Properties

Label 169.3.d.b.99.1
Level $169$
Weight $3$
Character 169.99
Analytic conductor $4.605$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(70,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.70");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.d (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.1
Root \(-2.34521 - 2.34521i\) of defining polynomial
Character \(\chi\) \(=\) 169.99
Dual form 169.3.d.b.70.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.34521 - 2.34521i) q^{2} -3.00000 q^{3} +7.00000i q^{4} +(2.34521 + 2.34521i) q^{5} +(7.03562 + 7.03562i) q^{6} +(7.03562 - 7.03562i) q^{7} +(7.03562 - 7.03562i) q^{8} +O(q^{10})\) \(q+(-2.34521 - 2.34521i) q^{2} -3.00000 q^{3} +7.00000i q^{4} +(2.34521 + 2.34521i) q^{5} +(7.03562 + 7.03562i) q^{6} +(7.03562 - 7.03562i) q^{7} +(7.03562 - 7.03562i) q^{8} -11.0000i q^{10} +(4.69042 - 4.69042i) q^{11} -21.0000i q^{12} -33.0000 q^{14} +(-7.03562 - 7.03562i) q^{15} -5.00000 q^{16} +3.00000i q^{17} +(-14.0712 - 14.0712i) q^{19} +(-16.4165 + 16.4165i) q^{20} +(-21.1069 + 21.1069i) q^{21} -22.0000 q^{22} +12.0000i q^{23} +(-21.1069 + 21.1069i) q^{24} -14.0000i q^{25} +27.0000 q^{27} +(49.2494 + 49.2494i) q^{28} -42.0000 q^{29} +33.0000i q^{30} +(-28.1425 - 28.1425i) q^{31} +(-16.4165 - 16.4165i) q^{32} +(-14.0712 + 14.0712i) q^{33} +(7.03562 - 7.03562i) q^{34} +33.0000 q^{35} +(35.1781 - 35.1781i) q^{37} +66.0000i q^{38} +33.0000 q^{40} +(-32.8329 - 32.8329i) q^{41} +99.0000 q^{42} -49.0000i q^{43} +(32.8329 + 32.8329i) q^{44} +(28.1425 - 28.1425i) q^{46} +(-2.34521 + 2.34521i) q^{47} +15.0000 q^{48} -50.0000i q^{49} +(-32.8329 + 32.8329i) q^{50} -9.00000i q^{51} -24.0000 q^{53} +(-63.3206 - 63.3206i) q^{54} +22.0000 q^{55} -99.0000i q^{56} +(42.2137 + 42.2137i) q^{57} +(98.4987 + 98.4987i) q^{58} +(37.5233 - 37.5233i) q^{59} +(49.2494 - 49.2494i) q^{60} +30.0000 q^{61} +132.000i q^{62} +97.0000i q^{64} +66.0000 q^{66} +(28.1425 + 28.1425i) q^{67} -21.0000 q^{68} -36.0000i q^{69} +(-77.3919 - 77.3919i) q^{70} +(16.4165 + 16.4165i) q^{71} +(28.1425 - 28.1425i) q^{73} -165.000 q^{74} +42.0000i q^{75} +(98.4987 - 98.4987i) q^{76} -66.0000i q^{77} +54.0000 q^{79} +(-11.7260 - 11.7260i) q^{80} -81.0000 q^{81} +154.000i q^{82} +(32.8329 + 32.8329i) q^{83} +(-147.748 - 147.748i) q^{84} +(-7.03562 + 7.03562i) q^{85} +(-114.915 + 114.915i) q^{86} +126.000 q^{87} -66.0000i q^{88} +(-117.260 + 117.260i) q^{89} -84.0000 q^{92} +(84.4275 + 84.4275i) q^{93} +11.0000 q^{94} -66.0000i q^{95} +(49.2494 + 49.2494i) q^{96} +(-14.0712 - 14.0712i) q^{97} +(-117.260 + 117.260i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{3} - 132 q^{14} - 20 q^{16} - 88 q^{22} + 108 q^{27} - 168 q^{29} + 132 q^{35} + 132 q^{40} + 396 q^{42} + 60 q^{48} - 96 q^{53} + 88 q^{55} + 120 q^{61} + 264 q^{66} - 84 q^{68} - 660 q^{74} + 216 q^{79} - 324 q^{81} + 504 q^{87} - 336 q^{92} + 44 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.34521 2.34521i −1.17260 1.17260i −0.981587 0.191017i \(-0.938821\pi\)
−0.191017 0.981587i \(-0.561179\pi\)
\(3\) −3.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 7.00000i 1.75000i
\(5\) 2.34521 + 2.34521i 0.469042 + 0.469042i 0.901604 0.432562i \(-0.142390\pi\)
−0.432562 + 0.901604i \(0.642390\pi\)
\(6\) 7.03562 + 7.03562i 1.17260 + 1.17260i
\(7\) 7.03562 7.03562i 1.00509 1.00509i 0.00510211 0.999987i \(-0.498376\pi\)
0.999987 0.00510211i \(-0.00162406\pi\)
\(8\) 7.03562 7.03562i 0.879453 0.879453i
\(9\) 0 0
\(10\) 11.0000i 1.10000i
\(11\) 4.69042 4.69042i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) 21.0000i 1.75000i
\(13\) 0 0
\(14\) −33.0000 −2.35714
\(15\) −7.03562 7.03562i −0.469042 0.469042i
\(16\) −5.00000 −0.312500
\(17\) 3.00000i 0.176471i 0.996100 + 0.0882353i \(0.0281227\pi\)
−0.996100 + 0.0882353i \(0.971877\pi\)
\(18\) 0 0
\(19\) −14.0712 14.0712i −0.740592 0.740592i 0.232100 0.972692i \(-0.425440\pi\)
−0.972692 + 0.232100i \(0.925440\pi\)
\(20\) −16.4165 + 16.4165i −0.820823 + 0.820823i
\(21\) −21.1069 + 21.1069i −1.00509 + 1.00509i
\(22\) −22.0000 −1.00000
\(23\) 12.0000i 0.521739i 0.965374 + 0.260870i \(0.0840093\pi\)
−0.965374 + 0.260870i \(0.915991\pi\)
\(24\) −21.1069 + 21.1069i −0.879453 + 0.879453i
\(25\) 14.0000i 0.560000i
\(26\) 0 0
\(27\) 27.0000 1.00000
\(28\) 49.2494 + 49.2494i 1.75891 + 1.75891i
\(29\) −42.0000 −1.44828 −0.724138 0.689655i \(-0.757762\pi\)
−0.724138 + 0.689655i \(0.757762\pi\)
\(30\) 33.0000i 1.10000i
\(31\) −28.1425 28.1425i −0.907822 0.907822i 0.0882738 0.996096i \(-0.471865\pi\)
−0.996096 + 0.0882738i \(0.971865\pi\)
\(32\) −16.4165 16.4165i −0.513014 0.513014i
\(33\) −14.0712 + 14.0712i −0.426401 + 0.426401i
\(34\) 7.03562 7.03562i 0.206930 0.206930i
\(35\) 33.0000 0.942857
\(36\) 0 0
\(37\) 35.1781 35.1781i 0.950760 0.950760i −0.0480834 0.998843i \(-0.515311\pi\)
