Properties

Label 169.2.k.a.4.9
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.9
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.397859 + 0.0160332i) q^{2} +(0.320025 - 1.10485i) q^{3} +(-1.83548 - 0.148175i) q^{4} +(-2.52701 - 0.958369i) q^{5} +(0.145039 - 0.434446i) q^{6} +(-1.61420 - 3.78868i) q^{7} +(-1.51844 - 0.184373i) q^{8} +(1.41728 + 0.896235i) q^{9} +O(q^{10})\) \(q+(0.397859 + 0.0160332i) q^{2} +(0.320025 - 1.10485i) q^{3} +(-1.83548 - 0.148175i) q^{4} +(-2.52701 - 0.958369i) q^{5} +(0.145039 - 0.434446i) q^{6} +(-1.61420 - 3.78868i) q^{7} +(-1.51844 - 0.184373i) q^{8} +(1.41728 + 0.896235i) q^{9} +(-0.990029 - 0.421812i) q^{10} +(-0.145996 - 0.230874i) q^{11} +(-0.751112 + 1.98052i) q^{12} +(3.49504 - 0.885841i) q^{13} +(-0.581482 - 1.53324i) q^{14} +(-1.86757 + 2.48528i) q^{15} +(3.03404 + 0.493079i) q^{16} +(2.03601 - 0.867463i) q^{17} +(0.549509 + 0.379299i) q^{18} +(-1.19452 + 0.689657i) q^{19} +(4.49627 + 2.13351i) q^{20} +(-4.70252 + 0.570990i) q^{21} +(-0.0543841 - 0.0941961i) q^{22} +(-2.79485 + 4.84082i) q^{23} +(-0.689645 + 1.61866i) q^{24} +(1.72476 + 1.52800i) q^{25} +(1.40474 - 0.296403i) q^{26} +(4.02674 - 3.56738i) q^{27} +(2.40145 + 7.19323i) q^{28} +(0.298762 - 7.41370i) q^{29} +(-0.782875 + 0.958848i) q^{30} +(-6.91875 - 7.80965i) q^{31} +(4.19658 + 0.856739i) q^{32} +(-0.301805 + 0.0874187i) q^{33} +(0.823954 - 0.312485i) q^{34} +(0.448162 + 11.1210i) q^{35} +(-2.46859 - 1.85503i) q^{36} +(6.52253 - 1.33158i) q^{37} +(-0.486308 + 0.255234i) q^{38} +(0.139774 - 4.14500i) q^{39} +(3.66043 + 1.92114i) q^{40} +(1.55996 + 0.451849i) q^{41} +(-1.88010 + 0.151777i) q^{42} +(-0.598243 + 2.93039i) q^{43} +(0.233763 + 0.445397i) q^{44} +(-2.72256 - 3.62307i) q^{45} +(-1.18957 + 1.88115i) q^{46} +(3.21346 - 2.21809i) q^{47} +(1.51575 - 3.19437i) q^{48} +(-6.89935 + 7.18298i) q^{49} +(0.661712 + 0.635583i) q^{50} +(-0.306846 - 2.52711i) q^{51} +(-6.54633 + 1.10806i) q^{52} +(-1.23426 + 10.1650i) q^{53} +(1.65927 - 1.35475i) q^{54} +(0.147671 + 0.723339i) q^{55} +(1.75255 + 6.05051i) q^{56} +(0.379694 + 1.54048i) q^{57} +(0.237730 - 2.94482i) q^{58} +(2.19299 + 13.4940i) q^{59} +(3.79613 - 4.28495i) q^{60} +(7.50282 - 5.63801i) q^{61} +(-2.62747 - 3.21807i) q^{62} +(1.10776 - 6.81633i) q^{63} +(-4.31313 - 1.06309i) q^{64} +(-9.68096 - 1.11101i) q^{65} +(-0.121477 + 0.0299415i) q^{66} +(-0.353941 - 4.38435i) q^{67} +(-3.86559 + 1.29052i) q^{68} +(4.45398 + 4.63709i) q^{69} +4.43179i q^{70} +(3.27635 - 3.14698i) q^{71} +(-1.98682 - 1.62219i) q^{72} +(4.42835 - 8.43751i) q^{73} +(2.61640 - 0.425206i) q^{74} +(2.24019 - 1.41661i) q^{75} +(2.29471 - 1.08885i) q^{76} +(-0.639040 + 0.925809i) q^{77} +(0.122068 - 1.64689i) q^{78} +(-2.77999 - 4.02751i) q^{79} +(-7.19449 - 4.15374i) q^{80} +(-0.496184 - 1.04569i) q^{81} +(0.613401 + 0.204783i) q^{82} +(0.494423 - 2.00595i) q^{83} +(8.71600 - 0.351243i) q^{84} +(-5.97637 + 0.240840i) q^{85} +(-0.285000 + 1.15629i) q^{86} +(-8.09546 - 2.70266i) q^{87} +(0.179120 + 0.377487i) q^{88} +(-3.41453 - 1.97138i) q^{89} +(-1.02511 - 1.48512i) q^{90} +(-8.99787 - 11.8116i) q^{91} +(5.84718 - 8.47110i) q^{92} +(-10.8427 + 5.14493i) q^{93} +(1.31407 - 0.830966i) q^{94} +(3.67951 - 0.597979i) q^{95} +(2.28958 - 4.36244i) q^{96} +(7.31950 + 5.97619i) q^{97} +(-2.86014 + 2.74720i) q^{98} -0.458060i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.397859 + 0.0160332i 0.281329 + 0.0113372i 0.180529 0.983570i \(-0.442219\pi\)
0.100800 + 0.994907i \(0.467860\pi\)
\(3\) 0.320025 1.10485i 0.184767 0.637888i −0.813635 0.581376i \(-0.802515\pi\)
0.998402 0.0565126i \(-0.0179981\pi\)
\(4\) −1.83548 0.148175i −0.917740 0.0740876i
\(5\) −2.52701 0.958369i −1.13011 0.428595i −0.282530 0.959258i \(-0.591174\pi\)
−0.847583 + 0.530663i \(0.821943\pi\)
\(6\) 0.145039 0.434446i 0.0592120 0.177362i
\(7\) −1.61420 3.78868i −0.610112 1.43199i −0.882738 0.469865i \(-0.844302\pi\)
0.272626 0.962120i \(-0.412108\pi\)
\(8\) −1.51844 0.184373i −0.536851 0.0651855i
\(9\) 1.41728 + 0.896235i 0.472427 + 0.298745i
\(10\) −0.990029 0.421812i −0.313075 0.133389i
\(11\) −0.145996 0.230874i −0.0440194 0.0696111i 0.822463 0.568818i \(-0.192599\pi\)
−0.866483 + 0.499207i \(0.833625\pi\)
\(12\) −0.751112 + 1.98052i −0.216827 + 0.571727i
\(13\) 3.49504 0.885841i 0.969349 0.245688i
\(14\) −0.581482 1.53324i −0.155408 0.409776i
\(15\) −1.86757 + 2.48528i −0.482203 + 0.641696i
\(16\) 3.03404 + 0.493079i 0.758510 + 0.123270i
\(17\) 2.03601 0.867463i 0.493805 0.210391i −0.130684 0.991424i \(-0.541717\pi\)
0.624489 + 0.781033i \(0.285307\pi\)
\(18\) 0.549509 + 0.379299i 0.129521 + 0.0894016i
\(19\) −1.19452 + 0.689657i −0.274042 + 0.158218i −0.630723 0.776008i \(-0.717242\pi\)
0.356681 + 0.934226i \(0.383908\pi\)
\(20\) 4.49627 + 2.13351i 1.00540 + 0.477067i
\(21\) −4.70252 + 0.570990i −1.02618 + 0.124600i
\(22\) −0.0543841 0.0941961i −0.0115947 0.0200827i
\(23\) −2.79485 + 4.84082i −0.582766 + 1.00938i 0.412384 + 0.911010i \(0.364696\pi\)
−0.995150 + 0.0983704i \(0.968637\pi\)
\(24\) −0.689645 + 1.61866i −0.140773 + 0.330407i
\(25\) 1.72476 + 1.52800i 0.344952 + 0.305600i
\(26\) 1.40474 0.296403i 0.275491 0.0581295i
\(27\) 4.02674 3.56738i 0.774947 0.686543i
\(28\) 2.40145 + 7.19323i 0.453832 + 1.35939i
\(29\) 0.298762 7.41370i 0.0554787 1.37669i −0.696525 0.717532i \(-0.745272\pi\)
0.752004 0.659158i \(-0.229087\pi\)
\(30\) −0.782875 + 0.958848i −0.142933 + 0.175061i
\(31\) −6.91875 7.80965i −1.24264 1.40265i −0.882871 0.469615i \(-0.844393\pi\)
−0.359772 0.933040i \(-0.617146\pi\)
\(32\) 4.19658 + 0.856739i 0.741858 + 0.151451i
\(33\) −0.301805 + 0.0874187i −0.0525374 + 0.0152177i
\(34\) 0.823954 0.312485i 0.141307 0.0535907i
\(35\) 0.448162 + 11.1210i 0.0757532 + 1.87980i
\(36\) −2.46859 1.85503i −0.411432 0.309171i
\(37\) 6.52253 1.33158i 1.07230 0.218911i 0.368727 0.929538i \(-0.379794\pi\)
0.703569 + 0.710627i \(0.251588\pi\)
\(38\) −0.486308 + 0.255234i −0.0788896 + 0.0414045i
\(39\) 0.139774 4.14500i 0.0223818 0.663731i
\(40\) 3.66043 + 1.92114i 0.578765 + 0.303759i
\(41\) 1.55996 + 0.451849i 0.243625 + 0.0705669i 0.397784 0.917479i \(-0.369779\pi\)
−0.154158 + 0.988046i \(0.549267\pi\)
\(42\) −1.88010 + 0.151777i −0.290105 + 0.0234197i
