Properties

Label 169.2.k.a.4.7
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.7
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.522698 - 0.0210640i) q^{2} +(-0.684753 + 2.36404i) q^{3} +(-1.72074 - 0.138913i) q^{4} +(-1.25186 - 0.474767i) q^{5} +(0.407715 - 1.22126i) q^{6} +(-0.851571 - 1.99871i) q^{7} +(1.93512 + 0.234966i) q^{8} +(-2.58423 - 1.63417i) q^{9} +O(q^{10})\) \(q+(-0.522698 - 0.0210640i) q^{2} +(-0.684753 + 2.36404i) q^{3} +(-1.72074 - 0.138913i) q^{4} +(-1.25186 - 0.474767i) q^{5} +(0.407715 - 1.22126i) q^{6} +(-0.851571 - 1.99871i) q^{7} +(1.93512 + 0.234966i) q^{8} +(-2.58423 - 1.63417i) q^{9} +(0.644343 + 0.274529i) q^{10} +(-1.53193 - 2.42255i) q^{11} +(1.50668 - 3.97279i) q^{12} +(-3.60017 + 0.196977i) q^{13} +(0.403014 + 1.06266i) q^{14} +(1.97958 - 2.63434i) q^{15} +(2.40144 + 0.390272i) q^{16} +(-3.54904 + 1.51210i) q^{17} +(1.31635 + 0.908611i) q^{18} +(-0.461391 + 0.266384i) q^{19} +(2.08817 + 0.990851i) q^{20} +(5.30815 - 0.644526i) q^{21} +(0.749708 + 1.29853i) q^{22} +(-1.34297 + 2.32609i) q^{23} +(-1.88055 + 4.41381i) q^{24} +(-2.40081 - 2.12693i) q^{25} +(1.88595 - 0.0271257i) q^{26} +(0.106060 - 0.0939611i) q^{27} +(1.18769 + 3.55756i) q^{28} +(-0.366513 + 9.09492i) q^{29} +(-1.09021 + 1.33527i) q^{30} +(-1.12587 - 1.27085i) q^{31} +(-5.06689 - 1.03441i) q^{32} +(6.77600 - 1.96269i) q^{33} +(1.88693 - 0.715617i) q^{34} +(0.117124 + 2.90640i) q^{35} +(4.21979 + 3.17097i) q^{36} +(-7.23521 + 1.47708i) q^{37} +(0.246779 - 0.129520i) q^{38} +(1.99956 - 8.64582i) q^{39} +(-2.31094 - 1.21287i) q^{40} +(8.82333 + 2.55571i) q^{41} +(-2.78814 + 0.225082i) q^{42} +(1.48649 - 7.28133i) q^{43} +(2.29953 + 4.38140i) q^{44} +(2.45924 + 3.27265i) q^{45} +(0.750965 - 1.18756i) q^{46} +(4.40529 - 3.04075i) q^{47} +(-2.56701 + 5.40986i) q^{48} +(1.57940 - 1.64433i) q^{49} +(1.21010 + 1.16232i) q^{50} +(-1.14446 - 9.42549i) q^{51} +(6.22233 + 0.161162i) q^{52} +(-1.00503 + 8.27717i) q^{53} +(-0.0574166 + 0.0468792i) q^{54} +(0.767609 + 3.76000i) q^{55} +(-1.17826 - 4.06784i) q^{56} +(-0.313804 - 1.27315i) q^{57} +(0.383151 - 4.74618i) q^{58} +(-0.902854 - 5.55548i) q^{59} +(-3.77229 + 4.25804i) q^{60} +(-1.59795 + 1.20078i) q^{61} +(0.561723 + 0.687986i) q^{62} +(-1.06557 + 6.55673i) q^{63} +(-2.09783 - 0.517069i) q^{64} +(4.60041 + 1.46265i) q^{65} +(-3.58315 + 0.883166i) q^{66} +(-0.692898 - 8.58308i) q^{67} +(6.31704 - 2.10894i) q^{68} +(-4.57938 - 4.76764i) q^{69} -1.52164i q^{70} +(-1.70076 + 1.63360i) q^{71} +(-4.61682 - 3.76952i) q^{72} +(-4.95903 + 9.44865i) q^{73} +(3.81294 - 0.619664i) q^{74} +(6.67212 - 4.21919i) q^{75} +(0.830940 - 0.394286i) q^{76} +(-3.53743 + 5.12486i) q^{77} +(-1.22728 + 4.47704i) q^{78} +(-6.18413 - 8.95925i) q^{79} +(-2.82097 - 1.62869i) q^{80} +(-3.78277 - 7.97202i) q^{81} +(-4.55811 - 1.52172i) q^{82} +(-3.10530 + 12.5987i) q^{83} +(-9.22350 + 0.371694i) q^{84} +(5.16078 - 0.207972i) q^{85} +(-0.930362 + 3.77463i) q^{86} +(-21.2498 - 7.09422i) q^{87} +(-2.39525 - 5.04788i) q^{88} +(1.98840 + 1.14800i) q^{89} +(-1.21650 - 1.76241i) q^{90} +(3.45950 + 7.02795i) q^{91} +(2.63403 - 3.81606i) q^{92} +(3.77528 - 1.79139i) q^{93} +(-2.36669 + 1.49660i) q^{94} +(0.704065 - 0.114422i) q^{95} +(5.91495 - 11.2700i) q^{96} +(8.93791 + 7.29758i) q^{97} +(-0.860186 + 0.826220i) q^{98} +8.76386i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.522698 0.0210640i −0.369603 0.0148945i −0.145230 0.989398i \(-0.546392\pi\)
−0.224373 + 0.974503i \(0.572033\pi\)
\(3\) −0.684753 + 2.36404i −0.395342 + 1.36488i 0.478252 + 0.878223i \(0.341271\pi\)
−0.873594 + 0.486656i \(0.838216\pi\)
\(4\) −1.72074 0.138913i −0.860372 0.0694564i
\(5\) −1.25186 0.474767i −0.559847 0.212322i 0.0584171 0.998292i \(-0.481395\pi\)
−0.618264 + 0.785970i \(0.712164\pi\)
\(6\) 0.407715 1.22126i 0.166449 0.498576i
\(7\) −0.851571 1.99871i −0.321864 0.755442i −0.999794 0.0203152i \(-0.993533\pi\)
0.677930 0.735126i \(-0.262877\pi\)
\(8\) 1.93512 + 0.234966i 0.684169 + 0.0830731i
\(9\) −2.58423 1.63417i −0.861410 0.544722i
\(10\) 0.644343 + 0.274529i 0.203759 + 0.0868136i
\(11\) −1.53193 2.42255i −0.461894 0.730427i 0.531264 0.847206i \(-0.321717\pi\)
−0.993158 + 0.116780i \(0.962743\pi\)
\(12\) 1.50668 3.97279i 0.434941 1.14685i
\(13\) −3.60017 + 0.196977i −0.998507 + 0.0546317i
\(14\) 0.403014 + 1.06266i 0.107710 + 0.284008i
\(15\) 1.97958 2.63434i 0.511125 0.680184i
\(16\) 2.40144 + 0.390272i 0.600360 + 0.0975680i
\(17\) −3.54904 + 1.51210i −0.860768 + 0.366739i −0.776814 0.629730i \(-0.783165\pi\)
−0.0839547 + 0.996470i \(0.526755\pi\)
\(18\) 1.31635 + 0.908611i 0.310267 + 0.214162i
\(19\) −0.461391 + 0.266384i −0.105850 + 0.0611127i −0.551991 0.833850i \(-0.686132\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(20\) 2.08817 + 0.990851i 0.466930 + 0.221561i
\(21\) 5.30815 0.644526i 1.15833 0.140647i
\(22\) 0.749708 + 1.29853i 0.159838 + 0.276848i
\(23\) −1.34297 + 2.32609i −0.280029 + 0.485024i −0.971392 0.237484i \(-0.923677\pi\)
0.691363 + 0.722508i \(0.257011\pi\)
\(24\) −1.88055 + 4.41381i −0.383865 + 0.900965i
\(25\) −2.40081 2.12693i −0.480162 0.425387i
\(26\) 1.88595 0.0271257i 0.369865 0.00531978i
\(27\) 0.106060 0.0939611i 0.0204113 0.0180828i
\(28\) 1.18769 + 3.55756i 0.224452 + 0.672317i
\(29\) −0.366513 + 9.09492i −0.0680597 + 1.68888i 0.500101 + 0.865967i \(0.333296\pi\)
−0.568161 + 0.822918i \(0.692345\pi\)
\(30\) −1.09021 + 1.33527i −0.199045 + 0.243785i
\(31\) −1.12587 1.27085i −0.202213 0.228251i 0.638653 0.769495i \(-0.279492\pi\)
−0.840866 + 0.541244i \(0.817954\pi\)
\(32\) −5.06689 1.03441i −0.895707 0.182860i
\(33\) 6.77600 1.96269i 1.17955 0.341661i
\(34\) 1.88693 0.715617i 0.323605 0.122727i
\(35\) 0.117124 + 2.90640i 0.0197975 + 0.491271i
\(36\) 4.21979 + 3.17097i 0.703299 + 0.528495i
\(37\) −7.23521 + 1.47708i −1.18946 + 0.242830i −0.753692 0.657228i \(-0.771729\pi\)
−0.435769 + 0.900058i \(0.643524\pi\)
\(38\) 0.246779 0.129520i 0.0400329 0.0210109i
\(39\) 1.99956 8.64582i 0.320186 1.38444i
\(40\) −2.31094 1.21287i −0.365392 0.191772i
\(41\) 8.82333 + 2.55571i 1.37797 + 0.399135i 0.882836 0.469681i \(-0.155631\pi\)
0.495136 + 0.868815i \(0.335118\pi\)
\(42\) −2.78814 + 0.225082i −0.430219 + 0.0347308i
