Properties

Label 169.3.f.d.150.1
Level $169$
Weight $3$
Character 169.150
Analytic conductor $4.605$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,3,Mod(19,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 150.1
Root \(2.15988 + 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 169.150
Dual form 169.3.f.d.80.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.52590 + 0.944762i) q^{2} +(-1.08114 + 1.87259i) q^{3} +(8.07530 - 4.66228i) q^{4} +(-0.418861 - 0.418861i) q^{5} +(2.04284 - 7.62398i) q^{6} +(-1.93820 - 0.519339i) q^{7} +(-13.7434 + 13.7434i) q^{8} +(2.16228 + 3.74517i) q^{9} +(1.87259 + 1.08114i) q^{10} +(2.68097 + 10.0055i) q^{11} +20.1623i q^{12} +7.32456 q^{14} +(1.23720 - 0.331507i) q^{15} +(16.8246 - 29.1410i) q^{16} +(-13.8336 + 7.98683i) q^{17} +(-11.1623 - 11.1623i) q^{18} +(1.15747 - 4.31975i) q^{19} +(-5.33528 - 1.42958i) q^{20} +(3.06797 - 3.06797i) q^{21} +(-18.9057 - 32.7456i) q^{22} +(-23.8043 - 13.7434i) q^{23} +(-10.8772 - 40.5943i) q^{24} -24.6491i q^{25} -28.8114 q^{27} +(-18.0729 + 4.84261i) q^{28} +(-12.9057 + 22.3533i) q^{29} +(-4.04905 + 2.33772i) q^{30} +(-19.4868 - 19.4868i) q^{31} +(-11.6687 + 43.5480i) q^{32} +(-21.6347 - 5.79701i) q^{33} +(41.2302 - 41.2302i) q^{34} +(0.594306 + 1.02937i) q^{35} +(34.9221 + 20.1623i) q^{36} +(1.54838 + 5.77863i) q^{37} +16.3246i q^{38} +11.5132 q^{40} +(15.2480 - 4.08568i) q^{41} +(-7.91886 + 13.7159i) q^{42} +(-9.97070 + 5.75658i) q^{43} +(68.2982 + 68.2982i) q^{44} +(0.663014 - 2.47440i) q^{45} +(96.9159 + 25.9685i) q^{46} +(-35.3662 + 35.3662i) q^{47} +(36.3794 + 63.0109i) q^{48} +(-38.9483 - 22.4868i) q^{49} +(23.2876 + 86.9103i) q^{50} -34.5395i q^{51} -4.18861 q^{53} +(101.586 - 27.2199i) q^{54} +(3.06797 - 5.31388i) q^{55} +(33.7750 - 19.5000i) q^{56} +(6.83772 + 6.83772i) q^{57} +(24.3856 - 91.0084i) q^{58} +(-41.3522 - 11.0803i) q^{59} +(8.44520 - 8.44520i) q^{60} +(33.8377 + 58.6087i) q^{61} +(87.1191 + 50.2982i) q^{62} +(-2.24591 - 8.38185i) q^{63} -29.9737i q^{64} +81.7587 q^{66} +(-110.762 + 29.6785i) q^{67} +(-74.4737 + 128.992i) q^{68} +(51.4715 - 29.7171i) q^{69} +(-3.06797 - 3.06797i) q^{70} +(-18.4642 + 68.9094i) q^{71} +(-81.1886 - 21.7544i) q^{72} +(31.6228 - 31.6228i) q^{73} +(-10.9189 - 18.9120i) q^{74} +(46.1576 + 26.6491i) q^{75} +(-10.7929 - 40.2798i) q^{76} -20.7851i q^{77} +50.7851 q^{79} +(-19.2532 + 5.15887i) q^{80} +(11.6886 - 20.2453i) q^{81} +(-49.9028 + 28.8114i) q^{82} +(-18.6228 - 18.6228i) q^{83} +(10.4711 - 39.0785i) q^{84} +(9.13973 + 2.44898i) q^{85} +(29.7171 - 29.7171i) q^{86} +(-27.9057 - 48.3341i) q^{87} +(-174.356 - 100.664i) q^{88} +(-33.3484 - 124.458i) q^{89} +9.35089i q^{90} -256.302 q^{92} +(57.5588 - 15.4228i) q^{93} +(91.2851 - 158.110i) q^{94} +(-2.29420 + 1.32456i) q^{95} +(-68.9320 - 68.9320i) q^{96} +(-31.9742 + 119.329i) q^{97} +(158.573 + 42.4894i) q^{98} +(-31.6754 + 31.6754i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{3} - 16 q^{5} - 16 q^{6} - 12 q^{7} - 72 q^{8} - 8 q^{9} - 4 q^{11} + 8 q^{14} - 28 q^{15} + 84 q^{16} - 64 q^{18} + 16 q^{20} - 64 q^{21} - 88 q^{22} + 24 q^{24} - 104 q^{27} + 4 q^{28}+ \cdots - 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.52590 + 0.944762i −1.76295 + 0.472381i −0.987312 0.158795i \(-0.949239\pi\)
−0.775639 + 0.631177i \(0.782572\pi\)
\(3\) −1.08114 + 1.87259i −0.360380 + 0.624196i −0.988023 0.154305i \(-0.950686\pi\)
0.627644 + 0.778501i \(0.284020\pi\)
\(4\) 8.07530 4.66228i 2.01883 1.16557i
\(5\) −0.418861 0.418861i −0.0837722 0.0837722i 0.663979 0.747751i \(-0.268866\pi\)
−0.747751 + 0.663979i \(0.768866\pi\)
\(6\) 2.04284 7.62398i 0.340473 1.27066i
\(7\) −1.93820 0.519339i −0.276886 0.0741913i 0.117704 0.993049i \(-0.462447\pi\)
−0.394590 + 0.918857i \(0.629113\pi\)
\(8\) −13.7434 + 13.7434i −1.71793 + 1.71793i
\(9\) 2.16228 + 3.74517i 0.240253 + 0.416131i
\(10\) 1.87259 + 1.08114i 0.187259 + 0.108114i
\(11\) 2.68097 + 10.0055i 0.243725 + 0.909594i 0.974020 + 0.226462i \(0.0727158\pi\)
−0.730295 + 0.683132i \(0.760617\pi\)
\(12\) 20.1623i 1.68019i
\(13\) 0 0
\(14\) 7.32456 0.523183
\(15\) 1.23720 0.331507i 0.0824801 0.0221005i
\(16\) 16.8246 29.1410i 1.05153 1.82131i
\(17\) −13.8336 + 7.98683i −0.813741 + 0.469814i −0.848253 0.529591i \(-0.822346\pi\)
0.0345122 + 0.999404i \(0.489012\pi\)
\(18\) −11.1623 11.1623i −0.620127 0.620127i
\(19\) 1.15747 4.31975i 0.0609197 0.227355i −0.928753 0.370698i \(-0.879118\pi\)
0.989673 + 0.143343i \(0.0457851\pi\)
\(20\) −5.33528 1.42958i −0.266764 0.0714792i
\(21\) 3.06797 3.06797i 0.146094 0.146094i
\(22\) −18.9057 32.7456i −0.859350 1.48844i
\(23\) −23.8043 13.7434i −1.03497 0.597540i −0.116565 0.993183i \(-0.537188\pi\)
−0.918404 + 0.395643i \(0.870522\pi\)
\(24\) −10.8772 40.5943i −0.453217 1.69143i
\(25\) 24.6491i 0.985964i
\(26\) 0 0
\(27\) −28.8114 −1.06709
\(28\) −18.0729 + 4.84261i −0.645459 + 0.172950i
\(29\) −12.9057 + 22.3533i −0.445024 + 0.770804i −0.998054 0.0623573i \(-0.980138\pi\)
0.553030 + 0.833161i \(0.313472\pi\)
\(30\) −4.04905 + 2.33772i −0.134968 + 0.0779241i
\(31\) −19.4868 19.4868i −0.628608 0.628608i 0.319110 0.947718i \(-0.396616\pi\)
−0.947718 + 0.319110i \(0.896616\pi\)
\(32\) −11.6687 + 43.5480i −0.364645 + 1.36088i
\(33\) −21.6347 5.79701i −0.655598 0.175667i
\(34\) 41.2302 41.2302i 1.21265 1.21265i
\(35\) 0.594306 + 1.02937i 0.0169802 + 0.0294105i
\(36\) 34.9221 + 20.1623i 0.970058 + 0.560063i
\(37\) 1.54838 + 5.77863i 0.0418481 + 0.156179i 0.983688 0.179882i \(-0.0575717\pi\)
−0.941840 + 0.336061i \(0.890905\pi\)
\(38\) 16.3246i 0.429594i
\(39\) 0 0
\(40\) 11.5132 0.287829
\(41\) 15.2480 4.08568i 0.371901 0.0996507i −0.0680272 0.997683i \(-0.521670\pi\)
0.439928 + 0.898033i \(0.355004\pi\)
\(42\) −7.91886 + 13.7159i −0.188544 + 0.326568i
\(43\) −9.97070 + 5.75658i −0.231877 + 0.133874i −0.611437 0.791293i \(-0.709408\pi\)
0.379561 + 0.925167i \(0.376075\pi\)
\(44\) 68.2982 + 68.2982i 1.55223 + 1.55223i
\(45\) 0.663014 2.47440i 0.0147336 0.0549867i
\(46\) 96.9159 + 25.9685i 2.10687 + 0.564533i
\(47\) −35.3662 + 35.3662i −0.752472 + 0.752472i −0.974940 0.222468i \(-0.928589\pi\)
0.222468 + 0.974940i \(0.428589\pi\)
\(48\) 36.3794 + 63.0109i 0.757903 + 1.31273i
\(49\) −38.9483 22.4868i −0.794864 0.458915i
\(50\) 23.2876 + 86.9103i 0.465751 + 1.73821i
\(51\) 34.5395i 0.677245i
\(52\) 0 0
\(53\) −4.18861 −0.0790304 −0.0395152 0.999219i \(-0.512581\pi\)
−0.0395152 + 0.999219i \(0.512581\pi\)
\(54\) 101.586 27.2199i 1.88122 0.504073i
\(55\) 3.06797 5.31388i 0.0557813 0.0966161i
\(56\) 33.7750 19.5000i 0.603125 0.348214i
\(57\) 6.83772 + 6.83772i 0.119960 + 0.119960i
\(58\) 24.3856 91.0084i 0.420442 1.56911i
\(59\) −41.3522 11.0803i −0.700884 0.187801i −0.109258 0.994013i \(-0.534847\pi\)
−0.591627 + 0.806212i \(0.701514\pi\)
\(60\) 8.44520 8.44520i 0.140753 0.140753i
\(61\) 33.8377 + 58.6087i 0.554717 + 0.960798i 0.997926 + 0.0643792i \(0.0205067\pi\)
−0.443209 + 0.896418i \(0.646160\pi\)
\(62\) 87.1191 + 50.2982i 1.40515 + 0.811262i
\(63\) −2.24591 8.38185i −0.0356494 0.133045i
\(64\) 29.9737i 0.468339i
\(65\) 0 0
\(66\) 81.7587 1.23877
\(67\) −110.762 + 29.6785i −1.65316 + 0.442963i −0.960496 0.278295i \(-0.910231\pi\)
−0.692666 + 0.721259i \(0.743564\pi\)
\(68\) −74.4737 + 128.992i −1.09520 + 1.89694i
\(69\) 51.4715 29.7171i 0.745964 0.430682i