\(43\) −0.598243 + 2.93039i −0.0912311 + 0.446880i 0.908357 + 0.418195i \(0.137337\pi\)
−0.999589 + 0.0286848i \(0.990868\pi\)
\(44\) 0.233763 + 0.445397i 0.0352410 + 0.0671462i
\(45\) −2.72256 3.62307i −0.405856 0.540096i
\(46\) −1.18957 + 1.88115i −0.175393 + 0.277361i
\(47\) 3.21346 2.21809i 0.468731 0.323542i −0.310178 0.950679i \(-0.600389\pi\)
0.778909 + 0.627137i \(0.215773\pi\)
\(48\) 1.51575 3.19437i 0.218780 0.461068i
\(49\) −6.89935 + 7.18298i −0.985621 + 1.02614i
\(50\) 0.661712 + 0.635583i 0.0935802 + 0.0898850i
\(51\) −0.306846 2.52711i −0.0429671 0.353866i
\(52\) −6.54633 + 1.10806i −0.907813 + 0.153661i
\(53\) −1.23426 + 10.1650i −0.169538 + 1.39627i 0.620976 + 0.783830i \(0.286737\pi\)
−0.790514 + 0.612444i \(0.790186\pi\)
\(54\) 1.65927 1.35475i 0.225799 0.184359i
\(55\) 0.147671 + 0.723339i 0.0199119 + 0.0975350i
\(56\) 1.75255 + 6.05051i 0.234195 + 0.808534i
\(57\) 0.379694 + 1.54048i 0.0502917 + 0.204041i
\(58\) 0.237730 2.94482i 0.0312155 0.386674i
\(59\) 2.19299 + 13.4940i 0.285503 + 1.75677i 0.592981 + 0.805217i \(0.297951\pi\)
−0.307478 + 0.951555i \(0.599485\pi\)
\(60\) 3.79613 4.28495i 0.490079 0.553185i
\(61\) 7.50282 5.63801i 0.960638 0.721873i 9.38187e−5 1.00000i \(-0.499970\pi\)
0.960544 + 0.278127i \(0.0897137\pi\)
\(62\) −2.62747 3.21807i −0.333690 0.408695i
\(63\) 1.10776 6.81633i 0.139565 0.858777i
\(64\) −4.31313 1.06309i −0.539142 0.132886i
\(65\) −9.68096 1.11101i −1.20078 0.137803i
\(66\) −0.121477 + 0.0299415i −0.0149528 + 0.00368554i
\(67\) −0.353941 4.38435i −0.0432408 0.535633i −0.981724 0.190309i \(-0.939051\pi\)
0.938483 0.345324i \(-0.112231\pi\)
\(68\) −3.86559 + 1.29052i −0.468772 + 0.156499i
\(69\) 4.45398 + 4.63709i 0.536196 + 0.558240i
\(70\) 4.43179i 0.529700i
\(71\) 3.27635 3.14698i 0.388831 0.373478i −0.472664 0.881243i \(-0.656708\pi\)
0.861496 + 0.507765i \(0.169528\pi\)
\(72\) −1.98682 1.62219i −0.234149 0.191177i
\(73\) 4.42835 8.43751i 0.518299 0.987536i −0.475851 0.879526i \(-0.657860\pi\)
0.994150 0.108010i \(-0.0344479\pi\)
\(74\) 2.61640 0.425206i 0.304150 0.0494292i
\(75\) 2.24019 1.41661i 0.258674 0.163576i
\(76\) 2.29471 1.08885i 0.263221 0.124900i
\(77\) −0.639040 + 0.925809i −0.0728253 + 0.105506i
\(78\) 0.122068 1.64689i 0.0138215 0.186473i
\(79\) −2.77999 4.02751i −0.312773 0.453130i 0.634796 0.772679i \(-0.281084\pi\)
−0.947570 + 0.319549i \(0.896469\pi\)
\(80\) −7.19449 4.15374i −0.804369 0.464403i
\(81\) −0.496184 1.04569i −0.0551316 0.116187i
\(82\) 0.613401 + 0.204783i 0.0677388 + 0.0226145i
\(83\) 0.494423 2.00595i 0.0542700 0.220182i −0.937545 0.347863i \(-0.886907\pi\)
0.991815 + 0.127681i \(0.0407535\pi\)
\(84\) 8.71600 0.351243i 0.950993 0.0383237i
\(85\) −5.97637 + 0.240840i −0.648228 + 0.0261227i
\(86\) −0.285000 + 1.15629i −0.0307323 + 0.124686i
\(87\) −8.09546 2.70266i −0.867924 0.289756i
\(88\) 0.179120 + 0.377487i 0.0190942 + 0.0402402i
\(89\) −3.41453 1.97138i −0.361940 0.208966i 0.307991 0.951389i \(-0.400343\pi\)
−0.669931 + 0.742423i \(0.733677\pi\)
\(90\) −1.02511 1.48512i −0.108056 0.156546i
\(91\) −8.99787 11.8116i −0.943233 1.23820i
\(92\) 5.84718 8.47110i 0.609610 0.883173i
\(93\) −10.8427 + 5.14493i −1.12434 + 0.533504i
\(94\) 1.31407 0.830966i 0.135536 0.0857076i
\(95\) 3.67951 0.597979i 0.377510 0.0613513i
\(96\) 2.28958 4.36244i 0.233680 0.445240i
\(97\) 7.31950 + 5.97619i 0.743183 + 0.606790i 0.926514 0.376261i \(-0.122790\pi\)
−0.183331 + 0.983051i \(0.558688\pi\)
\(98\) −2.86014 + 2.74720i −0.288917 + 0.277509i
\(99\) 0.458060i 0.0460368i
\(100\) −2.93935 3.06018i −0.293935 0.306018i
\(101\) −3.57606 + 1.19386i −0.355831 + 0.118794i −0.488963 0.872304i \(-0.662625\pi\)
0.133132 + 0.991098i \(0.457497\pi\)
\(102\) −0.0815641 1.01035i −0.00807605 0.100040i
\(103\) 7.12656 1.75654i 0.702201 0.173077i 0.127979 0.991777i \(-0.459151\pi\)
0.574222 + 0.818700i \(0.305305\pi\)
\(104\) −5.47035 + 0.700711i −0.536412 + 0.0687104i
\(105\) 12.4305 + 3.06385i 1.21310 + 0.299002i
\(106\) −0.654039 + 4.02446i −0.0635258 + 0.390890i
\(107\) −2.70861 3.31745i −0.261852 0.320710i 0.626899 0.779100i \(-0.284324\pi\)
−0.888751 + 0.458390i \(0.848426\pi\)
\(108\) −7.91960 + 5.95120i −0.762064 + 0.572654i
\(109\) −9.48500 + 10.7064i −0.908498 + 1.02548i 0.0910626 + 0.995845i \(0.470974\pi\)
−0.999561 + 0.0296372i \(0.990565\pi\)
\(110\) 0.0471547 + 0.290155i 0.00449603 + 0.0276652i
\(111\) 0.616166 7.63258i 0.0584839 0.724453i
\(112\) −3.02944 12.2909i −0.286255 1.16138i
\(113\) 5.20484 + 17.9692i 0.489630 + 1.69040i 0.701139 + 0.713024i \(0.252675\pi\)
−0.211509 + 0.977376i \(0.567838\pi\)
\(114\) 0.126366 + 0.618982i 0.0118353 + 0.0579729i
\(115\) 11.7019 9.55431i 1.09121 0.890944i
\(116\) −1.64690 + 13.5634i −0.152911 + 1.25933i
\(117\) 5.74737 + 1.87689i 0.531345 + 0.173518i
\(118\) 0.656150 + 5.40388i 0.0604035 + 0.497468i
\(119\) −6.57308 6.31353i −0.602553 0.578760i
\(120\) 3.29401 3.42943i 0.300701 0.313063i
\(121\) 4.68363 9.87054i 0.425785 0.897322i
\(122\) 3.07546 2.12284i 0.278439 0.192193i
\(123\) 0.998455 1.57893i 0.0900277 0.142367i
\(124\) 11.5420 + 15.3596i 1.03650 + 1.37934i
\(125\) 3.38580 + 6.45110i 0.302835 + 0.577004i
\(126\) 0.550021 2.69418i 0.0489997 0.240017i
\(127\) −0.177607 + 0.0143380i −0.0157601 + 0.00127229i −0.0883441 0.996090i \(-0.528158\pi\)
0.0725840 + 0.997362i \(0.476875\pi\)
\(128\) −9.92705 2.87541i −0.877436 0.254152i
\(129\) 3.04620 + 1.59877i 0.268203 + 0.140764i
\(130\) −3.83385 0.597240i −0.336250 0.0523814i
\(131\) −11.7596 + 6.17189i −1.02744 + 0.539241i −0.892232 0.451577i \(-0.850862\pi\)
−0.135205 + 0.990818i \(0.543169\pi\)
\(132\) 0.566909 0.115735i 0.0493431 0.0100735i
\(133\) 4.54109 + 3.41241i 0.393762 + 0.295893i
\(134\) −0.0705237 1.75003i −0.00609232 0.151179i
\(135\) −13.5945 + 5.15571i −1.17003 + 0.443733i
\(136\) −3.25151 + 0.941810i −0.278814 + 0.0807596i
\(137\) −9.00338 1.83805i −0.769211 0.157035i −0.200635 0.979666i \(-0.564300\pi\)
−0.568576 + 0.822631i \(0.692506\pi\)
\(138\) 1.69771 + 1.91632i 0.144519 + 0.163128i
\(139\) 10.1449 12.4252i 0.860476 1.05389i −0.137513 0.990500i \(-0.543911\pi\)
0.997989 0.0633913i \(-0.0201916\pi\)
\(140\) 0.825269 20.4788i 0.0697479 1.73078i
\(141\) −1.42228 4.26025i −0.119778 0.358778i
