 2.57522i | −2.57522 | − | 9.61084i | −7.03562 | + | 7.03562i | 0 | −9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
150.1 | −3.20361 | + | 0.858406i | 1.50000 | − | 2.59808i | 6.06218 | − | 3.50000i | −2.34521 | − | 2.34521i | −2.57522 | + | 9.61084i | 9.61084 | + | 2.57522i | −7.03562 | + | 7.03562i | 0 | 9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
150.2 | 3.20361 | − | 0.858406i | 1.50000 | − | 2.59808i | 6.06218 | − | 3.50000i | 2.34521 | + | 2.34521i | 2.57522 | − | 9.61084i | −9.61084 | − | 2.57522i | 7.03562 | − | 7.03562i | 0 | 9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.d | odd | 4 | 2 | inner |
13.e | even | 6 | 1 | inner |
13.f | odd | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.3.f.e | 8 | |
13.b | even | 2 | 1 | inner | 169.3.f.e | 8 | |
13.c | even | 3 | 1 | 169.3.d.b | ✓ | 4 | |
13.c | even | 3 | 1 | inner | 169.3.f.e | 8 | |
13.d | odd | 4 | 2 | inner | 169.3.f.e | 8 | |
13.e | even | 6 | 1 | 169.3.d.b | ✓ | 4 | |
13.e | even | 6 | 1 | inner | 169.3.f.e | 8 | |
13.f | odd | 12 | 2 | 169.3.d.b | ✓ | 4 | |
13.f | odd | 12 | 2 | inner | 169.3.f.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.3.d.b | ✓ | 4 | 13.c | even | 3 | 1 | |
169.3.d.b | ✓ | 4 | 13.e | even | 6 | 1 | |
169.3.d.b | ✓ | 4 | 13.f | odd | 12 | 2 | |
169.3.f.e | 8 | 1.a | even | 1 | 1 | trivial | |
169.3.f.e | 8 | 13.b | even | 2 | 1 | inner | |
169.3.f.e | 8 | 13.c | even | 3 | 1 | inner | |
169.3.f.e | 8 | 13.d | odd | 4 | 2 | inner | |
169.3.f.e | 8 | 13.e | even | 6 | 1 | inner | |
169.3.f.e | 8 | 13.f | odd | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 121T_{2}^{4} + 14641 \)
acting on \(S_{3}^{\mathrm{new}}(169, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - 121 T^{4} + 14641 \)
$3$
\( (T^{2} - 3 T + 9)^{4} \)
$5$
\( (T^{4} + 121)^{2} \)
$7$
\( T^{8} - 9801 T^{4} + \cdots + 96059601 \)
$11$
\( T^{8} - 1936 T^{4} + \cdots + 3748096 \)
$13$
\( T^{8} \)
$17$
\( (T^{4} - 9 T^{2} + 81)^{2} \)
$19$
\( T^{8} - 156816 T^{4} + \cdots + 24591257856 \)
$23$
\( (T^{4} - 144 T^{2} + 20736)^{2} \)
$29$
\( (T^{2} - 42 T + 1764)^{4} \)
$31$
\( (T^{4} + 2509056)^{2} \)
$37$
\( T^{8} - 6125625 T^{4} + \cdots + 37523281640625 \)
$41$
\( T^{8} - 4648336 T^{4} + \cdots + 21607027568896 \)
$43$
\( (T^{4} - 2401 T^{2} + 5764801)^{2} \)
$47$
\( (T^{4} + 121)^{2} \)
$53$
\( (T + 24)^{8} \)
$59$
\( T^{8} - 7929856 T^{4} + \cdots + 62882616180736 \)
$61$
\( (T^{2} + 30 T + 900)^{4} \)
$67$
\( T^{8} - 2509056 T^{4} + \cdots + 6295362011136 \)
$71$
\( T^{8} - 290521 T^{4} + \cdots + 84402451441 \)
$73$
\( (T^{4} + 2509056)^{2} \)
$79$
\( (T - 54)^{8} \)
$83$
\( (T^{4} + 4648336)^{2} \)
$89$
\( T^{8} - 756250000 T^{4} + \cdots + 57\!\cdots\!00 \)
$97$
\( T^{8} - 156816 T^{4} + \cdots + 24591257856 \)
show more
show less