0.998843 + 0.0480834i \(0.0153113\pi\)
\(38\) 66.0000i 1.73684i
\(39\) 0 0
\(40\) 33.0000 0.825000
\(41\) −32.8329 32.8329i −0.800803 0.800803i 0.182418 0.983221i \(-0.441607\pi\)
−0.983221 + 0.182418i \(0.941607\pi\)
\(42\) 99.0000 2.35714
\(43\) 49.0000i 1.13953i −0.821806 0.569767i \(-0.807033\pi\)
0.821806 0.569767i \(-0.192967\pi\)
\(44\) 32.8329 + 32.8329i 0.746203 + 0.746203i
\(45\) 0 0
\(46\) 28.1425 28.1425i 0.611793 0.611793i
\(47\) −2.34521 + 2.34521i −0.0498980 + 0.0498980i −0.731616 0.681717i \(-0.761233\pi\)
0.681717 + 0.731616i \(0.261233\pi\)
\(48\) 15.0000 0.312500
\(49\) 50.0000i 1.02041i
\(50\) −32.8329 + 32.8329i −0.656658 + 0.656658i
\(51\) 9.00000i 0.176471i
\(52\) 0 0
\(53\) −24.0000 −0.452830 −0.226415 0.974031i \(-0.572701\pi\)
−0.226415 + 0.974031i \(0.572701\pi\)
\(54\) −63.3206 63.3206i −1.17260 1.17260i
\(55\) 22.0000 0.400000
\(56\) 99.0000i 1.76786i
\(57\) 42.2137 + 42.2137i 0.740592 + 0.740592i
\(58\) 98.4987 + 98.4987i 1.69825 + 1.69825i
\(59\) 37.5233 37.5233i 0.635989 0.635989i −0.313575 0.949563i \(-0.601527\pi\)
0.949563 + 0.313575i \(0.101527\pi\)
\(60\) 49.2494 49.2494i 0.820823 0.820823i
\(61\) 30.0000 0.491803 0.245902 0.969295i \(-0.420916\pi\)
0.245902 + 0.969295i \(0.420916\pi\)
\(62\) 132.000i 2.12903i
\(63\) 0 0
\(64\) 97.0000i 1.51562i
\(65\) 0 0
\(66\) 66.0000 1.00000
\(67\) 28.1425 + 28.1425i 0.420037 + 0.420037i 0.885216 0.465179i \(-0.154010\pi\)
−0.465179 + 0.885216i \(0.654010\pi\)
\(68\) −21.0000 −0.308824
\(69\) 36.0000i 0.521739i
\(70\) −77.3919 77.3919i −1.10560 1.10560i
\(71\) 16.4165 + 16.4165i 0.231218 + 0.231218i 0.813201 0.581983i \(-0.197723\pi\)
−0.581983 + 0.813201i \(0.697723\pi\)
\(72\) 0 0
\(73\) 28.1425 28.1425i 0.385514 0.385514i −0.487570 0.873084i \(-0.662117\pi\)
0.873084 + 0.487570i \(0.162117\pi\)
\(74\) −165.000 −2.22973
\(75\) 42.0000i 0.560000i
\(76\) 98.4987 98.4987i 1.29604 1.29604i
\(77\) 66.0000i 0.857143i
\(78\) 0 0
\(79\) 54.0000 0.683544 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(80\) −11.7260 11.7260i −0.146575 0.146575i
\(81\) −81.0000 −1.00000
\(82\) 154.000i 1.87805i
\(83\) 32.8329 + 32.8329i 0.395577 + 0.395577i 0.876670 0.481093i \(-0.159760\pi\)
−0.481093 + 0.876670i \(0.659760\pi\)
\(84\) −147.748 147.748i −1.75891 1.75891i
\(85\) −7.03562 + 7.03562i −0.0827720 + 0.0827720i
\(86\) −114.915 + 114.915i −1.33622 + 1.33622i
\(87\) 126.000 1.44828
\(88\) 66.0000i 0.750000i
\(89\) −117.260 + 117.260i −1.31753 + 1.31753i −0.401809 + 0.915723i \(0.631618\pi\)
−0.915723 + 0.401809i \(0.868382\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −84.0000 −0.913043
\(93\) 84.4275 + 84.4275i 0.907822 + 0.907822i
\(94\) 11.0000 0.117021
\(95\) 66.0000i 0.694737i
\(96\) 49.2494 + 49.2494i 0.513014 + 0.513014i
\(97\) −14.0712 14.0712i −0.145064 0.145064i 0.630845 0.775909i \(-0.282708\pi\)
−0.775909 + 0.630845i \(0.782708\pi\)
\(98\) −117.260 + 117.260i −1.19653 + 1.19653i
\(99\) 0 0
\(100\) 98.0000 0.980000
\(101\) 144.000i 1.42574i −0.701295 0.712871i \(-0.747394\pi\)
0.701295 0.712871i \(-0.252606\pi\)
\(102\) −21.1069 + 21.1069i −0.206930 + 0.206930i
\(103\) 26.0000i 0.252427i −0.992003 0.126214i \(-0.959718\pi\)
0.992003 0.126214i \(-0.0402825\pi\)
\(104\) 0 0
\(105\) −99.0000 −0.942857
\(106\) 56.2850 + 56.2850i 0.530990 + 0.530990i
\(107\) 114.000 1.06542 0.532710 0.846298i \(-0.321174\pi\)
0.532710 + 0.846298i \(0.321174\pi\)
\(108\) 189.000i 1.75000i
\(109\) −119.606 119.606i −1.09730 1.09730i −0.994725 0.102574i \(-0.967292\pi\)
−0.102574 0.994725i \(-0.532708\pi\)
\(110\) −51.5946 51.5946i −0.469042 0.469042i
\(111\) −105.534 + 105.534i −0.950760 + 0.950760i
\(112\) −35.1781 + 35.1781i −0.314090 + 0.314090i
\(113\) −126.000 −1.11504 −0.557522 0.830162i \(-0.688248\pi\)
−0.557522 + 0.830162i \(0.688248\pi\)
\(114\) 198.000i 1.73684i
\(115\) −28.1425 + 28.1425i −0.244717 + 0.244717i
\(116\) 294.000i 2.53448i
\(117\) 0 0
\(118\) −176.000 −1.49153
\(119\) 21.1069 + 21.1069i 0.177369 + 0.177369i
\(120\) −99.0000 −0.825000
\(121\) 77.0000i 0.636364i
\(122\) −70.3562 70.3562i −0.576690 0.576690i
\(123\) 98.4987 + 98.4987i 0.800803 + 0.800803i
\(124\) 196.997 196.997i 1.58869 1.58869i
\(125\) 91.4631 91.4631i 0.731705 0.731705i
\(126\) 0 0
\(127\) 168.000i 1.32283i 0.750018 + 0.661417i \(0.230045\pi\)
−0.750018 + 0.661417i \(0.769955\pi\)
\(128\) 161.819 161.819i 1.26421 1.26421i
\(129\) 147.000i 1.13953i
\(130\) 0 0
\(131\) 93.0000 0.709924 0.354962 0.934881i \(-0.384494\pi\)
0.354962 + 0.934881i \(0.384494\pi\)
\(132\) −98.4987 98.4987i −0.746203 0.746203i
\(133\) −198.000 −1.48872
\(134\) 132.000i 0.985075i
\(135\) 63.3206 + 63.3206i 0.469042 + 0.469042i
\(136\) 21.1069 + 21.1069i 0.155198 + 0.155198i
\(137\) 37.5233 37.5233i 0.273893 0.273893i −0.556772 0.830665i \(-0.687960\pi\)