\(142\) 1.35398 1.19952i 0.113624 0.100662i
\(143\) −0.714778 0.677584i −0.0597728 0.0566624i
\(144\) 3.85817 + 3.41804i 0.321514 + 0.284837i
\(145\) −7.86004 + 18.4482i −0.652741 + 1.53204i
\(146\) 1.89714 3.28594i 0.157008 0.271946i
\(147\) 5.72819 + 9.92151i 0.472453 + 0.818313i
\(148\) −12.1693 + 1.47762i −1.00031 + 0.121459i
\(149\) 11.4846 + 5.44950i 0.940854 + 0.446441i 0.836419 0.548091i \(-0.184645\pi\)
0.104435 + 0.994532i \(0.466697\pi\)
\(150\) 0.913992 0.527693i 0.0746271 0.0430860i
\(151\) −17.6419 12.1773i −1.43568 0.990975i −0.995668 0.0929816i \(-0.970360\pi\)
−0.440008 0.897994i \(-0.645024\pi\)
\(152\) 1.94097 0.826969i 0.157433 0.0670760i
\(153\) 3.66305 + 0.595304i 0.296140 + 0.0481275i
\(154\) −0.269091 + 0.358096i −0.0216840 + 0.0288562i
\(155\) 9.99922 + 26.3658i 0.803157 + 2.11775i
\(156\) −0.870739 + 7.58735i −0.0697149 + 0.607474i
\(157\) −1.45494 + 3.83636i −0.116117 + 0.306175i −0.980457 0.196732i \(-0.936967\pi\)
0.864340 + 0.502907i \(0.167736\pi\)
\(158\) −1.04147 1.64695i −0.0828550 0.131025i
\(159\) 10.8359 + 4.61674i 0.859342 + 0.366131i
\(160\) −9.78374 6.18686i −0.773473 0.489114i
\(161\) 22.8518 + 2.77471i 1.80097 + 0.218677i
\(162\) −0.180646 0.423991i −0.0141929 0.0333119i
\(163\) −3.66831 + 10.9879i −0.287324 + 0.860641i 0.701646 + 0.712526i \(0.252449\pi\)
−0.988970 + 0.148115i \(0.952679\pi\)
\(164\) −2.79633 1.06051i −0.218357 0.0828117i
\(165\) 0.846443 + 0.0683319i 0.0658955 + 0.00531963i
\(166\) 0.228873 0.790160i 0.0177640 0.0613283i
\(167\) 1.32600 + 0.0534359i 0.102609 + 0.00413500i 0.0915173 0.995803i \(-0.470828\pi\)
0.0110916 + 0.999938i \(0.496469\pi\)
\(168\) 7.24580 0.559026
\(169\) 11.4306 6.19209i 0.879275 0.476315i
\(170\) −2.38162 −0.182662
\(171\) −2.31107 0.0931328i −0.176732 0.00712204i
\(172\) 1.53227 5.29002i 0.116835 0.403360i
\(173\) 22.6628 + 1.82953i 1.72302 + 0.139097i 0.901982 0.431773i \(-0.142112\pi\)
0.821041 + 0.570870i \(0.193394\pi\)
\(174\) −3.17752 1.20507i −0.240887 0.0913564i
\(175\) 3.00500 9.00106i 0.227156 0.680416i
\(176\) −0.329118 0.772468i −0.0248082 0.0582270i
\(177\) 15.6107 + 1.89549i 1.17338 + 0.142474i
\(178\) −1.32690 0.839078i −0.0994551 0.0628916i
\(179\) 20.2245 + 8.61686i 1.51165 + 0.644054i 0.979290 0.202463i \(-0.0648945\pi\)
0.532361 + 0.846517i \(0.321305\pi\)
\(180\) 4.46036 + 7.05349i 0.332456 + 0.525736i
\(181\) −1.27826 + 3.37050i −0.0950125 + 0.250527i −0.974094 0.226145i \(-0.927388\pi\)
0.879081 + 0.476672i \(0.158157\pi\)
\(182\) −3.39051 4.84363i −0.251321 0.359034i
\(183\) −3.82809 10.0938i −0.282980 0.746158i
\(184\) 5.13634 6.83522i 0.378656 0.503899i
\(185\) −17.7586 2.88606i −1.30564 0.212187i
\(186\) −4.39636 + 1.87311i −0.322357 + 0.137343i
\(187\) −0.497524 0.343416i −0.0363825 0.0251131i
\(188\) −6.22691 + 3.59511i −0.454144 + 0.262200i
\(189\) −20.0157 9.49754i −1.45592 0.690845i
\(190\) 1.47351 0.178917i 0.106900 0.0129800i
\(191\) −0.491446 0.851210i −0.0355598 0.0615914i 0.847698 0.530479i \(-0.177988\pi\)
−0.883258 + 0.468888i \(0.844655\pi\)
\(192\) −2.55487 + 4.42517i −0.184382 + 0.319359i
\(193\) −4.12266 + 9.67624i −0.296756 + 0.696511i −0.999894 0.0145419i \(-0.995371\pi\)
0.703139 + 0.711053i \(0.251781\pi\)
\(194\) 2.81631 + 2.49504i 0.202200 + 0.179133i
\(195\) −4.32565 + 10.3405i −0.309766 + 0.740499i
\(196\) 13.7280 12.1619i 0.980568 0.868708i
\(197\) 2.26316 + 6.77898i 0.161243 + 0.482982i 0.997902 0.0647421i \(-0.0206225\pi\)
−0.836659 + 0.547724i \(0.815494\pi\)
\(198\) 0.00734416 0.182243i 0.000521927 0.0129515i
\(199\) −4.93308 + 6.04193i −0.349697 + 0.428301i −0.919263 0.393645i \(-0.871214\pi\)
0.569566 + 0.821946i \(0.307111\pi\)
\(200\) −2.33723 2.63818i −0.165267 0.186548i
\(201\) −4.95734 1.01205i −0.349664 0.0713844i
\(202\) −1.44191 + 0.417654i −0.101452 + 0.0293860i
\(203\) −28.5704 + 10.8353i −2.00525 + 0.760491i
\(204\) 0.188756 + 4.68392i 0.0132155 + 0.327940i
\(205\) −3.50901 2.63685i −0.245080 0.184165i
\(206\) 2.86353 0.584594i 0.199512 0.0407306i
\(207\) −8.29960 + 4.35597i −0.576862 + 0.302761i
\(208\) 11.0409 0.964344i 0.765546 0.0668652i
\(209\) 0.333619 + 0.175097i 0.0230769 + 0.0121117i
\(210\) 4.89648 + 1.41828i 0.337890 + 0.0978709i
\(211\) 19.1565 1.54647i 1.31879 0.106463i 0.599051 0.800711i \(-0.295545\pi\)
0.719736 + 0.694248i \(0.244263\pi\)
\(212\) 3.77166 18.4748i 0.259039 1.26886i
\(213\) −2.42844 4.62700i −0.166394 0.317037i
\(214\) −1.02446 1.36331i −0.0700305 0.0931937i
\(215\) 4.32015 6.83178i 0.294632 0.465923i
\(216\) −6.77211 + 4.67445i −0.460784 + 0.318056i
\(217\) −18.4200 + 38.8193i −1.25043 + 2.63522i
\(218\) −3.94535 + 4.10755i −0.267213 + 0.278198i
\(219\) −7.90504 7.59290i −0.534173 0.513081i
\(220\) −0.163866 1.34955i −0.0110478 0.0909870i
\(221\) 6.34750 4.83540i 0.426979 0.325264i
\(222\) 0.367522 3.02681i 0.0246665 0.203147i
\(223\) 9.99357 8.15950i 0.669219 0.546400i −0.235784 0.971805i \(-0.575766\pi\)
0.905003 + 0.425405i \(0.139868\pi\)
\(224\) −3.52824 17.2825i −0.235740 1.15473i
\(225\) 1.07502 + 3.71140i 0.0716680 + 0.247427i
\(226\) 1.78269 + 7.23266i 0.118583 + 0.481110i
\(227\) 0.975958 12.0894i 0.0647766 0.802403i −0.880060 0.474862i \(-0.842498\pi\)
0.944837 0.327541i \(-0.106220\pi\)
\(228\) −0.468660 2.88378i −0.0310378 0.190983i
\(229\) 1.34004 1.51259i 0.0885524 0.0999550i −0.702564 0.711620i \(-0.747962\pi\)
0.791117 + 0.611665i \(0.209500\pi\)
\(230\) 4.80890 3.61365i 0.317089 0.238277i
\(231\) 0.818376 + 1.00233i 0.0538452 + 0.0659484i
\(232\) −1.82054 + 11.2022i −0.119524 + 0.735462i
\(233\) −24.6036 6.06424i −1.61184 0.397282i −0.672450 0.740143i \(-0.734758\pi\)
−0.939386 + 0.342861i \(0.888604\pi\)
\(234\) 2.25655 + 0.838886i 0.147516 + 0.0548397i
\(235\) −10.2462 + 2.52546i −0.668388 + 0.164743i
\(236\) −2.02571 25.0929i −0.131863 1.63341i
\(237\) −5.33948 + 1.78258i −0.346837 + 0.115791i
\(238\) −2.51393 2.61728i −0.162954 0.169653i
\(239\) 16.5767i 1.07226i −0.844135 0.536130i \(-0.819886\pi\)
0.844135 0.536130i \(-0.180114\pi\)
\(240\) −6.89170 + 6.61957i −0.444857 + 0.427291i
\(241\) 2.11581 + 1.72750i 0.136291 + 0.111278i 0.698139 0.715962i \(-0.254012\pi\)
−0.561848 + 0.827241i \(0.689909\pi\)
\(242\) 2.02168 3.85199i 0.129959 0.247615i
\(243\) 14.6159 2.37531i 0.937610 0.152377i