\(70\) −3.06797 3.06797i −0.0438282 0.0438282i
\(71\) −18.4642 + 68.9094i −0.260059 + 0.970555i 0.705146 + 0.709062i \(0.250881\pi\)
−0.965205 + 0.261493i \(0.915785\pi\)
\(72\) −81.1886 21.7544i −1.12762 0.302145i
\(73\) 31.6228 31.6228i 0.433189 0.433189i −0.456523 0.889712i \(-0.650905\pi\)
0.889712 + 0.456523i \(0.150905\pi\)
\(74\) −10.9189 18.9120i −0.147552 0.255568i
\(75\) 46.1576 + 26.6491i 0.615435 + 0.355321i
\(76\) −10.7929 40.2798i −0.142012 0.529997i
\(77\) 20.7851i 0.269936i
\(78\) 0 0
\(79\) 50.7851 0.642849 0.321424 0.946935i \(-0.395838\pi\)
0.321424 + 0.946935i \(0.395838\pi\)
\(80\) −19.2532 + 5.15887i −0.240665 + 0.0644859i
\(81\) 11.6886 20.2453i 0.144304 0.249942i
\(82\) −49.9028 + 28.8114i −0.608571 + 0.351358i
\(83\) −18.6228 18.6228i −0.224371 0.224371i 0.585965 0.810336i \(-0.300715\pi\)
−0.810336 + 0.585965i \(0.800715\pi\)
\(84\) 10.4711 39.0785i 0.124655 0.465221i
\(85\) 9.13973 + 2.44898i 0.107526 + 0.0288116i
\(86\) 29.7171 29.7171i 0.345547 0.345547i
\(87\) −27.9057 48.3341i −0.320755 0.555564i
\(88\) −174.356 100.664i −1.98132 1.14391i
\(89\) −33.3484 124.458i −0.374701 1.39840i −0.853780 0.520633i \(-0.825696\pi\)
0.479079 0.877772i \(-0.340971\pi\)
\(90\) 9.35089i 0.103899i
\(91\) 0 0
\(92\) −256.302 −2.78590
\(93\) 57.5588 15.4228i 0.618911 0.165837i
\(94\) 91.2851 158.110i 0.971118 1.68203i
\(95\) −2.29420 + 1.32456i −0.0241494 + 0.0139427i
\(96\) −68.9320 68.9320i −0.718042 0.718042i
\(97\) −31.9742 + 119.329i −0.329631 + 1.23020i 0.579943 + 0.814657i \(0.303075\pi\)
−0.909574 + 0.415542i \(0.863592\pi\)
\(98\) 158.573 + 42.4894i 1.61809 + 0.433566i
\(99\) −31.6754 + 31.6754i −0.319954 + 0.319954i
\(100\) −114.921 199.049i −1.14921 1.99049i
\(101\) 7.72581 + 4.46050i 0.0764932 + 0.0441634i 0.537759 0.843099i \(-0.319271\pi\)
−0.461266 + 0.887262i \(0.652604\pi\)
\(102\) 32.6316 + 121.783i 0.319918 + 1.19395i
\(103\) 59.4342i 0.577031i 0.957475 + 0.288515i \(0.0931616\pi\)
−0.957475 + 0.288515i \(0.906838\pi\)
\(104\) 0 0
\(105\) −2.57011 −0.0244772
\(106\) 14.7686 3.95724i 0.139327 0.0373325i
\(107\) 71.7851 124.335i 0.670888 1.16201i −0.306764 0.951786i \(-0.599246\pi\)
0.977653 0.210227i \(-0.0674204\pi\)
\(108\) −232.661 + 134.327i −2.15427 + 1.24377i
\(109\) 84.7740 + 84.7740i 0.777743 + 0.777743i 0.979447 0.201703i \(-0.0646477\pi\)
−0.201703 + 0.979447i \(0.564648\pi\)
\(110\) −5.79701 + 21.6347i −0.0527001 + 0.196679i
\(111\) −12.4950 3.34802i −0.112568 0.0301624i
\(112\) −47.7434 + 47.7434i −0.426281 + 0.426281i
\(113\) 54.2719 + 94.0017i 0.480282 + 0.831873i 0.999744 0.0226204i \(-0.00720092\pi\)
−0.519462 + 0.854494i \(0.673868\pi\)
\(114\) −30.5692 17.6491i −0.268150 0.154817i
\(115\) 4.21411 + 15.7273i 0.0366444 + 0.136759i
\(116\) 240.680i 2.07483i
\(117\) 0 0
\(118\) 156.272 1.32434
\(119\) 30.9602 8.29575i 0.260169 0.0697122i
\(120\) −12.4473 + 21.5594i −0.103728 + 0.179662i
\(121\) 11.8661 6.85089i 0.0980668 0.0566189i
\(122\) −174.680 174.680i −1.43180 1.43180i
\(123\) −8.83437 + 32.9703i −0.0718241 + 0.268051i
\(124\) −248.215 66.5090i −2.00173 0.536363i
\(125\) −20.7961 + 20.7961i −0.166369 + 0.166369i
\(126\) 15.8377 + 27.4317i 0.125696 + 0.217712i
\(127\) 82.1319 + 47.4189i 0.646708 + 0.373377i 0.787194 0.616706i \(-0.211533\pi\)
−0.140486 + 0.990083i \(0.544867\pi\)
\(128\) −18.3566 68.5079i −0.143411 0.535218i
\(129\) 24.8947i 0.192982i
\(130\) 0 0
\(131\) −112.268 −0.857005 −0.428502 0.903541i \(-0.640959\pi\)
−0.428502 + 0.903541i \(0.640959\pi\)
\(132\) −201.734 + 54.0545i −1.52829 + 0.409504i
\(133\) −4.48683 + 7.77142i −0.0337356 + 0.0584317i
\(134\) 362.496 209.287i 2.70519 1.56184i
\(135\) 12.0680 + 12.0680i 0.0893924 + 0.0893924i
\(136\) 80.3546 299.887i 0.590842 2.20505i
\(137\) 118.473 + 31.7447i 0.864765 + 0.231713i 0.663823 0.747890i \(-0.268933\pi\)
0.200942 + 0.979603i \(0.435600\pi\)
\(138\) −153.408 + 153.408i −1.11165 + 1.11165i
\(139\) −39.2698 68.0172i −0.282516 0.489332i 0.689488 0.724297i \(-0.257836\pi\)
−0.972004 + 0.234965i \(0.924502\pi\)
\(140\) 9.59840 + 5.54164i 0.0685600 + 0.0395831i
\(141\) −27.9905 104.462i −0.198514 0.740866i
\(142\) 260.412i 1.83389i
\(143\) 0 0
\(144\) 145.517 1.01054
\(145\) 14.7686 3.95724i 0.101853 0.0272913i
\(146\) −81.6228 + 141.375i −0.559060 + 0.968321i
\(147\) 84.2171 48.6228i 0.572906 0.330767i
\(148\) 39.4452 + 39.4452i 0.266522 + 0.266522i
\(149\) 46.9315 175.151i 0.314976 1.17551i −0.609035 0.793143i \(-0.708443\pi\)
0.924011 0.382365i \(-0.124890\pi\)
\(150\) −187.924 50.3542i −1.25283 0.335694i
\(151\) −29.1776 + 29.1776i −0.193229 + 0.193229i −0.797090 0.603861i \(-0.793628\pi\)
0.603861 + 0.797090i \(0.293628\pi\)
\(152\) 43.4605 + 75.2758i 0.285924 + 0.495235i
\(153\) −59.8242 34.5395i −0.391008 0.225748i
\(154\) 19.6369 + 73.2860i 0.127513 + 0.475883i
\(155\) 16.3246i 0.105320i
\(156\) 0 0
\(157\) 232.544 1.48117 0.740585 0.671962i \(-0.234548\pi\)
0.740585 + 0.671962i \(0.234548\pi\)
\(158\) −179.063 + 47.9798i −1.13331 + 0.303670i
\(159\) 4.52847 7.84354i 0.0284809 0.0493304i
\(160\) 23.1281 13.3530i 0.144551 0.0834564i
\(161\) 39.0000 + 39.0000i 0.242236 + 0.242236i
\(162\) −22.0859 + 82.4258i −0.136333 + 0.508801i
\(163\) 15.6553 + 4.19483i 0.0960450 + 0.0257352i 0.306521 0.951864i \(-0.400835\pi\)
−0.210476 + 0.977599i \(0.567502\pi\)
\(164\) 104.083 104.083i 0.634654 0.634654i
\(165\) 6.63381 + 11.4901i 0.0402049 + 0.0696369i
\(166\) 83.2562 + 48.0680i 0.501543 + 0.289566i
\(167\) 75.6886 + 282.474i 0.453225 + 1.69146i 0.693254 + 0.720693i \(0.256176\pi\)
−0.240029 + 0.970766i \(0.577157\pi\)
\(168\) 84.3288i 0.501957i
\(169\) 0 0
\(170\) −34.5395 −0.203174
\(171\) 18.6810 5.00556i 0.109246 0.0292723i
\(172\) −53.6776 + 92.9723i −0.312079 + 0.540537i
\(173\) −79.1387 + 45.6907i −0.457449 + 0.264108i −0.710971 0.703221i \(-0.751744\pi\)
0.253522 + 0.967330i \(0.418411\pi\)
\(174\) 144.057 + 144.057i 0.827913 + 0.827913i
\(175\) −12.8013 + 47.7749i −0.0731500 + 0.273000i
\(176\) 336.677 + 90.2124i 1.91294 + 0.512570i
\(177\) 65.4562 65.4562i 0.369809 0.369809i
\(178\) 235.167 + 407.320i 1.32116 + 2.28832i
\(179\) 62.0691 + 35.8356i 0.346754 + 0.200199i 0.663255 0.748394i \(-0.269175\pi\)
−0.316500 + 0.948592i \(0.602508\pi\)
\(180\) −6.18231 23.0727i −0.0343462 0.128182i
\(181\) 274.144i 1.51461i 0.653061 + 0.757305i \(0.273484\pi\)
−0.653061 + 0.757305i \(0.726516\pi\)
\(182\) 0 0
\(183\) −146.333 −0.799634
\(184\) 516.034 138.271i 2.80453 0.751472i
\(185\) 1.77189 3.06900i 0.00957777 0.0165892i
\(186\) −188.376 + 108.759i −1.01277 + 0.584724i
\(187\) −117.000 117.000i −0.625668 0.625668i
\(188\) −120.706 + 450.480i −0.642051 + 2.39617i
\(189\) 55.8422 + 14.9629i 0.295462 + 0.0791687i
\(190\) 6.83772 6.83772i 0.0359880 0.0359880i
\(191\) −89.8530 155.630i −0.470435 0.814817i 0.528994 0.848626i \(-0.322570\pi\)
−0.999428 + 0.0338090i \(0.989236\pi\)
\(192\) 56.1283 + 32.4057i 0.292335 + 0.168780i
\(193\) 0.415784 + 1.55173i 0.00215432 + 0.00804004i 0.966995 0.254797i \(-0.0820086\pi\)
−0.964840 + 0.262837i \(0.915342\pi\)
\(194\) 450.952i 2.32449i
\(195\) 0 0
\(196\) −419.359 −2.13959
\(197\) 193.847 51.9411i 0.983994 0.263660i 0.269268 0.963065i \(-0.413218\pi\)
0.714726 + 0.699405i \(0.246552\pi\)
\(198\) 81.7587 141.610i 0.412923 0.715203i
\(199\) −224.958 + 129.879i −1.13044 + 0.652660i −0.944046 0.329815i \(-0.893014\pi\)
