Properties

Label 169.3.d.a.70.2
Level $169$
Weight $3$
Character 169.70
Analytic conductor $4.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,3,Mod(70,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.70"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 70.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 169.70
Dual form 169.3.d.a.99.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 0.366025i) q^{2} -0.732051 q^{3} +3.73205i q^{4} +(-2.63397 + 2.63397i) q^{5} +(-0.267949 + 0.267949i) q^{6} +(-4.19615 - 4.19615i) q^{7} +(2.83013 + 2.83013i) q^{8} -8.46410 q^{9} +1.92820i q^{10} +(-11.4641 - 11.4641i) q^{11} -2.73205i q^{12} -3.07180 q^{14} +(1.92820 - 1.92820i) q^{15} -12.8564 q^{16} +18.4641i q^{17} +(-3.09808 + 3.09808i) q^{18} +(4.46410 - 4.46410i) q^{19} +(-9.83013 - 9.83013i) q^{20} +(3.07180 + 3.07180i) q^{21} -8.39230 q^{22} +20.1962i q^{23} +(-2.07180 - 2.07180i) q^{24} +11.1244i q^{25} +12.7846 q^{27} +(15.6603 - 15.6603i) q^{28} +9.39230 q^{29} -1.41154i q^{30} +(-11.9282 + 11.9282i) q^{31} +(-16.0263 + 16.0263i) q^{32} +(8.39230 + 8.39230i) q^{33} +(6.75833 + 6.75833i) q^{34} +22.1051 q^{35} -31.5885i q^{36} +(22.1699 + 22.1699i) q^{37} -3.26795i q^{38} -14.9090 q^{40} +(-32.8827 + 32.8827i) q^{41} +2.24871 q^{42} -51.9615i q^{43} +(42.7846 - 42.7846i) q^{44} +(22.2942 - 22.2942i) q^{45} +(7.39230 + 7.39230i) q^{46} +(-34.3205 - 34.3205i) q^{47} +9.41154 q^{48} -13.7846i q^{49} +(4.07180 + 4.07180i) q^{50} -13.5167i q^{51} -14.7654 q^{53} +(4.67949 - 4.67949i) q^{54} +60.3923 q^{55} -23.7513i q^{56} +(-3.26795 + 3.26795i) q^{57} +(3.43782 - 3.43782i) q^{58} +(68.0526 + 68.0526i) q^{59} +(7.19615 + 7.19615i) q^{60} +25.6269 q^{61} +8.73205i q^{62} +(35.5167 + 35.5167i) q^{63} -39.6936i q^{64} +6.14359 q^{66} +(-28.5692 + 28.5692i) q^{67} -68.9090 q^{68} -14.7846i q^{69} +(8.09103 - 8.09103i) q^{70} +(-32.7128 + 32.7128i) q^{71} +(-23.9545 - 23.9545i) q^{72} +(-19.2750 - 19.2750i) q^{73} +16.2295 q^{74} -8.14359i q^{75} +(16.6603 + 16.6603i) q^{76} +96.2102i q^{77} +62.7461 q^{79} +(33.8634 - 33.8634i) q^{80} +66.8179 q^{81} +24.0718i q^{82} +(-24.4833 + 24.4833i) q^{83} +(-11.4641 + 11.4641i) q^{84} +(-48.6340 - 48.6340i) q^{85} +(-19.0192 - 19.0192i) q^{86} -6.87564 q^{87} -64.8897i q^{88} +(-63.3013 - 63.3013i) q^{89} -16.3205i q^{90} -75.3731 q^{92} +(8.73205 - 8.73205i) q^{93} -25.1244 q^{94} +23.5167i q^{95} +(11.7321 - 11.7321i) q^{96} +(38.7654 - 38.7654i) q^{97} +(-5.04552 - 5.04552i) q^{98} +(97.0333 + 97.0333i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} - 14 q^{5} - 8 q^{6} + 4 q^{7} - 6 q^{8} - 20 q^{9} - 32 q^{11} - 40 q^{14} - 20 q^{15} + 4 q^{16} - 2 q^{18} + 4 q^{19} - 22 q^{20} + 40 q^{21} + 8 q^{22} - 36 q^{24} - 32 q^{27}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 0.366025i 0.183013 0.183013i −0.609655 0.792667i \(-0.708692\pi\)
0.792667 + 0.609655i \(0.208692\pi\)
\(3\) −0.732051 −0.244017 −0.122008 0.992529i \(-0.538934\pi\)
−0.122008 + 0.992529i \(0.538934\pi\)
\(4\) 3.73205i 0.933013i
\(5\) −2.63397 + 2.63397i −0.526795 + 0.526795i −0.919615 0.392820i \(-0.871499\pi\)
0.392820 + 0.919615i \(0.371499\pi\)
\(6\) −0.267949 + 0.267949i −0.0446582 + 0.0446582i
\(7\) −4.19615 4.19615i −0.599450 0.599450i 0.340716 0.940166i \(-0.389331\pi\)
−0.940166 + 0.340716i \(0.889331\pi\)
\(8\) 2.83013 + 2.83013i 0.353766 + 0.353766i
\(9\) −8.46410 −0.940456
\(10\) 1.92820i 0.192820i
\(11\) −11.4641 11.4641i −1.04219 1.04219i −0.999070 0.0431212i \(-0.986270\pi\)
−0.0431212 0.999070i \(-0.513730\pi\)
\(12\) 2.73205i 0.227671i
\(13\) 0 0
\(14\) −3.07180 −0.219414
\(15\) 1.92820 1.92820i 0.128547 0.128547i
\(16\) −12.8564 −0.803525
\(17\) 18.4641i 1.08612i 0.839693 + 0.543062i \(0.182735\pi\)
−0.839693 + 0.543062i \(0.817265\pi\)
\(18\) −3.09808 + 3.09808i −0.172115 + 0.172115i
\(19\) 4.46410 4.46410i 0.234953 0.234953i −0.579804 0.814756i \(-0.696871\pi\)
0.814756 + 0.579804i \(0.196871\pi\)
\(20\) −9.83013 9.83013i −0.491506 0.491506i
\(21\) 3.07180 + 3.07180i 0.146276 + 0.146276i
\(22\) −8.39230 −0.381468
\(23\) 20.1962i 0.878094i 0.898464 + 0.439047i \(0.144684\pi\)
−0.898464 + 0.439047i \(0.855316\pi\)
\(24\) −2.07180 2.07180i −0.0863249 0.0863249i
\(25\) 11.1244i 0.444974i
\(26\) 0 0
\(27\) 12.7846 0.473504
\(28\) 15.6603 15.6603i 0.559295 0.559295i
\(29\) 9.39230 0.323873 0.161936 0.986801i \(-0.448226\pi\)
0.161936 + 0.986801i \(0.448226\pi\)
\(30\) 1.41154i 0.0470514i
\(31\) −11.9282 + 11.9282i −0.384781 + 0.384781i −0.872821 0.488040i \(-0.837712\pi\)
0.488040 + 0.872821i \(0.337712\pi\)
\(32\) −16.0263 + 16.0263i −0.500821 + 0.500821i
\(33\) 8.39230 + 8.39230i 0.254312 + 0.254312i
\(34\) 6.75833 + 6.75833i 0.198774 + 0.198774i
\(35\) 22.1051 0.631575
\(36\) 31.5885i 0.877457i
\(37\) 22.1699 + 22.1699i 0.599186 + 0.599186i 0.940096 0.340910i \(-0.110735\pi\)
−0.340910 + 0.940096i \(0.610735\pi\)
\(38\) 3.26795i 0.0859987i
\(39\) 0 0
\(40\) −14.9090 −0.372724
\(41\) −32.8827 + 32.8827i −0.802017 + 0.802017i −0.983411 0.181394i \(-0.941939\pi\)
0.181394 + 0.983411i \(0.441939\pi\)
\(42\) 2.24871 0.0535407
\(43\) 51.9615i 1.20841i −0.796830 0.604204i \(-0.793491\pi\)
0.796830 0.604204i \(-0.206509\pi\)
\(44\) 42.7846 42.7846i 0.972377 0.972377i
\(45\) 22.2942 22.2942i 0.495427 0.495427i
\(46\) 7.39230 + 7.39230i 0.160702 + 0.160702i
\(47\) −34.3205 34.3205i −0.730224 0.730224i 0.240440 0.970664i \(-0.422708\pi\)
−0.970664 + 0.240440i \(0.922708\pi\)
\(48\) 9.41154 0.196074
\(49\) 13.7846i 0.281319i
\(50\) 4.07180 + 4.07180i 0.0814359 + 0.0814359i
\(51\) 13.5167i 0.265033i
\(52\) 0 0
\(53\) −14.7654 −0.278592 −0.139296 0.990251i \(-0.544484\pi\)
−0.139296 + 0.990251i \(0.544484\pi\)
\(54\) 4.67949 4.67949i 0.0866573 0.0866573i
\(55\) 60.3923 1.09804
\(56\) 23.7513i 0.424130i
\(57\) −3.26795 + 3.26795i −0.0573324 + 0.0573324i
\(58\) 3.43782 3.43782i 0.0592728 0.0592728i
\(59\) 68.0526 + 68.0526i 1.15343 + 1.15343i 0.985860 + 0.167574i \(0.0535932\pi\)
0.167574 + 0.985860i \(0.446407\pi\)
\(60\) 7.19615 + 7.19615i 0.119936 + 0.119936i
\(61\) 25.6269 0.420114 0.210057 0.977689i \(-0.432635\pi\)
0.210057 + 0.977689i \(0.432635\pi\)
\(62\) 8.73205i 0.140840i
\(63\) 35.5167 + 35.5167i 0.563757 + 0.563757i
\(64\) 39.6936i 0.620212i
\(65\) 0 0
\(66\) 6.14359 0.0930848
\(67\) −28.5692 + 28.5692i −0.426406 + 0.426406i −0.887402 0.460996i \(-0.847492\pi\)
0.460996 + 0.887402i \(0.347492\pi\)
\(68\) −68.9090 −1.01337
\(69\) 14.7846i 0.214270i
\(70\) 8.09103 8.09103i 0.115586 0.115586i