0.830665 + 0.556772i \(0.187960\pi\)
\(138\) −84.4275 + 84.4275i −0.611793 + 0.611793i
\(139\) −35.0000 −0.251799 −0.125899 0.992043i \(-0.540182\pi\)
−0.125899 + 0.992043i \(0.540182\pi\)
\(140\) 231.000i 1.65000i
\(141\) 7.03562 7.03562i 0.0498980 0.0498980i
\(142\) 77.0000i 0.542254i
\(143\) 0 0
\(144\) 0 0
\(145\) −98.4987 98.4987i −0.679302 0.679302i
\(146\) −132.000 −0.904110
\(147\) 150.000i 1.02041i
\(148\) 246.247 + 246.247i 1.66383 + 1.66383i
\(149\) 46.9042 + 46.9042i 0.314793 + 0.314793i 0.846763 0.531970i \(-0.178548\pi\)
−0.531970 + 0.846763i \(0.678548\pi\)
\(150\) 98.4987 98.4987i 0.656658 0.656658i
\(151\) 119.606 119.606i 0.792090 0.792090i −0.189744 0.981834i \(-0.560766\pi\)
0.981834 + 0.189744i \(0.0607657\pi\)
\(152\) −198.000 −1.30263
\(153\) 0 0
\(154\) −154.784 + 154.784i −1.00509 + 1.00509i
\(155\) 132.000i 0.851613i
\(156\) 0 0
\(157\) 80.0000 0.509554 0.254777 0.967000i \(-0.417998\pi\)
0.254777 + 0.967000i \(0.417998\pi\)
\(158\) −126.641 126.641i −0.801527 0.801527i
\(159\) 72.0000 0.452830
\(160\) 77.0000i 0.481250i
\(161\) 84.4275 + 84.4275i 0.524394 + 0.524394i
\(162\) 189.962 + 189.962i 1.17260 + 1.17260i
\(163\) −84.4275 + 84.4275i −0.517960 + 0.517960i −0.916954 0.398994i \(-0.869360\pi\)
0.398994 + 0.916954i \(0.369360\pi\)
\(164\) 229.830 229.830i 1.40140 1.40140i
\(165\) −66.0000 −0.400000
\(166\) 154.000i 0.927711i
\(167\) 65.6658 65.6658i 0.393209 0.393209i −0.482621 0.875829i \(-0.660315\pi\)
0.875829 + 0.482621i \(0.160315\pi\)
\(168\) 297.000i 1.76786i
\(169\) 0 0
\(170\) 33.0000 0.194118
\(171\) 0 0
\(172\) 343.000 1.99419
\(173\) 114.000i 0.658960i −0.944163 0.329480i \(-0.893127\pi\)
0.944163 0.329480i \(-0.106873\pi\)
\(174\) −295.496 295.496i −1.69825 1.69825i
\(175\) −98.4987 98.4987i −0.562850 0.562850i
\(176\) −23.4521 + 23.4521i −0.133250 + 0.133250i
\(177\) −112.570 + 112.570i −0.635989 + 0.635989i
\(178\) 550.000 3.08989
\(179\) 129.000i 0.720670i 0.932823 + 0.360335i \(0.117338\pi\)
−0.932823 + 0.360335i \(0.882662\pi\)
\(180\) 0 0
\(181\) 182.000i 1.00552i 0.864425 + 0.502762i \(0.167683\pi\)
−0.864425 + 0.502762i \(0.832317\pi\)
\(182\) 0 0
\(183\) −90.0000 −0.491803
\(184\) 84.4275 + 84.4275i 0.458845 + 0.458845i
\(185\) 165.000 0.891892
\(186\) 396.000i 2.12903i
\(187\) 14.0712 + 14.0712i 0.0752473 + 0.0752473i
\(188\) −16.4165 16.4165i −0.0873216 0.0873216i
\(189\) 189.962 189.962i 1.00509 1.00509i
\(190\) −154.784 + 154.784i −0.814651 + 0.814651i
\(191\) 30.0000 0.157068 0.0785340 0.996911i \(-0.474976\pi\)
0.0785340 + 0.996911i \(0.474976\pi\)
\(192\) 291.000i 1.51562i
\(193\) 126.641 126.641i 0.656172 0.656172i −0.298300 0.954472i \(-0.596420\pi\)
0.954472 + 0.298300i \(0.0964196\pi\)
\(194\) 66.0000i 0.340206i
\(195\) 0 0
\(196\) 350.000 1.78571
\(197\) 180.581 + 180.581i 0.916655 + 0.916655i 0.996784 0.0801296i \(-0.0255334\pi\)
−0.0801296 + 0.996784i \(0.525533\pi\)
\(198\) 0 0
\(199\) 276.000i 1.38693i 0.720488 + 0.693467i \(0.243918\pi\)
−0.720488 + 0.693467i \(0.756082\pi\)
\(200\) −98.4987 98.4987i −0.492494 0.492494i
\(201\) −84.4275 84.4275i −0.420037 0.420037i
\(202\) −337.710 + 337.710i −1.67183 + 1.67183i
\(203\) −295.496 + 295.496i −1.45565 + 1.45565i
\(204\) 63.0000 0.308824
\(205\) 154.000i 0.751220i
\(206\) −60.9754 + 60.9754i −0.295997 + 0.295997i
\(207\) 0 0
\(208\) 0 0
\(209\) −132.000 −0.631579
\(210\) 232.176 + 232.176i 1.10560 + 1.10560i
\(211\) 231.000 1.09479 0.547393 0.836875i \(-0.315620\pi\)
0.547393 + 0.836875i \(0.315620\pi\)
\(212\) 168.000i 0.792453i
\(213\) −49.2494 49.2494i −0.231218 0.231218i
\(214\) −267.354 267.354i −1.24932 1.24932i
\(215\) 114.915 114.915i 0.534489 0.534489i
\(216\) 189.962 189.962i 0.879453 0.879453i
\(217\) −396.000 −1.82488
\(218\) 561.000i 2.57339i
\(219\) −84.4275 + 84.4275i −0.385514 + 0.385514i
\(220\) 154.000i 0.700000i
\(221\) 0 0
\(222\) 495.000 2.22973
\(223\) −246.247 246.247i −1.10425 1.10425i −0.993892 0.110353i \(-0.964802\pi\)
−0.110353 0.993892i \(-0.535198\pi\)
\(224\) −231.000 −1.03125
\(225\) 0 0
\(226\) 295.496 + 295.496i 1.30751 + 1.30751i
\(227\) −136.022 136.022i −0.599216 0.599216i 0.340888 0.940104i \(-0.389272\pi\)
−0.940104 + 0.340888i \(0.889272\pi\)
\(228\) −295.496 + 295.496i −1.29604 + 1.29604i
\(229\) −63.3206 + 63.3206i −0.276509 + 0.276509i −0.831714 0.555205i \(-0.812640\pi\)
0.555205 + 0.831714i \(0.312640\pi\)
\(230\) 132.000 0.573913
\(231\) 198.000i 0.857143i
\(232\) −295.496 + 295.496i −1.27369 + 1.27369i
\(233\) 429.000i 1.84120i 0.390505 + 0.920601i \(0.372300\pi\)
−0.390505 + 0.920601i \(0.627700\pi\)
\(234\) 0 0
\(235\) −11.0000 −0.0468085
\(236\) 262.663 + 262.663i 1.11298 + 1.11298i
\(237\) −162.000 −0.683544
\(238\) 99.0000i 0.415966i
\(239\) −180.581 180.581i −0.755569 0.755569i 0.219944 0.975513i \(-0.429413\pi\)