−0.186395 + 0.982475i \(0.559680\pi\)
\(200\) 338.763 + 338.763i 1.69381 + 1.69381i
\(201\) 64.1732 239.498i 0.319270 1.19153i
\(202\) −31.4546 8.42822i −0.155716 0.0417239i
\(203\) 36.6228 36.6228i 0.180408 0.180408i
\(204\) −161.033 278.917i −0.789376 1.36724i
\(205\) −8.09811 4.67544i −0.0395030 0.0228070i
\(206\) −56.1512 209.559i −0.272578 1.01728i
\(207\) 118.868i 0.574243i
\(208\) 0 0
\(209\) 46.3246 0.221649
\(210\) 9.06195 2.42814i 0.0431521 0.0115626i
\(211\) −162.787 + 281.956i −0.771503 + 1.33628i 0.165236 + 0.986254i \(0.447162\pi\)
−0.936739 + 0.350029i \(0.886172\pi\)
\(212\) −33.8243 + 19.5285i −0.159549 + 0.0921154i
\(213\) −109.077 109.077i −0.512096 0.512096i
\(214\) −135.640 + 506.214i −0.633830 + 2.36549i
\(215\) 6.58755 + 1.76513i 0.0306398 + 0.00820990i
\(216\) 395.967 395.967i 1.83318 1.83318i
\(217\) 27.6491 + 47.8897i 0.127415 + 0.220690i
\(218\) −378.996 218.814i −1.73851 1.00373i
\(219\) 25.0278 + 93.4050i 0.114282 + 0.426507i
\(220\) 57.2149i 0.260068i
\(221\) 0 0
\(222\) 47.2192 0.212699
\(223\) −333.002 + 89.2275i −1.49328 + 0.400123i −0.910843 0.412753i \(-0.864567\pi\)
−0.582437 + 0.812876i \(0.697901\pi\)
\(224\) 45.2324 78.3448i 0.201930 0.349754i
\(225\) 92.3152 53.2982i 0.410290 0.236881i
\(226\) −280.167 280.167i −1.23968 1.23968i
\(227\) 36.8706 137.603i 0.162426 0.606181i −0.835929 0.548838i \(-0.815070\pi\)
0.998355 0.0573429i \(-0.0182628\pi\)
\(228\) 87.0960 + 23.3373i 0.382000 + 0.102357i
\(229\) 240.366 240.366i 1.04963 1.04963i 0.0509319 0.998702i \(-0.483781\pi\)
0.998702 0.0509319i \(-0.0162191\pi\)
\(230\) −29.7171 51.4715i −0.129205 0.223789i
\(231\) 38.9218 + 22.4715i 0.168493 + 0.0972793i
\(232\) −129.843 484.579i −0.559667 2.08870i
\(233\) 10.7893i 0.0463061i −0.999732 0.0231531i \(-0.992629\pi\)
0.999732 0.0231531i \(-0.00737051\pi\)
\(234\) 0 0
\(235\) 29.6271 0.126073
\(236\) −385.591 + 103.319i −1.63386 + 0.437791i
\(237\) −54.9057 + 95.0995i −0.231670 + 0.401264i
\(238\) −101.325 + 58.5000i −0.425735 + 0.245798i
\(239\) 98.0153 + 98.0153i 0.410106 + 0.410106i 0.881775 0.471670i \(-0.156348\pi\)
−0.471670 + 0.881775i \(0.656348\pi\)
\(240\) 11.1549 41.6307i 0.0464788 0.173461i
\(241\) −268.010 71.8131i −1.11208 0.297980i −0.344403 0.938822i \(-0.611919\pi\)
−0.767673 + 0.640842i \(0.778585\pi\)
\(242\) −35.3662 + 35.3662i −0.146141 + 0.146141i
\(243\) −104.377 180.787i −0.429536 0.743978i
\(244\) 546.500 + 315.522i 2.23975 + 1.29312i
\(245\) 6.89508 + 25.7328i 0.0281432 + 0.105032i
\(246\) 124.596i 0.506490i
\(247\) 0 0
\(248\) 535.631 2.15980
\(249\) 55.0066 14.7390i 0.220910 0.0591926i
\(250\) 53.6776 92.9723i 0.214710 0.371889i
\(251\) −83.0016 + 47.9210i −0.330684 + 0.190920i −0.656145 0.754635i \(-0.727814\pi\)
0.325461 + 0.945555i \(0.394481\pi\)
\(252\) −57.2149 57.2149i −0.227043 0.227043i
\(253\) 73.6915 275.020i 0.291271 1.08704i
\(254\) −334.388 89.5991i −1.31649 0.352752i
\(255\) −14.4673 + 14.4673i −0.0567343 + 0.0567343i
\(256\) 189.395 + 328.041i 0.739823 + 1.28141i
\(257\) −390.213 225.289i −1.51834 0.876612i −0.999767 0.0215768i \(-0.993131\pi\)
−0.518570 0.855035i \(-0.673535\pi\)
\(258\) 23.5195 + 87.7761i 0.0911610 + 0.340218i
\(259\) 12.0043i 0.0463485i
\(260\) 0 0
\(261\) −111.623 −0.427673
\(262\) 395.845 106.066i 1.51086 0.404833i
\(263\) −83.4911 + 144.611i −0.317457 + 0.549851i −0.979957 0.199211i \(-0.936162\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(264\) 377.006 217.664i 1.42805 0.824486i
\(265\) 1.75445 + 1.75445i 0.00662055 + 0.00662055i
\(266\) 8.47798 31.6403i 0.0318721 0.118948i
\(267\) 269.113 + 72.1086i 1.00791 + 0.270070i
\(268\) −756.065 + 756.065i −2.82114 + 2.82114i
\(269\) −85.0306 147.277i −0.316099 0.547499i 0.663572 0.748113i \(-0.269040\pi\)
−0.979670 + 0.200613i \(0.935706\pi\)
\(270\) −53.9518 31.1491i −0.199822 0.115367i
\(271\) 79.4540 + 296.526i 0.293188 + 1.09419i 0.942646 + 0.333795i \(0.108329\pi\)
−0.649458 + 0.760398i \(0.725004\pi\)
\(272\) 537.500i 1.97610i
\(273\) 0 0
\(274\) −447.715 −1.63399
\(275\) 246.627 66.0836i 0.896827 0.240304i
\(276\) 277.099 479.949i 1.00398 1.73894i
\(277\) 162.767 93.9737i 0.587607 0.339255i −0.176544 0.984293i \(-0.556492\pi\)
0.764151 + 0.645038i \(0.223158\pi\)
\(278\) 202.721 + 202.721i 0.729214 + 0.729214i
\(279\) 30.8457 115.118i 0.110558 0.412608i
\(280\) −22.3148 5.97924i −0.0796958 0.0213544i
\(281\) −286.846 + 286.846i −1.02081 + 1.02081i −0.0210263 + 0.999779i \(0.506693\pi\)
−0.999779 + 0.0210263i \(0.993307\pi\)
\(282\) 197.384 + 341.878i 0.699942 + 1.21234i
\(283\) 345.719 + 199.601i 1.22162 + 0.705303i 0.965263 0.261279i \(-0.0841443\pi\)
0.256357 + 0.966582i \(0.417478\pi\)
\(284\) 172.171 + 642.550i 0.606235 + 2.26250i
\(285\) 5.72811i 0.0200986i
\(286\) 0 0
\(287\) −31.6754 −0.110367
\(288\) −188.326 + 50.4617i −0.653909 + 0.175214i
\(289\) −16.9210 + 29.3080i −0.0585502 + 0.101412i
\(290\) −48.3341 + 27.9057i −0.166669 + 0.0962265i
\(291\) −188.886 188.886i −0.649093 0.649093i
\(292\) 107.929 402.798i 0.369621 1.37944i
\(293\) 185.992 + 49.8364i 0.634785 + 0.170090i 0.561840 0.827246i \(-0.310094\pi\)
0.0729447 + 0.997336i \(0.476760\pi\)
\(294\) −251.004 + 251.004i −0.853756 + 0.853756i
\(295\) 12.6797 + 21.9619i 0.0429821 + 0.0744472i
\(296\) −100.698 58.1381i −0.340196 0.196412i
\(297\) −77.2426 288.273i −0.260076 0.970617i
\(298\) 661.903i 2.22115i
\(299\) 0 0
\(300\) 496.982 1.65661
\(301\) 22.3148 5.97924i 0.0741356 0.0198646i
\(302\) 75.3114 130.443i 0.249375 0.431931i
\(303\) −16.7053 + 9.64484i −0.0551332 + 0.0318311i
\(304\) −106.408 106.408i −0.350026 0.350026i
\(305\) 10.3756 38.7222i 0.0340183 0.126958i
\(306\) 243.566 + 65.2632i 0.795966 + 0.213279i
\(307\) 235.684 235.684i 0.767700 0.767700i −0.210001 0.977701i \(-0.567347\pi\)
0.977701 + 0.210001i \(0.0673467\pi\)
\(308\) −96.9057 167.846i −0.314629 0.544953i
\(309\) −111.296 64.2566i −0.360180 0.207950i
\(310\) −15.4228 57.5588i −0.0497511 0.185673i
\(311\) 113.684i 0.365543i −0.983155 0.182772i \(-0.941493\pi\)
0.983155 0.182772i \(-0.0585069\pi\)
\(312\) 0 0
\(313\) 223.483 0.714002 0.357001 0.934104i \(-0.383799\pi\)
0.357001 + 0.934104i \(0.383799\pi\)
\(314\) −819.926 + 219.699i −2.61123 + 0.699677i
\(315\) −2.57011 + 4.45156i −0.00815907 + 0.0141319i
\(316\) 410.105 236.774i 1.29780 0.749285i
\(317\) 125.140 + 125.140i 0.394764 + 0.394764i 0.876382 0.481617i \(-0.159951\pi\)
−0.481617 + 0.876382i \(0.659951\pi\)
\(318\) −8.55666 + 31.9339i −0.0269077 + 0.100421i
\(319\) −258.257 69.1996i −0.809582 0.216927i
\(320\) −12.5548 + 12.5548i −0.0392338 + 0.0392338i
\(321\) 155.219 + 268.848i 0.483549 + 0.837531i
\(322\) −174.356 100.664i −0.541478 0.312622i
\(323\) 18.4891 + 69.0023i 0.0572418 + 0.213629i
\(324\) 217.982i 0.672785i
\(325\) 0 0
\(326\) −59.1623 −0.181479
\(327\) −250.399 + 67.0943i −0.765747 + 0.205181i
\(328\) −153.408 + 265.710i −0.467707 + 0.810092i
\(329\) 86.9138 50.1797i 0.264176 0.152522i
\(330\) −34.2456 34.2456i −0.103774 0.103774i
\(331\) −113.461 + 423.444i −0.342784 + 1.27929i 0.552397 + 0.833581i \(0.313713\pi\)
−0.895180 + 0.445704i \(0.852953\pi\)
\(332\) −237.209 63.5600i −0.714485 0.191446i
\(333\) −18.2939 + 18.2939i −0.0549368 + 0.0549368i
\(334\) −533.741 924.466i −1.59803 2.76786i
\(335\) 58.8250 + 33.9626i 0.175597 + 0.101381i