\(71\) −32.7128 + 32.7128i −0.460744 + 0.460744i −0.898899 0.438155i \(-0.855632\pi\)
0.438155 + 0.898899i \(0.355632\pi\)
\(72\) −23.9545 23.9545i −0.332701 0.332701i
\(73\) −19.2750 19.2750i −0.264041 0.264041i 0.562653 0.826693i \(-0.309781\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(74\) 16.2295 0.219317
\(75\) 8.14359i 0.108581i
\(76\) 16.6603 + 16.6603i 0.219214 + 0.219214i
\(77\) 96.2102i 1.24948i
\(78\) 0 0
\(79\) 62.7461 0.794255 0.397127 0.917763i \(-0.370007\pi\)
0.397127 + 0.917763i \(0.370007\pi\)
\(80\) 33.8634 33.8634i 0.423293 0.423293i
\(81\) 66.8179 0.824913
\(82\) 24.0718i 0.293558i
\(83\) −24.4833 + 24.4833i −0.294980 + 0.294980i −0.839044 0.544064i \(-0.816885\pi\)
0.544064 + 0.839044i \(0.316885\pi\)
\(84\) −11.4641 + 11.4641i −0.136477 + 0.136477i
\(85\) −48.6340 48.6340i −0.572164 0.572164i
\(86\) −19.0192 19.0192i −0.221154 0.221154i
\(87\) −6.87564 −0.0790304
\(88\) 64.8897i 0.737383i
\(89\) −63.3013 63.3013i −0.711250 0.711250i 0.255547 0.966797i \(-0.417745\pi\)
−0.966797 + 0.255547i \(0.917745\pi\)
\(90\) 16.3205i 0.181339i
\(91\) 0 0
\(92\) −75.3731 −0.819272
\(93\) 8.73205 8.73205i 0.0938930 0.0938930i
\(94\) −25.1244 −0.267280
\(95\) 23.5167i 0.247544i
\(96\) 11.7321 11.7321i 0.122209 0.122209i
\(97\) 38.7654 38.7654i 0.399643 0.399643i −0.478464 0.878107i \(-0.658806\pi\)
0.878107 + 0.478464i \(0.158806\pi\)
\(98\) −5.04552 5.04552i −0.0514849 0.0514849i
\(99\) 97.0333 + 97.0333i 0.980135 + 0.980135i
\(100\) −41.5167 −0.415167
\(101\) 159.995i 1.58411i 0.610451 + 0.792054i \(0.290988\pi\)
−0.610451 + 0.792054i \(0.709012\pi\)
\(102\) −4.94744 4.94744i −0.0485043 0.0485043i
\(103\) 78.7705i 0.764762i −0.924005 0.382381i \(-0.875104\pi\)
0.924005 0.382381i \(-0.124896\pi\)
\(104\) 0 0
\(105\) −16.1821 −0.154115
\(106\) −5.40450 + 5.40450i −0.0509859 + 0.0509859i
\(107\) −95.3346 −0.890977 −0.445489 0.895288i \(-0.646970\pi\)
−0.445489 + 0.895288i \(0.646970\pi\)
\(108\) 47.7128i 0.441785i
\(109\) −51.9808 + 51.9808i −0.476888 + 0.476888i −0.904135 0.427247i \(-0.859483\pi\)
0.427247 + 0.904135i \(0.359483\pi\)
\(110\) 22.1051 22.1051i 0.200956 0.200956i
\(111\) −16.2295 16.2295i −0.146211 0.146211i
\(112\) 53.9474 + 53.9474i 0.481674 + 0.481674i
\(113\) −143.981 −1.27417 −0.637083 0.770795i \(-0.719859\pi\)
−0.637083 + 0.770795i \(0.719859\pi\)
\(114\) 2.39230i 0.0209851i
\(115\) −53.1962 53.1962i −0.462575 0.462575i
\(116\) 35.0526i 0.302177i
\(117\) 0 0
\(118\) 49.8179 0.422186
\(119\) 77.4782 77.4782i 0.651077 0.651077i
\(120\) 10.9141 0.0909510
\(121\) 141.851i 1.17232i
\(122\) 9.38011 9.38011i 0.0768861 0.0768861i
\(123\) 24.0718 24.0718i 0.195706 0.195706i
\(124\) −44.5167 44.5167i −0.359005 0.359005i
\(125\) −95.1506 95.1506i −0.761205 0.761205i
\(126\) 26.0000 0.206349
\(127\) 28.4833i 0.224278i −0.993693 0.112139i \(-0.964230\pi\)
0.993693 0.112139i \(-0.0357702\pi\)
\(128\) −78.6340 78.6340i −0.614328 0.614328i
\(129\) 38.0385i 0.294872i
\(130\) 0 0
\(131\) −2.98076 −0.0227539 −0.0113770 0.999935i \(-0.503621\pi\)
−0.0113770 + 0.999935i \(0.503621\pi\)
\(132\) −31.3205 + 31.3205i −0.237277 + 0.237277i
\(133\) −37.4641 −0.281685
\(134\) 20.9141i 0.156076i
\(135\) −33.6743 + 33.6743i −0.249440 + 0.249440i
\(136\) −52.2558 + 52.2558i −0.384233 + 0.384233i
\(137\) −69.2558 69.2558i −0.505516 0.505516i 0.407631 0.913147i \(-0.366355\pi\)
−0.913147 + 0.407631i \(0.866355\pi\)
\(138\) −5.41154 5.41154i −0.0392141 0.0392141i
\(139\) 32.4308 0.233315 0.116657 0.993172i \(-0.462782\pi\)
0.116657 + 0.993172i \(0.462782\pi\)
\(140\) 82.4974i 0.589267i
\(141\) 25.1244 + 25.1244i 0.178187 + 0.178187i
\(142\) 23.9474i 0.168644i
\(143\) 0 0
\(144\) 108.818 0.755680
\(145\) −24.7391 + 24.7391i −0.170614 + 0.170614i
\(146\) −14.1103 −0.0966457
\(147\) 10.0910i 0.0686465i
\(148\) −82.7391 + 82.7391i −0.559048 + 0.559048i
\(149\) −90.4045 + 90.4045i −0.606742 + 0.606742i −0.942093 0.335351i \(-0.891145\pi\)
0.335351 + 0.942093i \(0.391145\pi\)
\(150\) −2.98076 2.98076i −0.0198717 0.0198717i
\(151\) 127.995 + 127.995i 0.847648 + 0.847648i 0.989839 0.142191i \(-0.0454148\pi\)
−0.142191 + 0.989839i \(0.545415\pi\)
\(152\) 25.2679 0.166237
\(153\) 156.282i 1.02145i
\(154\) 35.2154 + 35.2154i 0.228671 + 0.228671i
\(155\) 62.8372i 0.405401i
\(156\) 0 0
\(157\) −97.7461 −0.622587 −0.311293 0.950314i \(-0.600762\pi\)
−0.311293 + 0.950314i \(0.600762\pi\)
\(158\) 22.9667 22.9667i 0.145359 0.145359i
\(159\) 10.8090 0.0679811
\(160\) 84.4256i 0.527660i
\(161\) 84.7461 84.7461i 0.526374 0.526374i
\(162\) 24.4571 24.4571i 0.150970 0.150970i
\(163\) 89.5167 + 89.5167i 0.549182 + 0.549182i 0.926204 0.377022i \(-0.123052\pi\)
−0.377022 + 0.926204i \(0.623052\pi\)
\(164\) −122.720 122.720i −0.748292 0.748292i
\(165\) −44.2102 −0.267941
\(166\) 17.9230i 0.107970i
\(167\) −37.1384 37.1384i −0.222386 0.222386i 0.587117 0.809502i \(-0.300263\pi\)
−0.809502 + 0.587117i \(0.800263\pi\)
\(168\) 17.3872i 0.103495i
\(169\) 0 0
\(170\) −35.6025 −0.209427
\(171\) −37.7846 + 37.7846i −0.220963 + 0.220963i
\(172\) 193.923 1.12746
\(173\) 137.254i 0.793375i −0.917954 0.396687i \(-0.870160\pi\)
0.917954 0.396687i \(-0.129840\pi\)
\(174\) −2.51666 + 2.51666i −0.0144636 + 0.0144636i
\(175\) 46.6795 46.6795i 0.266740 0.266740i
\(176\) 147.387 + 147.387i 0.837427 + 0.837427i
\(177\) −49.8179 49.8179i −0.281457 0.281457i
\(178\) −46.3397 −0.260336
\(179\) 1.04363i 0.00583034i 0.999996 + 0.00291517i \(0.000927928\pi\)
−0.999996 + 0.00291517i \(0.999072\pi\)
\(180\) 83.2032 + 83.2032i 0.462240 + 0.462240i
\(181\) 23.0807i 0.127518i −0.997965 0.0637589i \(-0.979691\pi\)
0.997965 0.0637589i \(-0.0203089\pi\)
\(182\) 0 0
\(183\) −18.7602 −0.102515
\(184\) −57.1577 + 57.1577i −0.310640 + 0.310640i
\(185\) −116.790 −0.631296
\(186\) 6.39230i 0.0343672i
\(187\) 211.674 211.674i 1.13195 1.13195i
\(188\) 128.086 128.086i 0.681308 0.681308i
\(189\) −53.6462 53.6462i −0.283842 0.283842i
\(190\) 8.60770 + 8.60770i 0.0453037 + 0.0453037i
\(191\) 294.004 1.53929 0.769643 0.638474i \(-0.220434\pi\)
0.769643 + 0.638474i \(0.220434\pi\)
\(192\) 29.0577i 0.151342i
\(193\) 233.729 + 233.729i 1.21103 + 1.21103i 0.970688 + 0.240342i \(0.0772595\pi\)
0.240342 + 0.970688i \(0.422741\pi\)
\(194\) 28.3782i 0.146279i
\(195\) 0 0
\(196\) 51.4449 0.262474
\(197\) −62.3064 + 62.3064i −0.316276 + 0.316276i −0.847335 0.531059i \(-0.821794\pi\)
0.531059 + 0.847335i \(0.321794\pi\)
\(198\) 71.0333 0.358754
\(199\) 201.440i 1.01226i −0.862457 0.506130i \(-0.831076\pi\)
