Properties

Label 169.2.k.a.4.6
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.6
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34677 - 0.0542729i) q^{2} +(0.0769569 - 0.265686i) q^{3} +(-0.182676 - 0.0147471i) q^{4} +(-2.82623 - 1.07185i) q^{5} +(-0.118063 + 0.353641i) q^{6} +(1.59063 + 3.73334i) q^{7} +(2.92129 + 0.354709i) q^{8} +(2.47090 + 1.56250i) q^{9} +O(q^{10})\) \(q+(-1.34677 - 0.0542729i) q^{2} +(0.0769569 - 0.265686i) q^{3} +(-0.182676 - 0.0147471i) q^{4} +(-2.82623 - 1.07185i) q^{5} +(-0.118063 + 0.353641i) q^{6} +(1.59063 + 3.73334i) q^{7} +(2.92129 + 0.354709i) q^{8} +(2.47090 + 1.56250i) q^{9} +(3.74810 + 1.59692i) q^{10} +(0.0855419 + 0.135274i) q^{11} +(-0.0179763 + 0.0473995i) q^{12} +(0.883147 + 3.49572i) q^{13} +(-1.93959 - 5.11427i) q^{14} +(-0.502272 + 0.668403i) q^{15} +(-3.55325 - 0.577460i) q^{16} +(3.57168 - 1.52175i) q^{17} +(-3.24293 - 2.23843i) q^{18} +(-4.82012 + 2.78290i) q^{19} +(0.500477 + 0.237479i) q^{20} +(1.11431 - 0.135301i) q^{21} +(-0.107863 - 0.186825i) q^{22} +(-0.955933 + 1.65572i) q^{23} +(0.319054 - 0.748848i) q^{24} +(3.09616 + 2.74295i) q^{25} +(-0.999672 - 4.75585i) q^{26} +(1.22642 - 1.08651i) q^{27} +(-0.235513 - 0.705448i) q^{28} +(-0.173242 + 4.29894i) q^{29} +(0.712721 - 0.872924i) q^{30} +(3.45250 + 3.89706i) q^{31} +(-1.01248 - 0.206699i) q^{32} +(0.0425233 - 0.0123170i) q^{33} +(-4.89282 + 1.85560i) q^{34} +(-0.493907 - 12.2562i) q^{35} +(-0.428332 - 0.321871i) q^{36} +(-2.15857 + 0.440676i) q^{37} +(6.64262 - 3.48631i) q^{38} +(0.996728 + 0.0343798i) q^{39} +(-7.87604 - 4.13366i) q^{40} +(1.05997 + 0.307023i) q^{41} +(-1.50805 + 0.121743i) q^{42} +(1.90640 - 9.33818i) q^{43} +(-0.0136315 - 0.0259727i) q^{44} +(-5.30857 - 7.06443i) q^{45} +(1.37728 - 2.17800i) q^{46} +(-5.01841 + 3.46396i) q^{47} +(-0.426870 + 0.899610i) q^{48} +(-6.55865 + 6.82827i) q^{49} +(-4.02094 - 3.86216i) q^{50} +(-0.129443 - 1.06606i) q^{51} +(-0.109778 - 0.651608i) q^{52} +(0.969885 - 7.98772i) q^{53} +(-1.71067 + 1.39672i) q^{54} +(-0.0967682 - 0.474002i) q^{55} +(3.32243 + 11.4704i) q^{56} +(0.368435 + 1.49480i) q^{57} +(0.466632 - 5.78028i) q^{58} +(1.28182 + 7.88735i) q^{59} +(0.101610 - 0.114694i) q^{60} +(6.46496 - 4.85810i) q^{61} +(-4.43821 - 5.43582i) q^{62} +(-1.90307 + 11.7101i) q^{63} +(8.34289 + 2.05634i) q^{64} +(1.25090 - 10.8263i) q^{65} +(-0.0579376 + 0.0142803i) q^{66} +(0.753447 + 9.33312i) q^{67} +(-0.674902 + 0.225316i) q^{68} +(0.366337 + 0.381397i) q^{69} +16.5330i q^{70} +(3.29306 - 3.16303i) q^{71} +(6.66399 + 5.44098i) q^{72} +(3.40852 - 6.49440i) q^{73} +(2.93102 - 0.476336i) q^{74} +(0.967035 - 0.611516i) q^{75} +(0.921559 - 0.437285i) q^{76} +(-0.368957 + 0.534527i) q^{77} +(-1.34050 - 0.100397i) q^{78} +(8.94736 + 12.9625i) q^{79} +(9.42336 + 5.44058i) q^{80} +(3.56554 + 7.51422i) q^{81} +(-1.41087 - 0.471016i) q^{82} +(2.30597 - 9.35567i) q^{83} +(-0.205552 + 0.00828346i) q^{84} +(-11.7255 + 0.472521i) q^{85} +(-3.07429 + 12.4729i) q^{86} +(1.12884 + 0.376861i) q^{87} +(0.201910 + 0.425516i) q^{88} +(-15.9050 - 9.18278i) q^{89} +(6.76601 + 9.80225i) q^{90} +(-11.6459 + 8.85747i) q^{91} +(0.199043 - 0.288364i) q^{92} +(1.30109 - 0.617374i) q^{93} +(6.94664 - 4.39279i) q^{94} +(16.6056 - 2.69867i) q^{95} +(-0.132834 + 0.253095i) q^{96} +(-3.43717 - 2.80636i) q^{97} +(9.20357 - 8.84014i) q^{98} +0.467908i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34677 0.0542729i −0.952309 0.0383767i −0.440755 0.897628i \(-0.645289\pi\)
−0.511554 + 0.859251i \(0.670930\pi\)
\(3\) 0.0769569 0.265686i 0.0444311 0.153394i −0.935236 0.354026i \(-0.884812\pi\)
0.979667 + 0.200632i \(0.0642996\pi\)
\(4\) −0.182676 0.0147471i −0.0913380 0.00737356i
\(5\) −2.82623 1.07185i −1.26393 0.479345i −0.370618 0.928786i \(-0.620854\pi\)
−0.893310 + 0.449441i \(0.851623\pi\)
\(6\) −0.118063 + 0.353641i −0.0481989 + 0.144373i
\(7\) 1.59063 + 3.73334i 0.601200 + 1.41107i 0.891010 + 0.453985i \(0.149998\pi\)
−0.289809 + 0.957084i \(0.593592\pi\)
\(8\) 2.92129 + 0.354709i 1.03283 + 0.125408i
\(9\) 2.47090 + 1.56250i 0.823635 + 0.520835i
\(10\) 3.74810 + 1.59692i 1.18525 + 0.504989i
\(11\) 0.0855419 + 0.135274i 0.0257918 + 0.0407865i 0.857840 0.513917i \(-0.171806\pi\)
−0.832048 + 0.554703i \(0.812832\pi\)
\(12\) −0.0179763 + 0.0473995i −0.00518930 + 0.0136831i
\(13\) 0.883147 + 3.49572i 0.244941 + 0.969538i
\(14\) −1.93959 5.11427i −0.518376 1.36685i
\(15\) −0.502272 + 0.668403i −0.129686 + 0.172581i
\(16\) −3.55325 0.577460i −0.888314 0.144365i
\(17\) 3.57168 1.52175i 0.866261 0.369079i 0.0873226 0.996180i \(-0.472169\pi\)
0.778938 + 0.627101i \(0.215759\pi\)
\(18\) −3.24293 2.23843i −0.764366 0.527604i
\(19\) −4.82012 + 2.78290i −1.10581 + 0.638440i −0.937741 0.347335i \(-0.887087\pi\)
−0.168070 + 0.985775i \(0.553753\pi\)
\(20\) 0.500477 + 0.237479i 0.111910 + 0.0531020i
\(21\) 1.11431 0.135301i 0.243161 0.0295251i
\(22\) −0.107863 0.186825i −0.0229965 0.0398312i
\(23\) −0.955933 + 1.65572i −0.199326 + 0.345243i −0.948310 0.317345i \(-0.897209\pi\)
0.748984 + 0.662588i \(0.230542\pi\)
\(24\) 0.319054 0.748848i 0.0651267 0.152858i
\(25\) 3.09616 + 2.74295i 0.619231 + 0.548591i
\(26\) −0.999672 4.75585i −0.196052 0.932700i
\(27\) 1.22642 1.08651i 0.236024 0.209099i
\(28\) −0.235513 0.705448i −0.0445078 0.133317i