\(43\) 1.48649 7.28133i 0.226688 1.11039i −0.693964 0.720009i \(-0.744137\pi\)
0.920653 0.390383i \(-0.127657\pi\)
\(44\) 2.29953 + 4.38140i 0.346668 + 0.660521i
\(45\) 2.45924 + 3.27265i 0.366601 + 0.487858i
\(46\) 0.750965 1.18756i 0.110724 0.175096i
\(47\) 4.40529 3.04075i 0.642578 0.443540i −0.201698 0.979448i \(-0.564646\pi\)
0.844276 + 0.535908i \(0.180031\pi\)
\(48\) −2.56701 + 5.40986i −0.370516 + 0.780846i
\(49\) 1.57940 1.64433i 0.225629 0.234904i
\(50\) 1.21010 + 1.16232i 0.171134 + 0.164376i
\(51\) −1.14446 9.42549i −0.160257 1.31983i
\(52\) 6.22233 + 0.161162i 0.862882 + 0.0223491i
\(53\) −1.00503 + 8.27717i −0.138051 + 1.13696i 0.744795 + 0.667294i \(0.232547\pi\)
−0.882846 + 0.469662i \(0.844376\pi\)
\(54\) −0.0574166 + 0.0468792i −0.00781342 + 0.00637946i
\(55\) 0.767609 + 3.76000i 0.103504 + 0.506998i
\(56\) −1.17826 4.06784i −0.157452 0.543588i
\(57\) −0.313804 1.27315i −0.0415644 0.168633i
\(58\) 0.383151 4.74618i 0.0503102 0.623204i
\(59\) −0.902854 5.55548i −0.117542 0.723262i −0.977189 0.212374i \(-0.931881\pi\)
0.859647 0.510889i \(-0.170684\pi\)
\(60\) −3.77229 + 4.25804i −0.487001 + 0.549711i
\(61\) −1.59795 + 1.20078i −0.204596 + 0.153744i −0.698102 0.715999i \(-0.745972\pi\)
0.493506 + 0.869743i \(0.335715\pi\)
\(62\) 0.561723 + 0.687986i 0.0713389 + 0.0873743i
\(63\) −1.06557 + 6.55673i −0.134250 + 0.826071i
\(64\) −2.09783 0.517069i −0.262229 0.0646337i
\(65\) 4.60041 + 1.46265i 0.570611 + 0.181420i
\(66\) −3.58315 + 0.883166i −0.441055 + 0.108710i
\(67\) −0.692898 8.58308i −0.0846510 1.04859i −0.890052 0.455860i \(-0.849332\pi\)
0.805401 0.592731i \(-0.201950\pi\)
\(68\) 6.31704 2.10894i 0.766054 0.255746i
\(69\) −4.57938 4.76764i −0.551292 0.573956i
\(70\) 1.52164i 0.181870i
\(71\) −1.70076 + 1.63360i −0.201843 + 0.193873i −0.786830 0.617170i \(-0.788279\pi\)
0.584987 + 0.811043i \(0.301100\pi\)
\(72\) −4.61682 3.76952i −0.544098 0.444242i
\(73\) −4.95903 + 9.44865i −0.580411 + 1.10588i 0.401379 + 0.915912i \(0.368531\pi\)
−0.981790 + 0.189968i \(0.939161\pi\)
\(74\) 3.81294 0.619664i 0.443246 0.0720344i
\(75\) 6.67212 4.21919i 0.770430 0.487190i
\(76\) 0.830940 0.394286i 0.0953154 0.0452277i
\(77\) −3.53743 + 5.12486i −0.403128 + 0.584032i
\(78\) −1.22728 + 4.47704i −0.138962 + 0.506924i
\(79\) −6.18413 8.95925i −0.695768 1.00799i −0.998491 0.0549159i \(-0.982511\pi\)
0.302723 0.953079i \(-0.402104\pi\)
\(80\) −2.82097 1.62869i −0.315394 0.182093i
\(81\) −3.78277 7.97202i −0.420308 0.885780i
\(82\) −4.55811 1.52172i −0.503359 0.168046i
\(83\) −3.10530 + 12.5987i −0.340851 + 1.38289i 0.511216 + 0.859452i \(0.329195\pi\)
−0.852067 + 0.523433i \(0.824651\pi\)
\(84\) −9.22350 + 0.371694i −1.00637 + 0.0405552i
\(85\) 5.16078 0.207972i 0.559766 0.0225578i
\(86\) −0.930362 + 3.77463i −0.100323 + 0.407028i
\(87\) −21.2498 7.09422i −2.27822 0.760580i
\(88\) −2.39525 5.04788i −0.255334 0.538106i
\(89\) 1.98840 + 1.14800i 0.210770 + 0.121688i 0.601669 0.798745i \(-0.294503\pi\)
−0.390899 + 0.920434i \(0.627836\pi\)
\(90\) −1.21650 1.76241i −0.128231 0.185774i
\(91\) 3.45950 + 7.02795i 0.362654 + 0.736729i
\(92\) 2.63403 3.81606i 0.274617 0.397852i
\(93\) 3.77528 1.79139i 0.391479 0.185759i
\(94\) −2.36669 + 1.49660i −0.244105 + 0.154363i
\(95\) 0.704065 0.114422i 0.0722356 0.0117394i
\(96\) 5.91495 11.2700i 0.603693 1.15024i
\(97\) 8.93791 + 7.29758i 0.907507 + 0.740957i 0.966328 0.257312i \(-0.0828368\pi\)
−0.0588213 + 0.998269i \(0.518734\pi\)
\(98\) −0.860186 + 0.826220i −0.0868919 + 0.0834608i
\(99\) 8.76386i 0.880801i
\(100\) 3.83573 + 3.99341i 0.383573 + 0.399341i
\(101\) −7.27102 + 2.42742i −0.723493 + 0.241538i −0.654481 0.756078i \(-0.727113\pi\)
−0.0690122 + 0.997616i \(0.521985\pi\)
\(102\) 0.399669 + 4.95079i 0.0395732 + 0.490202i
\(103\) −7.41881 + 1.82857i −0.730997 + 0.180175i −0.587211 0.809434i \(-0.699774\pi\)
−0.143786 + 0.989609i \(0.545928\pi\)
\(104\) −7.01304 0.464743i −0.687685 0.0455718i
\(105\) −6.95104 1.71328i −0.678352 0.167199i
\(106\) 0.699678 4.30529i 0.0679587 0.418167i
\(107\) 5.07025 + 6.20993i 0.490160 + 0.600337i 0.959161 0.282861i \(-0.0912834\pi\)
−0.469001 + 0.883198i \(0.655386\pi\)
\(108\) −0.195555 + 0.146950i −0.0188173 + 0.0141403i
\(109\) 5.66288 6.39207i 0.542405 0.612249i −0.411846 0.911253i \(-0.635116\pi\)
0.954252 + 0.299004i \(0.0966545\pi\)
\(110\) −0.322027 1.98151i −0.0307041 0.188930i
\(111\) 1.46245 18.1158i 0.138810 1.71947i
\(112\) −1.26496 5.13213i −0.119527 0.484940i
\(113\) −4.01702 13.8684i −0.377890 1.30463i −0.893985 0.448096i \(-0.852102\pi\)
0.516096 0.856531i \(-0.327385\pi\)
\(114\) 0.137207 + 0.672085i 0.0128506 + 0.0629465i
\(115\) 2.78556 2.27434i 0.259755 0.212083i
\(116\) 1.89408 15.5991i 0.175861 1.44834i
\(117\) 9.62555 + 5.37424i 0.889882 + 0.496849i
\(118\) 0.354899 + 2.92286i 0.0326711 + 0.269071i
\(119\) 6.04452 + 5.80584i 0.554100 + 0.532220i
\(120\) 4.44971 4.63263i 0.406201 0.422900i
\(121\) 1.19367 2.51560i 0.108515 0.228691i
\(122\) 0.860537 0.593986i 0.0779093 0.0537769i
\(123\) −12.0836 + 19.1087i −1.08954 + 1.72297i
\(124\) 1.76081 + 2.34321i 0.158125 + 0.210426i
\(125\) 5.10667 + 9.72995i 0.456755 + 0.870273i
\(126\) 0.695084 3.40475i 0.0619230 0.303319i
\(127\) 8.71855 0.703834i 0.773646 0.0624552i 0.312663 0.949864i \(-0.398779\pi\)
0.460983 + 0.887409i \(0.347497\pi\)
\(128\) 11.0201 + 3.19201i 0.974047 + 0.282136i
\(129\) 16.1955 + 8.50004i 1.42593 + 0.748387i
\(130\) −2.37382 0.861428i −0.208198 0.0755523i
\(131\) −1.29486 + 0.679594i −0.113132 + 0.0593764i −0.520340 0.853959i \(-0.674195\pi\)
0.407208 + 0.913336i \(0.366502\pi\)
\(132\) −11.9324 + 2.43602i −1.03858 + 0.212028i
\(133\) 0.925332 + 0.695342i 0.0802364 + 0.0602938i
\(134\) 0.181382 + 4.50096i 0.0156691 + 0.388824i
\(135\) −0.177382 + 0.0672720i −0.0152666 + 0.00578985i
\(136\) −7.22311 + 2.09220i −0.619377 + 0.179405i
\(137\) −3.13300 0.639606i −0.267670 0.0546452i 0.0643158 0.997930i \(-0.479513\pi\)
−0.331986 + 0.943284i \(0.607719\pi\)
\(138\) 2.29321 + 2.58849i 0.195211 + 0.220347i
\(139\) 11.2111 13.7311i 0.950911 1.16465i −0.0353360 0.999375i \(-0.511250\pi\)
0.986247 0.165279i \(-0.0528524\pi\)
\(140\) 0.202196 5.01744i 0.0170887 0.424051i