0.862457 0.506130i \(-0.168924\pi\)
\(200\) −31.4833 + 31.4833i −0.157417 + 0.157417i
\(201\) 20.9141 20.9141i 0.104050 0.104050i
\(202\) 58.5622 + 58.5622i 0.289912 + 0.289912i
\(203\) −39.4115 39.4115i −0.194146 0.194146i
\(204\) 50.4449 0.247279
\(205\) 173.224i 0.844997i
\(206\) −28.8320 28.8320i −0.139961 0.139961i
\(207\) 170.942i 0.825808i
\(208\) 0 0
\(209\) −102.354 −0.489731
\(210\) −5.92305 + 5.92305i −0.0282050 + 0.0282050i
\(211\) 73.2961 0.347375 0.173687 0.984801i \(-0.444432\pi\)
0.173687 + 0.984801i \(0.444432\pi\)
\(212\) 55.1051i 0.259930i
\(213\) 23.9474 23.9474i 0.112429 0.112429i
\(214\) −34.8949 + 34.8949i −0.163060 + 0.163060i
\(215\) 136.865 + 136.865i 0.636583 + 0.636583i
\(216\) 36.1821 + 36.1821i 0.167510 + 0.167510i
\(217\) 100.105 0.461314
\(218\) 38.0526i 0.174553i
\(219\) 14.1103 + 14.1103i 0.0644305 + 0.0644305i
\(220\) 225.387i 1.02449i
\(221\) 0 0
\(222\) −11.8808 −0.0535171
\(223\) 269.053 269.053i 1.20651 1.20651i 0.234365 0.972149i \(-0.424699\pi\)
0.972149 0.234365i \(-0.0753011\pi\)
\(224\) 134.497 0.600435
\(225\) 94.1577i 0.418479i
\(226\) −52.7006 + 52.7006i −0.233189 + 0.233189i
\(227\) −295.827 + 295.827i −1.30320 + 1.30320i −0.376981 + 0.926221i \(0.623038\pi\)
−0.926221 + 0.376981i \(0.876962\pi\)
\(228\) −12.1962 12.1962i −0.0534919 0.0534919i
\(229\) −72.2679 72.2679i −0.315581 0.315581i 0.531486 0.847067i \(-0.321634\pi\)
−0.847067 + 0.531486i \(0.821634\pi\)
\(230\) −38.9423 −0.169314
\(231\) 70.4308i 0.304895i
\(232\) 26.5814 + 26.5814i 0.114575 + 0.114575i
\(233\) 256.592i 1.10125i 0.834751 + 0.550627i \(0.185611\pi\)
−0.834751 + 0.550627i \(0.814389\pi\)
\(234\) 0 0
\(235\) 180.799 0.769356
\(236\) −253.976 + 253.976i −1.07617 + 1.07617i
\(237\) −45.9334 −0.193812
\(238\) 56.7180i 0.238311i
\(239\) 39.3449 39.3449i 0.164623 0.164623i −0.619988 0.784611i \(-0.712863\pi\)
0.784611 + 0.619988i \(0.212863\pi\)
\(240\) −24.7898 + 24.7898i −0.103291 + 0.103291i
\(241\) −170.825 170.825i −0.708817 0.708817i 0.257469 0.966287i \(-0.417111\pi\)
−0.966287 + 0.257469i \(0.917111\pi\)
\(242\) 51.9212 + 51.9212i 0.214550 + 0.214550i
\(243\) −163.976 −0.674797
\(244\) 95.6410i 0.391971i
\(245\) 36.3083 + 36.3083i 0.148197 + 0.148197i
\(246\) 17.6218i 0.0716332i
\(247\) 0 0
\(248\) −67.5167 −0.272245
\(249\) 17.9230 17.9230i 0.0719801 0.0719801i
\(250\) −69.6551 −0.278620
\(251\) 255.622i 1.01841i 0.860644 + 0.509207i \(0.170061\pi\)
−0.860644 + 0.509207i \(0.829939\pi\)
\(252\) −132.550 + 132.550i −0.525992 + 0.525992i
\(253\) 231.531 231.531i 0.915141 0.915141i
\(254\) −10.4256 10.4256i −0.0410458 0.0410458i
\(255\) 35.6025 + 35.6025i 0.139618 + 0.139618i
\(256\) 101.210 0.395352
\(257\) 99.0422i 0.385378i 0.981260 + 0.192689i \(0.0617209\pi\)
−0.981260 + 0.192689i \(0.938279\pi\)
\(258\) 13.9230 + 13.9230i 0.0539653 + 0.0539653i
\(259\) 186.056i 0.718364i
\(260\) 0 0
\(261\) −79.4974 −0.304588
\(262\) −1.09103 + 1.09103i −0.00416425 + 0.00416425i
\(263\) −255.338 −0.970868 −0.485434 0.874273i \(-0.661338\pi\)
−0.485434 + 0.874273i \(0.661338\pi\)
\(264\) 47.5026i 0.179934i
\(265\) 38.8916 38.8916i 0.146761 0.146761i
\(266\) −13.7128 + 13.7128i −0.0515519 + 0.0515519i
\(267\) 46.3397 + 46.3397i 0.173557 + 0.173557i
\(268\) −106.622 106.622i −0.397842 0.397842i
\(269\) −92.7077 −0.344638 −0.172319 0.985041i \(-0.555126\pi\)
−0.172319 + 0.985041i \(0.555126\pi\)
\(270\) 24.6513i 0.0913012i
\(271\) −309.086 309.086i −1.14054 1.14054i −0.988352 0.152187i \(-0.951369\pi\)
−0.152187 0.988352i \(-0.548631\pi\)
\(272\) 237.382i 0.872728i
\(273\) 0 0
\(274\) −50.6987 −0.185032
\(275\) 127.531 127.531i 0.463748 0.463748i
\(276\) 55.1769 0.199916
\(277\) 348.846i 1.25937i 0.776850 + 0.629686i \(0.216816\pi\)
−0.776850 + 0.629686i \(0.783184\pi\)
\(278\) 11.8705 11.8705i 0.0426996 0.0426996i
\(279\) 100.962 100.962i 0.361869 0.361869i
\(280\) 62.5603 + 62.5603i 0.223430 + 0.223430i
\(281\) 91.9737 + 91.9737i 0.327309 + 0.327309i 0.851562 0.524254i \(-0.175656\pi\)
−0.524254 + 0.851562i \(0.675656\pi\)
\(282\) 18.3923 0.0652209
\(283\) 35.5692i 0.125686i −0.998023 0.0628431i \(-0.979983\pi\)
0.998023 0.0628431i \(-0.0200168\pi\)
\(284\) −122.086 122.086i −0.429880 0.429880i
\(285\) 17.2154i 0.0604049i
\(286\) 0 0
\(287\) 275.962 0.961538
\(288\) 135.648 135.648i 0.471000 0.471000i
\(289\) −51.9230 −0.179665
\(290\) 18.1103i 0.0624492i
\(291\) −28.3782 + 28.3782i −0.0975197 + 0.0975197i
\(292\) 71.9352 71.9352i 0.246354 0.246354i
\(293\) −283.126 283.126i −0.966301 0.966301i 0.0331492 0.999450i \(-0.489446\pi\)
−0.999450 + 0.0331492i \(0.989446\pi\)
\(294\) 3.69358 + 3.69358i 0.0125632 + 0.0125632i
\(295\) −358.497 −1.21525
\(296\) 125.487i 0.423943i
\(297\) −146.564 146.564i −0.493482 0.493482i
\(298\) 66.1807i 0.222083i
\(299\) 0 0
\(300\) 30.3923 0.101308
\(301\) −218.038 + 218.038i −0.724380 + 0.724380i
\(302\) 93.6987 0.310261
\(303\) 117.124i 0.386549i
\(304\) −57.3923 + 57.3923i −0.188790 + 0.188790i
\(305\) −67.5007 + 67.5007i −0.221314 + 0.221314i
\(306\) −57.2032 57.2032i −0.186939 0.186939i
\(307\) 260.219 + 260.219i 0.847619 + 0.847619i 0.989836 0.142216i \(-0.0454228\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(308\) −359.061 −1.16578
\(309\) 57.6640i 0.186615i
\(310\) −23.0000 23.0000i −0.0741935 0.0741935i
\(311\) 71.4782i 0.229833i −0.993375 0.114917i \(-0.963340\pi\)
0.993375 0.114917i \(-0.0366601\pi\)
\(312\) 0 0
\(313\) −394.315 −1.25979 −0.629897 0.776679i \(-0.716903\pi\)
−0.629897 + 0.776679i \(0.716903\pi\)
\(314\) −35.7776 + 35.7776i −0.113941 + 0.113941i
\(315\) −187.100 −0.593968
\(316\) 234.172i 0.741050i
\(317\) −206.054 + 206.054i −0.650014 + 0.650014i −0.952996 0.302982i \(-0.902018\pi\)
0.302982 + 0.952996i \(0.402018\pi\)
\(318\) 3.95637 3.95637i 0.0124414 0.0124414i
\(319\) −107.674 107.674i −0.337537 0.337537i
\(320\) 104.552 + 104.552i 0.326725 + 0.326725i
\(321\) 69.7898 0.217414
\(322\) 62.0385i 0.192666i
\(323\) 82.4256 + 82.4256i 0.255188 + 0.255188i
\(324\) 249.368i 0.769654i
\(325\) 0 0
\(326\) 65.5307 0.201015
\(327\) 38.0526 38.0526i 0.116369 0.116369i
\(328\) −186.124 −0.567452
\(329\) 288.028i 0.875466i
\(330\) −16.1821 + 16.1821i −0.0490366 + 0.0490366i
\(331\) −326.200 + 326.200i −0.985498 + 0.985498i −0.999896 0.0143981i \(-0.995417\pi\)
0.0143981 + 0.999896i \(0.495417\pi\)
\(332\) −91.3731 91.3731i −0.275220 0.275220i
\(333\) −187.648 187.648i −0.563508 0.563508i
\(334\) −27.1872 −0.0813989
\(335\) 150.501i 0.449257i