\(244\) −14.6067 + 9.23671i −0.935098 + 0.591320i
\(245\) 24.3187 11.5394i 1.55366 0.737222i
\(246\) 0.422560 0.612184i 0.0269414 0.0390314i
\(247\) −3.56397 + 3.46853i −0.226770 + 0.220697i
\(248\) 9.06585 + 13.1342i 0.575682 + 0.834019i
\(249\) −2.05806 1.18822i −0.130424 0.0753005i
\(250\) 1.24364 + 2.62092i 0.0786547 + 0.165761i
\(251\) 1.80958 + 0.604126i 0.114220 + 0.0381321i 0.373203 0.927750i \(-0.378259\pi\)
−0.258984 + 0.965882i \(0.583388\pi\)
\(252\) −3.04329 + 12.3471i −0.191709 + 0.777794i
\(253\) 1.52566 0.0614818i 0.0959171 0.00386533i
\(254\) −0.0708927 + 0.00285688i −0.00444820 + 0.000179256i
\(255\) −1.64650 + 6.68010i −0.103108 + 0.418324i
\(256\) 4.52374 + 1.51025i 0.282734 + 0.0943904i
\(257\) −8.86036 18.6728i −0.552694 1.16478i −0.967032 0.254655i \(-0.918038\pi\)
0.414338 0.910123i \(-0.364013\pi\)
\(258\) 1.18632 + 0.684925i 0.0738574 + 0.0426416i
\(259\) −15.5736 22.5623i −0.967698 1.40195i
\(260\) 17.6046 + 3.47371i 1.09179 + 0.215430i
\(261\) 7.06785 10.2395i 0.437489 0.633812i
\(262\) −4.77760 + 2.26700i −0.295161 + 0.140056i
\(263\) 2.40432 1.52040i 0.148257 0.0937520i −0.458278 0.888809i \(-0.651534\pi\)
0.606535 + 0.795057i \(0.292559\pi\)
\(264\) 0.474391 0.0770961i 0.0291968 0.00474493i
\(265\) 12.8608 24.5043i 0.790034 1.50528i
\(266\) 1.75200 + 1.43046i 0.107422 + 0.0877074i
\(267\) −3.27083 + 3.14167i −0.200171 + 0.192267i
\(268\) 8.09983i 0.494776i
\(269\) −15.7788 16.4275i −0.962052 1.00160i −0.999997 0.00232208i \(-0.999261\pi\)
0.0379456 0.999280i \(-0.487919\pi\)
\(270\) −5.49136 + 1.83328i −0.334193 + 0.111570i
\(271\) 0.908778 + 11.2572i 0.0552043 + 0.683828i 0.963882 + 0.266330i \(0.0858110\pi\)
−0.908678 + 0.417498i \(0.862907\pi\)
\(272\) 6.60506 1.62800i 0.400491 0.0987121i
\(273\) −15.9297 + 6.16132i −0.964109 + 0.372900i
\(274\) −3.55261 0.875639i −0.214621 0.0528993i
\(275\) 0.100968 0.621284i 0.00608862 0.0374648i
\(276\) −7.48809 9.17125i −0.450730 0.552044i
\(277\) 0.567601 0.426525i 0.0341039 0.0256274i −0.583554 0.812075i \(-0.698338\pi\)
0.617658 + 0.786447i \(0.288082\pi\)
\(278\) 4.23544 4.78082i 0.254025 0.286735i
\(279\) −2.80653 17.2693i −0.168023 1.03389i
\(280\) 1.36990 16.9693i 0.0818674 1.01411i
\(281\) −4.43306 17.9856i −0.264454 1.07293i −0.941506 0.336997i \(-0.890589\pi\)
0.677051 0.735936i \(-0.263257\pi\)
\(282\) −0.497562 1.71778i −0.0296294 0.102293i
\(283\) 1.56300 + 7.65609i 0.0929108 + 0.455107i 0.999455 + 0.0329973i \(0.0105053\pi\)
−0.906545 + 0.422110i \(0.861290\pi\)
\(284\) −6.47998 + 5.29074i −0.384516 + 0.313948i
\(285\) 0.516856 4.25669i 0.0306159 0.252145i
\(286\) −0.273517 0.281043i −0.0161734 0.0166184i
\(287\) −0.806190 6.63957i −0.0475879 0.391922i
\(288\) 5.17990 + 4.97537i 0.305229 + 0.293176i
\(289\) −8.38347 + 8.72811i −0.493145 + 0.513418i
\(290\) −3.42297 + 7.21376i −0.201004 + 0.423607i
\(291\) 8.94525 6.17446i 0.524380 0.361953i
\(292\) −9.37837 + 14.8307i −0.548828 + 0.867902i
\(293\) 13.5113 + 17.9803i 0.789340 + 1.05042i 0.997383 + 0.0723013i \(0.0230343\pi\)
−0.208043 + 0.978120i \(0.566709\pi\)
\(294\) 2.11994 + 4.03921i 0.123637 + 0.235571i
\(295\) 7.39053 36.2012i 0.430294 2.10772i
\(296\) −10.1496 + 0.819361i −0.589934 + 0.0476244i
\(297\) −1.41150 0.408847i −0.0819037 0.0237237i
\(298\) 4.48187 + 2.35227i 0.259628 + 0.136263i
\(299\) −5.47990 + 19.3946i −0.316911 + 1.12162i
\(300\) −4.32172 + 2.26822i −0.249515 + 0.130955i
\(301\) 12.0680 2.46369i 0.695586 0.142005i
\(302\) −6.82374 5.12771i −0.392662 0.295067i
\(303\) 0.174618 + 4.33309i 0.0100315 + 0.248930i
\(304\) −3.96428 + 1.50345i −0.227367 + 0.0862289i
\(305\) −24.3630 + 7.05683i −1.39502 + 0.404073i
\(306\) 1.44783 + 0.295578i 0.0827672 + 0.0168970i
\(307\) 22.8132 + 25.7508i 1.30202 + 1.46968i 0.793423 + 0.608671i \(0.208297\pi\)
0.508597 + 0.861005i \(0.330165\pi\)
\(308\) 1.31013 1.60461i 0.0746514 0.0914313i
\(309\) 0.339957 8.43596i 0.0193395 0.479905i
\(310\) 3.55556 + 10.6502i 0.201942 + 0.604890i
\(311\) 15.9241 14.1075i 0.902970 0.799962i −0.0774258 0.996998i \(-0.524670\pi\)
0.980396 + 0.197036i \(0.0631316\pi\)
\(312\) −0.976464 + 6.26818i −0.0552814 + 0.354866i
\(313\) −9.17127 8.12503i −0.518391 0.459254i 0.362900 0.931828i \(-0.381787\pi\)
−0.881291 + 0.472574i \(0.843325\pi\)
\(314\) −0.640370 + 1.50300i −0.0361382 + 0.0848194i
\(315\) −9.33188 + 16.1633i −0.525792 + 0.910699i
\(316\) 4.50584 + 7.80434i 0.253473 + 0.439028i
\(317\) 5.22724 0.634702i 0.293591 0.0356484i 0.0275840 0.999619i \(-0.491219\pi\)
0.266007 + 0.963971i \(0.414296\pi\)
\(318\) 4.23714 + 2.01055i 0.237607 + 0.112746i
\(319\) −1.75525 + 1.01339i −0.0982751 + 0.0567391i
\(320\) 9.88050 + 6.82002i 0.552337 + 0.381250i
\(321\) −4.53212 + 1.93096i −0.252959 + 0.107776i
\(322\) 9.04730 + 1.47033i 0.504186 + 0.0819382i
\(323\) −1.83380 + 2.44035i −0.102036 + 0.135785i
\(324\) 0.755791 + 1.99286i 0.0419884 + 0.110714i
\(325\) 7.38166 + 3.81256i 0.409461 + 0.211483i
\(326\) −1.63564 + 4.31283i −0.0905899 + 0.238866i
\(327\) 8.79353 + 13.9058i 0.486283 + 0.768995i
\(328\) −2.28541 0.973722i −0.126191 0.0537648i
\(329\) −13.5908 8.59431i −0.749286 0.473820i
\(330\) 0.335669 + 0.0407576i 0.0184780 + 0.00224363i
\(331\) 0.278604 + 0.653907i 0.0153134 + 0.0359420i 0.927461 0.373921i \(-0.121987\pi\)
−0.912147 + 0.409863i \(0.865577\pi\)
\(332\) −1.20474 + 3.60863i −0.0661185 + 0.198049i
\(333\) 10.4377 + 3.95849i 0.571981 + 0.216924i
\(334\) 0.526704 + 0.0425200i 0.0288200 + 0.00232659i
\(335\) −3.30741 + 11.4185i −0.180703 + 0.623859i
\(336\) −14.5492 0.586312i −0.793723 0.0319859i
\(337\) 5.24762 0.285856 0.142928 0.989733i \(-0.454348\pi\)
0.142928 + 0.989733i \(0.454348\pi\)
\(338\) 4.64704 2.28031i 0.252766 0.124033i
\(339\) 21.5190 1.16875
\(340\) 11.0052 + 0.443494i 0.596840 + 0.0240518i
\(341\) −0.792937 + 2.73753i −0.0429399 + 0.148246i
\(342\) −0.917986 0.0741075i −0.0496390 0.00400727i
\(343\) 11.3968 + 4.32222i 0.615367 + 0.233378i
\(344\) 1.44868 4.33933i 0.0781076 0.233961i
\(345\) −6.81122 15.9865i −0.366704 0.860685i
\(346\) 8.98728 + 1.09125i 0.483159 + 0.0586662i
\(347\) −7.49901 4.74209i −0.402568 0.254569i 0.317804 0.948156i \(-0.397055\pi\)
−0.720372 + 0.693588i \(0.756029\pi\)
\(348\) 14.4586 + 6.16022i 0.775061 + 0.330223i