\(141\) 4.17193 + 12.4965i 0.351340 + 1.05239i
\(142\) 0.923395 0.818056i 0.0774896 0.0686498i
\(143\) 5.99239 + 8.41983i 0.501109 + 0.704102i
\(144\) −5.56810 4.93291i −0.464008 0.411075i
\(145\) 4.77679 11.2115i 0.396690 0.931067i
\(146\) 2.79110 4.83433i 0.230993 0.400092i
\(147\) 2.80576 + 4.85972i 0.231415 + 0.400823i
\(148\) 12.6551 1.53661i 1.04025 0.126309i
\(149\) −4.32726 2.05331i −0.354503 0.168214i 0.243110 0.969999i \(-0.421833\pi\)
−0.597612 + 0.801785i \(0.703884\pi\)
\(150\) −3.57638 + 2.06482i −0.292010 + 0.168592i
\(151\) −17.2039 11.8750i −1.40004 0.966376i −0.998727 0.0504335i \(-0.983940\pi\)
−0.401310 0.915942i \(-0.631445\pi\)
\(152\) −0.955438 + 0.407074i −0.0774963 + 0.0330181i
\(153\) 11.6426 + 1.89210i 0.941245 + 0.152967i
\(154\) 1.95696 2.60424i 0.157696 0.209856i
\(155\) 0.806076 + 2.12545i 0.0647456 + 0.170720i
\(156\) −4.64175 + 14.5995i −0.371637 + 1.16889i
\(157\) −6.64983 + 17.5342i −0.530715 + 1.39938i 0.354876 + 0.934913i \(0.384523\pi\)
−0.885591 + 0.464466i \(0.846246\pi\)
\(158\) 3.04371 + 4.81325i 0.242145 + 0.382921i
\(159\) −18.8794 8.04374i −1.49723 0.637910i
\(160\) 5.85191 + 3.70052i 0.462634 + 0.292552i
\(161\) 5.79282 + 0.703376i 0.456538 + 0.0554338i
\(162\) 1.80933 + 4.24664i 0.142154 + 0.333648i
\(163\) −7.05967 + 21.1463i −0.552956 + 1.65630i 0.185999 + 0.982550i \(0.440448\pi\)
−0.738955 + 0.673755i \(0.764680\pi\)
\(164\) −14.8277 5.62340i −1.15785 0.439114i
\(165\) −9.41440 0.760009i −0.732910 0.0591666i
\(166\) 1.88851 6.51990i 0.146577 0.506042i
\(167\) −1.82413 0.0735097i −0.141155 0.00568835i −0.0304122 0.999537i \(-0.509682\pi\)
−0.110743 + 0.993849i \(0.535323\pi\)
\(168\) 10.4233 0.804179
\(169\) 12.9224 1.41830i 0.994031 0.109100i
\(170\) −2.70191 −0.207227
\(171\) 1.62766 + 0.0655923i 0.124470 + 0.00501597i
\(172\) −3.56935 + 12.3228i −0.272160 + 0.939606i
\(173\) −1.72813 0.139509i −0.131387 0.0106067i 0.0145981 0.999893i \(-0.495353\pi\)
−0.145985 + 0.989287i \(0.546635\pi\)
\(174\) 10.9578 + 4.15574i 0.830708 + 0.315046i
\(175\) −2.20666 + 6.60976i −0.166808 + 0.499651i
\(176\) −2.73338 6.41548i −0.206036 0.483585i
\(177\) 13.7516 + 1.66975i 1.03363 + 0.125506i
\(178\) −1.01515 0.641943i −0.0760889 0.0481157i
\(179\) 10.3845 + 4.42441i 0.776172 + 0.330696i 0.743470 0.668769i \(-0.233179\pi\)
0.0327016 + 0.999465i \(0.489589\pi\)
\(180\) −3.77710 5.97301i −0.281529 0.445202i
\(181\) −6.94215 + 18.3049i −0.516006 + 1.36060i 0.383441 + 0.923565i \(0.374739\pi\)
−0.899447 + 0.437030i \(0.856030\pi\)
\(182\) −1.66024 3.74637i −0.123065 0.277699i
\(183\) −1.74449 4.59984i −0.128956 0.340030i
\(184\) −3.14536 + 4.18572i −0.231879 + 0.308575i
\(185\) 9.75871 + 1.58594i 0.717475 + 0.116601i
\(186\) −2.01107 + 0.856836i −0.147459 + 0.0628263i
\(187\) 9.10003 + 6.28129i 0.665460 + 0.459334i
\(188\) −8.00278 + 4.62041i −0.583663 + 0.336978i
\(189\) −0.278119 0.131969i −0.0202302 0.00959933i
\(190\) −0.370424 + 0.0449776i −0.0268734 + 0.00326302i
\(191\) −3.03816 5.26225i −0.219834 0.380763i 0.734923 0.678150i \(-0.237218\pi\)
−0.954757 + 0.297387i \(0.903885\pi\)
\(192\) 2.65887 4.60530i 0.191887 0.332359i
\(193\) 5.28618 12.4071i 0.380508 0.893084i −0.614086 0.789239i \(-0.710475\pi\)
0.994593 0.103845i \(-0.0331146\pi\)
\(194\) −4.51811 4.00270i −0.324382 0.287377i
\(195\) −6.60791 + 9.87400i −0.473202 + 0.707092i
\(196\) −2.94616 + 2.61007i −0.210440 + 0.186434i
\(197\) −8.24732 24.7037i −0.587597 1.76007i −0.647722 0.761877i \(-0.724278\pi\)
0.0601247 0.998191i \(-0.480850\pi\)
\(198\) 0.184602 4.58085i 0.0131191 0.325547i
\(199\) 8.39919 10.2871i 0.595403 0.729236i −0.385721 0.922615i \(-0.626047\pi\)
0.981124 + 0.193379i \(0.0619448\pi\)
\(200\) −4.14610 4.67998i −0.293174 0.330925i
\(201\) 20.7652 + 4.23925i 1.46467 + 0.299014i
\(202\) 3.85168 1.11565i 0.271003 0.0784971i
\(203\) 18.4902 7.01242i 1.29776 0.492175i
\(204\) 0.660004 + 16.3778i 0.0462095 + 1.14668i
\(205\) −9.83218 7.38840i −0.686709 0.516028i
\(206\) 3.91632 0.799522i 0.272863 0.0557053i
\(207\) 7.27177 3.81652i 0.505423 0.265266i
\(208\) −8.72246 0.932015i −0.604794 0.0646236i
\(209\) 1.35215 + 0.709662i 0.0935300 + 0.0490883i
\(210\) 3.59721 + 1.04194i 0.248231 + 0.0719009i
\(211\) −25.0707 + 2.02392i −1.72594 + 0.139332i −0.903238 0.429139i \(-0.858817\pi\)
−0.822703 + 0.568471i \(0.807535\pi\)
\(212\) 2.87921 14.1033i 0.197745 0.968617i
\(213\) −2.69730 5.13928i −0.184816 0.352138i
\(214\) −2.51941 3.35272i −0.172223 0.229187i
\(215\) −5.31781 + 8.40944i −0.362672 + 0.573519i
\(216\) 0.227317 0.156906i 0.0154670 0.0106761i
\(217\) −1.58130 + 3.33252i −0.107346 + 0.226226i
\(218\) −3.09462 + 3.22184i −0.209594 + 0.218211i
\(219\) −18.9413 18.1933i −1.27993 1.22939i
\(220\) −0.798547 6.57662i −0.0538380 0.443396i
\(221\) 12.4793 6.14291i 0.839447 0.413217i
\(222\) −1.14601 + 9.43827i −0.0769154 + 0.633455i
\(223\) 6.82478 5.57226i 0.457021 0.373146i −0.375789 0.926705i \(-0.622628\pi\)
0.832810 + 0.553559i \(0.186731\pi\)
\(224\) 2.24732 + 11.0081i 0.150156 + 0.735510i
\(225\) 2.72848 + 9.41981i 0.181899 + 0.627988i
\(226\) 1.80757 + 7.33359i 0.120238 + 0.487823i
\(227\) 1.88008 23.2889i 0.124785 1.54574i −0.567049 0.823684i \(-0.691915\pi\)
0.691834 0.722057i \(-0.256803\pi\)
\(228\) 0.363119 + 2.23436i 0.0240482 + 0.147974i
\(229\) −2.91834 + 3.29413i −0.192849 + 0.217682i −0.836980 0.547234i \(-0.815681\pi\)
0.644130 + 0.764916i \(0.277219\pi\)
\(230\) −1.50391 + 1.13012i −0.0991651 + 0.0745177i
\(231\) −9.69310 11.8719i −0.637759 0.781113i
\(232\) −2.84625 + 17.5137i −0.186865 + 1.14983i
\(233\) −28.2493 6.96282i −1.85067 0.456150i −0.852853 0.522151i \(-0.825130\pi\)
−0.997820 + 0.0660014i \(0.978976\pi\)
\(234\) −4.91805 3.01186i −0.321503 0.196891i
\(235\) −6.95844 + 1.71510i −0.453919 + 0.111881i
\(236\) 0.781853 + 9.68499i 0.0508943 + 0.630439i
\(237\) 25.4146 8.48465i 1.65086 0.551137i
\(238\) −3.03716 3.16202i −0.196870 0.204964i
\(239\) 17.3646i 1.12322i 0.827402 + 0.561610i \(0.189818\pi\)
−0.827402 + 0.561610i \(0.810182\pi\)
\(240\) 5.78195 5.55364i 0.373223 0.358486i
\(241\) −1.59000 1.29819i −0.102421 0.0836239i 0.579851 0.814722i \(-0.303111\pi\)
−0.682272 + 0.731098i \(0.739008\pi\)