\(336\) −39.4923 39.4923i −0.117537 0.117537i
\(337\) 144.779i 0.429613i 0.976657 + 0.214806i \(0.0689120\pi\)
−0.976657 + 0.214806i \(0.931088\pi\)
\(338\) 0 0
\(339\) 105.401 0.310918
\(340\) 181.504 181.504i 0.533837 0.533837i
\(341\) 273.492 0.802030
\(342\) 27.6603i 0.0808779i
\(343\) −263.454 + 263.454i −0.768087 + 0.768087i
\(344\) 147.058 147.058i 0.427493 0.427493i
\(345\) 38.9423 + 38.9423i 0.112876 + 0.112876i
\(346\) −50.2384 50.2384i −0.145198 0.145198i
\(347\) 487.181 1.40398 0.701989 0.712187i \(-0.252295\pi\)
0.701989 + 0.712187i \(0.252295\pi\)
\(348\) 25.6603i 0.0737364i
\(349\) −8.30642 8.30642i −0.0238006 0.0238006i 0.695106 0.718907i \(-0.255357\pi\)
−0.718907 + 0.695106i \(0.755357\pi\)
\(350\) 34.1718i 0.0976336i
\(351\) 0 0
\(352\) 367.454 1.04390
\(353\) 202.170 202.170i 0.572719 0.572719i −0.360168 0.932887i \(-0.617281\pi\)
0.932887 + 0.360168i \(0.117281\pi\)
\(354\) −36.4693 −0.103020
\(355\) 172.329i 0.485435i
\(356\) 236.244 236.244i 0.663605 0.663605i
\(357\) −56.7180 + 56.7180i −0.158874 + 0.158874i
\(358\) 0.381995 + 0.381995i 0.00106703 + 0.00106703i
\(359\) 92.0770 + 92.0770i 0.256482 + 0.256482i 0.823622 0.567140i \(-0.191950\pi\)
−0.567140 + 0.823622i \(0.691950\pi\)
\(360\) 126.191 0.350531
\(361\) 321.144i 0.889594i
\(362\) −8.44813 8.44813i −0.0233374 0.0233374i
\(363\) 103.842i 0.286067i
\(364\) 0 0
\(365\) 101.540 0.278191
\(366\) −6.86672 + 6.86672i −0.0187615 + 0.0187615i
\(367\) 12.5500 0.0341961 0.0170981 0.999854i \(-0.494557\pi\)
0.0170981 + 0.999854i \(0.494557\pi\)
\(368\) 259.650i 0.705571i
\(369\) 278.322 278.322i 0.754261 0.754261i
\(370\) −42.7480 + 42.7480i −0.115535 + 0.115535i
\(371\) 61.9578 + 61.9578i 0.167002 + 0.167002i
\(372\) 32.5885 + 32.5885i 0.0876034 + 0.0876034i
\(373\) −311.277 −0.834522 −0.417261 0.908787i \(-0.637010\pi\)
−0.417261 + 0.908787i \(0.637010\pi\)
\(374\) 154.956i 0.414322i
\(375\) 69.6551 + 69.6551i 0.185747 + 0.185747i
\(376\) 194.263i 0.516656i
\(377\) 0 0
\(378\) −39.2717 −0.103893
\(379\) −278.076 + 278.076i −0.733709 + 0.733709i −0.971352 0.237644i \(-0.923625\pi\)
0.237644 + 0.971352i \(0.423625\pi\)
\(380\) −87.7654 −0.230962
\(381\) 20.8513i 0.0547277i
\(382\) 107.613 107.613i 0.281709 0.281709i
\(383\) 521.990 521.990i 1.36290 1.36290i 0.492696 0.870202i \(-0.336012\pi\)
0.870202 0.492696i \(-0.163988\pi\)
\(384\) 57.5641 + 57.5641i 0.149906 + 0.149906i
\(385\) −253.415 253.415i −0.658222 0.658222i
\(386\) 171.101 0.443268
\(387\) 439.808i 1.13645i
\(388\) 144.674 + 144.674i 0.372872 + 0.372872i
\(389\) 344.478i 0.885548i 0.896633 + 0.442774i \(0.146006\pi\)
−0.896633 + 0.442774i \(0.853994\pi\)
\(390\) 0 0
\(391\) −372.904 −0.953718
\(392\) 39.0122 39.0122i 0.0995209 0.0995209i
\(393\) 2.18207 0.00555234
\(394\) 45.6115i 0.115765i
\(395\) −165.272 + 165.272i −0.418409 + 0.418409i
\(396\) −362.133 + 362.133i −0.914478 + 0.914478i
\(397\) 496.640 + 496.640i 1.25098 + 1.25098i 0.955281 + 0.295701i \(0.0955532\pi\)
0.295701 + 0.955281i \(0.404447\pi\)
\(398\) −73.7321 73.7321i −0.185256 0.185256i
\(399\) 27.4256 0.0687359
\(400\) 143.019i 0.357548i
\(401\) 401.156 + 401.156i 1.00039 + 1.00039i 1.00000 0.000388579i \(0.000123689\pi\)
0.000388579 1.00000i \(0.499876\pi\)
\(402\) 15.3102i 0.0380851i
\(403\) 0 0
\(404\) −597.109 −1.47799
\(405\) −175.997 + 175.997i −0.434560 + 0.434560i
\(406\) −28.8513 −0.0710622
\(407\) 508.315i 1.24893i
\(408\) 38.2539 38.2539i 0.0937595 0.0937595i
\(409\) 71.9109 71.9109i 0.175821 0.175821i −0.613710 0.789531i \(-0.710324\pi\)
0.789531 + 0.613710i \(0.210324\pi\)
\(410\) −63.4045 63.4045i −0.154645 0.154645i
\(411\) 50.6987 + 50.6987i 0.123355 + 0.123355i
\(412\) 293.976 0.713533
\(413\) 571.118i 1.38285i
\(414\) −62.5692 62.5692i −0.151133 0.151133i
\(415\) 128.977i 0.310788i
\(416\) 0 0
\(417\) −23.7410 −0.0569328
\(418\) −37.4641 + 37.4641i −0.0896270 + 0.0896270i
\(419\) 644.558 1.53832 0.769162 0.639054i \(-0.220674\pi\)
0.769162 + 0.639054i \(0.220674\pi\)
\(420\) 60.3923i 0.143791i
\(421\) 346.619 346.619i 0.823322 0.823322i −0.163261 0.986583i \(-0.552201\pi\)
0.986583 + 0.163261i \(0.0522013\pi\)
\(422\) 26.8282 26.8282i 0.0635740 0.0635740i
\(423\) 290.492 + 290.492i 0.686743 + 0.686743i
\(424\) −41.7879 41.7879i −0.0985563 0.0985563i
\(425\) −205.401 −0.483297
\(426\) 17.5307i 0.0411520i
\(427\) −107.535 107.535i −0.251837 0.251837i
\(428\) 355.794i 0.831293i
\(429\) 0 0
\(430\) 100.192 0.233006
\(431\) −74.4486 + 74.4486i −0.172735 + 0.172735i −0.788180 0.615445i \(-0.788976\pi\)
0.615445 + 0.788180i \(0.288976\pi\)
\(432\) −164.364 −0.380473
\(433\) 689.232i 1.59176i −0.605455 0.795880i \(-0.707009\pi\)
0.605455 0.795880i \(-0.292991\pi\)
\(434\) 36.6410 36.6410i 0.0844263 0.0844263i
\(435\) 18.1103 18.1103i 0.0416328 0.0416328i
\(436\) −193.995 193.995i −0.444942 0.444942i
\(437\) 90.1577 + 90.1577i 0.206310 + 0.206310i
\(438\) 10.3294 0.0235832
\(439\) 90.1333i 0.205315i 0.994717 + 0.102657i \(0.0327346\pi\)
−0.994717 + 0.102657i \(0.967265\pi\)
\(440\) 170.918 + 170.918i 0.388450 + 0.388450i
\(441\) 116.674i 0.264568i
\(442\) 0 0
\(443\) 642.277 1.44983 0.724917 0.688836i \(-0.241878\pi\)
0.724917 + 0.688836i \(0.241878\pi\)
\(444\) 60.5692 60.5692i 0.136417 0.136417i
\(445\) 333.468 0.749366
\(446\) 196.960i 0.441615i
\(447\) 66.1807 66.1807i 0.148055 0.148055i
\(448\) −166.560 + 166.560i −0.371786 + 0.371786i
\(449\) −16.5448 16.5448i −0.0368482 0.0368482i 0.688443 0.725291i \(-0.258295\pi\)
−0.725291 + 0.688443i \(0.758295\pi\)
\(450\) −34.4641 34.4641i −0.0765869 0.0765869i
\(451\) 753.941 1.67171
\(452\) 537.344i 1.18881i
\(453\) −93.6987 93.6987i −0.206840 0.206840i
\(454\) 216.560i 0.477005i
\(455\) 0 0
\(456\) −18.4974 −0.0405645
\(457\) −167.419 + 167.419i −0.366343 + 0.366343i −0.866141 0.499799i \(-0.833407\pi\)
0.499799 + 0.866141i \(0.333407\pi\)
\(458\) −52.9038 −0.115511
\(459\) 236.056i 0.514284i
\(460\) 198.531 198.531i 0.431589 0.431589i
\(461\) −34.4327 + 34.4327i −0.0746913 + 0.0746913i −0.743466 0.668774i \(-0.766819\pi\)
0.668774 + 0.743466i \(0.266819\pi\)
\(462\) −25.7795 25.7795i −0.0557997 0.0557997i
\(463\) −521.191 521.191i −1.12568 1.12568i −0.990871 0.134811i \(-0.956957\pi\)
−0.134811 0.990871i \(-0.543043\pi\)
\(464\) −120.751 −0.260240
\(465\) 46.0000i 0.0989247i
\(466\) 93.9193 + 93.9193i 0.201544 + 0.201544i
\(467\) 141.415i 0.302817i −0.988471 0.151408i \(-0.951619\pi\)
0.988471 0.151408i \(-0.0483808\pi\)
\(468\) 0 0
\(469\) 239.762 0.511219