\(29\) −0.173242 + 4.29894i −0.0321701 + 0.798294i 0.899917 + 0.436061i \(0.143627\pi\)
−0.932087 + 0.362233i \(0.882014\pi\)
\(30\) 0.712721 0.872924i 0.130124 0.159373i
\(31\) 3.45250 + 3.89706i 0.620087 + 0.699933i 0.971702 0.236212i \(-0.0759058\pi\)
−0.351615 + 0.936145i \(0.614367\pi\)
\(32\) −1.01248 0.206699i −0.178983 0.0365396i
\(33\) 0.0425233 0.0123170i 0.00740236 0.00214412i
\(34\) −4.89282 + 1.85560i −0.839112 + 0.318233i
\(35\) −0.493907 12.2562i −0.0834855 2.07167i
\(36\) −0.428332 0.321871i −0.0713887 0.0536451i
\(37\) −2.15857 + 0.440676i −0.354867 + 0.0724467i −0.374152 0.927367i \(-0.622066\pi\)
0.0192847 + 0.999814i \(0.493861\pi\)
\(38\) 6.64262 3.48631i 1.07757 0.565555i
\(39\) 0.996728 + 0.0343798i 0.159604 + 0.00550518i
\(40\) −7.87604 4.13366i −1.24531 0.653589i
\(41\) 1.05997 + 0.307023i 0.165539 + 0.0479490i 0.359952 0.932971i \(-0.382793\pi\)
−0.194413 + 0.980920i \(0.562280\pi\)
\(42\) −1.50805 + 0.121743i −0.232698 + 0.0187853i
\(43\) 1.90640 9.33818i 0.290724 1.42406i −0.527694 0.849435i \(-0.676943\pi\)
0.818417 0.574624i \(-0.194852\pi\)
\(44\) −0.0136315 0.0259727i −0.00205503 0.00391554i
\(45\) −5.30857 7.06443i −0.791355 1.05310i
\(46\) 1.37728 2.17800i 0.203069 0.321128i
\(47\) −5.01841 + 3.46396i −0.732011 + 0.505271i −0.874801 0.484482i \(-0.839008\pi\)
0.142790 + 0.989753i \(0.454393\pi\)
\(48\) −0.426870 + 0.899610i −0.0616134 + 0.129848i
\(49\) −6.55865 + 6.82827i −0.936949 + 0.975468i
\(50\) −4.02094 3.86216i −0.568646 0.546192i
\(51\) −0.129443 1.06606i −0.0181256 0.149278i
\(52\) −0.109778 0.651608i −0.0152235 0.0903617i
\(53\) 0.969885 7.98772i 0.133224 1.09720i −0.760739 0.649058i \(-0.775163\pi\)
0.893963 0.448140i \(-0.147914\pi\)
\(54\) −1.71067 + 1.39672i −0.232793 + 0.190069i
\(55\) −0.0967682 0.474002i −0.0130482 0.0639144i
\(56\) 3.32243 + 11.4704i 0.443979 + 1.53279i
\(57\) 0.368435 + 1.49480i 0.0488004 + 0.197991i
\(58\) 0.466632 5.78028i 0.0612718 0.758988i
\(59\) 1.28182 + 7.88735i 0.166879 + 1.02685i 0.926449 + 0.376420i \(0.122845\pi\)
−0.759570 + 0.650425i \(0.774591\pi\)
\(60\) 0.101610 0.114694i 0.0131178 0.0148069i
\(61\) 6.46496 4.85810i 0.827754 0.622017i −0.100093 0.994978i \(-0.531914\pi\)
0.927847 + 0.372962i \(0.121658\pi\)
\(62\) −4.43821 5.43582i −0.563653 0.690349i
\(63\) −1.90307 + 11.7101i −0.239765 + 1.47533i
\(64\) 8.34289 + 2.05634i 1.04286 + 0.257042i
\(65\) 1.25090 10.8263i 0.155155 1.34284i
\(66\) −0.0579376 + 0.0142803i −0.00713162 + 0.00175779i
\(67\) 0.753447 + 9.33312i 0.0920482 + 1.14022i 0.863642 + 0.504106i \(0.168178\pi\)
−0.771594 + 0.636116i \(0.780540\pi\)
\(68\) −0.674902 + 0.225316i −0.0818439 + 0.0273235i
\(69\) 0.366337 + 0.381397i 0.0441018 + 0.0459149i
\(70\) 16.5330i 1.97607i
\(71\) 3.29306 3.16303i 0.390814 0.375382i −0.471406 0.881917i \(-0.656253\pi\)
0.862220 + 0.506534i \(0.169074\pi\)
\(72\) 6.66399 + 5.44098i 0.785359 + 0.641226i
\(73\) 3.40852 6.49440i 0.398938 0.760112i −0.600275 0.799794i \(-0.704942\pi\)
0.999212 + 0.0396818i \(0.0126344\pi\)
\(74\) 2.93102 0.476336i 0.340724 0.0553730i
\(75\) 0.967035 0.611516i 0.111664 0.0706118i
\(76\) 0.921559 0.437285i 0.105710 0.0501601i
\(77\) −0.368957 + 0.534527i −0.0420466 + 0.0609150i
\(78\) −1.34050 0.100397i −0.151781 0.0113677i
\(79\) 8.94736 + 12.9625i 1.00666 + 1.45839i 0.884871 + 0.465837i \(0.154247\pi\)
0.121785 + 0.992556i \(0.461138\pi\)
\(80\) 9.42336 + 5.44058i 1.05356 + 0.608275i
\(81\) 3.56554 + 7.51422i 0.396172 + 0.834914i
\(82\) −1.41087 0.471016i −0.155804 0.0520151i
\(83\) 2.30597 9.35567i 0.253113 1.02692i −0.697511 0.716574i \(-0.745709\pi\)
0.950624 0.310345i \(-0.100445\pi\)
\(84\) −0.205552 + 0.00828346i −0.0224276 + 0.000903800i
\(85\) −11.7255 + 0.472521i −1.27181 + 0.0512521i
\(86\) −3.07429 + 12.4729i −0.331509 + 1.34499i
\(87\) 1.12884 + 0.376861i 0.121024 + 0.0404038i
\(88\) 0.201910 + 0.425516i 0.0215237 + 0.0453601i
\(89\) −15.9050 9.18278i −1.68593 0.973373i −0.957579 0.288169i \(-0.906953\pi\)
−0.728352 0.685203i \(-0.759713\pi\)
\(90\) 6.76601 + 9.80225i 0.713200 + 1.03325i
\(91\) −11.6459 + 8.85747i −1.22083 + 0.928515i
\(92\) 0.199043 0.288364i 0.0207517 0.0300640i
\(93\) 1.30109 0.617374i 0.134917 0.0640187i
\(94\) 6.94664 4.39279i 0.716491 0.453082i
\(95\) 16.6056 2.69867i 1.70370 0.276878i
\(96\) −0.132834 + 0.253095i −0.0135574 + 0.0258314i
\(97\) −3.43717 2.80636i −0.348991 0.284943i 0.441693 0.897166i \(-0.354378\pi\)
−0.790685 + 0.612223i \(0.790275\pi\)
\(98\) 9.20357 8.84014i 0.929700 0.892989i
\(99\) 0.467908i 0.0470265i
\(100\) −0.525143 0.546731i −0.0525143 0.0546731i
\(101\) −16.0481 + 5.35766i −1.59685 + 0.533107i −0.969387 0.245539i \(-0.921035\pi\)
−0.627463 + 0.778646i \(0.715907\pi\)
\(102\) 0.116471 + 1.44275i 0.0115324 + 0.142854i
\(103\) −4.43550 + 1.09325i −0.437043 + 0.107721i −0.451697 0.892171i \(-0.649181\pi\)
0.0146544 + 0.999893i \(0.495335\pi\)
\(104\) 1.33997 + 10.5253i 0.131394 + 1.03209i
\(105\) −3.29430 0.811973i −0.321491 0.0792404i
\(106\) −1.73973 + 10.7050i −0.168977 + 1.03976i
\(107\) −4.16453 5.10063i −0.402601 0.493096i 0.533020 0.846102i \(-0.321057\pi\)
−0.935621 + 0.353006i \(0.885159\pi\)
\(108\) −0.240060 + 0.180393i −0.0230998 + 0.0173584i
\(109\) 7.84859 8.85923i 0.751759 0.848560i −0.240769 0.970583i \(-0.577400\pi\)
0.992527 + 0.122022i \(0.0389380\pi\)