\(242\) −0.676917 + 1.28976i −0.0435139 + 0.0829087i
\(243\) 21.8560 3.55195i 1.40206 0.227858i
\(244\) 2.91646 1.84426i 0.186707 0.118067i
\(245\) −2.75785 + 1.30862i −0.176193 + 0.0836046i
\(246\) 6.71858 9.73354i 0.428361 0.620588i
\(247\) 1.60861 1.04991i 0.102354 0.0668042i
\(248\) −1.88010 2.72379i −0.119386 0.172961i
\(249\) −27.6574 15.9680i −1.75272 1.01193i
\(250\) −2.46430 5.19340i −0.155856 0.328459i
\(251\) −3.46447 1.15661i −0.218675 0.0730045i 0.205220 0.978716i \(-0.434209\pi\)
−0.423895 + 0.905711i \(0.639337\pi\)
\(252\) 2.74439 11.1344i 0.172881 0.701404i
\(253\) 7.69242 0.309994i 0.483618 0.0194891i
\(254\) −4.57200 + 0.184245i −0.286873 + 0.0115606i
\(255\) −3.04220 + 12.3427i −0.190510 + 0.772930i
\(256\) −1.59409 0.532187i −0.0996309 0.0332617i
\(257\) 0.116309 + 0.245117i 0.00725518 + 0.0152900i 0.907046 0.421032i \(-0.138332\pi\)
−0.899791 + 0.436322i \(0.856281\pi\)
\(258\) −8.28630 4.78410i −0.515883 0.297845i
\(259\) 9.11354 + 13.2032i 0.566288 + 0.820410i
\(260\) −7.71295 3.15591i −0.478337 0.195721i
\(261\) 15.8098 22.9044i 0.978601 1.41775i
\(262\) 0.691135 0.327947i 0.0426984 0.0202607i
\(263\) −15.7272 + 9.94530i −0.969783 + 0.613254i −0.922651 0.385635i \(-0.873982\pi\)
−0.0471317 + 0.998889i \(0.515008\pi\)
\(264\) 13.5735 2.20592i 0.835394 0.135765i
\(265\) 5.18787 9.88467i 0.318689 0.607210i
\(266\) −0.469023 0.382945i −0.0287576 0.0234799i
\(267\) −4.07549 + 3.91456i −0.249416 + 0.239567i
\(268\) 14.8655i 0.908058i
\(269\) 7.40191 + 7.70621i 0.451303 + 0.469856i 0.907518 0.420014i \(-0.137975\pi\)
−0.456215 + 0.889870i \(0.650795\pi\)
\(270\) 0.0941341 0.0314266i 0.00572882 0.00191256i
\(271\) 1.33150 + 16.4935i 0.0808826 + 1.00191i 0.902166 + 0.431390i \(0.141977\pi\)
−0.821283 + 0.570521i \(0.806741\pi\)
\(272\) −9.11293 + 2.24614i −0.552553 + 0.136192i
\(273\) −18.9833 + 3.36598i −1.14892 + 0.203719i
\(274\) 1.62414 + 0.400314i 0.0981178 + 0.0241839i
\(275\) −1.47473 + 9.07440i −0.0889298 + 0.547207i
\(276\) 7.21765 + 8.84002i 0.434452 + 0.532107i
\(277\) −16.0193 + 12.0377i −0.962505 + 0.723276i −0.960950 0.276723i \(-0.910752\pi\)
−0.00155560 + 0.999999i \(0.500495\pi\)
\(278\) −6.14924 + 6.94106i −0.368807 + 0.416297i
\(279\) 0.832736 + 5.12403i 0.0498546 + 0.306768i
\(280\) −0.456256 + 5.65175i −0.0272665 + 0.337757i
\(281\) −6.25788 25.3892i −0.373314 1.51459i −0.794300 0.607526i \(-0.792162\pi\)
0.420986 0.907067i \(-0.361684\pi\)
\(282\) −1.91743 6.61975i −0.114182 0.394200i
\(283\) 2.06777 + 10.1286i 0.122916 + 0.602085i 0.993855 + 0.110692i \(0.0353068\pi\)
−0.870938 + 0.491392i \(0.836488\pi\)
\(284\) 3.15350 2.57476i 0.187126 0.152784i
\(285\) −0.211613 + 1.74279i −0.0125349 + 0.103234i
\(286\) −2.95485 4.52726i −0.174724 0.267702i
\(287\) −2.40557 19.8116i −0.141996 1.16944i
\(288\) 11.4036 + 10.9533i 0.671963 + 0.645429i
\(289\) −1.46709 + 1.52741i −0.0862997 + 0.0898475i
\(290\) −2.73298 + 5.75963i −0.160486 + 0.338217i
\(291\) −23.3720 + 16.1325i −1.37009 + 0.945706i
\(292\) 9.84577 15.5698i 0.576180 0.911156i
\(293\) 2.59287 + 3.45049i 0.151477 + 0.201580i 0.868802 0.495159i \(-0.164890\pi\)
−0.717325 + 0.696739i \(0.754634\pi\)
\(294\) −1.36420 2.59927i −0.0795619 0.151592i
\(295\) −1.50731 + 7.38331i −0.0877592 + 0.429873i
\(296\) −14.3481 + 1.15830i −0.833964 + 0.0673246i
\(297\) −0.390102 0.112994i −0.0226360 0.00655660i
\(298\) 2.21860 + 1.16441i 0.128520 + 0.0674525i
\(299\) 4.37673 8.63886i 0.253113 0.499598i
\(300\) −12.0671 + 6.33331i −0.696695 + 0.365654i
\(301\) −15.8191 + 3.22950i −0.911799 + 0.186145i
\(302\) 8.74234 + 6.56944i 0.503065 + 0.378029i
\(303\) −0.759676 18.8512i −0.0436422 1.08297i
\(304\) −1.21196 + 0.459637i −0.0695109 + 0.0263620i
\(305\) 2.57049 0.744551i 0.147186 0.0426329i
\(306\) −6.04569 1.23424i −0.345609 0.0705566i
\(307\) −7.43648 8.39405i −0.424422 0.479074i 0.496937 0.867787i \(-0.334458\pi\)
−0.921359 + 0.388713i \(0.872920\pi\)
\(308\) 6.79893 8.32718i 0.387405 0.474485i
\(309\) 0.757231 18.7905i 0.0430773 1.06895i
\(310\) −0.376564 1.12795i −0.0213874 0.0640631i
\(311\) −13.7492 + 12.1807i −0.779643 + 0.690703i −0.955917 0.293638i \(-0.905134\pi\)
0.176274 + 0.984341i \(0.443596\pi\)
\(312\) 5.90087 16.2609i 0.334071 0.920591i
\(313\) 18.9958 + 16.8288i 1.07371 + 0.951222i 0.998942 0.0459792i \(-0.0146408\pi\)
0.0747652 + 0.997201i \(0.476179\pi\)
\(314\) 3.84520 9.02501i 0.216997 0.509311i
\(315\) 4.44686 7.70219i 0.250552 0.433969i
\(316\) 9.39675 + 16.2756i 0.528608 + 0.915576i
\(317\) −19.8160 + 2.40610i −1.11298 + 0.135140i −0.656305 0.754496i \(-0.727881\pi\)
−0.456671 + 0.889636i \(0.650958\pi\)
\(318\) 9.69877 + 4.60212i 0.543880 + 0.258074i
\(319\) 22.5944 13.0449i 1.26504 0.730373i
\(320\) 2.38070 + 1.64328i 0.133085 + 0.0918620i
\(321\) −18.1524 + 7.73401i −1.01317 + 0.431671i
\(322\) −3.01308 0.489674i −0.167913 0.0272884i
\(323\) 1.23469 1.64308i 0.0687002 0.0914234i
\(324\) 5.40177 + 14.2433i 0.300098 + 0.791294i
\(325\) 9.06228 + 7.18441i 0.502685 + 0.398519i
\(326\) 4.13550 10.9044i 0.229044 0.603940i
\(327\) 11.2334 + 17.7643i 0.621210 + 0.982365i
\(328\) 16.4737 + 7.01879i 0.909608 + 0.387548i
\(329\) −9.82901 6.21549i −0.541891 0.342671i
\(330\) 4.90488 + 0.595561i 0.270005 + 0.0327845i
\(331\) −6.54746 15.3675i −0.359881 0.844672i −0.997250 0.0741129i \(-0.976387\pi\)
0.637369 0.770559i \(-0.280023\pi\)
\(332\) 7.09354 21.2478i 0.389309 1.16612i
\(333\) 21.1112 + 8.00643i 1.15689 + 0.438750i
\(334\) 0.951919 + 0.0768468i 0.0520867 + 0.00420487i
\(335\) −3.20755 + 11.0738i −0.175247 + 0.605024i
\(336\) 12.9987 + 0.523831i 0.709139 + 0.0285773i
\(337\) 22.5456 1.22814 0.614068 0.789253i \(-0.289532\pi\)
0.614068 + 0.789253i \(0.289532\pi\)
\(338\) −6.78439 + 0.469146i −0.369022 + 0.0255182i
\(339\) 35.5361 1.93005
\(340\) −8.90928 0.359032i −0.483174 0.0194712i
\(341\) −1.35394 + 4.67434i −0.0733199 + 0.253130i
\(342\) −0.849391 0.0685699i −0.0459298 0.00370784i
\(343\) −18.8512 7.14930i −1.01787 0.386026i
\(344\) 4.58741 13.7410i 0.247337 0.740864i
\(345\) 3.46921 + 8.14253i 0.186776 + 0.438379i
\(346\) 0.900350 + 0.109322i 0.0484031 + 0.00587720i
\(347\) 9.94155 + 6.28666i 0.533690 + 0.337485i 0.773974 0.633217i \(-0.218266\pi\)