\(470\) 66.1769 66.1769i 0.140802 0.140802i
\(471\) 71.5551 0.151922
\(472\) 385.195i 0.816091i
\(473\) −595.692 + 595.692i −1.25939 + 1.25939i
\(474\) −16.8128 + 16.8128i −0.0354700 + 0.0354700i
\(475\) 49.6603 + 49.6603i 0.104548 + 0.104548i
\(476\) 289.153 + 289.153i 0.607463 + 0.607463i
\(477\) 124.976 0.262003
\(478\) 28.8025i 0.0602562i
\(479\) 529.424 + 529.424i 1.10527 + 1.10527i 0.993764 + 0.111506i \(0.0355675\pi\)
0.111506 + 0.993764i \(0.464433\pi\)
\(480\) 61.8038i 0.128758i
\(481\) 0 0
\(482\) −125.053 −0.259445
\(483\) −62.0385 + 62.0385i −0.128444 + 0.128444i
\(484\) −529.396 −1.09379
\(485\) 204.214i 0.421060i
\(486\) −60.0192 + 60.0192i −0.123496 + 0.123496i
\(487\) −171.947 + 171.947i −0.353075 + 0.353075i −0.861252 0.508178i \(-0.830319\pi\)
0.508178 + 0.861252i \(0.330319\pi\)
\(488\) 72.5275 + 72.5275i 0.148622 + 0.148622i
\(489\) −65.5307 65.5307i −0.134010 0.134010i
\(490\) 26.5795 0.0542439
\(491\) 84.6616i 0.172427i −0.996277 0.0862135i \(-0.972523\pi\)
0.996277 0.0862135i \(-0.0274767\pi\)
\(492\) 89.8372 + 89.8372i 0.182596 + 0.182596i
\(493\) 173.420i 0.351766i
\(494\) 0 0
\(495\) −511.167 −1.03266
\(496\) 153.354 153.354i 0.309181 0.309181i
\(497\) 274.536 0.552386
\(498\) 13.1206i 0.0263466i
\(499\) −134.397 + 134.397i −0.269334 + 0.269334i −0.828832 0.559498i \(-0.810994\pi\)
0.559498 + 0.828832i \(0.310994\pi\)
\(500\) 355.107 355.107i 0.710214 0.710214i
\(501\) 27.1872 + 27.1872i 0.0542659 + 0.0542659i
\(502\) 93.5641 + 93.5641i 0.186383 + 0.186383i
\(503\) −796.400 −1.58330 −0.791650 0.610975i \(-0.790778\pi\)
−0.791650 + 0.610975i \(0.790778\pi\)
\(504\) 201.033i 0.398876i
\(505\) −421.422 421.422i −0.834500 0.834500i
\(506\) 169.492i 0.334965i
\(507\) 0 0
\(508\) 106.301 0.209254
\(509\) −58.2750 + 58.2750i −0.114489 + 0.114489i −0.762030 0.647541i \(-0.775797\pi\)
0.647541 + 0.762030i \(0.275797\pi\)
\(510\) 26.0629 0.0511037
\(511\) 161.762i 0.316559i
\(512\) 351.581 351.581i 0.686682 0.686682i
\(513\) 57.0718 57.0718i 0.111251 0.111251i
\(514\) 36.2520 + 36.2520i 0.0705291 + 0.0705291i
\(515\) 207.480 + 207.480i 0.402873 + 0.402873i
\(516\) −141.962 −0.275119
\(517\) 786.908i 1.52206i
\(518\) −68.1013 68.1013i −0.131470 0.131470i
\(519\) 100.477i 0.193597i
\(520\) 0 0
\(521\) 677.011 1.29945 0.649723 0.760171i \(-0.274885\pi\)
0.649723 + 0.760171i \(0.274885\pi\)
\(522\) −29.0981 + 29.0981i −0.0557434 + 0.0557434i
\(523\) −183.654 −0.351154 −0.175577 0.984466i \(-0.556179\pi\)
−0.175577 + 0.984466i \(0.556179\pi\)
\(524\) 11.1244i 0.0212297i
\(525\) −34.1718 + 34.1718i −0.0650891 + 0.0650891i
\(526\) −93.4603 + 93.4603i −0.177681 + 0.177681i
\(527\) −220.244 220.244i −0.417919 0.417919i
\(528\) −107.895 107.895i −0.204346 0.204346i
\(529\) 121.115 0.228952
\(530\) 28.4706i 0.0537182i
\(531\) −576.004 576.004i −1.08475 1.08475i
\(532\) 139.818i 0.262816i
\(533\) 0 0
\(534\) 33.9230 0.0635263
\(535\) 251.109 251.109i 0.469362 0.469362i
\(536\) −161.709 −0.301696
\(537\) 0.763991i 0.00142270i
\(538\) −33.9334 + 33.9334i −0.0630732 + 0.0630732i
\(539\) −158.028 + 158.028i −0.293188 + 0.293188i
\(540\) −125.674 125.674i −0.232730 0.232730i
\(541\) 317.629 + 317.629i 0.587114 + 0.587114i 0.936849 0.349735i \(-0.113728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(542\) −226.267 −0.417466
\(543\) 16.8963i 0.0311165i
\(544\) −295.911 295.911i −0.543954 0.543954i
\(545\) 273.832i 0.502444i
\(546\) 0 0
\(547\) −724.904 −1.32524 −0.662618 0.748958i \(-0.730555\pi\)
−0.662618 + 0.748958i \(0.730555\pi\)
\(548\) 258.466 258.466i 0.471653 0.471653i
\(549\) −216.909 −0.395098
\(550\) 93.3590i 0.169744i
\(551\) 41.9282 41.9282i 0.0760947 0.0760947i
\(552\) 41.8423 41.8423i 0.0758013 0.0758013i
\(553\) −263.292 263.292i −0.476116 0.476116i
\(554\) 127.687 + 127.687i 0.230481 + 0.230481i
\(555\) 85.4960 0.154047
\(556\) 121.033i 0.217686i
\(557\) −84.8686 84.8686i −0.152367 0.152367i 0.626807 0.779174i \(-0.284361\pi\)
−0.779174 + 0.626807i \(0.784361\pi\)
\(558\) 73.9090i 0.132453i
\(559\) 0 0
\(560\) −284.192 −0.507486
\(561\) −154.956 + 154.956i −0.276215 + 0.276215i
\(562\) 67.3294 0.119803
\(563\) 617.636i 1.09704i 0.836136 + 0.548522i \(0.184809\pi\)
−0.836136 + 0.548522i \(0.815191\pi\)
\(564\) −93.7654 + 93.7654i −0.166251 + 0.166251i
\(565\) 379.242 379.242i 0.671224 0.671224i
\(566\) −13.0192 13.0192i −0.0230022 0.0230022i
\(567\) −280.378 280.378i −0.494494 0.494494i
\(568\) −185.163 −0.325991
\(569\) 440.305i 0.773823i −0.922117 0.386911i \(-0.873542\pi\)
0.922117 0.386911i \(-0.126458\pi\)
\(570\) −6.30127 6.30127i −0.0110549 0.0110549i
\(571\) 618.249i 1.08275i 0.840782 + 0.541374i \(0.182096\pi\)
−0.840782 + 0.541374i \(0.817904\pi\)
\(572\) 0 0
\(573\) −215.226 −0.375612
\(574\) 101.009 101.009i 0.175974 0.175974i
\(575\) −224.669 −0.390729
\(576\) 335.970i 0.583282i
\(577\) −266.237 + 266.237i −0.461415 + 0.461415i −0.899119 0.437704i \(-0.855792\pi\)
0.437704 + 0.899119i \(0.355792\pi\)
\(578\) −19.0052 + 19.0052i −0.0328809 + 0.0328809i
\(579\) −171.101 171.101i −0.295512 0.295512i
\(580\) −92.3275 92.3275i −0.159185 0.159185i
\(581\) 205.472 0.353652
\(582\) 20.7743i 0.0356947i
\(583\) 169.272 + 169.272i 0.290346 + 0.290346i
\(584\) 109.101i 0.186817i
\(585\) 0 0
\(586\) −207.263 −0.353691
\(587\) −340.494 + 340.494i −0.580057 + 0.580057i −0.934919 0.354862i \(-0.884528\pi\)
0.354862 + 0.934919i \(0.384528\pi\)
\(588\) −37.6603 −0.0640481
\(589\) 106.497i 0.180811i
\(590\) −131.219 + 131.219i −0.222405 + 0.222405i
\(591\) 45.6115 45.6115i 0.0771768 0.0771768i
\(592\) −285.025 285.025i −0.481461 0.481461i
\(593\) 389.671 + 389.671i 0.657118 + 0.657118i 0.954697 0.297579i \(-0.0961792\pi\)
−0.297579 + 0.954697i \(0.596179\pi\)
\(594\) −107.292 −0.180627
\(595\) 408.151i 0.685968i
\(596\) −337.394 337.394i −0.566098 0.566098i
\(597\) 147.464i 0.247009i
\(598\) 0 0
\(599\) 808.596 1.34991 0.674955 0.737859i \(-0.264163\pi\)
0.674955 + 0.737859i \(0.264163\pi\)
\(600\) 23.0474 23.0474i 0.0384123 0.0384123i
\(601\) −442.688 −0.736586 −0.368293 0.929710i \(-0.620058\pi\)
−0.368293 + 0.929710i \(0.620058\pi\)
\(602\) 159.615i 0.265142i
\(603\) 241.813 241.813i 0.401016 0.401016i
\(604\) −477.683 + 477.683i −0.790866 + 0.790866i
\(605\) −373.633 373.633i −0.617575 0.617575i
\(606\) −42.8705 42.8705i −0.0707434 0.0707434i
\(607\) −942.796 −1.55321 −0.776603 0.629990i \(-0.783059\pi\)
−0.776603 + 0.629990i \(0.783059\pi\)
\(608\) 143.086i 0.235339i
\(609\) 28.8513 + 28.8513i 0.0473748 + 0.0473748i