\(336\) −37.7865 141.021i −0.112460 0.419705i
\(337\) 5.32456i 0.0157999i 0.999969 + 0.00789993i \(0.00251465\pi\)
−0.999969 + 0.00789993i \(0.997485\pi\)
\(338\) 0 0
\(339\) −234.702 −0.692336
\(340\) 85.2239 22.8357i 0.250659 0.0671638i
\(341\) 142.732 247.220i 0.418570 0.724985i
\(342\) −61.1383 + 35.2982i −0.178767 + 0.103211i
\(343\) 133.336 + 133.336i 0.388733 + 0.388733i
\(344\) 57.9163 216.147i 0.168361 0.628333i
\(345\) −34.0067 9.11208i −0.0985703 0.0264118i
\(346\) 235.868 235.868i 0.681700 0.681700i
\(347\) 23.6206 + 40.9121i 0.0680710 + 0.117902i 0.898052 0.439889i \(-0.144982\pi\)
−0.829981 + 0.557791i \(0.811649\pi\)
\(348\) −450.694 260.208i −1.29510 0.747725i
\(349\) −81.8364 305.418i −0.234488 0.875122i −0.978379 0.206821i \(-0.933688\pi\)
0.743891 0.668301i \(-0.232978\pi\)
\(350\) 180.544i 0.515839i
\(351\) 0 0
\(352\) −467.004 −1.32672
\(353\) 150.700 40.3800i 0.426913 0.114391i −0.0389637 0.999241i \(-0.512406\pi\)
0.465877 + 0.884850i \(0.345739\pi\)
\(354\) −168.952 + 292.633i −0.477264 + 0.826646i
\(355\) 36.5974 21.1295i 0.103091 0.0595198i
\(356\) −849.557 849.557i −2.38639 2.38639i
\(357\) −17.9377 + 66.9445i −0.0502457 + 0.187520i
\(358\) −252.705 67.7122i −0.705881 0.189140i
\(359\) −63.2149 + 63.2149i −0.176086 + 0.176086i −0.789647 0.613561i \(-0.789736\pi\)
0.613561 + 0.789647i \(0.289736\pi\)
\(360\) 24.8947 + 43.1188i 0.0691518 + 0.119775i
\(361\) 295.315 + 170.500i 0.818046 + 0.472299i
\(362\) −259.001 966.606i −0.715473 2.67018i
\(363\) 29.6271i 0.0816172i
\(364\) 0 0
\(365\) −26.4911 −0.0725784
\(366\) 515.956 138.250i 1.40972 0.377732i
\(367\) 159.208 275.757i 0.433810 0.751381i −0.563388 0.826193i \(-0.690502\pi\)
0.997198 + 0.0748120i \(0.0238357\pi\)
\(368\) −800.993 + 462.454i −2.17661 + 1.25667i
\(369\) 48.2719 + 48.2719i 0.130818 + 0.130818i
\(370\) −3.34802 + 12.4950i −0.00904872 + 0.0337703i
\(371\) 8.11837 + 2.17531i 0.0218824 + 0.00586337i
\(372\) 392.899 392.899i 1.05618 1.05618i
\(373\) −4.43844 7.68760i −0.0118993 0.0206102i 0.860014 0.510270i \(-0.170454\pi\)
−0.871914 + 0.489660i \(0.837121\pi\)
\(374\) 523.068 + 301.993i 1.39858 + 0.807469i
\(375\) −16.4590 61.4259i −0.0438907 0.163803i
\(376\) 972.105i 2.58538i
\(377\) 0 0
\(378\) −211.031 −0.558282
\(379\) −197.660 + 52.9630i −0.521532 + 0.139744i −0.509975 0.860189i \(-0.670345\pi\)
−0.0115566 + 0.999933i \(0.503679\pi\)
\(380\) −12.3509 + 21.3924i −0.0325023 + 0.0562957i
\(381\) −177.592 + 102.533i −0.466121 + 0.269115i
\(382\) 463.846 + 463.846i 1.21426 + 1.21426i
\(383\) −130.767 + 488.027i −0.341427 + 1.27422i 0.555304 + 0.831647i \(0.312602\pi\)
−0.896731 + 0.442576i \(0.854065\pi\)
\(384\) 148.133 + 39.6921i 0.385763 + 0.103365i
\(385\) −8.70605 + 8.70605i −0.0226131 + 0.0226131i
\(386\) −2.93203 5.07842i −0.00759593 0.0131565i
\(387\) −43.1188 24.8947i −0.111418 0.0643273i
\(388\) 298.145 + 1112.69i 0.768416 + 2.86777i
\(389\) 438.342i 1.12684i 0.826170 + 0.563421i \(0.190515\pi\)
−0.826170 + 0.563421i \(0.809485\pi\)
\(390\) 0 0
\(391\) 439.065 1.12293
\(392\) 844.329 226.237i 2.15390 0.577136i
\(393\) 121.377 210.231i 0.308847 0.534939i
\(394\) −634.413 + 366.278i −1.61018 + 0.929640i
\(395\) −21.2719 21.2719i −0.0538529 0.0538529i
\(396\) −108.109 + 403.468i −0.273003 + 1.01886i
\(397\) 341.590 + 91.5288i 0.860428 + 0.230551i 0.661944 0.749553i \(-0.269732\pi\)
0.198484 + 0.980104i \(0.436398\pi\)
\(398\) 670.473 670.473i 1.68461 1.68461i
\(399\) −9.70178 16.8040i −0.0243152 0.0421152i
\(400\) −718.299 414.710i −1.79575 1.03678i
\(401\) −34.2972 127.999i −0.0855293 0.319200i 0.909885 0.414861i \(-0.136170\pi\)
−0.995414 + 0.0956618i \(0.969503\pi\)
\(402\) 905.074i 2.25143i
\(403\) 0 0
\(404\) 83.1843 0.205902
\(405\) −13.3759 + 3.58405i −0.0330268 + 0.00884951i
\(406\) −94.5285 + 163.728i −0.232829 + 0.403271i
\(407\) −53.6671 + 30.9847i −0.131860 + 0.0761295i
\(408\) 474.691 + 474.691i 1.16346 + 1.16346i
\(409\) −135.481 + 505.621i −0.331249 + 1.23624i 0.576630 + 0.817005i \(0.304367\pi\)
−0.907879 + 0.419232i \(0.862299\pi\)
\(410\) 32.9703 + 8.83437i 0.0804154 + 0.0215472i
\(411\) −187.530 + 187.530i −0.456278 + 0.456278i
\(412\) 277.099 + 479.949i 0.672569 + 1.16492i
\(413\) 74.3944 + 42.9516i 0.180132 + 0.103999i
\(414\) 112.302 + 419.118i 0.271262 + 1.01236i
\(415\) 15.6007i 0.0375921i
\(416\) 0 0
\(417\) 169.824 0.407252
\(418\) −163.336 + 43.7657i −0.390756 + 0.104703i
\(419\) 329.384 570.509i 0.786118 1.36160i −0.142210 0.989836i \(-0.545421\pi\)
0.928329 0.371761i \(-0.121246\pi\)
\(420\) −20.7544 + 11.9826i −0.0494152 + 0.0285299i
\(421\) 80.3135 + 80.3135i 0.190768 + 0.190768i 0.796028 0.605260i \(-0.206931\pi\)
−0.605260 + 0.796028i \(0.706931\pi\)
\(422\) 307.590 1147.94i 0.728887 2.72024i
\(423\) −208.924 55.9810i −0.493910 0.132343i
\(424\) 57.5658 57.5658i 0.135768 0.135768i
\(425\) 196.868 + 340.986i 0.463220 + 0.802320i
\(426\) 487.644 + 281.542i 1.14471 + 0.660896i
\(427\) −35.1465 131.169i −0.0823103 0.307186i
\(428\) 1338.73i 3.12787i
\(429\) 0 0
\(430\) −24.8947 −0.0578946
\(431\) 404.395 108.357i 0.938270 0.251409i 0.242893 0.970053i \(-0.421904\pi\)
0.695378 + 0.718644i \(0.255237\pi\)
\(432\) −484.739 + 839.592i −1.12208 + 1.94350i
\(433\) 135.221 78.0701i 0.312290 0.180300i −0.335661 0.941983i \(-0.608960\pi\)
0.647951 + 0.761682i \(0.275626\pi\)
\(434\) −142.732 142.732i −0.328876 0.328876i
\(435\) −8.55666 + 31.9339i −0.0196705 + 0.0734112i
\(436\) 1079.82 + 289.336i 2.47664 + 0.663614i
\(437\) −86.9210 + 86.9210i −0.198904 + 0.198904i
\(438\) −176.491 305.692i −0.402948 0.697926i
\(439\) −388.595 224.355i −0.885181 0.511060i −0.0128180 0.999918i \(-0.504080\pi\)
−0.872363 + 0.488858i \(0.837414\pi\)
\(440\) 30.8665 + 115.195i 0.0701511 + 0.261808i
\(441\) 194.491i 0.441023i
\(442\) 0 0
\(443\) −577.372 −1.30332 −0.651662 0.758510i \(-0.725928\pi\)
−0.651662 + 0.758510i \(0.725928\pi\)
\(444\) −116.510 + 31.2188i −0.262411 + 0.0703127i
\(445\) −38.1623 + 66.0990i −0.0857579 + 0.148537i
\(446\) 1089.83 629.215i 2.44357 1.41080i
\(447\) 277.246 + 277.246i 0.620236 + 0.620236i
\(448\) −15.5665 + 58.0950i −0.0347467 + 0.129676i
\(449\) −146.339 39.2113i −0.325921 0.0873304i 0.0921484 0.995745i \(-0.470627\pi\)
−0.418070 + 0.908415i \(0.637293\pi\)
\(450\) −275.140 + 275.140i −0.611423 + 0.611423i
\(451\) 81.7587 + 141.610i 0.181283 + 0.313992i
\(452\) 876.524 + 506.061i 1.93921 + 1.11960i
\(453\) −23.0926 86.1826i −0.0509769 0.190249i
\(454\) 520.009i 1.14539i
\(455\) 0 0
\(456\) −187.947 −0.412165
\(457\) −486.430 + 130.339i −1.06440 + 0.285205i −0.748190 0.663485i \(-0.769077\pi\)
−0.316209 + 0.948689i \(0.602410\pi\)
\(458\) −620.419 + 1074.60i −1.35463 + 2.34628i
\(459\) 398.565 230.112i 0.868334 0.501333i
\(460\) 107.355 + 107.355i 0.233381 + 0.233381i
\(461\) −12.3525 + 46.1002i −0.0267950 + 0.100000i −0.978028 0.208472i \(-0.933151\pi\)
0.951233 + 0.308472i \(0.0998177\pi\)
\(462\) −158.465 42.4605i −0.342997 0.0919059i
\(463\) −336.355 + 336.355i −0.726469 + 0.726469i −0.969915 0.243446i \(-0.921722\pi\)
0.243446 + 0.969915i \(0.421722\pi\)
\(464\) 434.265 + 752.169i 0.935916 + 1.62105i
\(465\) −30.5692 17.6491i −0.0657401 0.0379551i
\(466\) 10.1934 + 38.0421i 0.0218741 + 0.0816354i
\(467\) 308.263i 0.660093i −0.943965 0.330046i \(-0.892936\pi\)
0.943965 0.330046i \(-0.107064\pi\)
\(468\) 0 0