−0.240284 + 0.970703i \(0.577240\pi\)
\(348\) 35.5800 + 15.1592i 1.90729 + 0.812619i
\(349\) −16.7211 26.4423i −0.895060 1.41542i −0.909580 0.415529i \(-0.863596\pi\)
0.0145201 0.999895i \(-0.495378\pi\)
\(350\) 1.29265 3.40843i 0.0690949 0.182188i
\(351\) −0.363326 + 0.359167i −0.0193929 + 0.0191709i
\(352\) 5.25619 + 13.8594i 0.280156 + 0.738711i
\(353\) −12.6942 + 16.8929i −0.675646 + 0.899121i −0.998886 0.0471960i \(-0.984971\pi\)
0.323240 + 0.946317i \(0.395228\pi\)
\(354\) −7.15277 1.16244i −0.380166 0.0617829i
\(355\) 2.90469 1.23757i 0.154165 0.0656835i
\(356\) −3.26206 2.25164i −0.172889 0.119336i
\(357\) −17.8642 + 10.3139i −0.945475 + 0.545870i
\(358\) −5.33475 2.53137i −0.281950 0.133787i
\(359\) 19.1563 2.32599i 1.01103 0.122761i 0.401777 0.915737i \(-0.368393\pi\)
0.609253 + 0.792976i \(0.291470\pi\)
\(360\) 3.98996 + 6.91081i 0.210289 + 0.364232i
\(361\) −9.35808 + 16.2087i −0.492530 + 0.853088i
\(362\) 4.01422 9.42173i 0.210983 0.495195i
\(363\) 5.12962 + 4.54444i 0.269235 + 0.238521i
\(364\) −4.97664 12.5739i −0.260847 0.659050i
\(365\) 10.6939 9.47397i 0.559744 0.495890i
\(366\) 0.814951 + 2.44108i 0.0425982 + 0.127597i
\(367\) 1.08546 26.9353i 0.0566603 1.40601i −0.681713 0.731620i \(-0.738765\pi\)
0.738373 0.674392i \(-0.235594\pi\)
\(368\) −4.13287 + 5.06185i −0.215441 + 0.263867i
\(369\) −18.6250 21.0233i −0.969581 1.09443i
\(370\) −5.06745 1.03453i −0.263444 0.0537826i
\(371\) 17.3995 5.03983i 0.903338 0.261655i
\(372\) −6.74515 + 2.55810i −0.349720 + 0.132631i
\(373\) 0.875994 + 21.7376i 0.0453572 + 1.12553i 0.848315 + 0.529492i \(0.177617\pi\)
−0.802958 + 0.596036i \(0.796742\pi\)
\(374\) −4.62426 3.47490i −0.239115 0.179683i
\(375\) −26.4988 + 5.40977i −1.36839 + 0.279359i
\(376\) 9.23925 4.84913i 0.476478 0.250075i
\(377\) −0.471985 32.8154i −0.0243085 1.69008i
\(378\) 0.142592 + 0.0748383i 0.00733416 + 0.00384926i
\(379\) 24.3246 + 7.04572i 1.24947 + 0.361914i 0.836064 0.548631i \(-0.184851\pi\)
0.413409 + 0.910546i \(0.364338\pi\)
\(380\) −1.22741 + 0.0990869i −0.0629649 + 0.00508305i
\(381\) −4.30616 + 21.0930i −0.220611 + 1.08063i
\(382\) 1.47720 + 2.81457i 0.0755800 + 0.144006i
\(383\) −14.1527 18.8338i −0.723170 0.962364i −0.999999 0.00144517i \(-0.999540\pi\)
0.276829 0.960919i \(-0.410716\pi\)
\(384\) −15.0921 + 23.8662i −0.770163 + 1.21792i
\(385\) 6.86147 4.73613i 0.349693 0.241376i
\(386\) −3.02442 + 6.37383i −0.153939 + 0.324420i
\(387\) −15.7403 + 16.3874i −0.800127 + 0.833020i
\(388\) −14.3661 13.7989i −0.729330 0.700531i
\(389\) 2.14639 + 17.6771i 0.108826 + 0.896265i 0.940217 + 0.340576i \(0.110622\pi\)
−0.831391 + 0.555689i \(0.812455\pi\)
\(390\) 3.66193 5.02193i 0.185429 0.254295i
\(391\) 1.24896 10.2861i 0.0631626 0.520191i
\(392\) 3.44269 2.81087i 0.173882 0.141970i
\(393\) −0.719930 3.52645i −0.0363156 0.177886i
\(394\) 3.79050 + 13.0863i 0.190963 + 0.659279i
\(395\) 3.48808 + 14.1517i 0.175505 + 0.712050i
\(396\) 1.21741 15.0804i 0.0611773 0.757817i
\(397\) 2.46841 + 15.1888i 0.123886 + 0.762302i 0.972433 + 0.233182i \(0.0749137\pi\)
−0.848547 + 0.529120i \(0.822522\pi\)
\(398\) −4.60693 + 5.20015i −0.230925 + 0.260660i
\(399\) −2.27744 + 1.71138i −0.114015 + 0.0856764i
\(400\) −4.93532 6.04467i −0.246766 0.302234i
\(401\) −4.26171 + 26.2233i −0.212820 + 1.30953i 0.632204 + 0.774802i \(0.282150\pi\)
−0.845023 + 0.534729i \(0.820414\pi\)
\(402\) −10.7646 2.65325i −0.536892 0.132332i
\(403\) 4.30366 + 4.35350i 0.214381 + 0.216863i
\(404\) 12.8488 3.16694i 0.639250 0.157561i
\(405\) 0.950638 + 11.7758i 0.0472376 + 0.585142i
\(406\) −9.81252 + 3.27590i −0.486987 + 0.162580i
\(407\) 14.6621 + 15.2649i 0.726774 + 0.756652i
\(408\) 18.5084i 0.916301i
\(409\) 5.33382 5.12320i 0.263740 0.253326i −0.549176 0.835707i \(-0.685058\pi\)
0.812916 + 0.582381i \(0.197879\pi\)
\(410\) 4.98363 + 4.06901i 0.246124 + 0.200954i
\(411\) 3.65738 6.96856i 0.180405 0.343734i
\(412\) 13.0199 2.11594i 0.641444 0.104245i
\(413\) −10.3350 + 6.53543i −0.508550 + 0.321588i
\(414\) −3.88133 + 1.84172i −0.190757 + 0.0905154i
\(415\) 9.86882 14.2975i 0.484441 0.701834i
\(416\) 18.4454 + 2.72599i 0.904360 + 0.133653i
\(417\) 24.7840 + 35.9058i 1.21368 + 1.75832i
\(418\) −0.691817 0.399421i −0.0338379 0.0195363i
\(419\) −2.45599 5.17589i −0.119983 0.252859i 0.834569 0.550904i \(-0.185717\pi\)
−0.954552 + 0.298045i \(0.903666\pi\)
\(420\) 11.7230 + 3.91370i 0.572022 + 0.190969i
\(421\) 3.52027 14.2823i 0.171568 0.696077i −0.820636 0.571451i \(-0.806381\pi\)
0.992204 0.124626i \(-0.0397732\pi\)
\(422\) 13.1471 0.529809i 0.639989 0.0257907i
\(423\) −16.3534 + 0.659019i −0.795129 + 0.0320426i
\(424\) −3.88971 + 15.7812i −0.188901 + 0.766401i
\(425\) 11.7367 + 3.91829i 0.569315 + 0.190065i
\(426\) 1.30162 + 2.74311i 0.0630637 + 0.132904i
\(427\) 3.76077 + 2.17128i 0.181997 + 0.105076i
\(428\) −7.86197 11.3900i −0.380023 0.550558i
\(429\) −24.0081 + 8.40074i −1.15912 + 0.405591i
\(430\) 2.95675 4.28359i 0.142587 0.206573i
\(431\) 15.9132 7.55089i 0.766510 0.363714i −0.00495288 0.999988i \(-0.501577\pi\)
0.771463 + 0.636274i \(0.219525\pi\)
\(432\) 0.291367 0.184250i 0.0140184 0.00886471i
\(433\) −22.1353 + 3.59734i −1.06376 + 0.172877i −0.667008 0.745051i \(-0.732425\pi\)
−0.396748 + 0.917928i \(0.629861\pi\)
\(434\) 0.896738 1.70859i 0.0430448 0.0820150i
\(435\) 23.2336 + 18.9696i 1.11397 + 0.909524i
\(436\) −10.6323 + 10.2125i −0.509195 + 0.489089i
\(437\) 1.43098i 0.0684533i
\(438\) 9.51734 + 9.90860i 0.454756 + 0.473451i
\(439\) −15.3155 + 5.11308i −0.730970 + 0.244034i −0.657702 0.753278i \(-0.728471\pi\)
−0.0732687 + 0.997312i \(0.523343\pi\)
\(440\) 0.601944 + 7.45641i 0.0286965 + 0.355470i
\(441\) −6.76864 + 1.66832i −0.322316 + 0.0794438i
\(442\) −6.65229 + 2.94802i −0.316417 + 0.140223i
\(443\) 14.2938 + 3.52311i 0.679120 + 0.167388i 0.563764 0.825936i \(-0.309353\pi\)
0.115356 + 0.993324i \(0.463199\pi\)
\(444\) −5.03302 + 30.9694i −0.238857 + 1.46974i
\(445\) −1.94416 2.38116i −0.0921619 0.112878i
\(446\) −3.68467 + 2.76885i −0.174474 + 0.131109i
\(447\) 7.81720 8.82380i 0.369741 0.417351i
\(448\) 0.752982 + 4.63328i 0.0355750 + 0.218902i
\(449\) 2.35392 29.1585i 0.111088 1.37608i −0.665656 0.746259i \(-0.731848\pi\)
0.776744 0.629817i \(-0.216870\pi\)