\(610\) 49.4139i 0.0810065i
\(611\) 0 0
\(612\) 583.252 0.953027
\(613\) 712.403 712.403i 1.16216 1.16216i 0.178156 0.984002i \(-0.442987\pi\)
0.984002 0.178156i \(-0.0570132\pi\)
\(614\) 190.494 0.310250
\(615\) 126.809i 0.206193i
\(616\) −272.287 + 272.287i −0.442025 + 0.442025i
\(617\) −196.466 + 196.466i −0.318421 + 0.318421i −0.848161 0.529739i \(-0.822290\pi\)
0.529739 + 0.848161i \(0.322290\pi\)
\(618\) 21.1065 + 21.1065i 0.0341529 + 0.0341529i
\(619\) 206.483 + 206.483i 0.333576 + 0.333576i 0.853943 0.520367i \(-0.174205\pi\)
−0.520367 + 0.853943i \(0.674205\pi\)
\(620\) 234.512 0.378244
\(621\) 258.200i 0.415781i
\(622\) −26.1628 26.1628i −0.0420624 0.0420624i
\(623\) 531.244i 0.852718i
\(624\) 0 0
\(625\) 223.140 0.357024
\(626\) −144.329 + 144.329i −0.230558 + 0.230558i
\(627\) 74.9282 0.119503
\(628\) 364.794i 0.580881i
\(629\) −409.347 + 409.347i −0.650790 + 0.650790i
\(630\) −68.4833 + 68.4833i −0.108704 + 0.108704i
\(631\) 313.913 + 313.913i 0.497485 + 0.497485i 0.910654 0.413170i \(-0.135578\pi\)
−0.413170 + 0.910654i \(0.635578\pi\)
\(632\) 177.580 + 177.580i 0.280980 + 0.280980i
\(633\) −53.6565 −0.0847654
\(634\) 150.842i 0.237922i
\(635\) 75.0244 + 75.0244i 0.118149 + 0.118149i
\(636\) 40.3397i 0.0634273i
\(637\) 0 0
\(638\) −78.8231 −0.123547
\(639\) 276.885 276.885i 0.433309 0.433309i
\(640\) 414.240 0.647250
\(641\) 544.692i 0.849754i 0.905251 + 0.424877i \(0.139683\pi\)
−0.905251 + 0.424877i \(0.860317\pi\)
\(642\) 25.5448 25.5448i 0.0397894 0.0397894i
\(643\) 273.405 273.405i 0.425202 0.425202i −0.461788 0.886990i \(-0.652792\pi\)
0.886990 + 0.461788i \(0.152792\pi\)
\(644\) 316.277 + 316.277i 0.491113 + 0.491113i
\(645\) −100.192 100.192i −0.155337 0.155337i
\(646\) 60.3397 0.0934052
\(647\) 503.514i 0.778229i −0.921189 0.389114i \(-0.872781\pi\)
0.921189 0.389114i \(-0.127219\pi\)
\(648\) 189.103 + 189.103i 0.291826 + 0.291826i
\(649\) 1560.32i 2.40420i
\(650\) 0 0
\(651\) −73.2820 −0.112568
\(652\) −334.081 + 334.081i −0.512394 + 0.512394i
\(653\) 31.1384 0.0476852 0.0238426 0.999716i \(-0.492410\pi\)
0.0238426 + 0.999716i \(0.492410\pi\)
\(654\) 27.8564i 0.0425939i
\(655\) 7.85125 7.85125i 0.0119866 0.0119866i
\(656\) 422.753 422.753i 0.644441 0.644441i
\(657\) 163.145 + 163.145i 0.248319 + 0.248319i
\(658\) 105.426 + 105.426i 0.160221 + 0.160221i
\(659\) 758.977 1.15171 0.575855 0.817552i \(-0.304669\pi\)
0.575855 + 0.817552i \(0.304669\pi\)
\(660\) 164.995i 0.249992i
\(661\) 185.256 + 185.256i 0.280266 + 0.280266i 0.833215 0.552949i \(-0.186498\pi\)
−0.552949 + 0.833215i \(0.686498\pi\)
\(662\) 238.795i 0.360717i
\(663\) 0 0
\(664\) −138.582 −0.208708
\(665\) 98.6795 98.6795i 0.148390 0.148390i
\(666\) −137.368 −0.206258
\(667\) 189.688i 0.284390i
\(668\) 138.603 138.603i 0.207489 0.207489i
\(669\) −196.960 + 196.960i −0.294410 + 0.294410i
\(670\) −55.0873 55.0873i −0.0822198 0.0822198i
\(671\) −293.790 293.790i −0.437839 0.437839i
\(672\) −98.4589 −0.146516
\(673\) 314.321i 0.467044i −0.972352 0.233522i \(-0.924975\pi\)
0.972352 0.233522i \(-0.0750251\pi\)
\(674\) 52.9930 + 52.9930i 0.0786246 + 0.0786246i
\(675\) 142.221i 0.210697i
\(676\) 0 0
\(677\) −547.384 −0.808544 −0.404272 0.914639i \(-0.632475\pi\)
−0.404272 + 0.914639i \(0.632475\pi\)
\(678\) 38.5795 38.5795i 0.0569020 0.0569020i
\(679\) −325.331 −0.479132
\(680\) 275.281i 0.404824i
\(681\) 216.560 216.560i 0.318003 0.318003i
\(682\) 100.105 100.105i 0.146782 0.146782i
\(683\) −185.176 185.176i −0.271121 0.271121i 0.558430 0.829551i \(-0.311404\pi\)
−0.829551 + 0.558430i \(0.811404\pi\)
\(684\) −141.014 141.014i −0.206161 0.206161i
\(685\) 364.836 0.532607
\(686\) 192.862i 0.281139i
\(687\) 52.9038 + 52.9038i 0.0770070 + 0.0770070i
\(688\) 668.038i 0.970986i
\(689\) 0 0
\(690\) 28.5077 0.0413156
\(691\) −777.990 + 777.990i −1.12589 + 1.12589i −0.135051 + 0.990839i \(0.543120\pi\)
−0.990839 + 0.135051i \(0.956880\pi\)
\(692\) 512.238 0.740229
\(693\) 814.333i 1.17508i
\(694\) 178.321 178.321i 0.256946 0.256946i
\(695\) −85.4219 + 85.4219i −0.122909 + 0.122909i
\(696\) −19.4589 19.4589i −0.0279583 0.0279583i
\(697\) −607.149 607.149i −0.871089 0.871089i
\(698\) −6.08073 −0.00871164
\(699\) 187.839i 0.268725i
\(700\) 174.210 + 174.210i 0.248872 + 0.248872i
\(701\) 638.323i 0.910589i −0.890341 0.455295i \(-0.849534\pi\)
0.890341 0.455295i \(-0.150466\pi\)
\(702\) 0 0
\(703\) 197.937 0.281561
\(704\) −455.051 + 455.051i −0.646380 + 0.646380i
\(705\) −132.354 −0.187736
\(706\) 147.999i 0.209630i
\(707\) 671.363 671.363i 0.949594 0.949594i
\(708\) 185.923 185.923i 0.262603 0.262603i
\(709\) 457.667 + 457.667i 0.645511 + 0.645511i 0.951905 0.306394i \(-0.0991224\pi\)
−0.306394 + 0.951905i \(0.599122\pi\)
\(710\) −63.0770 63.0770i −0.0888408 0.0888408i
\(711\) −531.090 −0.746962
\(712\) 358.301i 0.503232i
\(713\) −240.904 240.904i −0.337874 0.337874i
\(714\) 41.5204i 0.0581519i
\(715\) 0 0
\(716\) −3.89488 −0.00543978
\(717\) −28.8025 + 28.8025i −0.0401708 + 0.0401708i
\(718\) 67.4050 0.0938788
\(719\) 1222.11i 1.69974i −0.526993 0.849870i \(-0.676681\pi\)
0.526993 0.849870i \(-0.323319\pi\)
\(720\) −286.624 + 286.624i −0.398088 + 0.398088i
\(721\) −330.533 + 330.533i −0.458437 + 0.458437i
\(722\) 117.547 + 117.547i 0.162807 + 0.162807i
\(723\) 125.053 + 125.053i 0.172963 + 0.172963i
\(724\) 86.1384 0.118976
\(725\) 104.483i 0.144115i
\(726\) −38.0089 38.0089i −0.0523539 0.0523539i
\(727\) 508.974i 0.700102i 0.936731 + 0.350051i \(0.113836\pi\)
−0.936731 + 0.350051i \(0.886164\pi\)
\(728\) 0 0
\(729\) −481.323 −0.660251
\(730\) 37.1661 37.1661i 0.0509125 0.0509125i
\(731\) 959.423 1.31248
\(732\) 70.0141i 0.0956477i
\(733\) 861.681 861.681i 1.17555 1.17555i 0.194689 0.980865i \(-0.437630\pi\)
0.980865 0.194689i \(-0.0623699\pi\)
\(734\) 4.59361 4.59361i 0.00625833 0.00625833i
\(735\) −26.5795 26.5795i −0.0361626 0.0361626i
\(736\) −323.669 323.669i −0.439768 0.439768i
\(737\) 655.041 0.888794
\(738\) 203.746i 0.276079i
\(739\) 110.441 + 110.441i 0.149447 + 0.149447i 0.777871 0.628424i \(-0.216300\pi\)
−0.628424 + 0.777871i \(0.716300\pi\)
\(740\) 435.865i 0.589007i
\(741\) 0 0
\(742\) 45.3562 0.0611270
\(743\) 270.312 270.312i 0.363811 0.363811i −0.501403 0.865214i \(-0.667183\pi\)
0.865214 + 0.501403i \(0.167183\pi\)
\(744\) 49.4256 0.0664323
\(745\) 476.246i 0.639257i
\(746\) −113.935 + 113.935i −0.152728 + 0.152728i
\(747\) 207.229 207.229i 0.277416 0.277416i
\(748\) 789.979 + 789.979i 1.05612 + 1.05612i
\(749\) 400.038 + 400.038i 0.534097 + 0.534097i