\(110\) 0.104599 + 0.643623i 0.00997311 + 0.0613670i
\(111\) −0.0490357 + 0.607416i −0.00465426 + 0.0576534i
\(112\) −3.49605 14.1840i −0.330345 1.34026i
\(113\) −1.95938 6.76457i −0.184323 0.636357i −0.998449 0.0556693i \(-0.982271\pi\)
0.814126 0.580688i \(-0.197216\pi\)
\(114\) −0.415070 2.03315i −0.0388748 0.190422i
\(115\) 4.47637 3.65484i 0.417424 0.340816i
\(116\) 0.0950442 0.782759i 0.00882463 0.0726774i
\(117\) −3.27991 + 10.0175i −0.303227 + 0.926119i
\(118\) −1.29824 10.6920i −0.119513 0.984278i
\(119\) 11.3624 + 10.9138i 1.04159 + 1.00046i
\(120\) −1.70437 + 1.77444i −0.155587 + 0.161983i
\(121\) 4.70464 9.91481i 0.427694 0.901347i
\(122\) −8.97047 + 6.19187i −0.812148 + 0.560585i
\(123\) 0.163143 0.257991i 0.0147102 0.0232622i
\(124\) −0.573218 0.762814i −0.0514765 0.0685027i
\(125\) 1.21307 + 2.31130i 0.108500 + 0.206729i
\(126\) 3.19854 15.6675i 0.284948 1.39577i
\(127\) 19.6698 1.58791i 1.74541 0.140904i 0.833828 0.552024i \(-0.186144\pi\)
0.911581 + 0.411120i \(0.134862\pi\)
\(128\) −9.13920 2.64720i −0.807799 0.233982i
\(129\) −2.33431 1.22514i −0.205525 0.107868i
\(130\) −2.27225 + 14.5126i −0.199289 + 1.27284i
\(131\) −1.21253 + 0.636384i −0.105939 + 0.0556011i −0.516860 0.856070i \(-0.672899\pi\)
0.410921 + 0.911671i \(0.365207\pi\)
\(132\) −0.00794963 + 0.00162293i −0.000691927 + 0.000141258i
\(133\) −18.0565 13.5686i −1.56570 1.17655i
\(134\) −0.508183 12.6104i −0.0439003 1.08938i
\(135\) −4.63071 + 1.75620i −0.398548 + 0.151149i
\(136\) 10.9737 3.17857i 0.940987 0.272560i
\(137\) 15.1231 + 3.08740i 1.29205 + 0.263775i 0.796413 0.604753i \(-0.206728\pi\)
0.495641 + 0.868528i \(0.334933\pi\)
\(138\) −0.472672 0.533536i −0.0402365 0.0454176i
\(139\) −4.48792 + 5.49671i −0.380661 + 0.466225i −0.929026 0.370014i \(-0.879353\pi\)
0.548365 + 0.836239i \(0.315250\pi\)
\(140\) −0.0905184 + 2.24619i −0.00765020 + 0.189838i
\(141\) 0.534124 + 1.59990i 0.0449814 + 0.134736i
\(142\) −4.60665 + 4.08114i −0.386582 + 0.342482i
\(143\) −0.397333 + 0.418497i −0.0332266 + 0.0349965i
\(144\) −7.87746 6.97882i −0.656455 0.581569i
\(145\) 5.09743 11.9641i 0.423319 0.993565i
\(146\) −4.94296 + 8.56146i −0.409082 + 0.708551i
\(147\) 1.30944 + 2.26802i 0.108001 + 0.187063i
\(148\) 0.400818 0.0486682i 0.0329471 0.00400050i
\(149\) −5.92941 2.81354i −0.485756 0.230494i 0.170033 0.985438i \(-0.445613\pi\)
−0.655789 + 0.754944i \(0.727664\pi\)
\(150\) −1.33556 + 0.771086i −0.109048 + 0.0629589i
\(151\) −0.678530 0.468356i −0.0552180 0.0381142i 0.540136 0.841578i \(-0.318373\pi\)
−0.595354 + 0.803464i \(0.702988\pi\)
\(152\) −15.0681 + 6.41991i −1.22218 + 0.520723i
\(153\) 11.2030 + 1.82067i 0.905712 + 0.147192i
\(154\) 0.525910 0.699859i 0.0423790 0.0563962i
\(155\) −5.58049 14.7145i −0.448236 1.18190i
\(156\) −0.181571 0.0209792i −0.0145373 0.00167968i
\(157\) −0.414661 + 1.09337i −0.0330935 + 0.0872605i −0.950545 0.310588i \(-0.899474\pi\)
0.917451 + 0.397849i \(0.130243\pi\)
\(158\) −11.3465 17.9431i −0.902679 1.42747i
\(159\) −2.04759 0.872395i −0.162384 0.0691854i
\(160\) 2.63995 + 1.66940i 0.208706 + 0.131978i
\(161\) −7.70191 0.935181i −0.606996 0.0737026i
\(162\) −4.39414 10.3134i −0.345236 0.810300i
\(163\) 3.09111 9.25902i 0.242115 0.725222i −0.755432 0.655226i \(-0.772573\pi\)
0.997547 0.0699959i \(-0.0222986\pi\)
\(164\) −0.189103 0.0717172i −0.0147664 0.00560017i
\(165\) −0.133383 0.0107678i −0.0103838 0.000838269i
\(166\) −3.61336 + 12.4748i −0.280451 + 0.968230i
\(167\) 1.10524 + 0.0445398i 0.0855263 + 0.00344659i 0.0829922 0.996550i \(-0.473552\pi\)
0.00253412 + 0.999997i \(0.499193\pi\)
\(168\) 3.30320 0.254847
\(169\) −11.4401 + 6.17447i −0.880008 + 0.474959i
\(170\) 15.8171 1.21312
\(171\) −16.2583 0.655189i −1.24331 0.0501035i
\(172\) −0.485965 + 1.67775i −0.0370545 + 0.127927i
\(173\) −9.93577 0.802098i −0.755403 0.0609824i −0.303236 0.952916i \(-0.598067\pi\)
−0.452167 + 0.891933i \(0.649349\pi\)
\(174\) −1.49983 0.568810i −0.113702 0.0431214i
\(175\) −5.31555 + 15.9220i −0.401818 + 1.20359i
\(176\) −0.225837 0.530059i −0.0170231 0.0399547i
\(177\) 2.19420 + 0.266424i 0.164926 + 0.0200257i
\(178\) 20.9220 + 13.2303i 1.56817 + 0.991652i
\(179\) 24.0995 + 10.2679i 1.80128 + 0.767455i 0.980585 + 0.196095i \(0.0628260\pi\)
0.820699 + 0.571361i \(0.193584\pi\)
\(180\) 0.865568 + 1.36879i 0.0645157 + 0.102023i
\(181\) 6.14886 16.2132i 0.457041 1.20512i −0.486446 0.873710i \(-0.661707\pi\)
0.943488 0.331408i \(-0.107524\pi\)
\(182\) 16.1651 11.2969i 1.19824 0.837382i
\(183\) −0.793207 2.09151i −0.0586355 0.154609i
\(184\) −3.37986 + 4.49777i −0.249166 + 0.331580i
\(185\) 6.57296 + 1.06821i 0.483254 + 0.0785364i
\(186\) −1.78577 + 0.760846i −0.130939 + 0.0557879i
\(187\) 0.511382 + 0.352981i 0.0373959 + 0.0258125i
\(188\) 0.967827 0.558775i 0.0705860 0.0407529i
\(189\) 6.00709 + 2.85040i 0.436951 + 0.207336i
\(190\) −22.5103 + 2.73325i −1.63307 + 0.198291i
\(191\) −1.57466 2.72740i −0.113939 0.197347i 0.803416 0.595418i \(-0.203013\pi\)
−0.917355 + 0.398070i \(0.869680\pi\)
\(192\) 1.18838 2.05834i 0.0857641 0.148548i
\(193\) 10.1274 23.7699i 0.728988 1.71100i 0.0261378 0.999658i \(-0.491679\pi\)
0.702850 0.711338i \(-0.251911\pi\)
\(194\) 4.47676 + 3.96606i 0.321412 + 0.284747i
\(195\) −2.78013 1.16550i −0.199089 0.0834635i
\(196\) 1.29880 1.15064i 0.0927717 0.0821886i
