Defining parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.f (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(45\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(169, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 124 | 24 |
Cusp forms | 92 | 84 | 8 |
Eisenstein series | 56 | 40 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(169, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(169, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(169, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)