\(469\) 230.092 0.490601
\(470\) −104.462 + 27.9905i −0.222260 + 0.0595543i
\(471\) −251.412 + 435.459i −0.533784 + 0.924540i
\(472\) 720.601 416.039i 1.52670 0.881439i
\(473\) −84.3288 84.3288i −0.178285 0.178285i
\(474\) 103.746 387.184i 0.218873 0.816844i
\(475\) −106.478 28.5307i −0.224164 0.0600646i
\(476\) 211.336 211.336i 0.443982 0.443982i
\(477\) −9.05694 15.6871i −0.0189873 0.0328870i
\(478\) −438.193 252.991i −0.916723 0.529270i
\(479\) −28.0530 104.695i −0.0585659 0.218571i 0.930441 0.366443i \(-0.119424\pi\)
−0.989007 + 0.147872i \(0.952758\pi\)
\(480\) 57.7459i 0.120304i
\(481\) 0 0
\(482\) 1012.82 2.10130
\(483\) −115.195 + 30.8665i −0.238500 + 0.0639058i
\(484\) 63.8815 110.646i 0.131987 0.228607i
\(485\) 63.3752 36.5897i 0.130671 0.0754427i
\(486\) 538.824 + 538.824i 1.10869 + 1.10869i
\(487\) 25.2797 94.3452i 0.0519091 0.193727i −0.935102 0.354378i \(-0.884693\pi\)
0.987011 + 0.160651i \(0.0513593\pi\)
\(488\) −1270.53 340.437i −2.60354 0.697617i
\(489\) −24.7808 + 24.7808i −0.0506764 + 0.0506764i
\(490\) −48.6228 84.2171i −0.0992302 0.171872i
\(491\) 593.489 + 342.651i 1.20874 + 0.697864i 0.962483 0.271342i \(-0.0874673\pi\)
0.246253 + 0.969206i \(0.420801\pi\)
\(492\) 82.3766 + 307.433i 0.167432 + 0.624865i
\(493\) 412.302i 0.836313i
\(494\) 0 0
\(495\) 26.5352 0.0536065
\(496\) −895.723 + 240.008i −1.80589 + 0.483888i
\(497\) 71.5747 123.971i 0.144014 0.249439i
\(498\) −180.023 + 103.936i −0.361492 + 0.208707i
\(499\) −349.329 349.329i −0.700058 0.700058i 0.264365 0.964423i \(-0.414838\pi\)
−0.964423 + 0.264365i \(0.914838\pi\)
\(500\) −70.9775 + 264.892i −0.141955 + 0.529784i
\(501\) −610.786 163.660i −1.21913 0.326666i
\(502\) 247.381 247.381i 0.492792 0.492792i
\(503\) −21.1359 36.6085i −0.0420198 0.0727804i 0.844251 0.535949i \(-0.180046\pi\)
−0.886270 + 0.463168i \(0.846713\pi\)
\(504\) 146.062 + 84.3288i 0.289805 + 0.167319i
\(505\) −1.36771 5.10437i −0.00270834 0.0101077i
\(506\) 1039.32i 2.05398i
\(507\) 0 0
\(508\) 884.320 1.74079
\(509\) 251.732 67.4513i 0.494561 0.132517i −0.00291340 0.999996i \(-0.500927\pi\)
0.497475 + 0.867478i \(0.334261\pi\)
\(510\) 37.3420 64.6782i 0.0732196 0.126820i
\(511\) −77.7142 + 44.8683i −0.152083 + 0.0878050i
\(512\) −777.103 777.103i −1.51778 1.51778i
\(513\) −33.3484 + 124.458i −0.0650067 + 0.242608i
\(514\) 1588.70 + 425.690i 3.09085 + 0.828190i
\(515\) 24.8947 24.8947i 0.0483392 0.0483392i
\(516\) −116.066 201.032i −0.224934 0.389597i
\(517\) −448.673 259.042i −0.867840 0.501048i
\(518\) 11.3412 + 42.3259i 0.0218942 + 0.0817102i
\(519\) 197.592i 0.380717i
\(520\) 0 0
\(521\) −757.122 −1.45321 −0.726605 0.687055i \(-0.758903\pi\)
−0.726605 + 0.687055i \(0.758903\pi\)
\(522\) 393.571 105.457i 0.753967 0.202025i
\(523\) 110.925 192.128i 0.212094 0.367358i −0.740276 0.672304i \(-0.765305\pi\)
0.952370 + 0.304946i \(0.0986383\pi\)
\(524\) −906.595 + 523.423i −1.73014 + 0.998898i
\(525\) −75.6228 75.6228i −0.144043 0.144043i
\(526\) 157.759 588.763i 0.299921 1.11932i
\(527\) 425.211 + 113.935i 0.806852 + 0.216195i
\(528\) −532.925 + 532.925i −1.00933 + 1.00933i
\(529\) 113.263 + 196.177i 0.214108 + 0.370845i
\(530\) −7.84354 4.52847i −0.0147991 0.00854428i
\(531\) −47.9173 178.830i −0.0902397 0.336779i
\(532\) 83.6754i 0.157285i
\(533\) 0 0
\(534\) −1016.99 −1.90448
\(535\) −82.1472 + 22.0113i −0.153546 + 0.0411426i
\(536\) 1114.36 1930.13i 2.07903 3.60099i
\(537\) −134.211 + 77.4865i −0.249927 + 0.144295i
\(538\) 438.952 + 438.952i 0.815895 + 0.815895i
\(539\) 120.573 449.985i 0.223698 0.834852i
\(540\) 153.717 + 41.1883i 0.284661 + 0.0762746i
\(541\) 243.379 243.379i 0.449869 0.449869i −0.445442 0.895311i \(-0.646953\pi\)
0.895311 + 0.445442i \(0.146953\pi\)
\(542\) −560.294 970.457i −1.03375 1.79051i
\(543\) −513.360 296.388i −0.945413 0.545835i
\(544\) −186.391 695.621i −0.342631 1.27872i
\(545\) 71.0171i 0.130307i
\(546\) 0 0
\(547\) −317.777 −0.580944 −0.290472 0.956883i \(-0.593812\pi\)
−0.290472 + 0.956883i \(0.593812\pi\)
\(548\) 1104.71 296.005i 2.01589 0.540155i
\(549\) −146.333 + 253.456i −0.266545 + 0.461669i
\(550\) −807.150 + 466.009i −1.46755 + 0.847288i
\(551\) 81.6228 + 81.6228i 0.148136 + 0.148136i
\(552\) −298.980 + 1115.81i −0.541630 + 2.02139i
\(553\) −98.4316 26.3747i −0.177996 0.0476938i
\(554\) −485.118 + 485.118i −0.875665 + 0.875665i
\(555\) 3.83131 + 6.63603i 0.00690327 + 0.0119568i
\(556\) −634.230 366.173i −1.14070 0.658584i
\(557\) 175.481 + 654.904i 0.315047 + 1.17577i 0.923946 + 0.382523i \(0.124945\pi\)
−0.608899 + 0.793248i \(0.708389\pi\)
\(558\) 435.035i 0.779632i
\(559\) 0 0
\(560\) 39.9957 0.0714209
\(561\) 345.586 92.5995i 0.616018 0.165061i
\(562\) 740.390 1282.39i 1.31742 2.28184i
\(563\) −399.819 + 230.836i −0.710158 + 0.410010i −0.811120 0.584880i \(-0.801141\pi\)
0.100962 + 0.994890i \(0.467808\pi\)
\(564\) −713.063 713.063i −1.26430 1.26430i
\(565\) 16.6413 62.1060i 0.0294536 0.109922i
\(566\) −1407.54 377.150i −2.48683 0.666344i
\(567\) −33.1690 + 33.1690i −0.0584992 + 0.0584992i
\(568\) −693.289 1200.81i −1.22058 2.11411i
\(569\) −453.273 261.697i −0.796613 0.459925i 0.0456725 0.998956i \(-0.485457\pi\)
−0.842285 + 0.539032i \(0.818790\pi\)
\(570\) 5.41171 + 20.1968i 0.00949422 + 0.0354329i
\(571\) 115.715i 0.202654i 0.994853 + 0.101327i \(0.0323088\pi\)
−0.994853 + 0.101327i \(0.967691\pi\)
\(572\) 0 0
\(573\) 388.574 0.678140
\(574\) 111.684 29.9258i 0.194572 0.0521355i
\(575\) −338.763 + 586.755i −0.589153 + 1.02044i
\(576\) 112.257 64.8114i 0.194890 0.112520i
\(577\) −130.158 130.158i −0.225577 0.225577i 0.585265 0.810842i \(-0.300990\pi\)
−0.810842 + 0.585265i \(0.800990\pi\)
\(578\) 31.9726 119.324i 0.0553160 0.206442i
\(579\) −3.35527 0.899041i −0.00579493 0.00155275i
\(580\) 100.811 100.811i 0.173813 0.173813i
\(581\) 26.4231 + 45.7662i 0.0454787 + 0.0787714i
\(582\) 844.446 + 487.541i 1.45094 + 0.837700i
\(583\) −11.2296 41.9093i −0.0192617 0.0718855i
\(584\) 869.210i 1.48837i
\(585\) 0 0
\(586\) −702.873 −1.19944
\(587\) −474.436 + 127.125i −0.808238 + 0.216567i −0.639198 0.769042i \(-0.720733\pi\)
−0.169040 + 0.985609i \(0.554067\pi\)
\(588\) 453.386 785.287i 0.771064 1.33552i
\(589\) −106.734 + 61.6228i −0.181212 + 0.104623i
\(590\) −65.4562 65.4562i −0.110943 0.110943i
\(591\) −112.311 + 419.151i −0.190036 + 0.709223i
\(592\) 194.446 + 52.1016i 0.328456 + 0.0880094i
\(593\) 240.285 240.285i 0.405202 0.405202i −0.474860 0.880062i \(-0.657501\pi\)
0.880062 + 0.474860i \(0.157501\pi\)
\(594\) 544.699 + 943.447i 0.917002 + 1.58829i
\(595\) −16.4428 9.49324i −0.0276349 0.0159550i
\(596\) −437.615 1633.20i −0.734254 2.74027i
\(597\) 561.670i 0.940822i
\(598\) 0 0
\(599\) 1044.77 1.74419 0.872096 0.489334i \(-0.162760\pi\)
0.872096 + 0.489334i \(0.162760\pi\)
\(600\) −1000.61 + 268.113i −1.66769 + 0.446856i
\(601\) −466.649 + 808.259i −0.776454 + 1.34486i 0.157520 + 0.987516i \(0.449650\pi\)
−0.933974 + 0.357342i \(0.883683\pi\)
\(602\) −73.0309 + 42.1644i −0.121314 + 0.0700406i
\(603\) −350.649 350.649i −0.581508 0.581508i
\(604\) −99.5838 + 371.652i −0.164874 + 0.615317i
\(605\) −7.83982 2.10067i −0.0129584 0.00347219i
\(606\) 49.7893 49.7893i 0.0821606 0.0821606i
\(607\) −289.956 502.218i −0.477687 0.827378i 0.521986 0.852954i \(-0.325191\pi\)
−0.999673 + 0.0255762i \(0.991858\pi\)
\(608\) 174.610 + 100.811i 0.287188 + 0.165808i