\(349\) 2.09697 + 3.31610i 0.112248 + 0.177507i 0.896641 0.442758i \(-0.146000\pi\)
−0.784393 + 0.620264i \(0.787025\pi\)
\(350\) 1.33988 3.53297i 0.0716196 0.188845i
\(351\) 10.9135 16.0352i 0.582519 0.855895i
\(352\) −0.414885 1.09396i −0.0221135 0.0583084i
\(353\) −2.80278 + 3.72982i −0.149177 + 0.198519i −0.867845 0.496835i \(-0.834496\pi\)
0.718668 + 0.695353i \(0.244752\pi\)
\(354\) 6.18049 + 1.00443i 0.328489 + 0.0533847i
\(355\) −11.2953 + 4.81249i −0.599494 + 0.255421i
\(356\) 5.97520 + 4.12438i 0.316685 + 0.218592i
\(357\) −9.07908 + 5.24181i −0.480516 + 0.277426i
\(358\) 7.90835 + 3.75256i 0.417970 + 0.198329i
\(359\) −26.8776 + 3.26353i −1.41854 + 0.172242i −0.793606 0.608432i \(-0.791799\pi\)
−0.624938 + 0.780675i \(0.714876\pi\)
\(360\) 3.46607 + 6.00340i 0.182678 + 0.316407i
\(361\) −8.54875 + 14.8069i −0.449934 + 0.779309i
\(362\) −0.562608 + 1.32049i −0.0295700 + 0.0694034i
\(363\) −9.40664 8.33355i −0.493720 0.437398i
\(364\) 14.7652 + 23.0133i 0.773908 + 1.20622i
\(365\) −19.2767 + 17.0777i −1.00899 + 0.893887i
\(366\) −1.36120 4.07730i −0.0711512 0.213124i
\(367\) −0.950923 + 23.5969i −0.0496378 + 1.23175i 0.761996 + 0.647582i \(0.224220\pi\)
−0.811634 + 0.584167i \(0.801421\pi\)
\(368\) −10.8666 + 13.3091i −0.566460 + 0.693787i
\(369\) 1.80595 + 2.03849i 0.0940138 + 0.106120i
\(370\) −7.01916 1.43297i −0.364909 0.0744967i
\(371\) 40.5044 11.7322i 2.10288 0.609107i
\(372\) 20.6639 7.83679i 1.07137 0.406319i
\(373\) 0.789912 + 19.6015i 0.0409001 + 1.01492i 0.881183 + 0.472776i \(0.156748\pi\)
−0.840282 + 0.542149i \(0.817611\pi\)
\(374\) −0.192438 0.144608i −0.00995075 0.00747750i
\(375\) 8.21108 1.67630i 0.424018 0.0865639i
\(376\) −5.28842 + 2.77557i −0.272729 + 0.143139i
\(377\) −5.52318 26.1758i −0.284458 1.34812i
\(378\) −7.81114 4.09960i −0.401761 0.210861i
\(379\) −8.70515 2.52148i −0.447154 0.129520i 0.0469987 0.998895i \(-0.485034\pi\)
−0.494152 + 0.869375i \(0.664522\pi\)
\(380\) −6.84227 + 0.552365i −0.351001 + 0.0283357i
\(381\) −0.0409975 + 0.200819i −0.00210037 + 0.0102883i
\(382\) −0.181879 0.346541i −0.00930573 0.0177306i
\(383\) 4.20741 + 5.59904i 0.214988 + 0.286098i 0.894035 0.447998i \(-0.147863\pi\)
−0.679046 + 0.734096i \(0.737606\pi\)
\(384\) −6.35381 + 10.0477i −0.324242 + 0.512747i
\(385\) 2.50213 1.72709i 0.127520 0.0880208i
\(386\) −1.79538 + 3.78368i −0.0913824 + 0.192584i
\(387\) −3.47419 + 3.61702i −0.176603 + 0.183863i
\(388\) −12.5493 12.0537i −0.637093 0.611936i
\(389\) −3.76794 31.0318i −0.191042 1.57337i −0.700991 0.713170i \(-0.747259\pi\)
0.509949 0.860205i \(-0.329664\pi\)
\(390\) −1.88679 + 4.04471i −0.0955414 + 0.204812i
\(391\) −1.49111 + 12.2804i −0.0754086 + 0.621046i
\(392\) 11.8006 9.63491i 0.596022 0.486637i
\(393\) 3.05569 + 14.9678i 0.154139 + 0.755024i
\(394\) 0.791729 + 2.73336i 0.0398867 + 0.137705i
\(395\) 3.16522 + 12.8418i 0.159260 + 0.646142i
\(396\) −0.0678732 + 0.840760i −0.00341075 + 0.0422498i
\(397\) −4.55301 28.0158i −0.228509 1.40607i −0.807081 0.590441i \(-0.798954\pi\)
0.578571 0.815632i \(-0.303610\pi\)
\(398\) −2.05954 + 2.32474i −0.103236 + 0.116529i
\(399\) 5.22347 3.92519i 0.261501 0.196505i
\(400\) 4.47956 + 5.48646i 0.223978 + 0.274323i
\(401\) 0.734212 4.51779i 0.0366648 0.225608i −0.962251 0.272164i \(-0.912261\pi\)
0.998916 + 0.0465565i \(0.0148248\pi\)
\(402\) −1.95610 0.482135i −0.0975612 0.0240467i
\(403\) −31.0994 21.1661i −1.54917 1.05436i
\(404\) 6.74068 1.66143i 0.335362 0.0826592i
\(405\) 0.251710 + 3.11799i 0.0125076 + 0.154934i
\(406\) −11.5407 + 3.85286i −0.572756 + 0.191214i
\(407\) −1.25969 1.31148i −0.0624405 0.0650074i
\(408\) 3.89385i 0.192774i
\(409\) 15.7760 15.1530i 0.780072 0.749269i −0.192644 0.981269i \(-0.561706\pi\)
0.972716 + 0.232000i \(0.0745268\pi\)
\(410\) −1.35381 1.10535i −0.0668601 0.0545896i
\(411\) −4.91209 + 9.35921i −0.242296 + 0.461656i
\(412\) −13.3409 + 2.16811i −0.657261 + 0.106815i
\(413\) 47.5846 30.0906i 2.34148 1.48066i
\(414\) −3.37191 + 1.59999i −0.165720 + 0.0786353i
\(415\) −3.17186 + 4.59523i −0.155700 + 0.225571i
\(416\) 15.4262 0.723171i 0.756329 0.0354564i
\(417\) −10.4814 15.1850i −0.513278 0.743611i
\(418\) 0.129926 + 0.0750128i 0.00635489 + 0.00366899i
\(419\) 13.6560 + 28.7794i 0.667138 + 1.40596i 0.901054 + 0.433707i \(0.142795\pi\)
−0.233915 + 0.972257i \(0.575154\pi\)
\(420\) −22.3620 7.46554i −1.09116 0.364281i
\(421\) −1.92659 + 7.81646i −0.0938960 + 0.380951i −0.999023 0.0441899i \(-0.985929\pi\)
0.905127 + 0.425141i \(0.139776\pi\)
\(422\) 7.64638 0.308139i 0.372220 0.0150000i
\(423\) 6.54231 0.263646i 0.318098 0.0128189i
\(424\) 3.74830 15.2075i 0.182034 0.738540i
\(425\) 4.83711 + 1.61487i 0.234634 + 0.0783325i
\(426\) −0.891991 1.87983i −0.0432171 0.0910782i
\(427\) −33.4717 19.3249i −1.61981 0.935197i
\(428\) 4.48004 + 6.49046i 0.216551 + 0.313728i
\(429\) −0.977379 + 0.572883i −0.0471883 + 0.0276590i
\(430\) 1.82835 2.64882i 0.0881708 0.127737i
\(431\) −9.23061 + 4.37998i −0.444623 + 0.210976i −0.637823 0.770183i \(-0.720165\pi\)
0.193200 + 0.981159i \(0.438113\pi\)
\(432\) 13.9763 8.83807i 0.672435 0.425222i
\(433\) 12.0250 1.95425i 0.577884 0.0939154i 0.135558 0.990769i \(-0.456717\pi\)
0.442327 + 0.896854i \(0.354153\pi\)
\(434\) −7.95095 + 15.1493i −0.381658 + 0.727189i
\(435\) 17.8672 + 14.5881i 0.856665 + 0.699445i
\(436\) 18.9959 18.2458i 0.909741 0.873818i
\(437\) 7.70994i 0.368817i
\(438\) −3.02336 3.14765i −0.144462 0.150400i
\(439\) 18.5494 6.19271i 0.885316 0.295562i 0.162588 0.986694i \(-0.448016\pi\)
0.722728 + 0.691132i \(0.242888\pi\)
\(440\) −0.0908659 1.12558i −0.00433186 0.0536597i
\(441\) −16.2160 + 3.99688i −0.772189 + 0.190327i
\(442\) 2.60294 1.82204i 0.123809 0.0866655i
\(443\) −28.0463 6.91278i −1.33252 0.328436i −0.492178 0.870495i \(-0.663799\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(444\) −2.26192 + 13.9182i −0.107346 + 0.660526i
\(445\) 6.73925 + 8.25409i 0.319471 + 0.391281i
\(446\) 4.10686 3.08610i 0.194465 0.146131i
\(447\) 9.69626 10.9448i 0.458617 0.517672i
\(448\) 2.93457 + 18.0571i 0.138645 + 0.853119i
\(449\) 0.865760 10.7244i 0.0408578 0.506114i −0.943670 0.330887i \(-0.892652\pi\)
0.984528 0.175227i \(-0.0560659\pi\)
\(450\) 0.368201 + 1.49385i 0.0173572 + 0.0704208i