\(197\) 0.726840 + 2.17715i 0.0517852 + 0.155116i 0.971253 0.238050i \(-0.0765082\pi\)
−0.919468 + 0.393165i \(0.871380\pi\)
\(198\) 0.0253947 0.630163i 0.00180472 0.0447837i
\(199\) −11.6197 + 14.2315i −0.823695 + 1.00884i 0.176006 + 0.984389i \(0.443682\pi\)
−0.999701 + 0.0244546i \(0.992215\pi\)
\(200\) 8.07182 + 9.11120i 0.570764 + 0.644259i
\(201\) 2.53766 + 0.518067i 0.178993 + 0.0365416i
\(202\) 21.9039 6.34454i 1.54115 0.446400i
\(203\) −16.3250 + 6.19125i −1.14579 + 0.434540i
\(204\) 0.00792479 + 0.196652i 0.000554846 + 0.0137684i
\(205\) −2.66663 2.00384i −0.186245 0.139954i
\(206\) 6.03293 1.23163i 0.420334 0.0858118i
\(207\) −4.94910 + 2.59749i −0.343986 + 0.180538i
\(208\) −1.11941 12.9312i −0.0776170 0.896615i
\(209\) −0.788774 0.413981i −0.0545607 0.0286356i
\(210\) 4.39259 + 1.27233i 0.303118 + 0.0877991i
\(211\) −17.8697 + 1.44259i −1.23020 + 0.0993118i −0.678417 0.734677i \(-0.737334\pi\)
−0.551781 + 0.833989i \(0.686052\pi\)
\(212\) −0.294971 + 1.44486i −0.0202587 + 0.0992335i
\(213\) −0.586948 1.11834i −0.0402170 0.0766271i
\(214\) 5.33183 + 7.09538i 0.364477 + 0.485030i
\(215\) −15.3970 + 24.3485i −1.05007 + 1.66055i
\(216\) 3.96812 2.73899i 0.269996 0.186365i
\(217\) −9.05742 + 19.0881i −0.614858 + 1.29579i
\(218\) −11.0510 + 11.5054i −0.748471 + 0.779241i
\(219\) −1.46316 1.40539i −0.0988713 0.0949672i
\(220\) 0.0106871 + 0.0880158i 0.000720521 + 0.00593403i
\(221\) 8.47394 + 11.1417i 0.570019 + 0.749470i
\(222\) 0.0990059 0.815387i 0.00664484 0.0547252i
\(223\) 13.8975 11.3470i 0.930648 0.759850i −0.0402888 0.999188i \(-0.512828\pi\)
0.970936 + 0.239338i \(0.0769304\pi\)
\(224\) −0.838799 4.10871i −0.0560446 0.274525i
\(225\) 3.36442 + 11.6153i 0.224295 + 0.774356i
\(226\) 2.27170 + 9.21665i 0.151111 + 0.613083i
\(227\) 1.52683 18.9132i 0.101339 1.25531i −0.723652 0.690165i \(-0.757538\pi\)
0.824991 0.565146i \(-0.191180\pi\)
\(228\) −0.0452603 0.278498i −0.00299743 0.0184439i
\(229\) 12.8663 14.5230i 0.850229 0.959710i −0.149348 0.988785i \(-0.547718\pi\)
0.999577 + 0.0290747i \(0.00925607\pi\)
\(230\) −6.22699 + 4.67928i −0.410596 + 0.308543i
\(231\) 0.113622 + 0.139162i 0.00747581 + 0.00915620i
\(232\) −2.03096 + 12.4970i −0.133339 + 0.820469i
\(233\) 11.7996 + 2.90833i 0.773016 + 0.190531i 0.606045 0.795430i \(-0.292755\pi\)
0.166971 + 0.985962i \(0.446601\pi\)
\(234\) 4.96095 13.3132i 0.324308 0.870314i
\(235\) 17.8960 4.41097i 1.16741 0.287740i
\(236\) −0.117842 1.45973i −0.00767085 0.0950205i
\(237\) 4.13251 1.37963i 0.268435 0.0896169i
\(238\) −14.7102 15.3150i −0.953523 0.992723i
\(239\) 10.4367i 0.675091i 0.941309 + 0.337546i \(0.109597\pi\)
−0.941309 + 0.337546i \(0.890403\pi\)
\(240\) 2.17068 2.08496i 0.140117 0.134584i
\(241\) −12.3359 10.0720i −0.794628 0.648794i 0.145598 0.989344i \(-0.453489\pi\)
−0.940226 + 0.340550i \(0.889387\pi\)
\(242\) −6.87416 + 13.0976i −0.441888 + 0.841947i
\(243\) 7.12260 1.15753i 0.456915 0.0742559i
\(244\) −1.25264 + 0.792119i −0.0801918 + 0.0507102i
\(245\) 25.8551 12.2684i 1.65182 0.783799i
\(246\) −0.233718 + 0.338599i −0.0149013 + 0.0215883i
\(247\) −13.9851 14.3921i −0.889850 0.915746i
\(248\) 8.70342 + 12.6091i 0.552668 + 0.800677i
\(249\) −2.30821 1.33265i −0.146277 0.0844530i
\(250\) −1.50828 3.17863i −0.0953918 0.201034i
\(251\) 1.12459 + 0.375444i 0.0709836 + 0.0236978i 0.351938 0.936023i \(-0.385523\pi\)
−0.280954 + 0.959721i \(0.590651\pi\)
\(252\) 0.520336 2.11108i 0.0327781 0.132986i
\(253\) −0.305748 + 0.0123212i −0.0192222 + 0.000774629i
\(254\) −26.5768 + 1.07101i −1.66758 + 0.0672010i
\(255\) −0.776814 + 3.15166i −0.0486460 + 0.197365i
\(256\) −4.13602 1.38081i −0.258501 0.0863004i
\(257\) −9.65615 20.3499i −0.602334 1.26939i −0.944116 0.329613i \(-0.893082\pi\)
0.341782 0.939779i \(-0.388970\pi\)
\(258\) 3.07729 + 1.77667i 0.191583 + 0.110611i
\(259\) −5.07868 7.35773i −0.315574 0.457187i
\(260\) −0.388166 + 1.95926i −0.0240730 + 0.121508i
\(261\) −7.14518 + 10.3516i −0.442276 + 0.640747i
\(262\) 1.66753 0.791254i 0.103020 0.0488838i
\(263\) 10.2780 6.49943i 0.633770 0.400772i −0.178594 0.983923i \(-0.557155\pi\)
0.812364 + 0.583151i \(0.198180\pi\)
\(264\) 0.128592 0.0208982i 0.00791429 0.00128620i
\(265\) −11.3027 + 21.5356i −0.694321 + 1.32292i
\(266\) 23.5815 + 19.2537i 1.44588 + 1.18052i
\(267\) −3.66374 + 3.51907i −0.224217 + 0.215363i
\(268\) 1.71605i 0.104824i
\(269\) 19.2360 + 20.0268i 1.17284 + 1.22106i 0.970332 + 0.241775i \(0.0777295\pi\)
0.202507 + 0.979281i \(0.435091\pi\)
\(270\) 6.33181 2.11387i 0.385342 0.128646i
\(271\) −1.07172 13.2756i −0.0651023 0.806436i −0.944110 0.329629i \(-0.893076\pi\)
0.879008 0.476807i \(-0.158206\pi\)
\(272\) −13.5699 + 3.34467i −0.822793 + 0.202800i
\(273\) 1.45707 + 3.77581i 0.0881859 + 0.228522i
\(274\) −20.1997 4.97879i −1.22031 0.300780i
\(275\) −0.106199 + 0.653466i −0.00640401 + 0.0394055i
\(276\) −0.0612965 0.0750746i −0.00368961 0.00451896i
\(277\) −8.83875 + 6.64189i −0.531069 + 0.399072i −0.832171 0.554520i \(-0.812902\pi\)
0.301102 + 0.953592i \(0.402646\pi\)
\(278\) 6.34251 7.15922i 0.380399 0.429381i
\(279\) 2.44161 + 15.0238i 0.146175 + 0.899452i
\(280\) 2.90453 35.9790i 0.173579 2.15016i
\(281\) 4.69861 + 19.0630i 0.280296 + 1.13720i 0.927180 + 0.374616i \(0.122226\pi\)
−0.646884 + 0.762588i \(0.723928\pi\)