\(609\) 28.9850 + 108.174i 0.0475945 + 0.177625i
\(610\) 146.333i 0.239890i
\(611\) 0 0
\(612\) −644.131 −1.05250
\(613\) −394.044 + 105.584i −0.642813 + 0.172241i −0.565477 0.824764i \(-0.691308\pi\)
−0.0773357 + 0.997005i \(0.524641\pi\)
\(614\) −608.333 + 1053.66i −0.990771 + 1.71606i
\(615\) 17.5104 10.1096i 0.0284721 0.0164384i
\(616\) 285.658 + 285.658i 0.463730 + 0.463730i
\(617\) −34.9233 + 130.335i −0.0566017 + 0.211240i −0.988435 0.151647i \(-0.951542\pi\)
0.931833 + 0.362887i \(0.118209\pi\)
\(618\) 453.125 + 121.414i 0.733212 + 0.196463i
\(619\) 544.952 544.952i 0.880374 0.880374i −0.113198 0.993572i \(-0.536110\pi\)
0.993572 + 0.113198i \(0.0361095\pi\)
\(620\) 76.1096 + 131.826i 0.122757 + 0.212622i
\(621\) 685.835 + 395.967i 1.10440 + 0.637628i
\(622\) 107.404 + 400.839i 0.172676 + 0.644435i
\(623\) 258.544i 0.414998i
\(624\) 0 0
\(625\) −598.806 −0.958090
\(626\) −787.977 + 211.138i −1.25875 + 0.337281i
\(627\) −50.0833 + 86.7468i −0.0798776 + 0.138352i
\(628\) 1877.86 1084.18i 2.99022 1.72641i
\(629\) −67.5726 67.5726i −0.107429 0.107429i
\(630\) 4.85628 18.1239i 0.00770839 0.0287681i
\(631\) −877.722 235.185i −1.39100 0.372718i −0.515896 0.856651i \(-0.672541\pi\)
−0.875105 + 0.483933i \(0.839208\pi\)
\(632\) −697.960 + 697.960i −1.10437 + 1.10437i
\(633\) −351.991 609.666i −0.556068 0.963138i
\(634\) −559.460 323.004i −0.882429 0.509470i
\(635\) −14.5399 54.2638i −0.0228975 0.0854548i
\(636\) 84.4520i 0.132786i
\(637\) 0 0
\(638\) 975.964 1.52972
\(639\) −298.003 + 79.8496i −0.466358 + 0.124960i
\(640\) −21.0064 + 36.3842i −0.0328225 + 0.0568503i
\(641\) −422.005 + 243.645i −0.658355 + 0.380101i −0.791650 0.610975i \(-0.790777\pi\)
0.133295 + 0.991076i \(0.457444\pi\)
\(642\) −801.285 801.285i −1.24811 1.24811i
\(643\) 291.974 1089.66i 0.454081 1.69465i −0.236694 0.971584i \(-0.576064\pi\)
0.690775 0.723070i \(-0.257269\pi\)
\(644\) 496.766 + 133.108i 0.771375 + 0.206689i
\(645\) −10.4274 + 10.4274i −0.0161665 + 0.0161665i
\(646\) −130.381 225.827i −0.201829 0.349578i
\(647\) −856.955 494.763i −1.32450 0.764703i −0.340061 0.940403i \(-0.610448\pi\)
−0.984444 + 0.175700i \(0.943781\pi\)
\(648\) 117.598 + 438.881i 0.181478 + 0.677285i
\(649\) 443.456i 0.683292i
\(650\) 0 0
\(651\) −119.570 −0.183671
\(652\) 145.979 39.1150i 0.223894 0.0599923i
\(653\) 43.1537 74.7445i 0.0660853 0.114463i −0.831090 0.556139i \(-0.812282\pi\)
0.897175 + 0.441675i \(0.145616\pi\)
\(654\) 819.495 473.136i 1.25305 0.723449i
\(655\) 47.0245 + 47.0245i 0.0717932 + 0.0717932i
\(656\) 137.479 513.080i 0.209572 0.782134i
\(657\) 186.810 + 50.0556i 0.284338 + 0.0761881i
\(658\) −259.042 + 259.042i −0.393680 + 0.393680i
\(659\) 592.495 + 1026.23i 0.899083 + 1.55726i 0.828669 + 0.559739i \(0.189098\pi\)
0.0704134 + 0.997518i \(0.477568\pi\)
\(660\) 107.140 + 61.8573i 0.162333 + 0.0937232i
\(661\) 71.1582 + 265.566i 0.107652 + 0.401764i 0.998633 0.0522781i \(-0.0166482\pi\)
−0.890980 + 0.454042i \(0.849982\pi\)
\(662\) 1600.21i 2.41724i
\(663\) 0 0
\(664\) 511.881 0.770905
\(665\) 5.13451 1.37579i 0.00772106 0.00206885i
\(666\) 47.2192 81.7861i 0.0708997 0.122802i
\(667\) 614.422 354.737i 0.921172 0.531839i
\(668\) 1928.18 + 1928.18i 2.88650 + 2.88650i
\(669\) 192.935 720.042i 0.288393 1.07630i
\(670\) −239.498 64.1732i −0.357459 0.0957810i
\(671\) −495.693 + 495.693i −0.738737 + 0.738737i
\(672\) 97.8050 + 169.403i 0.145543 + 0.252088i
\(673\) 533.038 + 307.750i 0.792033 + 0.457281i 0.840678 0.541536i \(-0.182157\pi\)
−0.0486446 + 0.998816i \(0.515490\pi\)
\(674\) −5.03044 18.7739i −0.00746356 0.0278544i
\(675\) 710.175i 1.05211i
\(676\) 0 0
\(677\) −412.031 −0.608612 −0.304306 0.952574i \(-0.598425\pi\)
−0.304306 + 0.952574i \(0.598425\pi\)
\(678\) 827.535 221.737i 1.22055 0.327046i
\(679\) 123.945 214.679i 0.182540 0.316169i
\(680\) −159.269 + 91.9537i −0.234218 + 0.135226i
\(681\) 217.811 + 217.811i 0.319841 + 0.319841i
\(682\) −269.696 + 1006.52i −0.395449 + 1.47584i
\(683\) 176.278 + 47.2334i 0.258093 + 0.0691558i 0.385545 0.922689i \(-0.374013\pi\)
−0.127452 + 0.991845i \(0.540680\pi\)
\(684\) 127.517 127.517i 0.186429 0.186429i
\(685\) −36.3270 62.9203i −0.0530322 0.0918544i
\(686\) −596.099 344.158i −0.868948 0.501688i
\(687\) 190.237 + 709.976i 0.276910 + 1.03344i
\(688\) 387.408i 0.563093i
\(689\) 0 0
\(690\) 128.513 0.186251
\(691\) 993.243 266.139i 1.43740 0.385150i 0.545778 0.837930i \(-0.316234\pi\)
0.891622 + 0.452780i \(0.149568\pi\)
\(692\) −426.046 + 737.933i −0.615673 + 1.06638i
\(693\) 77.8437 44.9431i 0.112329 0.0648529i
\(694\) −121.936 121.936i −0.175701 0.175701i
\(695\) −12.0412 + 44.9383i −0.0173255 + 0.0646595i
\(696\) 1047.79 + 280.756i 1.50545 + 0.403385i
\(697\) −178.302 + 178.302i −0.255814 + 0.255814i
\(698\) 577.094 + 999.556i 0.826782 + 1.43203i
\(699\) 20.2040 + 11.6648i 0.0289041 + 0.0166878i
\(700\) 119.366 + 445.480i 0.170523 + 0.636400i
\(701\) 635.934i 0.907181i 0.891210 + 0.453590i \(0.149857\pi\)
−0.891210 + 0.453590i \(0.850143\pi\)
\(702\) 0 0
\(703\) 26.7544 0.0380575
\(704\) 299.902 80.3586i 0.425998 0.114146i
\(705\) −32.0310 + 55.4792i −0.0454340 + 0.0786940i
\(706\) −493.205 + 284.752i −0.698590 + 0.403331i
\(707\) −12.6577 12.6577i −0.0179033 0.0179033i
\(708\) 223.404 833.754i 0.315542 1.17762i
\(709\) 949.818 + 254.503i 1.33966 + 0.358961i 0.856308 0.516466i \(-0.172753\pi\)
0.483351 + 0.875426i \(0.339419\pi\)
\(710\) −109.077 + 109.077i −0.153629 + 0.153629i
\(711\) 109.811 + 190.199i 0.154446 + 0.267509i
\(712\) 2168.80 + 1252.16i 3.04607 + 1.75865i
\(713\) 196.055 + 731.686i 0.274971 + 1.02621i
\(714\) 252.986i 0.354323i
\(715\) 0 0
\(716\) 668.302 0.933382
\(717\) −289.510 + 77.5741i −0.403780 + 0.108193i
\(718\) 163.167 282.613i 0.227251 0.393611i
\(719\) −744.405 + 429.783i −1.03533 + 0.597750i −0.918508 0.395402i \(-0.870605\pi\)
−0.116826 + 0.993152i \(0.537272\pi\)
\(720\) −60.9516 60.9516i −0.0846550 0.0846550i
\(721\) 30.8665 115.195i 0.0428107 0.159772i
\(722\) −1202.33 322.164i −1.66528 0.446210i
\(723\) 424.233 424.233i 0.586767 0.586767i
\(724\) 1278.14 + 2213.80i 1.76538 + 3.05773i
\(725\) 550.989 + 318.114i 0.759985 + 0.438778i
\(726\) −27.9905 104.462i −0.0385544 0.143887i
\(727\) 437.337i 0.601564i 0.953693 + 0.300782i \(0.0972477\pi\)
−0.953693 + 0.300782i \(0.902752\pi\)
\(728\) 0 0
\(729\) 661.780 0.907792
\(730\) 93.4050 25.0278i 0.127952 0.0342847i
\(731\) 91.9537 159.269i 0.125792 0.217878i
\(732\) −1181.68 + 682.246i −1.61432 + 0.932029i
\(733\) −39.5591 39.5591i −0.0539687 0.0539687i 0.679607 0.733576i \(-0.262150\pi\)
−0.733576 + 0.679607i \(0.762150\pi\)
\(734\) −300.828 + 1122.70i −0.409847 + 1.52957i
\(735\) −55.6415 14.9091i −0.0757027 0.0202845i
\(736\) 876.263 876.263i 1.19057 1.19057i
\(737\) −593.899 1028.66i −0.805833 1.39574i
\(738\) −215.807 124.596i −0.292422 0.168830i
\(739\) −336.645 1256.38i −0.455541 1.70010i −0.686491 0.727138i \(-0.740850\pi\)
0.230950 0.972966i \(-0.425817\pi\)
\(740\) 33.0441i 0.0446542i
\(741\) 0 0
\(742\) −30.6797 −0.0413473
\(743\) 998.076 267.434i 1.34331 0.359938i 0.485646 0.874156i \(-0.338584\pi\)
0.857660 + 0.514218i \(0.171918\pi\)
\(744\) −579.092 + 1003.02i −0.778349 + 1.34814i
\(745\) −93.0216 + 53.7061i −0.124861 + 0.0720887i
\(746\) 22.9125 + 22.9125i 0.0307137 + 0.0307137i