−0.975513 + 0.219944i \(0.929413\pi\)
\(240\) 35.1781 + 35.1781i 0.146575 + 0.146575i
\(241\) −267.354 + 267.354i −1.10935 + 1.10935i −0.116116 + 0.993236i \(0.537044\pi\)
−0.993236 + 0.116116i \(0.962956\pi\)
\(242\) 180.581 180.581i 0.746203 0.746203i
\(243\) 0 0
\(244\) 210.000i 0.860656i
\(245\) 117.260 117.260i 0.478614 0.478614i
\(246\) 462.000i 1.87805i
\(247\) 0 0
\(248\) −396.000 −1.59677
\(249\) −98.4987 98.4987i −0.395577 0.395577i
\(250\) −429.000 −1.71600
\(251\) 42.0000i 0.167331i 0.996494 + 0.0836653i \(0.0266627\pi\)
−0.996494 + 0.0836653i \(0.973337\pi\)
\(252\) 0 0
\(253\) 56.2850 + 56.2850i 0.222470 + 0.222470i
\(254\) 393.995 393.995i 1.55116 1.55116i
\(255\) 21.1069 21.1069i 0.0827720 0.0827720i
\(256\) −371.000 −1.44922
\(257\) 261.000i 1.01556i −0.861486 0.507782i \(-0.830466\pi\)
0.861486 0.507782i \(-0.169534\pi\)
\(258\) 344.746 344.746i 1.33622 1.33622i
\(259\) 495.000i 1.91120i
\(260\) 0 0
\(261\) 0 0
\(262\) −218.104 218.104i −0.832459 0.832459i
\(263\) 270.000 1.02662 0.513308 0.858204i \(-0.328420\pi\)
0.513308 + 0.858204i \(0.328420\pi\)
\(264\) 198.000i 0.750000i
\(265\) −56.2850 56.2850i −0.212396 0.212396i
\(266\) 464.351 + 464.351i 1.74568 + 1.74568i
\(267\) 351.781 351.781i 1.31753 1.31753i
\(268\) −196.997 + 196.997i −0.735065 + 0.735065i
\(269\) 186.000 0.691450 0.345725 0.938336i \(-0.387633\pi\)
0.345725 + 0.938336i \(0.387633\pi\)
\(270\) 297.000i 1.10000i
\(271\) 35.1781 35.1781i 0.129809 0.129809i −0.639217 0.769026i \(-0.720742\pi\)
0.769026 + 0.639217i \(0.220742\pi\)
\(272\) 15.0000i 0.0551471i
\(273\) 0 0
\(274\) −176.000 −0.642336
\(275\) −65.6658 65.6658i −0.238785 0.238785i
\(276\) 252.000 0.913043
\(277\) 374.000i 1.35018i −0.737735 0.675090i \(-0.764105\pi\)
0.737735 0.675090i \(-0.235895\pi\)
\(278\) 82.0823 + 82.0823i 0.295260 + 0.295260i
\(279\) 0 0
\(280\) 232.176 232.176i 0.829199 0.829199i
\(281\) −32.8329 + 32.8329i −0.116843 + 0.116843i −0.763111 0.646268i \(-0.776329\pi\)
0.646268 + 0.763111i \(0.276329\pi\)
\(282\) −33.0000 −0.117021
\(283\) 66.0000i 0.233216i −0.993178 0.116608i \(-0.962798\pi\)
0.993178 0.116608i \(-0.0372020\pi\)
\(284\) −114.915 + 114.915i −0.404631 + 0.404631i
\(285\) 198.000i 0.694737i
\(286\) 0 0
\(287\) −462.000 −1.60976
\(288\) 0 0
\(289\) 280.000 0.968858
\(290\) 462.000i 1.59310i
\(291\) 42.2137 + 42.2137i 0.145064 + 0.145064i
\(292\) 196.997 + 196.997i 0.674649 + 0.674649i
\(293\) −114.915 + 114.915i −0.392202 + 0.392202i −0.875472 0.483270i \(-0.839449\pi\)
0.483270 + 0.875472i \(0.339449\pi\)
\(294\) 351.781 351.781i 1.19653 1.19653i
\(295\) 176.000 0.596610
\(296\) 495.000i 1.67230i
\(297\) 126.641 126.641i 0.426401 0.426401i
\(298\) 220.000i 0.738255i
\(299\) 0 0
\(300\) −294.000 −0.980000
\(301\) −344.746 344.746i −1.14533 1.14533i
\(302\) −561.000 −1.85762
\(303\) 432.000i 1.42574i
\(304\) 70.3562 + 70.3562i 0.231435 + 0.231435i
\(305\) 70.3562 + 70.3562i 0.230676 + 0.230676i
\(306\) 0 0
\(307\) 393.995 393.995i 1.28337 1.28337i 0.344634 0.938737i \(-0.388003\pi\)
0.938737 0.344634i \(-0.111997\pi\)
\(308\) 462.000 1.50000
\(309\) 78.0000i 0.252427i
\(310\) −309.567 + 309.567i −0.998605 + 0.998605i
\(311\) 234.000i 0.752412i −0.926536 0.376206i \(-0.877229\pi\)
0.926536 0.376206i \(-0.122771\pi\)
\(312\) 0 0
\(313\) 93.0000 0.297125 0.148562 0.988903i \(-0.452535\pi\)
0.148562 + 0.988903i \(0.452535\pi\)
\(314\) −187.617 187.617i −0.597505 0.597505i
\(315\) 0 0
\(316\) 378.000i 1.19620i
\(317\) 215.759 + 215.759i 0.680628 + 0.680628i 0.960142 0.279514i \(-0.0901732\pi\)
−0.279514 + 0.960142i \(0.590173\pi\)
\(318\) −168.855 168.855i −0.530990 0.530990i
\(319\) −196.997 + 196.997i −0.617547 + 0.617547i
\(320\) −227.485 + 227.485i −0.710891 + 0.710891i
\(321\) −342.000 −1.06542
\(322\) 396.000i 1.22981i
\(323\) 42.2137 42.2137i 0.130693 0.130693i
\(324\) 567.000i 1.75000i
\(325\) 0 0
\(326\) 396.000 1.21472
\(327\) 358.817 + 358.817i 1.09730 + 1.09730i
\(328\) −462.000 −1.40854
\(329\) 33.0000i 0.100304i
\(330\) 154.784 + 154.784i 0.469042 + 0.469042i
\(331\) −14.0712 14.0712i −0.0425113 0.0425113i 0.685532 0.728043i \(-0.259570\pi\)
−0.728043 + 0.685532i \(0.759570\pi\)
\(332\) −229.830 + 229.830i −0.692260 + 0.692260i
\(333\) 0 0
\(334\) −308.000 −0.922156
\(335\) 132.000i 0.394030i
\(336\) 105.534 105.534i 0.314090 0.314090i
\(337\) 429.000i 1.27300i 0.771278 + 0.636499i \(0.219618\pi\)
−0.771278 + 0.636499i \(0.780382\pi\)
\(338\) 0 0
\(339\) 378.000 1.11504
\(340\) −49.2494 49.2494i −0.144851 0.144851i
\(341\) −264.000 −0.774194
\(342\) 0 0
\(343\) −7.03562 7.03562i −0.0205120 0.0205120i
\(344\) −344.746 344.746i −1.00217 1.00217i
\(345\) 84.4275 84.4275i 0.244717 0.244717i
\(346\) −267.354 + 267.354i −0.772699 + 0.772699i