\(282\) −0.632511 2.18368i −0.0376655 0.130036i
\(283\) 0.843222 + 4.13037i 0.0501243 + 0.245525i 0.997132 0.0756868i \(-0.0241149\pi\)
−0.947007 + 0.321212i \(0.895910\pi\)
\(284\) −0.648208 + 0.529246i −0.0384641 + 0.0314050i
\(285\) 0.560915 4.61955i 0.0332258 0.273639i
\(286\) 0.557828 0.542054i 0.0329851 0.0320523i
\(287\) 0.539790 + 4.44557i 0.0318628 + 0.262414i
\(288\) −2.17877 2.09274i −0.128385 0.123316i
\(289\) −1.33512 + 1.39000i −0.0785363 + 0.0817649i
\(290\) −7.51438 + 15.8362i −0.441260 + 0.929935i
\(291\) −1.01012 + 0.697238i −0.0592145 + 0.0408728i
\(292\) −0.718429 + 1.13610i −0.0420429 + 0.0664855i
\(293\) 14.8084 + 19.7064i 0.865115 + 1.15126i 0.987318 + 0.158754i \(0.0507476\pi\)
−0.122203 + 0.992505i \(0.538996\pi\)
\(294\) −1.64042 3.12557i −0.0956715 0.182287i
\(295\) 4.83132 23.6654i 0.281290 1.37785i
\(296\) −6.46213 + 0.521677i −0.375604 + 0.0303219i
\(297\) 0.251887 + 0.0729598i 0.0146159 + 0.00423356i
\(298\) 7.83284 + 4.11099i 0.453744 + 0.238143i
\(299\) −6.63218 1.87943i −0.383549 0.108690i
\(300\) −0.185672 + 0.0974483i −0.0107198 + 0.00562618i
\(301\) 37.8949 7.73631i 2.18423 0.445913i
\(302\) 0.888404 + 0.667592i 0.0511219 + 0.0384156i
\(303\) 0.188439 + 4.67607i 0.0108256 + 0.268633i
\(304\) 18.7341 7.10491i 1.07448 0.407495i
\(305\) −23.4786 + 6.80066i −1.34438 + 0.389405i
\(306\) −14.9891 3.06004i −0.856868 0.174931i
\(307\) 14.7620 + 16.6628i 0.842511 + 0.950998i 0.999329 0.0366294i \(-0.0116621\pi\)
−0.156818 + 0.987627i \(0.550124\pi\)
\(308\) 0.0752823 0.0922041i 0.00428961 0.00525382i
\(309\) −0.0508804 + 1.26258i −0.00289448 + 0.0718259i
\(310\) 6.71702 + 20.1199i 0.381501 + 1.14274i
\(311\) −10.0946 + 8.94303i −0.572412 + 0.507113i −0.898938 0.438075i \(-0.855660\pi\)
0.326526 + 0.945188i \(0.394122\pi\)
\(312\) 2.89954 + 0.453981i 0.164154 + 0.0257016i
\(313\) 14.4857 + 12.8332i 0.818782 + 0.725378i 0.964538 0.263943i \(-0.0850231\pi\)
−0.145756 + 0.989321i \(0.546562\pi\)
\(314\) 0.617792 1.45001i 0.0348640 0.0818289i
\(315\) 17.9299 31.0555i 1.01024 1.74978i
\(316\) −1.44331 2.49988i −0.0811924 0.140629i
\(317\) −2.25896 + 0.274287i −0.126876 + 0.0154055i −0.183728 0.982977i \(-0.558817\pi\)
0.0568524 + 0.998383i \(0.481894\pi\)
\(318\) 2.71028 + 1.28604i 0.151985 + 0.0721177i
\(319\) −0.596353 + 0.344305i −0.0333894 + 0.0192774i
\(320\) −21.3748 14.7540i −1.19489 0.824772i
\(321\) −1.67565 + 0.713930i −0.0935259 + 0.0398477i
\(322\) 10.3219 + 1.67748i 0.575219 + 0.0934822i
\(323\) −12.9811 + 17.2747i −0.722286 + 0.961187i
\(324\) −0.540526 1.42525i −0.0300292 0.0791805i
\(325\) −6.85424 + 13.2457i −0.380205 + 0.734740i
\(326\) −4.66553 + 12.3020i −0.258400 + 0.681344i
\(327\) −1.74977 2.76704i −0.0967625 0.153018i
\(328\) 2.98757 + 1.27288i 0.164961 + 0.0702832i
\(329\) −20.9146 13.2256i −1.15306 0.729149i
\(330\) 0.179051 + 0.0217407i 0.00985644 + 0.00119679i
\(331\) 2.65590 + 6.23362i 0.145981 + 0.342631i 0.976879 0.213795i \(-0.0685825\pi\)
−0.830897 + 0.556426i \(0.812172\pi\)
\(332\) −0.559214 + 1.67505i −0.0306909 + 0.0919303i
\(333\) −6.02219 2.28391i −0.330014 0.125158i
\(334\) −1.48609 0.119970i −0.0813152 0.00656444i
\(335\) 7.87426 27.1851i 0.430217 1.48528i
\(336\) −4.03754 0.162707i −0.220266 0.00887641i
\(337\) −12.1313 −0.660835 −0.330417 0.943835i \(-0.607190\pi\)
−0.330417 + 0.943835i \(0.607190\pi\)
\(338\) 15.7423 7.69469i 0.856267 0.418536i
\(339\) −1.94804 −0.105803
\(340\) 2.14893 + 0.0865990i 0.116542 + 0.00469649i
\(341\) −0.231837 + 0.800394i −0.0125547 + 0.0433438i
\(342\) 21.8606 + 1.76477i 1.18209 + 0.0954280i
\(343\) −9.36410 3.55134i −0.505614 0.191754i
\(344\) 8.88149 26.6033i 0.478858 1.43435i
\(345\) −0.626553 1.47057i −0.0337325 0.0791730i
\(346\) 13.3376 + 1.61948i 0.717036 + 0.0870640i
\(347\) −14.4952 9.16622i −0.778144 0.492069i 0.0853969 0.996347i \(-0.472784\pi\)
−0.863541 + 0.504278i \(0.831759\pi\)
\(348\) −0.200654 0.0854906i −0.0107562 0.00458278i
\(349\) −13.2857 21.0096i −0.711165 1.12462i −0.986578 0.163292i \(-0.947789\pi\)
0.275413 0.961326i \(-0.411185\pi\)
\(350\) 8.02294 21.1548i 0.428844 1.13077i
\(351\) 4.88125 + 3.32766i 0.260542 + 0.177618i
\(352\) −0.0586485 0.154643i −0.00312597 0.00824251i
\(353\) −3.72731 + 4.96014i −0.198385 + 0.264002i −0.887662 0.460496i \(-0.847672\pi\)
0.689277 + 0.724497i \(0.257928\pi\)
\(354\) −2.94062 0.477898i −0.156292 0.0254000i
\(355\) −12.6972 + 5.40978i −0.673898 + 0.287121i
\(356\) 2.77005 + 1.91203i 0.146812 + 0.101337i
\(357\) 3.77405 2.17895i 0.199744 0.115322i
\(358\) −31.8992 15.1364i −1.68593 0.799982i
\(359\) 33.8287 4.10755i 1.78541 0.216788i 0.839982 0.542615i \(-0.182566\pi\)
0.945429 + 0.325827i \(0.105643\pi\)
\(360\) −13.0021 22.5202i −0.685269 1.18692i
\(361\) 5.98903 10.3733i 0.315212 0.545963i
\(362\) −9.16103 + 21.5017i −0.481493 + 1.13011i
\(363\) −2.27217 2.01297i −0.119258 0.105653i
\(364\) 2.25806 1.44630i 0.118354 0.0758069i
\(365\) −16.5943 + 14.7012i −0.868584 + 0.769498i
\(366\) 0.954753 + 2.85983i 0.0499057 + 0.149486i
\(367\) −0.533467 + 13.2378i −0.0278468 + 0.691010i 0.923629 + 0.383287i \(0.125208\pi\)
−0.951476 + 0.307723i \(0.900433\pi\)
\(368\) 4.35279 5.33120i 0.226905 0.277908i
\(369\) 2.13935 + 2.41483i 0.111370 + 0.125711i
\(370\) −8.79428 1.79536i −0.457193 0.0933366i
\(371\) 31.3636 9.08457i 1.62832 0.471648i
