Properties

Label 169.3.f
Level $169$
Weight $3$
Character orbit 169.f
Rep. character $\chi_{169}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $84$
Newform subspaces $7$
Sturm bound $45$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 7 \)
Sturm bound: \(45\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(169, [\chi])\).

Total New Old
Modular forms 148 124 24
Cusp forms 92 84 8
Eisenstein series 56 40 16

Trace form

\( 84 q + 2 q^{2} + 2 q^{3} + 6 q^{4} + 14 q^{5} - 10 q^{6} - 16 q^{7} + 6 q^{8} - 70 q^{9} - 24 q^{10} - 4 q^{11} + 8 q^{14} + 14 q^{15} - 6 q^{16} + 12 q^{17} + 2 q^{18} - 10 q^{19} - 26 q^{20} - 40 q^{21}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(169, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
169.3.f.a 169.f 13.f $4$ $4.605$ \(\Q(\zeta_{12})\) None 13.3.f.a \(-4\) \(-2\) \(14\) \(20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12})q^{2}+(-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
169.3.f.b 169.f 13.f $4$ $4.605$ \(\Q(\zeta_{12})\) None 13.3.f.a \(2\) \(-2\) \(14\) \(-16\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
169.3.f.c 169.f 13.f $4$ $4.605$ \(\Q(\zeta_{12})\) None 13.3.f.a \(4\) \(-2\) \(-14\) \(-20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12})q^{2}+(-\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+\cdots\)
169.3.f.d 169.f 13.f $8$ $4.605$ 8.0.3317760000.2 None 13.3.d.a \(-4\) \(4\) \(-16\) \(-12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\beta _{2}-\beta _{3}+\beta _{4}+\beta _{7})q^{2}+(1+\cdots)q^{3}+\cdots\)
169.3.f.e 169.f 13.f $8$ $4.605$ 8.0.\(\cdots\).9 None 169.3.d.b \(0\) \(12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{1}q^{2}+3\beta _{4}q^{3}+7\beta _{2}q^{4}+(\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\)
169.3.f.f 169.f 13.f $8$ $4.605$ 8.0.3317760000.2 None 13.3.d.a \(4\) \(4\) \(16\) \(12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\beta _{2}-\beta _{3}-\beta _{4}+\beta _{7})q^{2}+(1+\beta _{3}+\cdots)q^{3}+\cdots\)
169.3.f.g 169.f 13.f $48$ $4.605$ None 169.3.d.e \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{3}^{\mathrm{old}}(169, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(169, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)