\(451\) −0.123428 0.426123i −0.00581200 0.0200653i
\(452\) −6.89079 33.7533i −0.324116 1.58762i
\(453\) −19.1000 + 15.5947i −0.897397 + 0.732702i
\(454\) 0.582126 4.79424i 0.0273205 0.225005i
\(455\) 11.4178 + 38.4714i 0.535275 + 1.80357i
\(456\) −0.292522 2.40914i −0.0136986 0.112818i
\(457\) 17.6740 + 16.9762i 0.826757 + 0.794111i 0.981017 0.193919i \(-0.0621200\pi\)
−0.154261 + 0.988030i \(0.549300\pi\)
\(458\) 0.557399 0.580314i 0.0260456 0.0271163i
\(459\) 5.10392 10.7563i 0.238231 0.502060i
\(460\) −22.8943 + 15.8028i −1.06745 + 0.736810i
\(461\) −11.2838 + 17.8438i −0.525537 + 0.831070i −0.998755 0.0498750i \(-0.984118\pi\)
0.473219 + 0.880945i \(0.343092\pi\)
\(462\) 0.309528 + 0.411907i 0.0144005 + 0.0191636i
\(463\) 8.89824 + 16.9542i 0.413536 + 0.787928i 0.999753 0.0222268i \(-0.00707559\pi\)
−0.586217 + 0.810154i \(0.699383\pi\)
\(464\) 4.56200 22.3461i 0.211785 1.03739i
\(465\) 32.3304 2.60998i 1.49928 0.121035i
\(466\) −9.69154 2.80719i −0.448952 0.130041i
\(467\) 14.5703 + 7.64710i 0.674235 + 0.353866i 0.766841 0.641837i \(-0.221827\pi\)
−0.0926062 + 0.995703i \(0.529520\pi\)
\(468\) −10.2711 4.29661i −0.474781 0.198611i
\(469\) −16.0395 + 8.41820i −0.740638 + 0.388717i
\(470\) −4.11703 + 0.840499i −0.189905 + 0.0387693i
\(471\) 3.77300 + 2.83523i 0.173851 + 0.130640i
\(472\) −0.842010 20.8943i −0.0387566 0.961736i
\(473\) 0.763891 0.289705i 0.0351237 0.0133207i
\(474\) −2.15294 + 0.623607i −0.0988879 + 0.0286432i
\(475\) −3.11406 0.635739i −0.142883 0.0291697i
\(476\) 11.1292 + 12.5623i 0.510108 + 0.575793i
\(477\) −10.8595 + 13.3005i −0.497224 + 0.608989i
\(478\) 0.265778 6.59521i 0.0121564 0.301658i
\(479\) 2.85628 + 8.55560i 0.130507 + 0.390915i 0.993433 0.114414i \(-0.0364991\pi\)
−0.862926 + 0.505330i \(0.831371\pi\)
\(480\) −9.96663 + 8.82966i −0.454912 + 0.403017i
\(481\) 21.6169 10.4319i 0.985646 0.475651i
\(482\) 0.814096 + 0.721226i 0.0370810 + 0.0328509i
\(483\) 10.3788 24.3599i 0.472251 1.10841i
\(484\) −10.0593 + 17.4232i −0.457240 + 0.791963i
\(485\) −12.7691 22.1167i −0.579814 1.00427i
\(486\) 5.85315 0.710702i 0.265504 0.0322381i
\(487\) −32.0501 15.2080i −1.45233 0.689139i −0.471117 0.882071i \(-0.656149\pi\)
−0.981212 + 0.192932i \(0.938200\pi\)
\(488\) −12.4321 + 7.17769i −0.562775 + 0.324919i
\(489\) 10.9661 + 7.56936i 0.495905 + 0.342298i
\(490\) 9.86042 4.20113i 0.445448 0.189788i
\(491\) −8.53726 1.38744i −0.385281 0.0626143i −0.0353140 0.999376i \(-0.511243\pi\)
−0.349967 + 0.936762i \(0.613807\pi\)
\(492\) −2.06660 + 2.75015i −0.0931696 + 0.123986i
\(493\) −5.82283 15.3535i −0.262247 0.691489i
\(494\) −1.47357 + 1.32285i −0.0662990 + 0.0595176i
\(495\) −0.438990 + 1.15752i −0.0197311 + 0.0520268i
\(496\) −17.1410 27.1063i −0.769652 1.21711i
\(497\) −17.2116 7.33317i −0.772045 0.328938i
\(498\) −0.799767 0.505742i −0.0358384 0.0226628i
\(499\) −5.32458 0.646520i −0.238361 0.0289422i 0.000484494 1.00000i \(-0.499846\pi\)
−0.238845 + 0.971058i \(0.576769\pi\)
\(500\) −5.25867 12.3426i −0.235175 0.551976i
\(501\) 0.483392 1.44794i 0.0215964 0.0646890i
\(502\) 0.710271 + 0.269370i 0.0317010 + 0.0120226i
\(503\) −32.0143 2.58446i −1.42744 0.115235i −0.657552 0.753409i \(-0.728408\pi\)
−0.769893 + 0.638174i \(0.779690\pi\)
\(504\) −2.93882 + 10.1460i −0.130905 + 0.451938i
\(505\) 10.1809 + 0.410276i 0.453044 + 0.0182570i
\(506\) 0.607982 0.0270281
\(507\) −3.18329 14.6107i −0.141375 0.648886i
\(508\) 0.328119 0.0145579
\(509\) −11.5074 0.463734i −0.510058 0.0205546i −0.216097 0.976372i \(-0.569333\pi\)
−0.293961 + 0.955817i \(0.594974\pi\)
\(510\) −0.762177 + 2.63134i −0.0337498 + 0.116518i
\(511\) −39.1153 3.15771i −1.73036 0.139689i
\(512\) 21.1026 + 8.00315i 0.932611 + 0.353693i
\(513\) −2.34976 + 7.03838i −0.103744 + 0.310752i
\(514\) −3.22579 7.57121i −0.142284 0.333952i
\(515\) −19.6923 2.39108i −0.867747 0.105364i
\(516\) −5.35434 3.38588i −0.235712 0.149055i
\(517\) −0.981251 0.418072i −0.0431554 0.0183868i
\(518\) −5.83437 9.22631i −0.256347 0.405381i
\(519\) 9.27404 24.4536i 0.407085 1.07340i
\(520\) 14.4952 + 3.47190i 0.635655 + 0.152253i
\(521\) −1.25666 3.31353i −0.0550551 0.145168i 0.904667 0.426119i \(-0.140120\pi\)
−0.959722 + 0.280951i \(0.909350\pi\)
\(522\) 2.97618 3.96058i 0.130264 0.173350i
\(523\) 19.3447 + 3.14382i 0.845885 + 0.137470i 0.567882 0.823110i \(-0.307763\pi\)
0.278004 + 0.960580i \(0.410327\pi\)
\(524\) 22.4990 9.58591i 0.982871 0.418762i
\(525\) −8.98319 6.20065i −0.392059 0.270618i
\(526\) 0.980959 0.566357i 0.0427718 0.0246943i
\(527\) −20.8612 9.89878i −0.908730 0.431198i
\(528\) −0.958791 + 0.116418i −0.0417260 + 0.00506646i
\(529\) −4.12236 7.14013i −0.179233 0.310440i
\(530\) 5.50968 9.54305i 0.239325 0.414523i
\(531\) −8.98572 + 21.0903i −0.389947 + 0.915240i
\(532\) −7.82944 6.93628i −0.339449 0.300726i
\(533\) 5.85240 + 0.197350i 0.253495 + 0.00854817i
\(534\) −1.35170 + 1.19750i −0.0584938 + 0.0518210i
\(535\) 3.66536 + 10.9791i 0.158467 + 0.474667i
\(536\) −0.270913 + 6.72265i −0.0117017 + 0.290374i
\(537\) 15.9927 19.5875i 0.690137 0.845265i
\(538\) −6.01436 6.78881i −0.259298 0.292687i
\(539\) 2.66564 + 0.544194i 0.114817 + 0.0234401i
\(540\) 25.7164 7.44883i 1.10666 0.320547i
\(541\) −15.7131 + 5.95920i −0.675560 + 0.256206i −0.668437 0.743769i \(-0.733036\pi\)
−0.00712249 + 0.999975i \(0.502267\pi\)
\(542\) 0.181076 + 4.49336i 0.00777790 + 0.193006i
\(543\) 3.31484 + 2.49094i 0.142253 + 0.106896i
\(544\) 9.28748 1.89605i 0.398198 0.0812926i
\(545\) 34.2293 17.9649i 1.46622 0.769533i
\(546\) −6.43656 + 2.19593i −0.275459 + 0.0939773i
\(547\) −12.2482 6.42838i −0.523697 0.274858i 0.182089 0.983282i \(-0.441714\pi\)
−0.705787 + 0.708424i \(0.749406\pi\)
\(548\) 16.2532 + 4.70779i 0.694301 + 0.201107i
\(549\) 15.6866 1.26635i 0.669487 0.0540466i
\(550\) 0.0501324 0.245565i 0.00213765 0.0104709i
\(551\) 4.75603 + 9.06186i 0.202614 + 0.386048i
\(552\) −5.90817 7.86235i −0.251469 0.334644i
\(553\) −10.7715 + 17.0337i −0.458049 + 0.724347i
\(554\) 0.232664 0.160596i 0.00988494 0.00682308i
\(555\) −8.87189 + 18.6971i −0.376591 + 0.793648i
\(556\) −20.4618 + 21.3030i −0.867773 + 0.903447i
\(557\) 26.4220 + 25.3787i 1.11954 + 1.07533i 0.996556 + 0.0829209i \(0.0264249\pi\)