\(750\) 50.9911 0.0679881
\(751\) 1046.64i 1.39366i −0.717237 0.696830i \(-0.754593\pi\)
0.717237 0.696830i \(-0.245407\pi\)
\(752\) 441.238 + 441.238i 0.586753 + 0.586753i
\(753\) 187.128i 0.248510i
\(754\) 0 0
\(755\) −674.270 −0.893073
\(756\) 200.210 200.210i 0.264828 0.264828i
\(757\) −376.831 −0.497795 −0.248897 0.968530i \(-0.580068\pi\)
−0.248897 + 0.968530i \(0.580068\pi\)
\(758\) 203.565i 0.268556i
\(759\) −169.492 + 169.492i −0.223310 + 0.223310i
\(760\) −66.5551 + 66.5551i −0.0875725 + 0.0875725i
\(761\) 543.214 + 543.214i 0.713816 + 0.713816i 0.967331 0.253515i \(-0.0815868\pi\)
−0.253515 + 0.967331i \(0.581587\pi\)
\(762\) 7.63209 + 7.63209i 0.0100159 + 0.0100159i
\(763\) 436.238 0.571741
\(764\) 1097.24i 1.43617i
\(765\) 411.643 + 411.643i 0.538095 + 0.538095i
\(766\) 382.123i 0.498855i
\(767\) 0 0
\(768\) −74.0910 −0.0964727
\(769\) 48.0962 48.0962i 0.0625438 0.0625438i −0.675143 0.737687i \(-0.735918\pi\)
0.737687 + 0.675143i \(0.235918\pi\)
\(770\) −185.513 −0.240926
\(771\) 72.5040i 0.0940389i
\(772\) −872.288 + 872.288i −1.12991 + 1.12991i
\(773\) −652.090 + 652.090i −0.843583 + 0.843583i −0.989323 0.145740i \(-0.953444\pi\)
0.145740 + 0.989323i \(0.453444\pi\)
\(774\) 160.981 + 160.981i 0.207985 + 0.207985i
\(775\) −132.694 132.694i −0.171218 0.171218i
\(776\) 219.422 0.282760
\(777\) 136.203i 0.175293i
\(778\) 126.088 + 126.088i 0.162067 + 0.162067i
\(779\) 293.583i 0.376872i
\(780\) 0 0
\(781\) 750.046 0.960366
\(782\) −136.492 + 136.492i −0.174543 + 0.174543i
\(783\) 120.077 0.153355
\(784\) 177.221i 0.226047i
\(785\) 257.461 257.461i 0.327976 0.327976i
\(786\) 0.798693 0.798693i 0.00101615 0.00101615i
\(787\) −870.128 870.128i −1.10563 1.10563i −0.993719 0.111908i \(-0.964304\pi\)
−0.111908 0.993719i \(-0.535696\pi\)
\(788\) −232.531 232.531i −0.295090 0.295090i
\(789\) 186.921 0.236908
\(790\) 120.987i 0.153148i
\(791\) 604.165 + 604.165i 0.763799 + 0.763799i
\(792\) 549.233i 0.693476i
\(793\) 0 0
\(794\) 363.565 0.457891
\(795\) −28.4706 + 28.4706i −0.0358121 + 0.0358121i
\(796\) 751.783 0.944451
\(797\) 25.4744i 0.0319629i 0.999872 + 0.0159814i \(0.00508727\pi\)
−0.999872 + 0.0159814i \(0.994913\pi\)
\(798\) 10.0385 10.0385i 0.0125795 0.0125795i
\(799\) 633.697 633.697i 0.793113 0.793113i
\(800\) −178.282 178.282i −0.222853 0.222853i
\(801\) 535.788 + 535.788i 0.668899 + 0.668899i
\(802\) 293.666 0.366168
\(803\) 441.941i 0.550362i
\(804\) 78.0526 + 78.0526i 0.0970803 + 0.0970803i
\(805\) 446.438i 0.554582i
\(806\) 0 0
\(807\) 67.8667 0.0840975
\(808\) −452.806 + 452.806i −0.560403 + 0.560403i
\(809\) −702.927 −0.868884 −0.434442 0.900700i \(-0.643054\pi\)
−0.434442 + 0.900700i \(0.643054\pi\)
\(810\) 128.839i 0.159060i
\(811\) 506.292 506.292i 0.624282 0.624282i −0.322342 0.946623i \(-0.604470\pi\)
0.946623 + 0.322342i \(0.104470\pi\)
\(812\) 147.086 147.086i 0.181140 0.181140i
\(813\) 226.267 + 226.267i 0.278311 + 0.278311i
\(814\) −186.056 186.056i −0.228570 0.228570i
\(815\) −471.569 −0.578613
\(816\) 173.776i 0.212960i
\(817\) −231.962 231.962i −0.283919 0.283919i
\(818\) 52.6424i 0.0643550i
\(819\) 0 0
\(820\) 646.482 0.788393
\(821\) 798.514 798.514i 0.972611 0.972611i −0.0270235 0.999635i \(-0.508603\pi\)
0.999635 + 0.0270235i \(0.00860289\pi\)
\(822\) 37.1140 0.0451509
\(823\) 519.451i 0.631168i 0.948898 + 0.315584i \(0.102200\pi\)
−0.948898 + 0.315584i \(0.897800\pi\)
\(824\) 222.931 222.931i 0.270547 0.270547i
\(825\) −93.3590 + 93.3590i −0.113162 + 0.113162i
\(826\) −209.044 209.044i −0.253079 0.253079i
\(827\) −571.769 571.769i −0.691377 0.691377i 0.271158 0.962535i \(-0.412594\pi\)
−0.962535 + 0.271158i \(0.912594\pi\)
\(828\) 637.965 0.770489
\(829\) 979.295i 1.18130i −0.806929 0.590648i \(-0.798872\pi\)
0.806929 0.590648i \(-0.201128\pi\)
\(830\) −47.2089 47.2089i −0.0568781 0.0568781i
\(831\) 255.373i 0.307308i
\(832\) 0 0
\(833\) 254.520 0.305547
\(834\) −8.68980 + 8.68980i −0.0104194 + 0.0104194i
\(835\) 195.643 0.234303
\(836\) 381.990i 0.456925i
\(837\) −152.497 + 152.497i −0.182195 + 0.182195i
\(838\) 235.924 235.924i 0.281533 0.281533i
\(839\) −376.096 376.096i −0.448267 0.448267i 0.446511 0.894778i \(-0.352666\pi\)
−0.894778 + 0.446511i \(0.852666\pi\)
\(840\) −45.7973 45.7973i −0.0545206 0.0545206i
\(841\) −752.785 −0.895107
\(842\) 253.742i 0.301357i
\(843\) −67.3294 67.3294i −0.0798688 0.0798688i
\(844\) 273.545i 0.324105i
\(845\) 0 0
\(846\) 212.655 0.251365
\(847\) 595.229 595.229i 0.702750 0.702750i
\(848\) 189.830 0.223856
\(849\) 26.0385i 0.0306696i
\(850\) −75.1821 + 75.1821i −0.0884495 + 0.0884495i
\(851\) −447.746 + 447.746i −0.526141 + 0.526141i
\(852\) 89.3731 + 89.3731i 0.104898 + 0.104898i
\(853\) 713.043 + 713.043i 0.835924 + 0.835924i 0.988320 0.152396i \(-0.0486989\pi\)
−0.152396 + 0.988320i \(0.548699\pi\)
\(854\) −78.7207 −0.0921788
\(855\) 199.047i 0.232804i
\(856\) −269.809 269.809i −0.315197 0.315197i
\(857\) 311.663i 0.363667i 0.983329 + 0.181834i \(0.0582032\pi\)
−0.983329 + 0.181834i \(0.941797\pi\)
\(858\) 0 0
\(859\) −1475.02 −1.71714 −0.858568 0.512700i \(-0.828645\pi\)
−0.858568 + 0.512700i \(0.828645\pi\)
\(860\) −510.788 + 510.788i −0.593940 + 0.593940i
\(861\) −202.018 −0.234632
\(862\) 54.5002i 0.0632253i
\(863\) −700.396 + 700.396i −0.811583 + 0.811583i −0.984871 0.173288i \(-0.944561\pi\)
0.173288 + 0.984871i \(0.444561\pi\)
\(864\) −204.890 + 204.890i −0.237141 + 0.237141i
\(865\) 361.523 + 361.523i 0.417946 + 0.417946i
\(866\) −252.276 252.276i −0.291312 0.291312i
\(867\) 38.0103 0.0438412
\(868\) 373.597i 0.430412i
\(869\) −719.328 719.328i −0.827765 0.827765i
\(870\) 13.2576i 0.0152387i
\(871\) 0 0
\(872\) −294.224 −0.337413
\(873\) −328.114 + 328.114i −0.375847 + 0.375847i
\(874\) 66.0000 0.0755149
\(875\) 798.533i 0.912609i
\(876\) −52.6603 + 52.6603i −0.0601144 + 0.0601144i
\(877\) −96.8507 + 96.8507i −0.110434 + 0.110434i −0.760165 0.649730i \(-0.774882\pi\)
0.649730 + 0.760165i \(0.274882\pi\)
\(878\) 32.9911 + 32.9911i 0.0375753 + 0.0375753i
\(879\) 207.263 + 207.263i 0.235794 + 0.235794i
\(880\) −776.428 −0.882305
\(881\) 443.032i 0.502874i 0.967874 + 0.251437i \(0.0809031\pi\)
−0.967874 + 0.251437i \(0.919097\pi\)
\(882\) 42.7058 + 42.7058i 0.0484192 + 0.0484192i
\(883\) 1305.20i 1.47814i −0.673630 0.739069i \(-0.735266\pi\)
0.673630 0.739069i \(-0.264734\pi\)
\(884\) 0 0
\(885\) 262.438 0.296540
\(886\) 235.090 235.090i 0.265338 0.265338i
\(887\) −1722.75 −1.94223 −0.971113 0.238622i \(-0.923304\pi\)
