Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.f (of order \(12\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.60491646769\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 13) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(\zeta_{12}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−0.133975 | − | 0.500000i | 0.366025 | − | 0.633975i | 3.23205 | − | 1.86603i | 2.63397 | − | 2.63397i | −0.366025 | − | 0.0980762i | 1.53590 | − | 5.73205i | −2.83013 | − | 2.83013i | 4.23205 | + | 7.33013i | −1.66987 | − | 0.964102i | ||||||||||||
80.1 | −1.86603 | − | 0.500000i | −1.36603 | − | 2.36603i | −0.232051 | − | 0.133975i | 4.36603 | − | 4.36603i | 1.36603 | + | 5.09808i | 8.46410 | − | 2.26795i | 5.83013 | + | 5.83013i | 0.767949 | − | 1.33013i | −10.3301 | + | 5.96410i | |||||||||||||
89.1 | −0.133975 | + | 0.500000i | 0.366025 | + | 0.633975i | 3.23205 | + | 1.86603i | 2.63397 | + | 2.63397i | −0.366025 | + | 0.0980762i | 1.53590 | + | 5.73205i | −2.83013 | + | 2.83013i | 4.23205 | − | 7.33013i | −1.66987 | + | 0.964102i | |||||||||||||
150.1 | −1.86603 | + | 0.500000i | −1.36603 | + | 2.36603i | −0.232051 | + | 0.133975i | 4.36603 | + | 4.36603i | 1.36603 | − | 5.09808i | 8.46410 | + | 2.26795i | 5.83013 | − | 5.83013i | 0.767949 | + | 1.33013i | −10.3301 | − | 5.96410i | |||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.f | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.3.f.a | 4 | |
13.b | even | 2 | 1 | 169.3.f.c | 4 | ||
13.c | even | 3 | 1 | 169.3.d.c | 4 | ||
13.c | even | 3 | 1 | 169.3.f.b | 4 | ||
13.d | odd | 4 | 1 | 13.3.f.a | ✓ | 4 | |
13.d | odd | 4 | 1 | 169.3.f.b | 4 | ||
13.e | even | 6 | 1 | 13.3.f.a | ✓ | 4 | |
13.e | even | 6 | 1 | 169.3.d.a | 4 | ||
13.f | odd | 12 | 1 | 169.3.d.a | 4 | ||
13.f | odd | 12 | 1 | 169.3.d.c | 4 | ||
13.f | odd | 12 | 1 | inner | 169.3.f.a | 4 | |
13.f | odd | 12 | 1 | 169.3.f.c | 4 | ||
39.f | even | 4 | 1 | 117.3.bd.b | 4 | ||
39.h | odd | 6 | 1 | 117.3.bd.b | 4 | ||
52.f | even | 4 | 1 | 208.3.bd.d | 4 | ||
52.i | odd | 6 | 1 | 208.3.bd.d | 4 | ||
65.f | even | 4 | 1 | 325.3.w.b | 4 | ||
65.g | odd | 4 | 1 | 325.3.t.a | 4 | ||
65.k | even | 4 | 1 | 325.3.w.a | 4 | ||
65.l | even | 6 | 1 | 325.3.t.a | 4 | ||
65.r | odd | 12 | 1 | 325.3.w.a | 4 | ||
65.r | odd | 12 | 1 | 325.3.w.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.3.f.a | ✓ | 4 | 13.d | odd | 4 | 1 | |
13.3.f.a | ✓ | 4 | 13.e | even | 6 | 1 | |
117.3.bd.b | 4 | 39.f | even | 4 | 1 | ||
117.3.bd.b | 4 | 39.h | odd | 6 | 1 | ||
169.3.d.a | 4 | 13.e | even | 6 | 1 | ||
169.3.d.a | 4 | 13.f | odd | 12 | 1 | ||
169.3.d.c | 4 | 13.c | even | 3 | 1 | ||
169.3.d.c | 4 | 13.f | odd | 12 | 1 | ||
169.3.f.a | 4 | 1.a | even | 1 | 1 | trivial | |
169.3.f.a | 4 | 13.f | odd | 12 | 1 | inner | |
169.3.f.b | 4 | 13.c | even | 3 | 1 | ||
169.3.f.b | 4 | 13.d | odd | 4 | 1 | ||
169.3.f.c | 4 | 13.b | even | 2 | 1 | ||
169.3.f.c | 4 | 13.f | odd | 12 | 1 | ||
208.3.bd.d | 4 | 52.f | even | 4 | 1 | ||
208.3.bd.d | 4 | 52.i | odd | 6 | 1 | ||
325.3.t.a | 4 | 65.g | odd | 4 | 1 | ||
325.3.t.a | 4 | 65.l | even | 6 | 1 | ||
325.3.w.a | 4 | 65.k | even | 4 | 1 | ||
325.3.w.a | 4 | 65.r | odd | 12 | 1 | ||
325.3.w.b | 4 | 65.f | even | 4 | 1 | ||
325.3.w.b | 4 | 65.r | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 4T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1 \)
acting on \(S_{3}^{\mathrm{new}}(169, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 4 T^{3} + 5 T^{2} + 2 T + 1 \)
$3$
\( T^{4} + 2 T^{3} + 6 T^{2} - 4 T + 4 \)
$5$
\( T^{4} - 14 T^{3} + 98 T^{2} + \cdots + 529 \)
$7$
\( T^{4} - 20 T^{3} + 164 T^{2} + \cdots + 2704 \)
$11$
\( T^{4} + 28 T^{3} + 200 T^{2} + \cdots + 10816 \)
$13$
\( T^{4} \)
$17$
\( T^{4} - 12 T^{3} - 165 T^{2} + \cdots + 45369 \)
$19$
\( T^{4} - 14 T^{3} + 74 T^{2} + \cdots + 484 \)
$23$
\( T^{4} + 18 T^{3} - 90 T^{2} + \cdots + 39204 \)
$29$
\( T^{4} - 2 T^{3} + 111 T^{2} + \cdots + 11449 \)
$31$
\( T^{4} - 20 T^{3} + 200 T^{2} + \cdots + 2116 \)
$37$
\( T^{4} - 38 T^{3} + 1517 T^{2} + \cdots + 1868689 \)
$41$
\( T^{4} - 62 T^{3} + 3461 T^{2} + \cdots + 833569 \)
$43$
\( (T^{2} + 90 T + 2700)^{2} \)
$47$
\( T^{4} - 68 T^{3} + 2312 T^{2} + \cdots + 484 \)
$53$
\( (T^{2} - 64 T - 1163)^{2} \)
$59$
\( T^{4} - 32 T^{3} + 6980 T^{2} + \cdots + 16613776 \)
$61$
\( T^{4} + 124 T^{3} + 12855 T^{2} + \cdots + 6355441 \)
$67$
\( T^{4} - 170 T^{3} + 10706 T^{2} + \cdots + 9721924 \)
$71$
\( T^{4} + 106 T^{3} + 4658 T^{2} + \cdots + 2208196 \)
$73$
\( T^{4} + 58 T^{3} + 1682 T^{2} + \cdots + 3463321 \)
$79$
\( (T^{2} + 20 T - 5192)^{2} \)
$83$
\( T^{4} - 188 T^{3} + \cdots + 11587216 \)
$89$
\( T^{4} + 190 T^{3} + 12050 T^{2} + \cdots + 8702500 \)
$97$
\( T^{4} - 146 T^{3} + \cdots + 18028516 \)
show more
show less