\(347\) −165.000 −0.475504 −0.237752 0.971326i \(-0.576411\pi\)
−0.237752 + 0.971326i \(0.576411\pi\)
\(348\) 882.000i 2.53448i
\(349\) −147.748 + 147.748i −0.423347 + 0.423347i −0.886354 0.463007i \(-0.846770\pi\)
0.463007 + 0.886354i \(0.346770\pi\)
\(350\) 462.000i 1.32000i
\(351\) 0 0
\(352\) −154.000 −0.437500
\(353\) 454.970 + 454.970i 1.28887 + 1.28887i 0.935475 + 0.353393i \(0.114972\pi\)
0.353393 + 0.935475i \(0.385028\pi\)
\(354\) 528.000 1.49153
\(355\) 77.0000i 0.216901i
\(356\) −820.823 820.823i −2.30568 2.30568i
\(357\) −63.3206 63.3206i −0.177369 0.177369i
\(358\) 302.532 302.532i 0.845061 0.845061i
\(359\) −215.759 + 215.759i −0.601000 + 0.601000i −0.940578 0.339578i \(-0.889716\pi\)
0.339578 + 0.940578i \(0.389716\pi\)
\(360\) 0 0
\(361\) 35.0000i 0.0969529i
\(362\) 426.828 426.828i 1.17908 1.17908i
\(363\) 231.000i 0.636364i
\(364\) 0 0
\(365\) 132.000 0.361644
\(366\) 211.069 + 211.069i 0.576690 + 0.576690i
\(367\) −536.000 −1.46049 −0.730245 0.683185i \(-0.760594\pi\)
−0.730245 + 0.683185i \(0.760594\pi\)
\(368\) 60.0000i 0.163043i
\(369\) 0 0
\(370\) −386.959 386.959i −1.04584 1.04584i
\(371\) −168.855 + 168.855i −0.455135 + 0.455135i
\(372\) −590.992 + 590.992i −1.58869 + 1.58869i
\(373\) 264.000 0.707775 0.353887 0.935288i \(-0.384860\pi\)
0.353887 + 0.935288i \(0.384860\pi\)
\(374\) 66.0000i 0.176471i
\(375\) −274.389 + 274.389i −0.731705 + 0.731705i
\(376\) 33.0000i 0.0877660i
\(377\) 0 0
\(378\) −891.000 −2.35714
\(379\) 393.995 + 393.995i 1.03956 + 1.03956i 0.999184 + 0.0403800i \(0.0128569\pi\)
0.0403800 + 0.999184i \(0.487143\pi\)
\(380\) 462.000 1.21579
\(381\) 504.000i 1.32283i
\(382\) −70.3562 70.3562i −0.184179 0.184179i
\(383\) 199.343 + 199.343i 0.520477 + 0.520477i 0.917715 0.397238i \(-0.130031\pi\)
−0.397238 + 0.917715i \(0.630031\pi\)
\(384\) −485.458 + 485.458i −1.26421 + 1.26421i
\(385\) 154.784 154.784i 0.402036 0.402036i
\(386\) −594.000 −1.53886
\(387\) 0 0
\(388\) 98.4987 98.4987i 0.253863 0.253863i
\(389\) 312.000i 0.802057i −0.916066 0.401028i \(-0.868653\pi\)
0.916066 0.401028i \(-0.131347\pi\)
\(390\) 0 0
\(391\) −36.0000 −0.0920716
\(392\) −351.781 351.781i −0.897401 0.897401i
\(393\) −279.000 −0.709924
\(394\) 847.000i 2.14975i
\(395\) 126.641 + 126.641i 0.320611 + 0.320611i
\(396\) 0 0
\(397\) −84.4275 + 84.4275i −0.212664 + 0.212664i −0.805398 0.592734i \(-0.798048\pi\)
0.592734 + 0.805398i \(0.298048\pi\)
\(398\) 647.277 647.277i 1.62633 1.62633i
\(399\) 594.000 1.48872
\(400\) 70.0000i 0.175000i
\(401\) −544.088 + 544.088i −1.35683 + 1.35683i −0.479030 + 0.877799i \(0.659011\pi\)
−0.877799 + 0.479030i \(0.840989\pi\)
\(402\) 396.000i 0.985075i
\(403\) 0 0
\(404\) 1008.00 2.49505
\(405\) −189.962 189.962i −0.469042 0.469042i
\(406\) 1386.00 3.41379
\(407\) 330.000i 0.810811i
\(408\) −63.3206 63.3206i −0.155198 0.155198i
\(409\) 168.855 + 168.855i 0.412848 + 0.412848i 0.882730 0.469881i \(-0.155703\pi\)
−0.469881 + 0.882730i \(0.655703\pi\)
\(410\) −361.162 + 361.162i −0.880883 + 0.880883i
\(411\) −112.570 + 112.570i −0.273893 + 0.273893i
\(412\) 182.000 0.441748
\(413\) 528.000i 1.27845i
\(414\) 0 0
\(415\) 154.000i 0.371084i
\(416\) 0 0
\(417\) 105.000 0.251799
\(418\) 309.567 + 309.567i 0.740592 + 0.740592i
\(419\) 387.000 0.923628 0.461814 0.886977i \(-0.347199\pi\)
0.461814 + 0.886977i \(0.347199\pi\)
\(420\) 693.000i 1.65000i
\(421\) 63.3206 + 63.3206i 0.150405 + 0.150405i 0.778299 0.627894i \(-0.216083\pi\)
−0.627894 + 0.778299i \(0.716083\pi\)
\(422\) −541.743 541.743i −1.28375 1.28375i
\(423\) 0 0
\(424\) −168.855 + 168.855i −0.398243 + 0.398243i
\(425\) 42.0000 0.0988235
\(426\) 231.000i 0.542254i
\(427\) 211.069 211.069i 0.494306 0.494306i
\(428\) 798.000i 1.86449i
\(429\) 0 0
\(430\) −539.000 −1.25349
\(431\) −307.222 307.222i −0.712813 0.712813i 0.254310 0.967123i \(-0.418152\pi\)
−0.967123 + 0.254310i \(0.918152\pi\)
\(432\) −135.000 −0.312500
\(433\) 315.000i 0.727483i 0.931500 + 0.363741i \(0.118501\pi\)
−0.931500 + 0.363741i \(0.881499\pi\)
\(434\) 928.702 + 928.702i 2.13987 + 2.13987i
\(435\) 295.496 + 295.496i 0.679302 + 0.679302i
\(436\) 837.239 837.239i 1.92027 1.92027i
\(437\) 168.855 168.855i 0.386396 0.386396i
\(438\) 396.000 0.904110
\(439\) 688.000i 1.56720i 0.621267 + 0.783599i \(0.286618\pi\)
−0.621267 + 0.783599i \(0.713382\pi\)
\(440\) 154.784 154.784i 0.351781 0.351781i
\(441\) 0 0
\(442\) 0 0
\(443\) 327.000 0.738149 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(444\) −738.740 738.740i −1.66383 1.66383i
\(445\) −550.000 −1.23596
\(446\) 1155.00i 2.58969i
\(447\) −140.712 140.712i −0.314793 0.314793i
\(448\) 682.455 + 682.455i 1.52334 + 1.52334i
\(449\) 342.400 342.400i 0.762584 0.762584i −0.214205 0.976789i \(-0.568716\pi\)
0.976789 + 0.214205i \(0.0687159\pi\)
\(450\) 0 0
\(451\) −308.000 −0.682927