\(450\) −1.22775 4.98119i −0.0578769 0.234816i
\(451\) −7.32538 25.2901i −0.344939 1.19087i
\(452\) 4.98578 + 24.4219i 0.234511 + 1.14871i
\(453\) 39.8535 32.5394i 1.87248 1.52883i
\(454\) −1.47327 + 12.1335i −0.0691441 + 0.569453i
\(455\) −0.994159 10.4404i −0.0466069 0.489455i
\(456\) −0.308101 2.53744i −0.0144281 0.118827i
\(457\) −21.7842 20.9240i −1.01902 0.978783i −0.0192422 0.999815i \(-0.506125\pi\)
−0.999779 + 0.0210319i \(0.993305\pi\)
\(458\) 1.59480 1.66036i 0.0745201 0.0775837i
\(459\) −0.234333 + 0.493846i −0.0109377 + 0.0230507i
\(460\) −5.10917 + 3.52661i −0.238216 + 0.164429i
\(461\) −3.18945 + 5.04371i −0.148548 + 0.234909i −0.911263 0.411825i \(-0.864891\pi\)
0.762715 + 0.646734i \(0.223866\pi\)
\(462\) 4.81650 + 6.40959i 0.224084 + 0.298201i
\(463\) −15.9401 30.3714i −0.740801 1.41148i −0.905157 0.425077i \(-0.860247\pi\)
0.164356 0.986401i \(-0.447445\pi\)
\(464\) −4.42965 + 21.6979i −0.205641 + 1.00730i
\(465\) −5.57661 + 0.450190i −0.258609 + 0.0208771i
\(466\) 14.6192 + 4.23450i 0.677221 + 0.196159i
\(467\) 0.697910 + 0.366291i 0.0322954 + 0.0169499i 0.480794 0.876834i \(-0.340349\pi\)
−0.448498 + 0.893784i \(0.648041\pi\)
\(468\) −15.8166 10.5848i −0.731121 0.489283i
\(469\) −16.5650 + 8.69401i −0.764903 + 0.401452i
\(470\) 3.67329 0.749908i 0.169436 0.0345907i
\(471\) −36.8980 27.7270i −1.70017 1.27759i
\(472\) −0.441781 10.9627i −0.0203346 0.504598i
\(473\) −19.9166 + 7.55337i −0.915766 + 0.347304i
\(474\) −13.4629 + 3.89958i −0.618372 + 0.179114i
\(475\) 1.67429 + 0.341810i 0.0768219 + 0.0156833i
\(476\) −9.59457 10.8300i −0.439766 0.496393i
\(477\) 16.1235 19.7477i 0.738244 0.904185i
\(478\) 0.365768 9.07643i 0.0167298 0.415146i
\(479\) 4.71708 + 14.1294i 0.215529 + 0.645587i 0.999687 + 0.0250262i \(0.00796691\pi\)
−0.784158 + 0.620561i \(0.786905\pi\)
\(480\) −12.7553 + 11.3002i −0.582197 + 0.515781i
\(481\) 25.7570 6.74290i 1.17442 0.307450i
\(482\) 0.803743 + 0.712055i 0.0366095 + 0.0324332i
\(483\) −5.62946 + 13.2128i −0.256149 + 0.601204i
\(484\) −2.40345 + 4.16289i −0.109248 + 0.189222i
\(485\) −7.72433 13.3789i −0.350744 0.607506i
\(486\) −11.4989 + 1.39622i −0.521602 + 0.0633339i
\(487\) −6.67079 3.16533i −0.302282 0.143435i 0.271510 0.962436i \(-0.412477\pi\)
−0.573792 + 0.819001i \(0.694528\pi\)
\(488\) −3.37436 + 1.94819i −0.152750 + 0.0881903i
\(489\) −45.1565 31.1693i −2.04205 1.40952i
\(490\) 1.46909 0.625921i 0.0663667 0.0282762i
\(491\) −13.6560 2.21932i −0.616287 0.100156i −0.155749 0.987797i \(-0.549779\pi\)
−0.460538 + 0.887640i \(0.652343\pi\)
\(492\) 23.4472 31.2026i 1.05708 1.40672i
\(493\) −12.4517 32.8324i −0.560796 1.47870i
\(494\) −0.862934 + 0.514903i −0.0388252 + 0.0231666i
\(495\) 4.16079 10.9711i 0.187013 0.493114i
\(496\) −2.20774 3.49126i −0.0991306 0.156762i
\(497\) 4.71342 + 2.00820i 0.211426 + 0.0900800i
\(498\) 14.1201 + 8.92904i 0.632739 + 0.400120i
\(499\) 19.6426 + 2.38504i 0.879323 + 0.106769i 0.547732 0.836654i \(-0.315491\pi\)
0.331591 + 0.943423i \(0.392414\pi\)
\(500\) −7.43567 17.4521i −0.332533 0.780484i
\(501\) 1.42285 4.26197i 0.0635684 0.190411i
\(502\) 1.78651 + 0.677533i 0.0797357 + 0.0302398i
\(503\) 40.1297 + 3.23960i 1.78929 + 0.144447i 0.930124 0.367245i \(-0.119699\pi\)
0.859169 + 0.511692i \(0.170981\pi\)
\(504\) −3.60262 + 12.4377i −0.160474 + 0.554019i
\(505\) 10.2547 + 0.413252i 0.456330 + 0.0183895i
\(506\) −4.02734 −0.179037
\(507\) −5.49572 + 31.5203i −0.244074 + 1.39986i
\(508\) −15.1002 −0.669962
\(509\) 27.8460 + 1.12216i 1.23425 + 0.0497387i 0.648795 0.760963i \(-0.275273\pi\)
0.585459 + 0.810702i \(0.300914\pi\)
\(510\) 1.85014 6.38743i 0.0819257 0.282840i
\(511\) 23.1081 + 1.86548i 1.02224 + 0.0825238i
\(512\) −20.6330 7.82505i −0.911857 0.345822i
\(513\) −0.0239054 + 0.0716055i −0.00105545 + 0.00316146i
\(514\) −0.0556315 0.130572i −0.00245380 0.00575928i
\(515\) 10.1554 + 1.23309i 0.447502 + 0.0543365i
\(516\) −26.6875 16.8762i −1.17485 0.742931i
\(517\) −14.1150 6.01383i −0.620776 0.264488i
\(518\) −4.48552 7.09328i −0.197082 0.311661i
\(519\) 1.51314 3.98983i 0.0664196 0.175134i
\(520\) 8.55868 + 3.91135i 0.375323 + 0.171524i
\(521\) −14.3337 37.7948i −0.627969 1.65582i −0.748520 0.663112i \(-0.769235\pi\)
0.120551 0.992707i \(-0.461534\pi\)
\(522\) −8.74620 + 11.6391i −0.382811 + 0.509429i
\(523\) 23.7183 + 3.85459i 1.03713 + 0.168549i 0.655053 0.755583i \(-0.272646\pi\)
0.382073 + 0.924132i \(0.375210\pi\)
\(524\) 2.32252 0.989535i 0.101460 0.0432280i
\(525\) −14.1147 9.74269i −0.616017 0.425206i
\(526\) 8.43009 4.86711i 0.367569 0.212216i
\(527\) 5.91743 + 2.80786i 0.257767 + 0.122312i
\(528\) 17.0381 2.06880i 0.741490 0.0900332i
\(529\) 7.89286 + 13.6708i 0.343168 + 0.594384i
\(530\) −2.91990 + 5.05742i −0.126833 + 0.219680i
\(531\) −6.74541 + 15.8321i −0.292726 + 0.687053i
\(532\) −1.49567 1.32505i −0.0648454 0.0574480i
\(533\) −32.2689 7.46298i −1.39772 0.323258i
\(534\) 2.21271 1.96029i 0.0957532 0.0848299i
\(535\) −3.39896 10.1811i −0.146950 0.440169i
\(536\) 0.675893 16.7721i 0.0291941 0.724445i
\(537\) −17.5703 + 21.5197i −0.758213 + 0.928642i
\(538\) −3.70664 4.18394i −0.159805 0.180382i
\(539\) −6.40300 1.30718i −0.275797 0.0563043i
\(540\) 0.314573 0.0911173i 0.0135371 0.00392107i
\(541\) 18.3602 6.96311i 0.789367 0.299367i 0.0732191 0.997316i \(-0.476673\pi\)
0.716148 + 0.697948i \(0.245904\pi\)
\(542\) −0.348550 8.64918i −0.0149715 0.371514i
\(543\) −38.5200 28.9459i −1.65305 1.24219i
\(544\) 19.5467 3.99049i 0.838058 0.171091i
\(545\) −10.1238 + 5.31341i −0.433658 + 0.227601i
\(546\) 9.99342 1.35953i 0.427679 0.0581825i
\(547\) −16.3542 8.58334i −0.699255 0.366997i 0.0773339 0.997005i \(-0.475359\pi\)
−0.776589 + 0.630008i \(0.783052\pi\)
\(548\) 5.30224 + 1.53581i 0.226500 + 0.0656066i
\(549\) 6.09173 0.491775i 0.259989 0.0209885i
\(550\) 0.961984 4.71211i 0.0410192 0.200925i
\(551\) −2.25364 4.29395i −0.0960082 0.182928i
\(552\) −7.74141 10.3019i −0.329496 0.438480i
\(553\) −12.6407 + 19.9897i −0.537539 + 0.850049i
\(554\) 8.62681 5.95466i 0.366518 0.252989i
\(555\) −10.4315 + 21.9840i −0.442794 + 0.933169i
\(556\) −21.1988 + 22.0703i −0.899030 + 0.935990i
\(557\) −17.1650 16.4872i −0.727306 0.698587i 0.234562 0.972101i \(-0.424634\pi\)