0.122981 + 0.992409i \(0.460755\pi\)
\(558\) −0.839724 6.91575i −0.0355483 0.292767i
\(559\) 0.504975 + 10.7718i 0.0213582 + 0.455597i
\(560\) −4.12381 + 33.9626i −0.174263 + 1.43518i
\(561\) −0.538645 + 0.439790i −0.0227416 + 0.0185679i
\(562\) −1.47537 7.22683i −0.0622346 0.304845i
\(563\) −8.18841 28.2697i −0.345100 1.19142i −0.926023 0.377466i \(-0.876795\pi\)
0.580923 0.813959i \(-0.302692\pi\)
\(564\) 1.97930 + 8.03035i 0.0833437 + 0.338139i
\(565\) 4.06843 50.3965i 0.171160 2.12020i
\(566\) 0.499103 + 3.07111i 0.0209789 + 0.129088i
\(567\) −3.16082 + 3.56783i −0.132742 + 0.149835i
\(568\) −5.55517 + 4.17444i −0.233090 + 0.175156i
\(569\) −1.34557 1.64802i −0.0564091 0.0690886i 0.745630 0.666360i \(-0.232149\pi\)
−0.802039 + 0.597272i \(0.796251\pi\)
\(570\) 0.273884 1.68528i 0.0114718 0.0705885i
\(571\) 22.5894 + 5.56780i 0.945339 + 0.233005i 0.681713 0.731620i \(-0.261235\pi\)
0.263626 + 0.964625i \(0.415082\pi\)
\(572\) 1.21156 + 1.34960i 0.0506579 + 0.0564298i
\(573\) −1.09774 + 0.270568i −0.0458587 + 0.0113032i
\(574\) −0.214297 2.65454i −0.00894457 0.110798i
\(575\) −12.2172 + 4.07871i −0.509493 + 0.170094i
\(576\) −5.16015 5.37228i −0.215006 0.223845i
\(577\) 27.1721i 1.13119i 0.824683 + 0.565595i \(0.191353\pi\)
−0.824683 + 0.565595i \(0.808647\pi\)
\(578\) −3.47538 + 3.33815i −0.144557 + 0.138849i
\(579\) 9.37148 + 7.65158i 0.389466 + 0.317989i
\(580\) 17.1605 32.6966i 0.712551 1.35765i
\(581\) −8.39801 + 1.36481i −0.348408 + 0.0566219i
\(582\) 3.65794 2.31314i 0.151627 0.0958829i
\(583\) 2.52704 1.19909i 0.104659 0.0496614i
\(584\) −8.27985 + 11.9954i −0.342623 + 0.496374i
\(585\) −12.7249 10.2510i −0.526111 0.423828i
\(586\) 5.08732 + 7.37026i 0.210155 + 0.304463i
\(587\) 15.5744 + 8.99189i 0.642825 + 0.371135i 0.785702 0.618605i \(-0.212302\pi\)
−0.142877 + 0.989740i \(0.545635\pi\)
\(588\) −9.04385 19.0595i −0.372962 0.786001i
\(589\) 13.6506 + 4.55723i 0.562462 + 0.187777i
\(590\) 3.52081 14.2845i 0.144950 0.588084i
\(591\) 8.21405 0.331015i 0.337881 0.0136161i
\(592\) 20.4462 0.823952i 0.840332 0.0338642i
\(593\) −0.310161 + 1.25837i −0.0127368 + 0.0516752i −0.976966 0.213393i \(-0.931548\pi\)
0.964230 + 0.265068i \(0.0853946\pi\)
\(594\) −0.555025 0.185294i −0.0227729 0.00760272i
\(595\) 10.5595 + 22.2538i 0.432899 + 0.912316i
\(596\) −20.2722 11.7042i −0.830383 0.479422i
\(597\) 5.09674 + 7.38391i 0.208596 + 0.302203i
\(598\) −2.49119 + 7.62847i −0.101872 + 0.311952i
\(599\) 4.44946 6.44616i 0.181800 0.263383i −0.721479 0.692436i \(-0.756537\pi\)
0.903279 + 0.429053i \(0.141153\pi\)
\(600\) −3.66278 + 1.73801i −0.149532 + 0.0709540i
\(601\) −16.6897 + 10.5539i −0.680787 + 0.430504i −0.829597 0.558362i \(-0.811430\pi\)
0.148810 + 0.988866i \(0.452456\pi\)
\(602\) 4.84085 0.786715i 0.197299 0.0320641i
\(603\) 3.42777 6.53107i 0.139590 0.265966i
\(604\) 30.5769 + 24.9653i 1.24416 + 1.01582i
\(605\) −21.2952 + 20.4543i −0.865773 + 0.831586i
\(606\) 1.72676i 0.0701448i
\(607\) 9.58549 + 9.97955i 0.389063 + 0.405057i 0.886713 0.462321i \(-0.152983\pi\)
−0.497650 + 0.867378i \(0.665804\pi\)
\(608\) −5.60376 + 1.87081i −0.227263 + 0.0758714i
\(609\) 2.82821 + 35.0337i 0.114605 + 1.41964i
\(610\) −9.80619 + 2.41701i −0.397041 + 0.0978618i
\(611\) 9.26629 10.5989i 0.374874 0.428787i
\(612\) −6.63525 1.63544i −0.268214 0.0661088i
\(613\) 7.21941 44.4228i 0.291589 1.79422i −0.265863 0.964011i \(-0.585657\pi\)
0.557452 0.830209i \(-0.311779\pi\)
\(614\) 8.66358 + 10.6110i 0.349634 + 0.428224i
\(615\) −4.03630 + 3.03309i −0.162759 + 0.122306i
\(616\) 1.14104 1.28797i 0.0459738 0.0518937i
\(617\) 6.13953 + 37.7780i 0.247168 + 1.52089i 0.752865 + 0.658175i \(0.228671\pi\)
−0.505697 + 0.862711i \(0.668765\pi\)
\(618\) 0.270510 3.35087i 0.0108815 0.134792i
\(619\) 6.84098 + 27.7549i 0.274962 + 1.11556i 0.932218 + 0.361897i \(0.117871\pi\)
−0.657256 + 0.753667i \(0.728283\pi\)
\(620\) −14.4466 49.8755i −0.580190 2.00305i
\(621\) 6.01492 + 29.4630i 0.241370 + 1.18231i
\(622\) 6.56172 5.35748i 0.263101 0.214815i
\(623\) −1.95717 + 16.1188i −0.0784125 + 0.645785i
\(624\) 2.46789 12.5072i 0.0987948 0.500687i
\(625\) −3.76215 30.9841i −0.150486 1.23936i
\(626\) −3.51860 3.37966i −0.140632 0.135079i
\(627\) 0.300223 0.312565i 0.0119897 0.0124826i
\(628\) 3.23896 6.82597i 0.129249 0.272386i
\(629\) 12.1248 8.36917i 0.483449 0.333701i
\(630\) −3.97192 + 6.28110i −0.158245 + 0.250245i
\(631\) 1.55019 + 2.06292i 0.0617119 + 0.0821237i 0.829244 0.558887i \(-0.188772\pi\)
−0.767532 + 0.641011i \(0.778515\pi\)
\(632\) 3.47870 + 6.62811i 0.138375 + 0.263652i
\(633\) 4.42193 21.6600i 0.175756 0.860910i
\(634\) 2.08988 0.168713i 0.0829998 0.00670044i
\(635\) 0.462557 + 0.133981i 0.0183560 + 0.00531688i
\(636\) −19.2050 10.0795i −0.761526 0.399680i
\(637\) −17.7505 + 31.2165i −0.703301 + 1.23684i
\(638\) −0.714590 + 0.375046i −0.0282909 + 0.0148482i
\(639\) 7.46394 1.52378i 0.295269 0.0602796i
\(640\) 22.3301 + 16.7800i 0.882673 + 0.663286i
\(641\) 0.793584 + 19.6926i 0.0313447 + 0.777810i 0.936070 + 0.351814i \(0.114435\pi\)
−0.904725 + 0.425996i \(0.859924\pi\)
\(642\) −1.83411 + 0.695585i −0.0723864 + 0.0274526i
\(643\) −30.1826 + 8.74249i −1.19028 + 0.344770i −0.813519 0.581539i \(-0.802451\pi\)
−0.376765 + 0.926309i \(0.622964\pi\)
\(644\) −41.5328 8.47898i −1.63662 0.334119i
\(645\) −6.16557 6.95948i −0.242769 0.274029i
\(646\) −0.768723 + 0.941514i −0.0302450 + 0.0370434i
\(647\) 0.316698 7.85879i 0.0124507 0.308961i −0.980950 0.194262i \(-0.937769\pi\)
0.993400 0.114699i \(-0.0365902\pi\)
\(648\) 0.560632 + 1.67930i 0.0220237 + 0.0659691i
\(649\) 2.79525 2.47638i 0.109723 0.0972062i
\(650\) 2.87573 + 1.63522i 0.112796 + 0.0641384i
\(651\) 36.9948 + 32.7745i 1.44994 + 1.28454i
\(652\) 8.36125 19.6246i 0.327452 0.768557i
\(653\) 21.3209 36.9290i 0.834353 1.44514i −0.0602030 0.998186i \(-0.519175\pi\)
0.894556 0.446956i \(-0.147492\pi\)
\(654\) 3.27563 + 5.67356i 0.128087 + 0.221854i
\(655\) 35.6315 4.32645i 1.39224 0.169048i
\(656\) 4.51019 + 2.14011i 0.176093 + 0.0835574i
\(657\) 13.8382 7.98950i 0.539880 0.311700i
\(658\) −5.26944 3.63723i −0.205424 0.141794i
\(659\) −43.6791 + 18.6099i −1.70150 + 0.724940i −0.701573 + 0.712598i \(0.747518\pi\)
−0.999924 + 0.0123422i \(0.996071\pi\)