\(452\) 882.000i 1.95133i
\(453\) −358.817 + 358.817i −0.792090 + 0.792090i
\(454\) 638.000i 1.40529i
\(455\) 0 0
\(456\) 594.000 1.30263
\(457\) 211.069 + 211.069i 0.461857 + 0.461857i 0.899264 0.437407i \(-0.144103\pi\)
−0.437407 + 0.899264i \(0.644103\pi\)
\(458\) 297.000 0.648472
\(459\) 81.0000i 0.176471i
\(460\) −196.997 196.997i −0.428255 0.428255i
\(461\) −166.510 166.510i −0.361193 0.361193i 0.503059 0.864252i \(-0.332208\pi\)
−0.864252 + 0.503059i \(0.832208\pi\)
\(462\) 464.351 464.351i 1.00509 1.00509i
\(463\) 393.995 393.995i 0.850961 0.850961i −0.139291 0.990252i \(-0.544482\pi\)
0.990252 + 0.139291i \(0.0444822\pi\)
\(464\) 210.000 0.452586
\(465\) 396.000i 0.851613i
\(466\) 1006.09 1006.09i 2.15900 2.15900i
\(467\) 390.000i 0.835118i −0.908650 0.417559i \(-0.862886\pi\)
0.908650 0.417559i \(-0.137114\pi\)
\(468\) 0 0
\(469\) 396.000 0.844350
\(470\) 25.7973 + 25.7973i 0.0548878 + 0.0548878i
\(471\) −240.000 −0.509554
\(472\) 528.000i 1.11864i
\(473\) −229.830 229.830i −0.485899 0.485899i
\(474\) 379.924 + 379.924i 0.801527 + 0.801527i
\(475\) −196.997 + 196.997i −0.414731 + 0.414731i
\(476\) −147.748 + 147.748i −0.310395 + 0.310395i
\(477\) 0 0
\(478\) 847.000i 1.77197i
\(479\) 340.055 340.055i 0.709927 0.709927i −0.256592 0.966520i \(-0.582600\pi\)
0.966520 + 0.256592i \(0.0825998\pi\)
\(480\) 231.000i 0.481250i
\(481\) 0 0
\(482\) 1254.00 2.60166
\(483\) −253.282 253.282i −0.524394 0.524394i
\(484\) −539.000 −1.11364
\(485\) 66.0000i 0.136082i
\(486\) 0 0
\(487\) 168.855 + 168.855i 0.346725 + 0.346725i 0.858888 0.512163i \(-0.171156\pi\)
−0.512163 + 0.858888i \(0.671156\pi\)
\(488\) 211.069 211.069i 0.432518 0.432518i
\(489\) 253.282 253.282i 0.517960 0.517960i
\(490\) −550.000 −1.12245
\(491\) 651.000i 1.32587i −0.748679 0.662933i \(-0.769312\pi\)
0.748679 0.662933i \(-0.230688\pi\)
\(492\) −689.491 + 689.491i −1.40140 + 1.40140i
\(493\) 126.000i 0.255578i
\(494\) 0 0
\(495\) 0 0
\(496\) 140.712 + 140.712i 0.283695 + 0.283695i
\(497\) 231.000 0.464789
\(498\) 462.000i 0.927711i
\(499\) −211.069 211.069i −0.422983 0.422983i 0.463246 0.886230i \(-0.346685\pi\)
−0.886230 + 0.463246i \(0.846685\pi\)
\(500\) 640.242 + 640.242i 1.28048 + 1.28048i
\(501\) −196.997 + 196.997i −0.393209 + 0.393209i
\(502\) 98.4987 98.4987i 0.196213 0.196213i
\(503\) 810.000 1.61034 0.805169 0.593045i \(-0.202075\pi\)
0.805169 + 0.593045i \(0.202075\pi\)
\(504\) 0 0
\(505\) 337.710 337.710i 0.668733 0.668733i
\(506\) 264.000i 0.521739i
\(507\) 0 0
\(508\) −1176.00 −2.31496
\(509\) −215.759 215.759i −0.423888 0.423888i 0.462652 0.886540i \(-0.346898\pi\)
−0.886540 + 0.462652i \(0.846898\pi\)
\(510\) −99.0000 −0.194118
\(511\) 396.000i 0.774951i
\(512\) 222.795 + 222.795i 0.435146 + 0.435146i
\(513\) −379.924 379.924i −0.740592 0.740592i
\(514\) −612.099 + 612.099i −1.19085 + 1.19085i
\(515\) 60.9754 60.9754i 0.118399 0.118399i
\(516\) −1029.00 −1.99419
\(517\) 22.0000i 0.0425532i
\(518\) −1160.88 + 1160.88i −2.24108 + 2.24108i
\(519\) 342.000i 0.658960i
\(520\) 0 0
\(521\) −843.000 −1.61804 −0.809021 0.587780i \(-0.800002\pi\)
−0.809021 + 0.587780i \(0.800002\pi\)
\(522\) 0 0
\(523\) −250.000 −0.478011 −0.239006 0.971018i \(-0.576821\pi\)
−0.239006 + 0.971018i \(0.576821\pi\)
\(524\) 651.000i 1.24237i
\(525\) 295.496 + 295.496i 0.562850 + 0.562850i
\(526\) −633.206 633.206i −1.20381 1.20381i
\(527\) 84.4275 84.4275i 0.160204 0.160204i
\(528\) 70.3562 70.3562i 0.133250 0.133250i
\(529\) 385.000 0.727788
\(530\) 264.000i 0.498113i
\(531\) 0 0
\(532\) 1386.00i 2.60526i
\(533\) 0 0
\(534\) −1650.00 −3.08989
\(535\) 267.354 + 267.354i 0.499727 + 0.499727i
\(536\) 396.000 0.738806
\(537\) 387.000i 0.720670i
\(538\) −436.209 436.209i −0.810797 0.810797i
\(539\) −234.521 234.521i −0.435104 0.435104i
\(540\) −443.244 + 443.244i −0.820823 + 0.820823i
\(541\) −429.173 + 429.173i −0.793296 + 0.793296i −0.982029 0.188733i \(-0.939562\pi\)
0.188733 + 0.982029i \(0.439562\pi\)
\(542\) −165.000 −0.304428
\(543\) 546.000i 1.00552i
\(544\) 49.2494 49.2494i 0.0905319 0.0905319i
\(545\) 561.000i 1.02936i
\(546\) 0 0
\(547\) 301.000 0.550274 0.275137 0.961405i \(-0.411277\pi\)
0.275137 + 0.961405i \(0.411277\pi\)
\(548\) 262.663 + 262.663i 0.479313 + 0.479313i
\(549\) 0 0
\(550\) 308.000i 0.560000i
\(551\) 590.992 + 590.992i 1.07258 + 1.07258i
\(552\) −253.282 253.282i −0.458845 0.458845i
\(553\) 379.924 379.924i 0.687023 0.687023i
\(554\) −877.108 + 877.108i −1.58323 + 1.58323i
\(555\) −495.000 −0.891892
\(556\) 245.000i 0.440647i
\(557\) 340.055 340.055i 0.610512 0.610512i −0.332568 0.943079i \(-0.607915\pi\)
0.943079 + 0.332568i \(0.107915\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −165.000 −0.294643
\(561\) −42.2137 42.2137i −0.0752473 0.0752473i
\(562\) 154.000 0.274021