\(372\) −0.246782 + 0.0935921i −0.0127951 + 0.00485252i
\(373\) 1.06694 + 26.4760i 0.0552443 + 1.37087i 0.754640 + 0.656139i \(0.227811\pi\)
−0.699396 + 0.714735i \(0.746548\pi\)
\(374\) −0.669555 0.503138i −0.0346219 0.0260166i
\(375\) 0.707435 0.144424i 0.0365318 0.00745802i
\(376\) −15.8889 + 8.33916i −0.819409 + 0.430059i
\(377\) −15.1809 + 3.19100i −0.781856 + 0.164345i
\(378\) −7.93546 4.16485i −0.408156 0.214217i
\(379\) −9.70198 2.81021i −0.498357 0.144351i 0.0195139 0.999810i \(-0.493788\pi\)
−0.517871 + 0.855459i \(0.673275\pi\)
\(380\) −3.07324 + 0.248098i −0.157654 + 0.0127271i
\(381\) 1.09184 5.34818i 0.0559366 0.273996i
\(382\) 1.97268 + 3.75863i 0.100931 + 0.192308i
\(383\) 0.175721 + 0.233843i 0.00897894 + 0.0119488i 0.803910 0.594751i \(-0.202749\pi\)
−0.794931 + 0.606700i \(0.792493\pi\)
\(384\) −1.40665 + 2.22444i −0.0717828 + 0.113515i
\(385\) 1.61569 1.11523i 0.0823430 0.0568373i
\(386\) −14.9293 + 31.4629i −0.759884 + 1.60142i
\(387\) 19.3015 20.0950i 0.981150 1.02149i
\(388\) 0.586502 + 0.563343i 0.0297751 + 0.0285994i
\(389\) −1.98471 16.3455i −0.100629 0.828752i −0.952403 0.304843i \(-0.901396\pi\)
0.851774 0.523909i \(-0.175527\pi\)
\(390\) 3.68093 + 1.72055i 0.186391 + 0.0871234i
\(391\) −0.894688 + 7.36842i −0.0452463 + 0.372637i
\(392\) −21.5818 + 17.6210i −1.09004 + 0.889993i
\(393\) 0.0757658 + 0.371126i 0.00382188 + 0.0187208i
\(394\) −0.860724 2.97157i −0.0433627 0.149705i
\(395\) −11.3935 46.2251i −0.573268 2.32584i
\(396\) 0.00690030 0.0854755i 0.000346753 0.00429531i
\(397\) −0.0588218 0.361945i −0.00295218 0.0181655i 0.985532 0.169487i \(-0.0542112\pi\)
−0.988485 + 0.151322i \(0.951647\pi\)
\(398\) 16.4214 18.5359i 0.823129 0.929120i
\(399\) −4.99455 + 3.75316i −0.250040 + 0.187893i
\(400\) −9.41748 11.5343i −0.470874 0.576716i
\(401\) −2.15593 + 13.2660i −0.107662 + 0.662472i 0.875981 + 0.482345i \(0.160215\pi\)
−0.983643 + 0.180127i \(0.942349\pi\)
\(402\) −3.38952 0.835442i −0.169054 0.0416681i
\(403\) −10.5740 + 15.5106i −0.526727 + 0.772640i
\(404\) 3.01062 0.742051i 0.149784 0.0369184i
\(405\) −2.02294 25.0586i −0.100521 1.24517i
\(406\) 22.3220 7.45217i 1.10782 0.369845i
\(407\) −0.244260 0.254302i −0.0121075 0.0126053i
\(408\) 3.16017i 0.156452i
\(409\) 6.42360 6.16995i 0.317627 0.305084i −0.516907 0.856042i \(-0.672917\pi\)
0.834534 + 0.550957i \(0.185737\pi\)
\(410\) 3.48257 + 2.84343i 0.171992 + 0.140427i
\(411\) 1.98411 3.78040i 0.0978687 0.186473i
\(412\) 0.826382 0.134300i 0.0407129 0.00661649i
\(413\) −27.4072 + 17.3313i −1.34862 + 0.852817i
\(414\) 6.80626 3.22961i 0.334509 0.158727i
\(415\) −16.5450 + 23.9696i −0.812164 + 1.17662i
\(416\) −0.171606 3.72189i −0.00841369 0.182481i
\(417\) 1.11502 + 1.61539i 0.0546028 + 0.0791059i
\(418\) 1.03983 + 0.600345i 0.0508597 + 0.0293638i
\(419\) 1.19369 + 2.51564i 0.0583155 + 0.122897i 0.930516 0.366251i \(-0.119359\pi\)
−0.872201 + 0.489148i \(0.837308\pi\)
\(420\) 0.589816 + 0.196909i 0.0287801 + 0.00960819i
\(421\) 6.09421 24.7252i 0.297014 1.20503i −0.612875 0.790180i \(-0.709987\pi\)
0.909889 0.414852i \(-0.136167\pi\)
\(422\) 24.1446 0.972993i 1.17534 0.0473646i
\(423\) −17.8125 + 0.717818i −0.866072 + 0.0349015i
\(424\) 5.66663 22.9904i 0.275196 1.11651i
\(425\) 15.2326 + 5.08539i 0.738889 + 0.246677i
\(426\) 0.729788 + 1.53799i 0.0353583 + 0.0745161i
\(427\) 28.4203 + 16.4085i 1.37535 + 0.794061i
\(428\) 0.685540 + 0.993177i 0.0331368 + 0.0480070i
\(429\) 0.0806113 + 0.137772i 0.00389195 + 0.00665169i
\(430\) 22.0577 31.9561i 1.06372 1.54106i
\(431\) −20.5104 + 9.73228i −0.987949 + 0.468788i −0.852913 0.522053i \(-0.825166\pi\)
−0.135036 + 0.990841i \(0.543115\pi\)
\(432\) −4.98519 + 3.15245i −0.239850 + 0.151672i
\(433\) 23.1847 3.76787i 1.11418 0.181072i 0.424672 0.905347i \(-0.360389\pi\)
0.689511 + 0.724275i \(0.257825\pi\)
\(434\) 13.2342 25.2157i 0.635262 1.21039i
\(435\) −2.78641 2.27504i −0.133598 0.109080i
\(436\) −1.56440 + 1.50262i −0.0749210 + 0.0719626i
\(437\) 10.6411i 0.509031i
\(438\) 1.89426 + 1.97214i 0.0905115 + 0.0942324i
\(439\) −35.0149 + 11.6897i −1.67117 + 0.557918i −0.985452 0.169951i \(-0.945639\pi\)
−0.685716 + 0.727869i \(0.740511\pi\)
\(440\) −0.114555 1.41902i −0.00546121 0.0676492i
\(441\) −26.8750 + 6.62409i −1.27976 + 0.315433i
\(442\) −10.8077 15.4652i −0.514072 0.735602i
\(443\) 14.3135 + 3.52796i 0.680054 + 0.167618i 0.564188 0.825647i \(-0.309189\pi\)
0.115866 + 0.993265i \(0.463036\pi\)
\(444\) 0.0179153 0.110237i 0.000850222 0.00523162i
\(445\) 35.1087 + 43.0004i 1.66431 + 2.03841i
\(446\) −19.3326 + 14.5275i −0.915424 + 0.687897i
\(447\) −1.20383 + 1.35884i −0.0569390 + 0.0642709i
\(448\) 5.59342 + 34.4177i 0.264264 + 1.62608i
\(449\) 2.50440 31.0225i 0.118190 1.46404i −0.617418 0.786635i \(-0.711821\pi\)
0.735608 0.677407i \(-0.236897\pi\)
\(450\) −3.90070 15.8258i −0.183881 0.746033i
\(451\) 0.0491394 + 0.169649i 0.00231388 + 0.00798845i
\(452\) 0.258174 + 1.26462i 0.0121435 + 0.0594827i
\(453\) −0.176653 + 0.144233i −0.00829989 + 0.00677665i
\(454\) −3.08276 + 25.3888i −0.144681 + 1.19156i
\(455\) 42.4079 12.5506i 1.98811 0.588379i
\(456\) 0.546087 + 4.49743i 0.0255729 + 0.210612i
\(457\) −3.57813 3.43684i −0.167378 0.160769i 0.604356 0.796715i \(-0.293431\pi\)
−0.771734 + 0.635946i \(0.780610\pi\)