\(660\) −1.54350 0.250844i −0.0600808 0.00976408i
\(661\) −14.2575 + 18.9732i −0.554551 + 0.737974i −0.986471 0.163938i \(-0.947580\pi\)
0.431919 + 0.901912i \(0.357837\pi\)
\(662\) 0.100361 + 0.264630i 0.00390063 + 0.0102851i
\(663\) −3.31105 8.56052i −0.128591 0.332463i
\(664\) −1.12060 + 2.95477i −0.0434876 + 0.114667i
\(665\) −8.20503 12.9752i −0.318177 0.503157i
\(666\) 4.08926 + 1.74227i 0.158455 + 0.0675116i
\(667\) 35.0534 + 22.1664i 1.35727 + 0.858288i
\(668\) −2.42593 0.294561i −0.0938619 0.0113969i
\(669\) −5.81687 13.6527i −0.224893 0.527843i
\(670\) −1.49896 + 4.48993i −0.0579098 + 0.173461i
\(671\) −2.39705 0.909081i −0.0925371 0.0350947i
\(672\) −20.2237 1.63263i −0.780147 0.0629800i
\(673\) 3.82900 13.2193i 0.147597 0.509565i −0.852312 0.523034i \(-0.824800\pi\)
0.999909 + 0.0134688i \(0.00428738\pi\)
\(674\) 2.08782 + 0.0841361i 0.0804197 + 0.00324080i
\(675\) 12.3961 0.477127
\(676\) −21.8981 + 9.67173i −0.842235 + 0.371990i
\(677\) 8.99328 0.345640 0.172820 0.984953i \(-0.444712\pi\)
0.172820 + 0.984953i \(0.444712\pi\)
\(678\) 8.56155 + 0.345019i 0.328804 + 0.0132504i
\(679\) 10.8267 37.3780i 0.415490 1.43444i
\(680\) 9.11919 + 0.736177i 0.349705 + 0.0282311i
\(681\) −13.0447 4.94721i −0.499875 0.189577i
\(682\) −0.359369 + 1.07644i −0.0137609 + 0.0412190i
\(683\) 9.21608 + 21.6309i 0.352644 + 0.827685i 0.997964 + 0.0637734i \(0.0203135\pi\)
−0.645321 + 0.763912i \(0.723276\pi\)
\(684\) 4.22812 + 0.513386i 0.161666 + 0.0196298i
\(685\) 20.9901 + 13.2733i 0.801991 + 0.507148i
\(686\) 4.46500 + 1.90236i 0.170475 + 0.0726325i
\(687\) −1.24235 1.96462i −0.0473986 0.0749549i
\(688\) −3.26000 + 8.59592i −0.124286 + 0.327716i
\(689\) 4.69082 + 36.6205i 0.178706 + 1.39513i
\(690\) −2.45359 6.46959i −0.0934067 0.246293i
\(691\) 9.87239 13.1378i 0.375564 0.499784i −0.571601 0.820532i \(-0.693678\pi\)
0.947165 + 0.320747i \(0.103934\pi\)
\(692\) −41.3261 6.71614i −1.57098 0.255309i
\(693\) −1.73544 + 0.739403i −0.0659240 + 0.0280876i
\(694\) −2.90752 2.00692i −0.110368 0.0761815i
\(695\) −37.5441 + 21.6761i −1.42413 + 0.822221i
\(696\) 11.7942 + 5.59642i 0.447058 + 0.212132i
\(697\) 3.56807 0.433242i 0.135150 0.0164102i
\(698\) 0.781132 + 1.35296i 0.0295663 + 0.0512103i
\(699\) −14.5739 + 25.2427i −0.551235 + 0.954767i
\(700\) −6.84934 + 16.0760i −0.258881 + 0.607616i
\(701\) 8.11948 + 7.19323i 0.306668 + 0.271684i 0.802394 0.596795i \(-0.203559\pi\)
−0.495726 + 0.868479i \(0.665098\pi\)
\(702\) 4.59913 6.20477i 0.173583 0.234184i
\(703\) −6.87295 + 6.08891i −0.259218 + 0.229647i
\(704\) 0.384259 + 1.15100i 0.0144823 + 0.0433798i
\(705\) −0.488773 + 12.1288i −0.0184082 + 0.456796i
\(706\) −1.17491 + 1.43901i −0.0442184 + 0.0541578i
\(707\) 10.2957 + 11.6214i 0.387208 + 0.437067i
\(708\) −28.3723 5.79226i −1.06630 0.217686i
\(709\) −7.51597 + 2.17703i −0.282268 + 0.0817600i −0.416332 0.909213i \(-0.636685\pi\)
0.134064 + 0.990973i \(0.457197\pi\)
\(710\) −4.57111 + 1.73359i −0.171551 + 0.0650607i
\(711\) −0.330434 8.19964i −0.0123923 0.307511i
\(712\) 4.82131 + 3.62298i 0.180686 + 0.135777i
\(713\) 57.1420 11.6656i 2.13998 0.436881i
\(714\) −3.69624 + 1.93994i −0.138328 + 0.0726003i
\(715\) 1.15688 + 2.39728i 0.0432648 + 0.0896533i
\(716\) −35.8449 18.8128i −1.33959 0.703069i
\(717\) −18.3149 5.30497i −0.683982 0.198118i
\(718\) −10.7458 + 0.867491i −0.401030 + 0.0323745i
\(719\) 5.60591 27.4596i 0.209065 1.02407i −0.730818 0.682573i \(-0.760861\pi\)
0.939883 0.341497i \(-0.110934\pi\)
\(720\) −6.47390 12.3350i −0.241268 0.459698i
\(721\) −18.1587 24.1648i −0.676265 0.899946i
\(722\) −3.63860 + 5.75398i −0.135415 + 0.214141i
\(723\) 2.58575 1.78481i 0.0961651 0.0663780i
\(724\) 2.84565 5.99708i 0.105758 0.222880i
\(725\) 11.8434 12.3303i 0.439855 0.457937i
\(726\) −3.60890 3.46640i −0.133939 0.128650i
\(727\) 1.76088 + 14.5022i 0.0653075 + 0.537856i 0.988242 + 0.152898i \(0.0488607\pi\)
−0.922934 + 0.384957i \(0.874216\pi\)
\(728\) 11.4850 + 19.5943i 0.425663 + 0.726212i
\(729\) 2.47162 20.3556i 0.0915414 0.753911i
\(730\) −7.94323 + 6.48545i −0.293992 + 0.240037i
\(731\) 1.32397 + 6.48525i 0.0489689 + 0.239866i
\(732\) 5.53072 + 19.0943i 0.204421 + 0.705744i
\(733\) −2.89218 11.7340i −0.106825 0.433406i 0.893038 0.449982i \(-0.148570\pi\)
−0.999863 + 0.0165760i \(0.994723\pi\)
\(734\) −0.756667 + 9.37300i −0.0279291 + 0.345964i
\(735\) −4.96673 30.5615i −0.183200 1.12728i
\(736\) −15.8761 + 17.9205i −0.585202 + 0.660557i
\(737\) −0.960558 + 0.721812i −0.0353826 + 0.0265883i
\(738\) 0.685829 + 0.839988i 0.0252457 + 0.0309204i
\(739\) −5.00264 + 30.7825i −0.184025 + 1.13235i 0.716513 + 0.697574i \(0.245737\pi\)
−0.900538 + 0.434778i \(0.856827\pi\)
\(740\) 32.1680 + 7.92869i 1.18252 + 0.291465i
\(741\) 2.69166 + 5.04768i 0.0988807 + 0.185431i
\(742\) 16.3031 4.01836i 0.598507 0.147519i
\(743\) 3.03031 + 37.5372i 0.111171 + 1.37711i 0.776294 + 0.630371i \(0.217097\pi\)
−0.665122 + 0.746734i \(0.731621\pi\)
\(744\) 17.4126 5.81319i 0.638378 0.213122i
\(745\) −23.7990 24.7774i −0.871929 0.907774i
\(746\) 7.81129i 0.285991i
\(747\) 2.49854 2.39988i 0.0914169 0.0878071i
\(748\) 0.862309 + 0.704054i 0.0315291 + 0.0257427i
\(749\) −8.19649 + 15.6171i −0.299493 + 0.570637i
\(750\) 3.29373 0.535283i 0.120270 0.0195458i
\(751\) 11.5660 7.31391i 0.422050 0.266888i −0.306514 0.951866i \(-0.599163\pi\)
0.728564 + 0.684978i \(0.240188\pi\)
\(752\) 10.8435 5.14528i 0.395420 0.187629i
\(753\) 1.24658 1.80599i 0.0454280 0.0658138i
\(754\) −1.77776 10.5028i −0.0647424 0.382491i
\(755\) 32.9109 + 47.6796i 1.19775 + 1.73524i
\(756\) 35.3310 + 20.3984i 1.28498 + 0.741882i
\(757\) −5.10088 10.7499i −0.185394 0.390711i 0.789379 0.613906i \(-0.210403\pi\)
−0.974774 + 0.223195i \(0.928351\pi\)
\(758\) −3.42300 1.14276i −0.124329 0.0415071i
\(759\) 0.420320 1.70530i 0.0152566 0.0618986i
\(760\) −5.69738 + 0.229597i −0.206666 + 0.00832835i
\(761\) −23.4539 + 0.945161i −0.850205 + 0.0342621i −0.461542 0.887118i \(-0.652704\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(762\) −0.0195310 + 0.0792404i −0.000707533 + 0.00287058i
\(763\) 55.8736 + 18.6534i 2.02276 + 0.675297i
\(764\) 0.775912 + 1.63520i 0.0280715 + 0.0591594i
\(765\) −8.68605 5.01489i −0.314045 0.181314i
\(766\) 1.58419 + 2.29509i 0.0572389