\(563\) 1011.00i 1.79574i −0.440264 0.897869i \(-0.645115\pi\)
0.440264 0.897869i \(-0.354885\pi\)
\(564\) 49.2494 + 49.2494i 0.0873216 + 0.0873216i
\(565\) −295.496 295.496i −0.523002 0.523002i
\(566\) −154.784 + 154.784i −0.273469 + 0.273469i
\(567\) −569.886 + 569.886i −1.00509 + 1.00509i
\(568\) 231.000 0.406690
\(569\) 495.000i 0.869947i −0.900443 0.434974i \(-0.856758\pi\)
0.900443 0.434974i \(-0.143242\pi\)
\(570\) 464.351 464.351i 0.814651 0.814651i
\(571\) 39.0000i 0.0683012i 0.999417 + 0.0341506i \(0.0108726\pi\)
−0.999417 + 0.0341506i \(0.989127\pi\)
\(572\) 0 0
\(573\) −90.0000 −0.157068
\(574\) 1083.49 + 1083.49i 1.88761 + 1.88761i
\(575\) 168.000 0.292174
\(576\) 0 0
\(577\) −759.847 759.847i −1.31689 1.31689i −0.916222 0.400671i \(-0.868777\pi\)
−0.400671 0.916222i \(-0.631223\pi\)
\(578\) −656.658 656.658i −1.13609 1.13609i
\(579\) −379.924 + 379.924i −0.656172 + 0.656172i
\(580\) 689.491 689.491i 1.18878 1.18878i
\(581\) 462.000 0.795181
\(582\) 198.000i 0.340206i
\(583\) −112.570 + 112.570i −0.193087 + 0.193087i
\(584\) 396.000i 0.678082i
\(585\) 0 0
\(586\) 539.000 0.919795
\(587\) −215.759 215.759i −0.367562 0.367562i 0.499025 0.866588i \(-0.333692\pi\)
−0.866588 + 0.499025i \(0.833692\pi\)
\(588\) −1050.00 −1.78571
\(589\) 792.000i 1.34465i
\(590\) −412.757 412.757i −0.699587 0.699587i
\(591\) −541.743 541.743i −0.916655 0.916655i
\(592\) −175.891 + 175.891i −0.297112 + 0.297112i
\(593\) −276.735 + 276.735i −0.466669 + 0.466669i −0.900833 0.434165i \(-0.857044\pi\)
0.434165 + 0.900833i \(0.357044\pi\)
\(594\) −594.000 −1.00000
\(595\) 99.0000i 0.166387i
\(596\) −328.329 + 328.329i −0.550888 + 0.550888i
\(597\) 828.000i 1.38693i
\(598\) 0 0
\(599\) −648.000 −1.08180 −0.540902 0.841086i \(-0.681917\pi\)
−0.540902 + 0.841086i \(0.681917\pi\)
\(600\) 295.496 + 295.496i 0.492494 + 0.492494i
\(601\) 75.0000 0.124792 0.0623960 0.998051i \(-0.480126\pi\)
0.0623960 + 0.998051i \(0.480126\pi\)
\(602\) 1617.00i 2.68605i
\(603\) 0 0
\(604\) 837.239 + 837.239i 1.38616 + 1.38616i
\(605\) −180.581 + 180.581i −0.298481 + 0.298481i
\(606\) 1013.13 1013.13i 1.67183 1.67183i
\(607\) −100.000 −0.164745 −0.0823723 0.996602i \(-0.526250\pi\)
−0.0823723 + 0.996602i \(0.526250\pi\)
\(608\) 462.000i 0.759868i
\(609\) 886.489 886.489i 1.45565 1.45565i
\(610\) 330.000i 0.540984i
\(611\) 0 0
\(612\) 0 0
\(613\) 28.1425 + 28.1425i 0.0459095 + 0.0459095i 0.729689 0.683779i \(-0.239665\pi\)
−0.683779 + 0.729689i \(0.739665\pi\)
\(614\) −1848.00 −3.00977
\(615\) 462.000i 0.751220i
\(616\) −464.351 464.351i −0.753817 0.753817i
\(617\) 656.658 + 656.658i 1.06428 + 1.06428i 0.997787 + 0.0664887i \(0.0211796\pi\)
0.0664887 + 0.997787i \(0.478820\pi\)
\(618\) 182.926 182.926i 0.295997 0.295997i
\(619\) −520.636 + 520.636i −0.841092 + 0.841092i −0.989001 0.147909i \(-0.952746\pi\)
0.147909 + 0.989001i \(0.452746\pi\)
\(620\) 924.000 1.49032
\(621\) 324.000i 0.521739i
\(622\) −548.779 + 548.779i −0.882281 + 0.882281i
\(623\) 1650.00i 2.64848i
\(624\) 0 0
\(625\) 79.0000 0.126400
\(626\) −218.104 218.104i −0.348409 0.348409i
\(627\) 396.000 0.631579
\(628\) 560.000i 0.891720i
\(629\) 105.534 + 105.534i 0.167781 + 0.167781i
\(630\) 0 0
\(631\) 738.740 738.740i 1.17075 1.17075i 0.188713 0.982032i \(-0.439568\pi\)
0.982032 0.188713i \(-0.0604317\pi\)
\(632\) 379.924 379.924i 0.601145 0.601145i
\(633\) −693.000 −1.09479
\(634\) 1012.00i 1.59621i
\(635\) −393.995 + 393.995i −0.620464 + 0.620464i
\(636\) 504.000i 0.792453i
\(637\) 0 0
\(638\) 924.000 1.44828
\(639\) 0 0
\(640\) 759.000 1.18594
\(641\) 822.000i 1.28237i 0.767386 + 0.641186i \(0.221557\pi\)
−0.767386 + 0.641186i \(0.778443\pi\)
\(642\) 802.061 + 802.061i 1.24932 + 1.24932i
\(643\) −196.997 196.997i −0.306372 0.306372i 0.537128 0.843501i \(-0.319509\pi\)
−0.843501 + 0.537128i \(0.819509\pi\)
\(644\) −590.992 + 590.992i −0.917690 + 0.917690i
\(645\) −344.746 + 344.746i −0.534489 + 0.534489i
\(646\) −198.000 −0.306502
\(647\) 948.000i 1.46522i 0.680646 + 0.732612i \(0.261699\pi\)
−0.680646 + 0.732612i \(0.738301\pi\)
\(648\) −569.886 + 569.886i −0.879453 + 0.879453i
\(649\) 352.000i 0.542373i
\(650\) 0 0
\(651\) 1188.00 1.82488
\(652\) −590.992 590.992i −0.906430 0.906430i
\(653\) 348.000 0.532925 0.266462 0.963845i \(-0.414145\pi\)
0.266462 + 0.963845i \(0.414145\pi\)
\(654\) 1683.00i 2.57339i
\(655\) 218.104 + 218.104i 0.332984 + 0.332984i
\(656\) 164.165 + 164.165i 0.250251 + 0.250251i
\(657\) 0 0
\(658\) 77.3919 77.3919i 0.117617 0.117617i
\(659\) −126.000 −0.191199 −0.0955994 0.995420i \(-0.530477\pi\)
−0.0955994 + 0.995420i \(0.530477\pi\)
\(660\) 462.000i 0.700000i
\(661\) −422.137 + 422.137i −0.638635 + 0.638635i −0.950219 0.311584i \(-0.899140\pi\)
0.311584 + 0.950219i \(0.399140\pi\)
\(662\) 66.0000i 0.0996979i
\(663\) 0 0
\(664\) 462.000 0.695783