−0.961868 + 0.273514i \(0.911814\pi\)
\(558\) −0.327337 2.69586i −0.0138573 0.114125i
\(559\) −3.91737 + 26.5068i −0.165687 + 1.12112i
\(560\) −0.853019 + 7.02524i −0.0360466 + 0.296871i
\(561\) −21.0805 + 17.2117i −0.890019 + 0.726678i
\(562\) 2.73618 + 13.4027i 0.115419 + 0.565359i
\(563\) −1.24054 4.28286i −0.0522827 0.180501i 0.930127 0.367237i \(-0.119696\pi\)
−0.982410 + 0.186736i \(0.940209\pi\)
\(564\) −5.44291 22.0827i −0.229188 0.929851i
\(565\) −1.55550 + 19.2684i −0.0654405 + 0.810626i
\(566\) −0.867472 5.33777i −0.0364626 0.224363i
\(567\) −12.7125 + 14.3494i −0.533873 + 0.602618i
\(568\) −3.67502 + 2.76160i −0.154200 + 0.115874i
\(569\) 5.45240 + 6.67797i 0.228576 + 0.279955i 0.876141 0.482056i \(-0.160110\pi\)
−0.647564 + 0.762011i \(0.724212\pi\)
\(570\) 0.147320 0.906496i 0.00617055 0.0379689i
\(571\) 22.7038 + 5.59599i 0.950126 + 0.234185i 0.683777 0.729691i \(-0.260336\pi\)
0.266349 + 0.963877i \(0.414182\pi\)
\(572\) −9.14174 15.3208i −0.382236 0.640595i
\(573\) 14.5206 3.57900i 0.606605 0.149515i
\(574\) 0.840074 + 10.4062i 0.0350640 + 0.434346i
\(575\) 8.17167 2.72810i 0.340782 0.113770i
\(576\) 4.57630 + 4.76444i 0.190679 + 0.198518i
\(577\) 42.9103i 1.78638i 0.449681 + 0.893189i \(0.351538\pi\)
−0.449681 + 0.893189i \(0.648462\pi\)
\(578\) 0.799021 0.767470i 0.0332349 0.0319225i
\(579\) 25.7112 + 20.9926i 1.06852 + 0.872421i
\(580\) −9.77706 + 18.6286i −0.405970 + 0.773511i
\(581\) 27.8255 4.52208i 1.15440 0.187608i
\(582\) 12.5563 7.94014i 0.520477 0.329129i
\(583\) 21.5915 10.2453i 0.894228 0.424317i
\(584\) −11.8164 + 17.1191i −0.488968 + 0.708392i
\(585\) −9.49830 11.2977i −0.392706 0.467101i
\(586\) −1.28261 1.85818i −0.0529841 0.0767607i
\(587\) −10.4315 6.02265i −0.430556 0.248582i 0.269028 0.963132i \(-0.413298\pi\)
−0.699583 + 0.714551i \(0.746631\pi\)
\(588\) −4.15292 8.75210i −0.171264 0.360931i
\(589\) 0.858002 + 0.286443i 0.0353534 + 0.0118027i
\(590\) 0.943393 3.82749i 0.0388389 0.157575i
\(591\) 64.0480 2.58105i 2.63458 0.106170i
\(592\) −17.9514 + 0.723416i −0.737797 + 0.0297322i
\(593\) −5.82404 + 23.6291i −0.239165 + 0.970329i 0.721455 + 0.692461i \(0.243474\pi\)
−0.960619 + 0.277867i \(0.910372\pi\)
\(594\) 0.201526 + 0.0672791i 0.00826870 + 0.00276050i
\(595\) −4.81045 10.1378i −0.197209 0.415610i
\(596\) 7.16087 + 4.13433i 0.293321 + 0.169349i
\(597\) 18.5678 + 26.9002i 0.759931 + 1.10095i
\(598\) −2.46968 + 4.42333i −0.100993 + 0.180883i
\(599\) −9.42939 + 13.6608i −0.385275 + 0.558167i −0.966856 0.255321i \(-0.917819\pi\)
0.581582 + 0.813488i \(0.302434\pi\)
\(600\) 13.9027 6.59693i 0.567576 0.269318i
\(601\) 17.2466 10.9061i 0.703505 0.444869i −0.134228 0.990951i \(-0.542855\pi\)
0.837732 + 0.546081i \(0.183881\pi\)
\(602\) 8.33665 1.35484i 0.339777 0.0552191i
\(603\) −12.2356 + 23.3130i −0.498272 + 0.949377i
\(604\) 27.9540 + 22.8237i 1.13743 + 0.928685i
\(605\) −2.68862 + 2.58246i −0.109308 + 0.104992i
\(606\) 9.86947i 0.400920i
\(607\) 0.470458 + 0.489798i 0.0190953 + 0.0198803i 0.730682 0.682718i \(-0.239202\pi\)
−0.711586 + 0.702599i \(0.752023\pi\)
\(608\) 2.61337 0.872470i 0.105986 0.0353833i
\(609\) 3.91641 + 48.5134i 0.158701 + 1.96586i
\(610\) −1.35927 + 0.335031i −0.0550354 + 0.0135650i
\(611\) −15.2608 + 11.8150i −0.617387 + 0.477982i
\(612\) −19.7710 4.87312i −0.799197 0.196984i
\(613\) −1.12454 + 6.91959i −0.0454199 + 0.279480i −0.999818 0.0190558i \(-0.993934\pi\)
0.954399 + 0.298535i \(0.0964981\pi\)
\(614\) 3.71022 + 4.54420i 0.149732 + 0.183389i
\(615\) 24.1991 18.1844i 0.975801 0.733267i
\(616\) −8.04953 + 9.08604i −0.324325 + 0.366087i
\(617\) 2.34753 + 14.4450i 0.0945082 + 0.581532i 0.990506 + 0.137473i \(0.0438980\pi\)
−0.895997 + 0.444059i \(0.853538\pi\)
\(618\) −0.791606 + 9.80580i −0.0318431 + 0.394447i
\(619\) −4.58716 18.6108i −0.184374 0.748033i −0.988200 0.153169i \(-0.951052\pi\)
0.803826 0.594864i \(-0.202794\pi\)
\(620\) −1.09180 3.76933i −0.0438477 0.151380i
\(621\) 0.0761266 + 0.372893i 0.00305486 + 0.0149637i
\(622\) 7.44323 6.07721i 0.298446 0.243674i
\(623\) 0.601263 4.95184i 0.0240891 0.198391i
\(624\) 8.17604 19.9820i 0.327304 0.799922i
\(625\) 0.159712 + 1.31535i 0.00638849 + 0.0526140i
\(626\) −9.57460 9.19653i −0.382678 0.367567i
\(627\) −2.60355 + 2.71059i −0.103976 + 0.108250i
\(628\) 13.8784 29.2481i 0.553808 1.16713i
\(629\) 23.4445 16.1826i 0.934795 0.645242i
\(630\) −2.48661 + 3.93225i −0.0990688 + 0.156665i
\(631\) 23.5740 + 31.3713i 0.938465 + 1.24887i 0.968421 + 0.249319i \(0.0802068\pi\)
−0.0299561 + 0.999551i \(0.509537\pi\)
\(632\) −9.86191 18.7903i −0.392286 0.747438i
\(633\) 12.3826 60.6541i 0.492165 2.41079i
\(634\) 10.4085 0.840258i 0.413373 0.0333709i
\(635\) −11.2485 3.25818i −0.446384 0.129297i
\(636\) 31.3692 + 16.4638i 1.24387 + 0.652833i
\(637\) −5.36221 + 6.23097i −0.212458 + 0.246880i
\(638\) −12.0848 + 6.34261i −0.478443 + 0.251106i
\(639\) 7.06473 1.44228i 0.279477 0.0570555i
\(640\) −12.2801 9.22790i −0.485414 0.364765i
\(641\) 1.58922 + 39.4361i 0.0627704 + 1.55763i 0.657345 + 0.753590i \(0.271680\pi\)
−0.594574 + 0.804041i \(0.702679\pi\)
\(642\) 9.65114 3.66019i 0.380900 0.144456i
\(643\) −5.53593 + 1.60350i −0.218316 + 0.0632359i −0.385573 0.922677i \(-0.625996\pi\)
0.167257 + 0.985913i \(0.446509\pi\)
\(644\) −9.87026 2.01503i −0.388943 0.0794032i
\(645\) −16.2389 18.3299i −0.639405 0.721739i
\(646\) −0.679982 + 0.832827i −0.0267535 + 0.0327671i
\(647\) −0.959221 + 23.8028i −0.0377109 + 0.935786i 0.864012 + 0.503471i \(0.167944\pi\)
−0.901723 + 0.432315i \(0.857697\pi\)
\(648\) −5.44696 16.3156i −0.213977 0.640939i
\(649\) −12.0753 + 10.6978i −0.473998 + 0.419926i
\(650\) −4.58551 3.94617i −0.179858 0.154781i
\(651\) −6.79540 6.02020i −0.266333 0.235950i
\(652\) 15.0854 35.4067i 0.590789 1.38663i
\(653\) 9.92813 17.1960i 0.388518 0.672932i −0.603733 0.797187i \(-0.706321\pi\)
0.992250 + 0.124255i \(0.0396540\pi\)
\(654\) −5.49751 9.52197i −0.214970 0.372338i
\(655\) 1.94362 0.235999i 0.0759437 0.00922123i
\(656\) 20.1913 + 9.58088i 0.788337 + 0.374070i
\(657\) 28.2559 16.3136i 1.10237 0.636453i
\(658\) 5.00668 + 3.45586i 0.195181 + 0.134724i
\(659\) −34.8519 + 14.8490i −1.35764 + 0.578435i −0.943377 0.331723i \(-0.892370\pi\)