\(747\) 29.4779 110.013i 0.0394618 0.147273i
\(748\) −1490.30 399.324i −1.99238 0.533855i
\(749\) −203.706 + 203.706i −0.271971 + 0.271971i
\(750\) 116.066 + 201.032i 0.154754 + 0.268043i
\(751\) −173.000 99.8818i −0.230360 0.132998i 0.380378 0.924831i \(-0.375794\pi\)
−0.610738 + 0.791833i \(0.709127\pi\)
\(752\) 435.585 + 1625.63i 0.579236 + 2.16174i
\(753\) 207.237i 0.275215i
\(754\) 0 0
\(755\) 24.4427 0.0323745
\(756\) 520.704 139.522i 0.688762 0.184553i
\(757\) −62.2744 + 107.862i −0.0822647 + 0.142487i −0.904222 0.427062i \(-0.859549\pi\)
0.821958 + 0.569549i \(0.192882\pi\)
\(758\) 646.894 373.484i 0.853422 0.492723i
\(759\) 435.329 + 435.329i 0.573556 + 0.573556i
\(760\) 13.3262 49.7340i 0.0175345 0.0654395i
\(761\) 220.493 + 59.0809i 0.289741 + 0.0776359i 0.400762 0.916182i \(-0.368745\pi\)
−0.111021 + 0.993818i \(0.535412\pi\)
\(762\) 529.302 529.302i 0.694623 0.694623i
\(763\) −120.283 208.336i −0.157644 0.273048i
\(764\) −1451.18 837.840i −1.89945 1.09665i
\(765\) 10.5908 + 39.5253i 0.0138441 + 0.0516670i
\(766\) 1844.28i 2.40768i
\(767\) 0 0
\(768\) −819.048 −1.06647
\(769\) 188.440 50.4922i 0.245045 0.0656596i −0.134206 0.990953i \(-0.542848\pi\)
0.379251 + 0.925294i \(0.376182\pi\)
\(770\) 22.4715 38.9218i 0.0291838 0.0505478i
\(771\) 843.748 487.138i 1.09436 0.631826i
\(772\) 10.5922 + 10.5922i 0.0137204 + 0.0137204i
\(773\) −201.612 + 752.425i −0.260817 + 0.973383i 0.703944 + 0.710255i \(0.251421\pi\)
−0.964761 + 0.263127i \(0.915246\pi\)
\(774\) 175.552 + 47.0391i 0.226812 + 0.0607740i
\(775\) −480.333 + 480.333i −0.619785 + 0.619785i
\(776\) −1200.56 2079.43i −1.54711 2.67968i
\(777\) 22.4791 + 12.9783i 0.0289306 + 0.0167031i
\(778\) −414.129 1545.55i −0.532299 1.98657i
\(779\) 70.5964i 0.0906244i
\(780\) 0 0
\(781\) −738.977 −0.946194
\(782\) −1548.10 + 414.813i −1.97967 + 0.530451i
\(783\) 371.831 644.030i 0.474880 0.822516i
\(784\) −1310.58 + 756.662i −1.67165 + 0.965130i
\(785\) −97.4036 97.4036i −0.124081 0.124081i
\(786\) −229.345 + 855.926i −0.291787 + 1.08896i
\(787\) 996.426 + 266.991i 1.26611 + 0.339252i 0.828538 0.559933i \(-0.189173\pi\)
0.437568 + 0.899185i \(0.355840\pi\)
\(788\) 1323.21 1323.21i 1.67920 1.67920i
\(789\) −180.531 312.689i −0.228810 0.396310i
\(790\) 95.0995 + 54.9057i 0.120379 + 0.0695009i
\(791\) −56.3710 210.380i −0.0712655 0.265967i
\(792\) 870.658i 1.09932i
\(793\) 0 0
\(794\) −1290.89 −1.62580
\(795\) −5.18216 + 1.38855i −0.00651843 + 0.00174661i
\(796\) −1211.07 + 2097.63i −1.52144 + 2.63521i
\(797\) 385.358 222.487i 0.483511 0.279155i −0.238367 0.971175i \(-0.576612\pi\)
0.721879 + 0.692020i \(0.243279\pi\)
\(798\) 50.0833 + 50.0833i 0.0627610 + 0.0627610i
\(799\) 206.778 771.706i 0.258796 0.965839i
\(800\) 1073.42 + 287.622i 1.34177 + 0.359527i
\(801\) 394.009 394.009i 0.491896 0.491896i
\(802\) 241.857 + 418.909i 0.301568 + 0.522331i
\(803\) 401.182 + 231.623i 0.499605 + 0.288447i
\(804\) −598.387 2233.21i −0.744262 2.77762i
\(805\) 32.6712i 0.0405853i
\(806\) 0 0
\(807\) 367.720 0.455662
\(808\) −167.482 + 44.8765i −0.207279 + 0.0555403i
\(809\) 545.180 944.279i 0.673893 1.16722i −0.302898 0.953023i \(-0.597954\pi\)
0.976791 0.214194i \(-0.0687126\pi\)
\(810\) 43.7759 25.2740i 0.0540443 0.0312025i
\(811\) −445.614 445.614i −0.549463 0.549463i 0.376823 0.926285i \(-0.377017\pi\)
−0.926285 + 0.376823i \(0.877017\pi\)
\(812\) 124.994 466.486i 0.153934 0.574490i
\(813\) −641.172 171.802i −0.788649 0.211318i
\(814\) 159.952 159.952i 0.196501 0.196501i
\(815\) −4.80036 8.31446i −0.00589001 0.0102018i
\(816\) −1006.52 581.112i −1.23347 0.712147i
\(817\) 13.3262 + 49.7340i 0.0163111 + 0.0608740i
\(818\) 1910.77i 2.33590i
\(819\) 0 0
\(820\) −87.1929 −0.106333
\(821\) −330.832 + 88.6463i −0.402963 + 0.107974i −0.454607 0.890692i \(-0.650220\pi\)
0.0516445 + 0.998666i \(0.483554\pi\)
\(822\) 484.042 838.385i 0.588858 1.01993i
\(823\) 86.2376 49.7893i 0.104785 0.0604974i −0.446692 0.894688i \(-0.647398\pi\)
0.551476 + 0.834190i \(0.314065\pi\)
\(824\) −816.828 816.828i −0.991297 0.991297i
\(825\) −142.891 + 533.277i −0.173201 + 0.646396i
\(826\) −302.886 81.1581i −0.366690 0.0982544i
\(827\) 899.548 899.548i 1.08772 1.08772i 0.0919618 0.995763i \(-0.470686\pi\)
0.995763 0.0919618i \(-0.0293138\pi\)
\(828\) −554.197 959.898i −0.669320 1.15930i
\(829\) 27.8083 + 16.0552i 0.0335444 + 0.0193669i 0.516678 0.856180i \(-0.327168\pi\)
−0.483134 + 0.875546i \(0.660502\pi\)
\(830\) −14.7390 55.0066i −0.0177578 0.0662730i
\(831\) 406.394i 0.489042i
\(832\) 0 0
\(833\) 718.394 0.862418
\(834\) −598.783 + 160.444i −0.717966 + 0.192378i
\(835\) 86.6142 150.020i 0.103730 0.179665i
\(836\) 374.085 215.978i 0.447470 0.258347i
\(837\) 561.443 + 561.443i 0.670780 + 0.670780i
\(838\) −622.379 + 2322.75i −0.742695 + 2.77178i
\(839\) 558.422 + 149.629i 0.665581 + 0.178342i 0.575763 0.817616i \(-0.304705\pi\)
0.0898176 + 0.995958i \(0.471372\pi\)
\(840\) 35.3221 35.3221i 0.0420501 0.0420501i
\(841\) 87.3861 + 151.357i 0.103907 + 0.179973i
\(842\) −359.055 207.300i −0.426431 0.246200i
\(843\) −227.024 847.265i −0.269305 1.00506i
\(844\) 3035.84i 3.59696i
\(845\) 0 0
\(846\) 789.535 0.933256
\(847\) −26.5568 + 7.11587i −0.0313539 + 0.00840126i
\(848\) −70.4715 + 122.060i −0.0831032 + 0.143939i
\(849\) −747.540 + 431.592i −0.880494 + 0.508354i
\(850\) −1016.29 1016.29i −1.19563 1.19563i
\(851\) 42.5600 158.836i 0.0500118 0.186647i
\(852\) −1389.37 372.281i −1.63072 0.436949i
\(853\) −529.546 + 529.546i −0.620804 + 0.620804i −0.945737 0.324933i \(-0.894658\pi\)
0.324933 + 0.945737i \(0.394658\pi\)
\(854\) 247.846 + 429.282i 0.290218 + 0.502673i
\(855\) −9.92138 5.72811i −0.0116040 0.00669955i
\(856\) 722.221 + 2695.36i 0.843716 + 3.14879i
\(857\) 1586.76i 1.85153i 0.378097 + 0.925766i \(0.376579\pi\)
−0.378097 + 0.925766i \(0.623421\pi\)
\(858\) 0 0
\(859\) 145.062 0.168873 0.0844365 0.996429i \(-0.473091\pi\)
0.0844365 + 0.996429i \(0.473091\pi\)
\(860\) 61.4259 16.4590i 0.0714255 0.0191384i
\(861\) 34.2456 59.3150i 0.0397742 0.0688909i
\(862\) −1323.48 + 764.114i −1.53536 + 0.886443i
\(863\) 1005.80 + 1005.80i 1.16547 + 1.16547i 0.983258 + 0.182216i \(0.0583271\pi\)
0.182216 + 0.983258i \(0.441673\pi\)
\(864\) 336.190 1254.68i 0.389109 1.45217i
\(865\) 52.2862 + 14.0100i 0.0604465 + 0.0161966i
\(866\) −403.020 + 403.020i −0.465381 + 0.465381i
\(867\) −36.5879 63.3721i −0.0422006 0.0730935i
\(868\) 446.550 + 257.816i 0.514458 + 0.297023i
\(869\) 136.153 + 508.131i 0.156678 + 0.584731i
\(870\) 120.680i 0.138712i
\(871\) 0 0
\(872\) −2330.17 −2.67221
\(873\) −516.046 + 138.274i −0.591119 + 0.158390i
\(874\) 224.355 388.595i 0.256699 0.444616i
\(875\) 51.1072 29.5068i 0.0584082 0.0337220i
\(876\) 637.587 + 637.587i 0.727839 + 0.727839i
\(877\) −252.386 + 941.918i −0.287784 + 1.07402i 0.658998 + 0.752145i \(0.270981\pi\)
−0.946781 + 0.321878i \(0.895686\pi\)
\(878\) 1582.11 + 423.925i 1.80195 + 0.482830i
\(879\) −294.406 + 294.406i −0.334933 + 0.334933i
\(880\) −103.235 178.807i −0.117312 0.203190i
\(881\) 1391.98 + 803.657i 1.57999 + 0.912210i 0.994858 + 0.101275i \(0.0322923\pi\)
0.585136 + 0.810935i \(0.301041\pi\)
\(882\) 183.748 + 685.756i 0.208331 + 0.777502i
\(883\) 153.969i 0.174370i −0.996192 0.0871850i \(-0.972213\pi\)
0.996192 0.0871850i \(-0.0277871\pi\)
\(884\) 0 0
\(885\) −54.8341 −0.0619595