\(665\) −464.351 464.351i −0.698272 0.698272i
\(666\) 0 0
\(667\) 504.000i 0.755622i
\(668\) 459.661 + 459.661i 0.688115 + 0.688115i
\(669\) 738.740 + 738.740i 1.10425 + 1.10425i
\(670\) 309.567 309.567i 0.462041 0.462041i
\(671\) 140.712 140.712i 0.209706 0.209706i
\(672\) 693.000 1.03125
\(673\) 77.0000i 0.114413i 0.998362 + 0.0572065i \(0.0182194\pi\)
−0.998362 + 0.0572065i \(0.981781\pi\)
\(674\) 1006.09 1006.09i 1.49272 1.49272i
\(675\) 378.000i 0.560000i
\(676\) 0 0
\(677\) −726.000 −1.07238 −0.536189 0.844098i \(-0.680137\pi\)
−0.536189 + 0.844098i \(0.680137\pi\)
\(678\) −886.489 886.489i −1.30751 1.30751i
\(679\) −198.000 −0.291605
\(680\) 99.0000i 0.145588i
\(681\) 408.066 + 408.066i 0.599216 + 0.599216i
\(682\) 619.135 + 619.135i 0.907822 + 0.907822i
\(683\) 586.302 586.302i 0.858422 0.858422i −0.132731 0.991152i \(-0.542374\pi\)
0.991152 + 0.132731i \(0.0423745\pi\)
\(684\) 0 0
\(685\) 176.000 0.256934
\(686\) 33.0000i 0.0481050i
\(687\) 189.962 189.962i 0.276509 0.276509i
\(688\) 245.000i 0.356105i
\(689\) 0 0
\(690\) −396.000 −0.573913
\(691\) −703.562 703.562i −1.01818 1.01818i −0.999832 0.0183483i \(-0.994159\pi\)
−0.0183483 0.999832i \(-0.505841\pi\)
\(692\) 798.000 1.15318
\(693\) 0 0
\(694\) 386.959 + 386.959i 0.557578 + 0.557578i
\(695\) −82.0823 82.0823i −0.118104 0.118104i
\(696\) 886.489 886.489i 1.27369 1.27369i
\(697\) 98.4987 98.4987i 0.141318 0.141318i
\(698\) 693.000 0.992837
\(699\) 1287.00i 1.84120i
\(700\) 689.491 689.491i 0.984987 0.984987i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −990.000 −1.40825
\(704\) 454.970 + 454.970i 0.646265 + 0.646265i
\(705\) 33.0000 0.0468085
\(706\) 2134.00i 3.02266i
\(707\) −1013.13 1013.13i −1.43300 1.43300i
\(708\) −787.990 787.990i −1.11298 1.11298i
\(709\) −84.4275 + 84.4275i −0.119080 + 0.119080i −0.764135 0.645056i \(-0.776834\pi\)
0.645056 + 0.764135i \(0.276834\pi\)
\(710\) 180.581 180.581i 0.254339 0.254339i
\(711\) 0 0
\(712\) 1650.00i 2.31742i
\(713\) 337.710 337.710i 0.473646 0.473646i
\(714\) 297.000i 0.415966i
\(715\) 0 0
\(716\) −903.000 −1.26117
\(717\) 541.743 + 541.743i 0.755569 + 0.755569i
\(718\) 1012.00 1.40947
\(719\) 348.000i 0.484006i −0.970276 0.242003i \(-0.922196\pi\)
0.970276 0.242003i \(-0.0778043\pi\)
\(720\) 0 0
\(721\) −182.926 182.926i −0.253712 0.253712i
\(722\) 82.0823 82.0823i 0.113687 0.113687i
\(723\) 802.061 802.061i 1.10935 1.10935i
\(724\) −1274.00 −1.75967
\(725\) 588.000i 0.811034i
\(726\) −541.743 + 541.743i −0.746203 + 0.746203i
\(727\) 702.000i 0.965612i 0.875727 + 0.482806i \(0.160382\pi\)
−0.875727 + 0.482806i \(0.839618\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) −309.567 309.567i −0.424065 0.424065i
\(731\) 147.000 0.201094
\(732\) 630.000i 0.860656i
\(733\) 63.3206 + 63.3206i 0.0863856 + 0.0863856i 0.748979 0.662594i \(-0.230544\pi\)
−0.662594 + 0.748979i \(0.730544\pi\)
\(734\) 1257.03 + 1257.03i 1.71258 + 1.71258i
\(735\) −351.781 + 351.781i −0.478614 + 0.478614i
\(736\) 196.997 196.997i 0.267660 0.267660i
\(737\) 264.000 0.358209
\(738\) 0 0
\(739\) 126.641 126.641i 0.171368 0.171368i −0.616212 0.787580i \(-0.711334\pi\)
0.787580 + 0.616212i \(0.211334\pi\)
\(740\) 1155.00i 1.56081i
\(741\) 0 0
\(742\) 792.000 1.06739
\(743\) −2.34521 2.34521i −0.00315640 0.00315640i 0.705527 0.708683i \(-0.250710\pi\)
−0.708683 + 0.705527i \(0.750710\pi\)
\(744\) 1188.00 1.59677
\(745\) 220.000i 0.295302i
\(746\) −619.135 619.135i −0.829940 0.829940i
\(747\) 0 0
\(748\) −98.4987 + 98.4987i −0.131683 + 0.131683i
\(749\) 802.061 802.061i 1.07084 1.07084i
\(750\) 1287.00 1.71600
\(751\) 170.000i 0.226365i −0.993574 0.113182i \(-0.963896\pi\)
0.993574 0.113182i \(-0.0361045\pi\)
\(752\) 11.7260 11.7260i 0.0155931 0.0155931i
\(753\) 126.000i 0.167331i
\(754\) 0 0
\(755\) 561.000 0.743046
\(756\) 1329.73 + 1329.73i 1.75891 + 1.75891i
\(757\) 504.000 0.665786 0.332893 0.942965i \(-0.391975\pi\)
0.332893 + 0.942965i \(0.391975\pi\)
\(758\) 1848.00i 2.43799i
\(759\) −168.855 168.855i −0.222470 0.222470i
\(760\) −464.351 464.351i −0.610988 0.610988i
\(761\) −572.231 + 572.231i −0.751946 + 0.751946i −0.974842 0.222896i \(-0.928449\pi\)
0.222896 + 0.974842i \(0.428449\pi\)
\(762\) −1181.98 + 1181.98i −1.55116 + 1.55116i
\(763\) −1683.00 −2.20577
\(764\) 210.000i 0.274869i
\(765\) 0 0
\(766\) 935.000i 1.22063i
\(767\) 0 0
\(768\) 1113.00 1.44922
\(769\) 393.995 + 393.995i 0.512347 + 0.512347i 0.915245 0.402898i \(-0.131997\pi\)
−0.402898 + 0.915245i \(0.631997\pi\)
\(770\) −726.000 −0.942857
\(771\) 783.000i 1.01556i
\(772\) 886.489 + 886.489i 1.14830 + 1.14830i
\(773\) −898.215 898.215i −1.16199 1.16199i −0.984040 0.177945i \(-0.943055\pi\)
−0.177945 0.984040i \(-0.556945\pi\)
\(774\) 0 0
\(775\) −393.995 + 393.995i −0.508381 + 0.508381i
\(776\) −198.000 −0.255155