−0.414260 + 0.910158i \(0.635960\pi\)
\(660\) 16.0942 + 2.61556i 0.626466 + 0.101811i
\(661\) 13.0580 17.3770i 0.507897 0.675888i −0.470553 0.882372i \(-0.655946\pi\)
0.978450 + 0.206483i \(0.0662019\pi\)
\(662\) 3.09865 + 8.17046i 0.120432 + 0.317554i
\(663\) 5.97686 + 33.7079i 0.232122 + 1.30911i
\(664\) −8.96939 + 23.6503i −0.348080 + 0.917811i
\(665\) −0.828258 1.30978i −0.0321185 0.0507913i
\(666\) −10.8662 4.62964i −0.421055 0.179395i
\(667\) −20.6634 13.0668i −0.800091 0.505947i
\(668\) 3.12864 + 0.379886i 0.121051 + 0.0146982i
\(669\) 8.49976 + 19.9497i 0.328620 + 0.771298i
\(670\) 1.90984 5.72067i 0.0737835 0.221009i
\(671\) 5.35689 + 2.03160i 0.206800 + 0.0784290i
\(672\) −27.5625 2.22507i −1.06325 0.0858341i
\(673\) 4.14153 14.2982i 0.159644 0.551156i −0.840315 0.542099i \(-0.817630\pi\)
0.999959 0.00905705i \(-0.00288299\pi\)
\(674\) −11.7845 0.474900i −0.453923 0.0182925i
\(675\) −0.454480 −0.0174929
\(676\) −22.4332 + 0.645448i −0.862814 + 0.0248249i
\(677\) 30.0793 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(678\) −18.5746 0.748532i −0.713355 0.0287472i
\(679\) 6.97448 24.0787i 0.267656 0.924056i
\(680\) 10.0356 + 0.810158i 0.384848 + 0.0310681i
\(681\) 53.7686 + 20.3917i 2.06042 + 0.781413i
\(682\) 0.806162 2.41475i 0.0308695 0.0924656i
\(683\) 12.9502 + 30.3953i 0.495527 + 1.16304i 0.960641 + 0.277793i \(0.0896030\pi\)
−0.465114 + 0.885251i \(0.653987\pi\)
\(684\) −2.79167 0.338970i −0.106742 0.0129608i
\(685\) 3.61840 + 2.28814i 0.138252 + 0.0874252i
\(686\) 9.70288 + 4.13401i 0.370458 + 0.157837i
\(687\) −5.78911 9.15474i −0.220868 0.349275i
\(688\) 6.41142 16.9055i 0.244433 0.644517i
\(689\) 1.98786 29.9971i 0.0757315 1.14280i
\(690\) −1.64183 4.32916i −0.0625036 0.164808i
\(691\) −22.4943 + 29.9344i −0.855723 + 1.13876i 0.133312 + 0.991074i \(0.457439\pi\)
−0.989034 + 0.147686i \(0.952818\pi\)
\(692\) 2.95428 + 0.480118i 0.112305 + 0.0182513i
\(693\) 17.5164 7.46305i 0.665393 0.283498i
\(694\) −5.06401 3.49543i −0.192227 0.132685i
\(695\) −20.5537 + 11.8667i −0.779647 + 0.450129i
\(696\) −39.4540 18.7212i −1.49550 0.709624i
\(697\) −35.1788 + 4.27148i −1.33249 + 0.161794i
\(698\) 8.18311 + 14.1736i 0.309735 + 0.536477i
\(699\) 35.8042 62.0146i 1.35424 2.34561i
\(700\) 4.71529 11.0672i 0.178221 0.418300i
\(701\) 20.0737 + 17.7838i 0.758173 + 0.671683i 0.950875 0.309574i \(-0.100187\pi\)
−0.192702 + 0.981257i \(0.561725\pi\)
\(702\) 0.197475 0.180083i 0.00745323 0.00679679i
\(703\) 2.94479 2.60885i 0.111065 0.0983948i
\(704\) 1.96110 + 5.87422i 0.0739119 + 0.221393i
\(705\) 0.710241 17.6245i 0.0267492 0.663775i
\(706\) 6.99108 8.56252i 0.263113 0.322255i
\(707\) 11.0435 + 12.4655i 0.415334 + 0.468815i
\(708\) −23.4311 4.78349i −0.880593 0.179774i
\(709\) −14.6475 + 4.24270i −0.550099 + 0.159338i −0.541616 0.840626i \(-0.682187\pi\)
−0.00848281 + 0.999964i \(0.502700\pi\)
\(710\) −1.54434 + 0.585692i −0.0579582 + 0.0219806i
\(711\) 1.34028 + 33.2587i 0.0502643 + 1.24730i
\(712\) 3.57805 + 2.68873i 0.134093 + 0.100765i
\(713\) 4.46813 0.912176i 0.167333 0.0341612i
\(714\) 9.55486 5.01478i 0.357581 0.187673i
\(715\) −3.50415 13.3854i −0.131048 0.500586i
\(716\) −17.2544 9.05581i −0.644828 0.338432i
\(717\) −41.0505 11.8904i −1.53306 0.444056i
\(718\) −10.0619 + 0.812285i −0.375509 + 0.0303142i
\(719\) −5.34203 + 26.1670i −0.199224 + 0.975863i 0.750042 + 0.661390i \(0.230033\pi\)
−0.949266 + 0.314474i \(0.898172\pi\)
\(720\) 4.62848 + 8.81884i 0.172493 + 0.328659i
\(721\) 9.97243 + 13.2709i 0.371393 + 0.494234i
\(722\) 5.23287 8.27512i 0.194747 0.307968i
\(723\) 4.15773 2.86988i 0.154628 0.106732i
\(724\) 14.4885 30.5338i 0.538459 1.13478i
\(725\) 20.2242 21.0557i 0.751109 0.781987i
\(726\) −2.58552 2.48342i −0.0959575 0.0921685i
\(727\) 1.85088 + 15.2434i 0.0686454 + 0.565346i 0.985935 + 0.167126i \(0.0534488\pi\)
−0.917290 + 0.398220i \(0.869628\pi\)
\(728\) 5.04322 + 14.4128i 0.186914 + 0.534174i
\(729\) −3.37818 + 27.8218i −0.125118 + 1.03044i
\(730\) −5.78924 + 4.72677i −0.214269 + 0.174946i
\(731\) 5.73450 + 28.0895i 0.212098 + 1.03893i
\(732\) 2.36285 + 8.15749i 0.0873333 + 0.301509i
\(733\) −1.78418 7.23869i −0.0659001 0.267367i 0.928745 0.370720i \(-0.120889\pi\)
−0.994645 + 0.103353i \(0.967043\pi\)
\(734\) −1.13473 + 14.0562i −0.0418837 + 0.518823i
\(735\) −1.20518 7.41576i −0.0444537 0.273534i
\(736\) 9.21082 10.3969i 0.339515 0.383234i
\(737\) −19.7315 + 14.8273i −0.726819 + 0.546169i
\(738\) 9.29244 + 11.3812i 0.342060 + 0.418947i
\(739\) −2.75886 + 16.9760i −0.101486 + 0.624471i 0.885621 + 0.464410i \(0.153733\pi\)
−0.987107 + 0.160062i \(0.948831\pi\)
\(740\) −16.5719 4.08462i −0.609197 0.150153i
\(741\) 1.38053 + 4.52175i 0.0507150 + 0.166111i
\(742\) −9.20085 + 2.26781i −0.337774 + 0.0832538i
\(743\) 0.787335 + 9.75289i 0.0288845 + 0.357799i 0.995014 + 0.0997395i \(0.0318010\pi\)
−0.966129 + 0.258059i \(0.916917\pi\)
\(744\) 7.72655 2.57950i 0.283269 0.0945691i
\(745\) 4.44226 + 4.62488i 0.162752 + 0.169443i
\(746\) 11.3806i 0.416675i
\(747\) 28.6132 27.4833i 1.04690 1.00556i
\(748\) −14.7863 12.0726i −0.540640 0.441419i
\(749\) 8.09418 15.4222i 0.295755 0.563514i
\(750\) 13.9648 2.26951i 0.509924 0.0828706i
\(751\) 12.0494 7.61959i 0.439690 0.278043i −0.296224 0.955119i \(-0.595727\pi\)
0.735913 + 0.677076i \(0.236753\pi\)
\(752\) 11.7658 5.58292i 0.429053 0.203588i
\(753\) 5.10657 7.39814i 0.186094 0.269603i
\(754\) −0.444519 + 17.1625i −0.0161884 + 0.625022i
\(755\) 15.8990 + 23.0337i 0.578624 + 0.838282i
\(756\) 0.460239 + 0.265719i 0.0167387 + 0.00966411i
\(757\) −7.85847 16.5614i −0.285621 0.601933i 0.709036 0.705173i \(-0.249130\pi\)
−0.994657 + 0.103239i \(0.967079\pi\)
\(758\) −12.5660 4.19516i −0.456419 0.152375i
\(759\) −4.53456 + 18.3975i −0.164594 + 0.667785i
\(760\) 1.38934 0.0559884i 0.0503966 0.00203091i
\(761\) −11.1109 + 0.447753i −0.402769 + 0.0162310i −0.240824 0.970569i \(-0.577418\pi\)
−0.161945 + 0.986800i \(0.551777\pi\)
\(762\) 2.69512 10.9345i 0.0976340 0.396117i
\(763\) −17.5982 5.87515i −0.637099 0.212695i
\(764\) 4.49691 + 9.47703i 0.162692 + 0.342867i
\(765\) −13.6765 7.89614i −0.494475 0.285485i
\(766\) 7.00088 + 10.1425i 0.252952 +