\(458\) −18.1161 + 18.8609i −0.846511 + 0.881311i
\(459\) 2.72698 5.74698i 0.127284 0.268246i
\(460\) −0.871623 + 0.601638i −0.0406397 + 0.0280515i
\(461\) −3.96268 + 6.26647i −0.184560 + 0.291859i −0.924777 0.380510i \(-0.875749\pi\)
0.740217 + 0.672368i \(0.234723\pi\)
\(462\) −0.145470 0.193586i −0.00676789 0.00900643i
\(463\) 4.77203 + 9.09234i 0.221775 + 0.422557i 0.970768 0.240022i \(-0.0771545\pi\)
−0.748993 + 0.662578i \(0.769462\pi\)
\(464\) 3.09804 15.1752i 0.143823 0.704491i
\(465\) −4.33890 + 0.350272i −0.201212 + 0.0162435i
\(466\) −15.7335 4.55725i −0.728838 0.211111i
\(467\) 13.4835 + 7.07671i 0.623944 + 0.327471i 0.746895 0.664942i \(-0.231544\pi\)
−0.122952 + 0.992413i \(0.539236\pi\)
\(468\) 0.746889 1.78159i 0.0345250 0.0823540i
\(469\) −33.6452 + 17.6584i −1.55359 + 0.815388i
\(470\) −24.3412 + 4.96929i −1.12278 + 0.229216i
\(471\) 0.258582 + 0.194312i 0.0119148 + 0.00895342i
\(472\) 0.946852 + 23.4959i 0.0435824 + 1.08149i
\(473\) 1.42629 0.540919i 0.0655807 0.0248715i
\(474\) −5.64041 + 1.63376i −0.259073 + 0.0750413i
\(475\) −22.5572 4.60508i −1.03500 0.211296i
\(476\) −1.91470 2.16125i −0.0877600 0.0990605i
\(477\) 14.8773 18.2214i 0.681187 0.834302i
\(478\) 0.566428 14.0558i 0.0259078 0.642895i
\(479\) −2.33048 6.98064i −0.106482 0.318953i 0.881793 0.471637i \(-0.156337\pi\)
−0.988275 + 0.152683i \(0.951208\pi\)
\(480\) 0.646699 0.572925i 0.0295176 0.0261503i
\(481\) −3.44682 7.15659i −0.157161 0.326312i
\(482\) 16.0670 + 14.2341i 0.731833 + 0.648347i
\(483\) −0.841180 + 1.97432i −0.0382750 + 0.0898347i
\(484\) −1.00564 + 1.74182i −0.0457109 + 0.0791735i
\(485\) 6.70623 + 11.6155i 0.304514 + 0.527434i
\(486\) −9.65531 + 1.17237i −0.437974 + 0.0531796i
\(487\) −6.66854 3.16426i −0.302181 0.143386i 0.271565 0.962420i \(-0.412459\pi\)
−0.573745 + 0.819034i \(0.694510\pi\)
\(488\) 20.6092 11.8987i 0.932936 0.538631i
\(489\) −2.22211 1.53381i −0.100487 0.0693613i
\(490\) −35.4867 + 15.1195i −1.60312 + 0.683027i
\(491\) 10.2112 + 1.65948i 0.460824 + 0.0748912i 0.386391 0.922335i \(-0.373721\pi\)
0.0744324 + 0.997226i \(0.476285\pi\)
\(492\) −0.0336070 + 0.0447228i −0.00151512 + 0.00201626i
\(493\) 5.92317 + 15.6181i 0.266766 + 0.703404i
\(494\) 18.0536 + 20.1418i 0.812269 + 0.906222i
\(495\) 0.501525 1.32241i 0.0225419 0.0594381i
\(496\) −10.0172 15.8409i −0.449786 0.711279i
\(497\) 17.0467 + 7.26291i 0.764648 + 0.325786i
\(498\) 3.03630 + 1.92004i 0.136060 + 0.0860390i
\(499\) 30.2554 + 3.67367i 1.35442 + 0.164456i 0.765343 0.643623i \(-0.222569\pi\)
0.589075 + 0.808079i \(0.299492\pi\)
\(500\) −0.187513 0.440109i −0.00838583 0.0196823i
\(501\) 0.0968897 0.290220i 0.00432871 0.0129661i
\(502\) −1.49419 0.566671i −0.0666889 0.0252918i
\(503\) −38.1220 3.07752i −1.69977 0.137220i −0.807845 0.589395i \(-0.799366\pi\)
−0.891929 + 0.452175i \(0.850648\pi\)
\(504\) −9.71309 + 33.5335i −0.432656 + 1.49370i
\(505\) 51.0983 + 2.05919i 2.27384 + 0.0916328i
\(506\) 0.412441 0.0183352
\(507\) 0.760075 + 3.51464i 0.0337561 + 0.156091i
\(508\) −3.61661 −0.160461
\(509\) −7.79563 0.314153i −0.345535 0.0139246i −0.133108 0.991102i \(-0.542496\pi\)
−0.212427 + 0.977177i \(0.568137\pi\)
\(510\) 1.21724 4.20239i 0.0539002 0.186085i
\(511\) 29.6675 + 2.39501i 1.31241 + 0.105949i
\(512\) 23.2884 + 8.83214i 1.02921 + 0.390329i
\(513\) −2.88783 + 8.65011i −0.127501 + 0.381912i
\(514\) 11.9002 + 27.9307i 0.524893 + 1.23197i
\(515\) 13.7075 + 1.66440i 0.604026 + 0.0733421i
\(516\) 0.408355 + 0.258228i 0.0179768 + 0.0113679i
\(517\) −0.897867 0.382545i −0.0394882 0.0168243i
\(518\) 6.44048 + 10.1848i 0.282978 + 0.447494i
\(519\) −0.977732 + 2.57807i −0.0429177 + 0.113165i
\(520\) 7.49442 31.1830i 0.328652 1.36747i
\(521\) −0.201794 0.532086i −0.00884074 0.0233111i 0.930523 0.366233i \(-0.119353\pi\)
−0.939364 + 0.342922i \(0.888583\pi\)
\(522\) 10.1847 13.5534i 0.445773 0.593216i
\(523\) 27.4196 + 4.45612i 1.19897 + 0.194852i 0.726923 0.686719i \(-0.240950\pi\)
0.472051 + 0.881571i \(0.343514\pi\)
\(524\) 0.230884 0.0983707i 0.0100862 0.00429734i
\(525\) 3.82119 + 2.63757i 0.166770 + 0.115113i
\(526\) −14.1949 + 8.19540i −0.618925 + 0.357337i
\(527\) 18.2616 + 8.66523i 0.795487 + 0.377463i
\(528\) −0.158209 + 0.0192100i −0.00688516 + 0.000836009i
\(529\) 9.67238 + 16.7531i 0.420538 + 0.728394i
\(530\) 16.3910 28.3900i 0.711978 1.23318i
\(531\) −9.15677 + 21.4917i −0.397370 + 0.932662i
\(532\) 3.09839 + 2.74493i 0.134332 + 0.119008i
\(533\) −0.137160 + 3.97649i −0.00594106 + 0.172241i
\(534\) 5.12520 4.54053i 0.221789 0.196488i
\(535\) 6.30283 + 18.8793i 0.272495 + 0.816222i
\(536\) −1.10950 + 27.5320i −0.0479231 + 1.18920i
\(537\) 4.58265 5.61273i 0.197756 0.242207i
\(538\) −24.8195 28.0154i −1.07005 1.20783i
\(539\) −1.48472 0.303109i −0.0639516 0.0130558i
\(540\) 0.871819 0.252525i 0.0375171 0.0108670i
\(541\) 14.9988 5.68828i 0.644847 0.244558i −0.0104317 0.999946i \(-0.503321\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(542\) 0.722850 + 17.9373i 0.0310491 + 0.770475i
\(543\) −3.83443 2.88138i −0.164551 0.123652i
\(544\) −3.93080 + 0.802479i −0.168532 + 0.0344060i
\(545\) −31.6776 + 16.6257i −1.35692 + 0.712167i
\(546\) −1.75741 5.16421i −0.0752103 0.221008i
\(547\) −13.1847 6.91985i −0.563736 0.295871i 0.158680 0.987330i \(-0.449276\pi\)
−0.722416 + 0.691459i \(0.756968\pi\)