−0.971113 + 0.238622i \(0.923304\pi\)
\(888\) 91.8629i 0.103449i
\(889\) −119.520 + 119.520i −0.134444 + 0.134444i
\(890\) 122.058 122.058i 0.137143 0.137143i
\(891\) −766.008 766.008i −0.859717 0.859717i
\(892\) 1004.12 + 1004.12i 1.12569 + 1.12569i
\(893\) −306.420 −0.343136
\(894\) 48.4476i 0.0541920i
\(895\) −2.74890 2.74890i −0.00307139 0.00307139i
\(896\) 659.920i 0.736518i
\(897\) 0 0
\(898\) −12.1117 −0.0134874
\(899\) −112.033 + 112.033i −0.124620 + 0.124620i
\(900\) 351.401 0.390446
\(901\) 272.629i 0.302585i
\(902\) 275.962 275.962i 0.305944 0.305944i
\(903\) 159.615 159.615i 0.176761 0.176761i
\(904\) −407.484 407.484i −0.450756 0.450756i
\(905\) 60.7940 + 60.7940i 0.0671757 + 0.0671757i
\(906\) −68.5922 −0.0757089
\(907\) 876.187i 0.966027i 0.875613 + 0.483014i \(0.160458\pi\)
−0.875613 + 0.483014i \(0.839542\pi\)
\(908\) −1104.04 1104.04i −1.21590 1.21590i
\(909\) 1354.21i 1.48978i
\(910\) 0 0
\(911\) −1103.35 −1.21114 −0.605569 0.795793i \(-0.707054\pi\)
−0.605569 + 0.795793i \(0.707054\pi\)
\(912\) 42.0141 42.0141i 0.0460681 0.0460681i
\(913\) 561.359 0.614851
\(914\) 122.559i 0.134091i
\(915\) 49.4139 49.4139i 0.0540043 0.0540043i
\(916\) 269.708 269.708i 0.294441 0.294441i
\(917\) 12.5077 + 12.5077i 0.0136398 + 0.0136398i
\(918\) 86.4026 + 86.4026i 0.0941205 + 0.0941205i
\(919\) −656.319 −0.714167 −0.357083 0.934073i \(-0.616229\pi\)
−0.357083 + 0.934073i \(0.616229\pi\)
\(920\) 301.104i 0.327287i
\(921\) −190.494 190.494i −0.206833 0.206833i
\(922\) 25.2065i 0.0273389i
\(923\) 0 0
\(924\) 262.851 0.284471
\(925\) −246.626 + 246.626i −0.266622 + 0.266622i
\(926\) −381.538 −0.412028
\(927\) 666.722i 0.719225i
\(928\) −150.524 + 150.524i −0.162202 + 0.162202i
\(929\) 599.886 599.886i 0.645734 0.645734i −0.306225 0.951959i \(-0.599066\pi\)
0.951959 + 0.306225i \(0.0990661\pi\)
\(930\) 16.8372 + 16.8372i 0.0181045 + 0.0181045i
\(931\) −61.5359 61.5359i −0.0660966 0.0660966i
\(932\) −957.615 −1.02748
\(933\) 52.3257i 0.0560832i
\(934\) −51.7616 51.7616i −0.0554193 0.0554193i
\(935\) 1115.09i 1.19261i
\(936\) 0 0
\(937\) 842.615 0.899269 0.449635 0.893213i \(-0.351554\pi\)
0.449635 + 0.893213i \(0.351554\pi\)
\(938\) 87.7588 87.7588i 0.0935595 0.0935595i
\(939\) 288.659 0.307411
\(940\) 674.750i 0.717819i
\(941\) −471.659 + 471.659i −0.501232 + 0.501232i −0.911821 0.410589i \(-0.865323\pi\)
0.410589 + 0.911821i \(0.365323\pi\)
\(942\) 26.1910 26.1910i 0.0278036 0.0278036i
\(943\) −664.104 664.104i −0.704246 0.704246i
\(944\) −874.911 874.911i −0.926813 0.926813i
\(945\) 282.605 0.299053
\(946\) 436.077i 0.460969i
\(947\) −358.199 358.199i −0.378246 0.378246i 0.492223 0.870469i \(-0.336184\pi\)
−0.870469 + 0.492223i \(0.836184\pi\)
\(948\) 171.426i 0.180829i
\(949\) 0 0
\(950\) 36.3538 0.0382672
\(951\) 150.842 150.842i 0.158614 0.158614i
\(952\) 438.546 0.460658
\(953\) 889.226i 0.933080i 0.884500 + 0.466540i \(0.154500\pi\)
−0.884500 + 0.466540i \(0.845500\pi\)
\(954\) 45.7442 45.7442i 0.0479499 0.0479499i
\(955\) −774.398 + 774.398i −0.810888 + 0.810888i
\(956\) 146.837 + 146.837i 0.153595 + 0.153595i
\(957\) 78.8231 + 78.8231i 0.0823648 + 0.0823648i
\(958\) 387.565 0.404557
\(959\) 581.215i 0.606064i
\(960\) −76.5373 76.5373i −0.0797263 0.0797263i
\(961\) 676.436i 0.703888i
\(962\) 0 0
\(963\) 806.922 0.837925
\(964\) 637.527 637.527i 0.661336 0.661336i
\(965\) −1231.27 −1.27593
\(966\) 45.4153i 0.0470138i
\(967\) −384.317 + 384.317i −0.397432 + 0.397432i −0.877326 0.479894i \(-0.840675\pi\)
0.479894 + 0.877326i \(0.340675\pi\)
\(968\) −401.457 + 401.457i −0.414728 + 0.414728i
\(969\) −60.3397 60.3397i −0.0622701 0.0622701i
\(970\) 74.7475 + 74.7475i 0.0770593 + 0.0770593i
\(971\) −243.727 −0.251006 −0.125503 0.992093i \(-0.540054\pi\)
−0.125503 + 0.992093i \(0.540054\pi\)
\(972\) 611.965i 0.629594i
\(973\) −136.084 136.084i −0.139861 0.139861i
\(974\) 125.874i 0.129234i
\(975\) 0 0
\(976\) −329.470 −0.337572
\(977\) 812.582 812.582i 0.831712 0.831712i −0.156039 0.987751i \(-0.549873\pi\)
0.987751 + 0.156039i \(0.0498726\pi\)
\(978\) −47.9718 −0.0490510
\(979\) 1451.38i 1.48252i
\(980\) −135.504 + 135.504i −0.138270 + 0.138270i
\(981\) 439.970 439.970i 0.448492 0.448492i
\(982\) −30.9883 30.9883i −0.0315563 0.0315563i
\(983\) −774.213 774.213i −0.787602 0.787602i 0.193499 0.981101i \(-0.438016\pi\)
−0.981101 + 0.193499i \(0.938016\pi\)
\(984\) 136.252 0.138468
\(985\) 328.227i 0.333225i
\(986\) 63.4763 + 63.4763i 0.0643776 + 0.0643776i
\(987\) 210.851i 0.213628i
\(988\) 0 0
\(989\) 1049.42 1.06109
\(990\) −187.100 + 187.100i −0.188990 + 0.188990i
\(991\) −783.465 −0.790580 −0.395290 0.918556i \(-0.629356\pi\)
−0.395290 + 0.918556i \(0.629356\pi\)
\(992\) 382.329i 0.385413i
\(993\) 238.795 238.795i 0.240478 0.240478i
\(994\) 100.487 100.487i 0.101094 0.101094i
\(995\) 530.587 + 530.587i 0.533253 + 0.533253i
\(996\) 66.8897 + 66.8897i 0.0671584 + 0.0671584i
\(997\) 501.634 0.503144 0.251572 0.967839i \(-0.419052\pi\)
0.251572 + 0.967839i \(0.419052\pi\)
\(998\) 98.3858i 0.0985829i
\(999\) 283.433 + 283.433i 0.283717 + 0.283717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.d.a.70.2 4
13.2 odd 12 169.3.f.b.150.1 4
13.3 even 3 169.3.f.c.19.1 4
13.4 even 6 169.3.f.b.80.1 4
13.5 odd 4 169.3.d.c.99.1 4
13.6 odd 12 169.3.f.a.89.1 4
13.7 odd 12 169.3.f.c.89.1 4
13.8 odd 4 inner 169.3.d.a.99.2 4
13.9 even 3 13.3.f.a.2.1 4
13.10 even 6 169.3.f.a.19.1 4
13.11 odd 12 13.3.f.a.7.1 yes 4
13.12 even 2 169.3.d.c.70.1 4
39.11 even 12 117.3.bd.b.46.1 4
39.35 odd 6 117.3.bd.b.28.1 4
52.11 even 12 208.3.bd.d.33.1 4
52.35 odd 6 208.3.bd.d.145.1 4
65.9 even 6 325.3.t.a.301.1 4
65.22 odd 12 325.3.w.b.249.1 4
65.24 odd 12 325.3.t.a.176.1 4
65.37 even 12 325.3.w.a.124.1 4
65.48 odd 12 325.3.w.a.249.1 4
65.63 even 12 325.3.w.b.124.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.f.a.2.1 4 13.9 even 3
13.3.f.a.7.1 yes 4 13.11 odd 12
117.3.bd.b.28.1 4 39.35 odd 6
117.3.bd.b.46.1 4 39.11 even 12
169.3.d.a.70.2 4 1.1 even 1 trivial
169.3.d.a.99.2 4 13.8 odd 4 inner
169.3.d.c.70.1 4 13.12 even 2
169.3.d.c.99.1 4 13.5 odd 4
169.3.f.a.19.1 4 13.10 even 6
169.3.f.a.89.1 4 13.6 odd 12
169.3.f.b.80.1 4 13.4 even 6
169.3.f.b.150.1 4 13.2 odd 12
169.3.f.c.19.1 4 13.3 even 3
169.3.f.c.89.1 4 13.7 odd 12
208.3.bd.d.33.1 4 52.11 even 12
208.3.bd.d.145.1 4 52.35 odd 6
325.3.t.a.176.1 4 65.24 odd 12
325.3.t.a.301.1 4 65.9 even 6
325.3.w.a.124.1 4 65.37 even 12
325.3.w.a.249.1 4 65.48 odd 12
325.3.w.b.124.1 4 65.63 even 12
325.3.w.b.249.1 4 65.22 odd 12