\(886\) 2035.76 545.480i 2.29769 0.615665i
\(887\) −62.6363 + 108.489i −0.0706159 + 0.122310i −0.899171 0.437597i \(-0.855830\pi\)
0.828555 + 0.559907i \(0.189163\pi\)
\(888\) 217.737 125.711i 0.245200 0.141566i
\(889\) −134.562 134.562i −0.151363 0.151363i
\(890\) 72.1086 269.113i 0.0810209 0.302374i
\(891\) 233.901 + 62.6737i 0.262516 + 0.0703409i
\(892\) −2273.08 + 2273.08i −2.54830 + 2.54830i
\(893\) 111.838 + 193.709i 0.125238 + 0.216919i
\(894\) −1239.47 715.609i −1.38643 0.800458i
\(895\) −10.9882 41.0085i −0.0122773 0.0458195i
\(896\) 142.315i 0.158834i
\(897\) 0 0
\(898\) 553.021 0.615837
\(899\) 687.086 184.104i 0.764279 0.204788i
\(900\) 496.982 860.798i 0.552202 0.956443i
\(901\) 57.9436 33.4537i 0.0643103 0.0371296i
\(902\) −422.061 422.061i −0.467917 0.467917i
\(903\) −12.9288 + 48.2508i −0.0143176 + 0.0534339i
\(904\) −2037.79 546.023i −2.25419 0.604008i
\(905\) 114.828 114.828i 0.126882 0.126882i
\(906\) 162.844 + 282.054i 0.179740 + 0.311318i
\(907\) 307.070 + 177.287i 0.338555 + 0.195465i 0.659633 0.751588i \(-0.270712\pi\)
−0.321078 + 0.947053i \(0.604045\pi\)
\(908\) −343.802 1283.09i −0.378637 1.41309i
\(909\) 38.5793i 0.0424415i
\(910\) 0 0
\(911\) 1040.31 1.14194 0.570972 0.820970i \(-0.306566\pi\)
0.570972 + 0.820970i \(0.306566\pi\)
\(912\) 314.300 84.2163i 0.344627 0.0923425i
\(913\) 136.404 236.258i 0.149401 0.258771i
\(914\) 1591.97 919.122i 1.74176 1.00560i
\(915\) 61.2933 + 61.2933i 0.0669872 + 0.0669872i
\(916\) 820.376 3061.68i 0.895607 3.34245i
\(917\) 217.597 + 58.3050i 0.237292 + 0.0635823i
\(918\) −1187.90 + 1187.90i −1.29401 + 1.29401i
\(919\) 208.100 + 360.440i 0.226442 + 0.392209i 0.956751 0.290908i \(-0.0939572\pi\)
−0.730309 + 0.683117i \(0.760624\pi\)
\(920\) −274.063 158.230i −0.297894 0.171989i
\(921\) 186.532 + 696.146i 0.202532 + 0.755859i
\(922\) 174.215i 0.188953i
\(923\) 0 0
\(924\) 419.074 0.453543
\(925\) 142.438 38.1662i 0.153987 0.0412607i
\(926\) 868.179 1503.73i 0.937559 1.62390i
\(927\) −222.591 + 128.513i −0.240120 + 0.138633i
\(928\) −822.851 822.851i −0.886692 0.886692i
\(929\) 156.806 585.209i 0.168790 0.629935i −0.828736 0.559640i \(-0.810939\pi\)
0.997526 0.0702945i \(-0.0223939\pi\)
\(930\) 124.458 + 33.3484i 0.133826 + 0.0358585i
\(931\) −142.219 + 142.219i −0.152760 + 0.152760i
\(932\) −50.3028 87.1271i −0.0539730 0.0934840i
\(933\) 212.883 + 122.908i 0.228171 + 0.131734i
\(934\) 291.236 + 1086.91i 0.311815 + 1.16371i
\(935\) 98.0135i 0.104827i
\(936\) 0 0
\(937\) −990.702 −1.05731 −0.528656 0.848836i \(-0.677304\pi\)
−0.528656 + 0.848836i \(0.677304\pi\)
\(938\) −811.281 + 217.382i −0.864905 + 0.231751i
\(939\) −241.616 + 418.491i −0.257312 + 0.445677i
\(940\) 239.247 138.130i 0.254518 0.146946i
\(941\) −974.392 974.392i −1.03549 1.03549i −0.999347 0.0361387i \(-0.988494\pi\)
−0.0361387 0.999347i \(-0.511506\pi\)
\(942\) 475.049 1772.91i 0.504299 1.88207i
\(943\) −419.118 112.302i −0.444452 0.119090i
\(944\) −1018.62 + 1018.62i −1.07905 + 1.07905i
\(945\) −17.1228 29.6575i −0.0181193 0.0313836i
\(946\) 377.006 + 217.664i 0.398526 + 0.230089i
\(947\) −328.533 1226.10i −0.346920 1.29472i −0.890353 0.455271i \(-0.849543\pi\)
0.543433 0.839452i \(-0.317124\pi\)
\(948\) 1023.94i 1.08011i
\(949\) 0 0
\(950\) 402.386 0.423564
\(951\) −369.630 + 99.0420i −0.388675 + 0.104145i
\(952\) −311.486 + 539.510i −0.327192 + 0.566713i
\(953\) 962.769 555.855i 1.01025 0.583269i 0.0989860 0.995089i \(-0.468440\pi\)
0.911265 + 0.411820i \(0.135107\pi\)
\(954\) 46.7544 + 46.7544i 0.0490089 + 0.0490089i
\(955\) −27.5514 + 102.823i −0.0288497 + 0.107668i
\(956\) 1248.48 + 334.529i 1.30594 + 0.349925i
\(957\) 408.794 408.794i 0.427162 0.427162i
\(958\) 197.825 + 342.642i 0.206497 + 0.357664i
\(959\) −213.138 123.055i −0.222250 0.128316i
\(960\) −9.93648 37.0835i −0.0103505 0.0386286i
\(961\) 201.527i 0.209705i
\(962\) 0 0
\(963\) 620.877 0.644732
\(964\) −2499.08 + 669.626i −2.59240 + 0.694632i
\(965\) 0.475803 0.824114i 0.000493060 0.000854005i
\(966\) 377.006 217.664i 0.390275 0.225325i
\(967\) 1333.92 + 1333.92i 1.37944 + 1.37944i 0.845561 + 0.533879i \(0.179266\pi\)
0.533879 + 0.845561i \(0.320734\pi\)
\(968\) −68.9260 + 257.235i −0.0712045 + 0.265739i
\(969\) −149.202 39.9786i −0.153975 0.0412576i
\(970\) −188.886 + 188.886i −0.194728 + 0.194728i
\(971\) 278.055 + 481.605i 0.286359 + 0.495989i 0.972938 0.231067i \(-0.0742216\pi\)
−0.686579 + 0.727056i \(0.740888\pi\)
\(972\) −1685.76 973.271i −1.73432 1.00131i
\(973\) 40.7886 + 152.225i 0.0419205 + 0.156449i
\(974\) 356.535i 0.366053i
\(975\) 0 0
\(976\) 2277.22 2.33322
\(977\) −1507.49 + 403.931i −1.54298 + 0.413440i −0.927227 0.374499i \(-0.877815\pi\)
−0.615753 + 0.787939i \(0.711148\pi\)
\(978\) 63.9626 110.787i 0.0654015 0.113279i
\(979\) 1155.86 667.337i 1.18066 0.681652i
\(980\) 175.653 + 175.653i 0.179238 + 0.179238i
\(981\) −134.189 + 500.799i −0.136788 + 0.510498i
\(982\) −2416.31 647.448i −2.46060 0.659316i
\(983\) 901.475 901.475i 0.917065 0.917065i −0.0797497 0.996815i \(-0.525412\pi\)
0.996815 + 0.0797497i \(0.0254121\pi\)
\(984\) −331.710 574.539i −0.337104 0.583881i
\(985\) −102.951 59.4388i −0.104519 0.0603439i
\(986\) 389.528 + 1453.74i 0.395059 + 1.47438i
\(987\) 217.005i 0.219863i
\(988\) 0 0
\(989\) 316.460 0.319980
\(990\) −93.5606 + 25.0695i −0.0945056 + 0.0253227i
\(991\) −382.670 + 662.805i −0.386146 + 0.668824i −0.991927 0.126807i \(-0.959527\pi\)
0.605782 + 0.795631i \(0.292861\pi\)
\(992\) 1076.00 621.228i 1.08468 0.626238i
\(993\) −670.268 670.268i −0.674993 0.674993i
\(994\) −135.242 + 504.731i −0.136059 + 0.507778i
\(995\) 148.627 + 39.8246i 0.149374 + 0.0400247i
\(996\) 375.478 375.478i 0.376986 0.376986i
\(997\) −537.699 931.322i −0.539317 0.934125i −0.998941 0.0460111i \(-0.985349\pi\)
0.459624 0.888114i \(-0.347984\pi\)
\(998\) 1561.73 + 901.666i 1.56486 + 0.903473i
\(999\) −44.6109 166.490i −0.0446556 0.166657i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.d.150.1 8
13.2 odd 12 inner 169.3.f.d.80.1 8
13.3 even 3 inner 169.3.f.d.89.2 8
13.4 even 6 13.3.d.a.8.1 yes 4
13.5 odd 4 inner 169.3.f.d.19.2 8
13.6 odd 12 169.3.d.d.70.2 4
13.7 odd 12 13.3.d.a.5.1 4
13.8 odd 4 169.3.f.f.19.1 8
13.9 even 3 169.3.d.d.99.2 4
13.10 even 6 169.3.f.f.89.1 8
13.11 odd 12 169.3.f.f.80.2 8
13.12 even 2 169.3.f.f.150.2 8
39.17 odd 6 117.3.j.a.73.2 4
39.20 even 12 117.3.j.a.109.2 4
52.7 even 12 208.3.t.c.161.1 4
52.43 odd 6 208.3.t.c.177.1 4
65.4 even 6 325.3.j.a.151.2 4
65.7 even 12 325.3.g.a.174.1 4
65.17 odd 12 325.3.g.b.99.2 4
65.33 even 12 325.3.g.b.174.2 4
65.43 odd 12 325.3.g.a.99.1 4
65.59 odd 12 325.3.j.a.226.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.d.a.5.1 4 13.7 odd 12
13.3.d.a.8.1 yes 4 13.4 even 6
117.3.j.a.73.2 4 39.17 odd 6
117.3.j.a.109.2 4 39.20 even 12
169.3.d.d.70.2 4 13.6 odd 12
169.3.d.d.99.2 4 13.9 even 3
169.3.f.d.19.2 8 13.5 odd 4 inner
169.3.f.d.80.1 8 13.2 odd 12 inner
169.3.f.d.89.2 8 13.3 even 3 inner
169.3.f.d.150.1 8 1.1 even 1 trivial
169.3.f.f.19.1 8 13.8 odd 4
169.3.f.f.80.2 8 13.11 odd 12
169.3.f.f.89.1 8 13.10 even 6
169.3.f.f.150.2 8 13.12 even 2
208.3.t.c.161.1 4 52.7 even 12
208.3.t.c.177.1 4 52.43 odd 6
325.3.g.a.99.1 4 65.43 odd 12
325.3.g.a.174.1 4 65.7 even 12
325.3.g.b.99.2 4 65.17 odd 12
325.3.g.b.174.2 4 65.33 even 12
325.3.j.a.151.2 4 65.4 even 6
325.3.j.a.226.2 4 65.59 odd 12