\(548\) −2.71710 0.787017i −0.116069 0.0336197i
\(549\) 23.5651 1.90237i 1.00573 0.0811913i
\(550\) 0.178490 0.874303i 0.00761085 0.0372804i
\(551\) −11.1285 21.2035i −0.474089 0.903301i
\(552\) 0.934892 + 1.24412i 0.0397916 + 0.0529531i
\(553\) −34.1614 + 54.0220i −1.45269 + 2.29725i
\(554\) 12.2642 8.46538i 0.521057 0.359660i
\(555\) 0.789643 1.66414i 0.0335185 0.0706387i
\(556\) 0.900896 0.937932i 0.0382065 0.0397772i
\(557\) −1.81104 1.73953i −0.0767363 0.0737062i 0.653375 0.757034i \(-0.273352\pi\)
−0.730111 + 0.683328i \(0.760532\pi\)
\(558\) −2.47289 20.3661i −0.104686 0.862166i
\(559\) 34.3273 1.58274i 1.45189 0.0669427i
\(560\) −5.32247 + 43.8345i −0.224916 + 1.85235i
\(561\) 0.133136 0.108703i 0.00562103 0.00458943i
\(562\) −5.29334 25.9285i −0.223286 1.09373i
\(563\) −6.10977 21.0934i −0.257496 0.888979i −0.980231 0.197854i \(-0.936603\pi\)
0.722735 0.691125i \(-0.242884\pi\)
\(564\) −0.0739778 0.300140i −0.00311503 0.0126382i
\(565\) −1.71292 + 21.2184i −0.0720633 + 0.892664i
\(566\) −0.911457 5.60842i −0.0383114 0.235740i
\(567\) −22.3817 + 25.2637i −0.939943 + 1.06098i
\(568\) 10.7419 8.07204i 0.450721 0.338695i
\(569\) −2.76131 3.38200i −0.115760 0.141781i 0.713474 0.700682i \(-0.247121\pi\)
−0.829234 + 0.558901i \(0.811223\pi\)
\(570\) −1.00614 + 6.19103i −0.0421425 + 0.259314i
\(571\) 10.7345 + 2.64581i 0.449224 + 0.110724i 0.457436 0.889243i \(-0.348768\pi\)
−0.00821218 + 0.999966i \(0.502614\pi\)
\(572\) 0.0787547 0.0705898i 0.00329290 0.00295151i
\(573\) −0.845812 + 0.208474i −0.0353343 + 0.00870912i
\(574\) −0.485698 6.01645i −0.0202727 0.251122i
\(575\) −7.50130 + 2.50430i −0.312826 + 0.104437i
\(576\) 17.4014 + 18.1168i 0.725060 + 0.754867i
\(577\) 22.6212i 0.941734i −0.882204 0.470867i \(-0.843941\pi\)
0.882204 0.470867i \(-0.156059\pi\)
\(578\) 1.87353 1.79955i 0.0779287 0.0748515i
\(579\) −5.53596 4.51997i −0.230067 0.187844i
\(580\) −1.10761 + 2.11038i −0.0459912 + 0.0876289i
\(581\) 38.5958 6.27243i 1.60122 0.260224i
\(582\) 1.39824 0.884196i 0.0579591 0.0366511i
\(583\) 1.16349 0.552085i 0.0481870 0.0228650i
\(584\) 12.2609 17.7630i 0.507360 0.735038i
\(585\) 20.0070 24.7962i 0.827187 1.02520i
\(586\) −18.8739 27.3436i −0.779675 1.12955i
\(587\) −31.2951 18.0682i −1.29169 0.745756i −0.312734 0.949841i \(-0.601245\pi\)
−0.978953 + 0.204085i \(0.934578\pi\)
\(588\) −0.205757 0.433624i −0.00848528 0.0178823i
\(589\) −27.4866 9.17636i −1.13256 0.378105i
\(590\) −7.79105 + 31.6095i −0.320753 + 1.30134i
\(591\) 0.634374 0.0255644i 0.0260947 0.00105158i
\(592\) 7.92444 0.319344i 0.325692 0.0131250i
\(593\) −5.49762 + 22.3047i −0.225760 + 0.915945i 0.743268 + 0.668994i \(0.233275\pi\)
−0.969028 + 0.246951i \(0.920571\pi\)
\(594\) −0.335273 0.111931i −0.0137564 0.00459257i
\(595\) −20.4149 43.0236i −0.836931 1.76379i
\(596\) 1.04167 + 0.601407i 0.0426684 + 0.0246346i
\(597\) 2.88690 + 4.18239i 0.118153 + 0.171174i
\(598\) 8.83000 + 2.89110i 0.361086 + 0.118226i
\(599\) −2.46846 + 3.57618i −0.100859 + 0.146119i −0.870164 0.492763i \(-0.835987\pi\)
0.769305 + 0.638881i \(0.220603\pi\)
\(600\) 3.04190 1.44340i 0.124185 0.0589265i
\(601\) −12.5387 + 7.92901i −0.511465 + 0.323431i −0.765146 0.643857i \(-0.777333\pi\)
0.253681 + 0.967288i \(0.418359\pi\)
\(602\) −51.4556 + 8.36235i −2.09717 + 0.340824i
\(603\) −12.7213 + 24.2385i −0.518053 + 0.987068i
\(604\) 0.117044 + 0.0955637i 0.00476246 + 0.00388843i
\(605\) −23.9235 + 22.9789i −0.972630 + 0.934224i
\(606\) 6.30782i 0.256237i
\(607\) −24.8008 25.8204i −1.00663 1.04802i −0.998845 0.0480462i \(-0.984701\pi\)
−0.00778779 0.999970i \(-0.502479\pi\)
\(608\) 5.45549 1.82131i 0.221250 0.0738639i
\(609\) 0.388608 + 4.81378i 0.0157472 + 0.195064i
\(610\) 31.9893 7.88466i 1.29521 0.319241i
\(611\) −16.5410 14.4838i −0.669179 0.585951i
\(612\) −2.01968 0.497805i −0.0816405 0.0201226i
\(613\) 4.44177 27.3313i 0.179401 1.10390i −0.728601 0.684938i \(-0.759829\pi\)
0.908003 0.418964i \(-0.137607\pi\)
\(614\) −18.9766 23.2421i −0.765834 0.937977i
\(615\) −0.737607 + 0.554276i −0.0297432 + 0.0223506i
\(616\) −1.26743 + 1.43063i −0.0510663 + 0.0576419i
\(617\) −3.26490 20.0897i −0.131440 0.808783i −0.966129 0.258061i \(-0.916917\pi\)
0.834689 0.550722i \(-0.185648\pi\)
\(618\) 0.137048 1.69765i 0.00551289 0.0682894i
\(619\) −1.87942 7.62511i −0.0755403 0.306479i 0.921003 0.389556i \(-0.127371\pi\)
−0.996543 + 0.0830767i \(0.973525\pi\)
\(620\) 0.802424 + 2.77029i 0.0322261 + 0.111257i
\(621\) 0.626591 + 3.06924i 0.0251442 + 0.123165i
\(622\) 14.0804 11.4963i 0.564574 0.460961i
\(623\) 8.98344 73.9853i 0.359914 2.96416i
\(624\) −3.52177 0.697731i −0.140984 0.0279316i
\(625\) −3.44399 28.3638i −0.137760 1.13455i
\(626\) −18.8124 18.0696i −0.751896 0.722206i
\(627\) −0.170691 + 0.177708i −0.00681672 + 0.00709696i
\(628\) 0.0918726 0.193617i 0.00366612 0.00772618i
\(629\) −7.03915 + 4.85877i −0.280669 + 0.193732i
\(630\) −25.8329 + 40.8515i −1.02921 + 1.62756i
\(631\) −6.87249 9.14563i −0.273590 0.364082i 0.641646 0.767001i \(-0.278252\pi\)
−0.915235 + 0.402919i \(0.867995\pi\)
\(632\) 21.5399 + 41.0409i 0.856812 + 1.63252i
\(633\) −0.991917 + 4.85873i −0.0394252 + 0.193117i
\(634\) 3.05718 0.246801i 0.121416 0.00980172i
\(635\) −57.2932 16.5952i −2.27361 0.658560i
\(636\) 0.361179 + 0.189562i 0.0143217 + 0.00751661i
\(637\) −29.6620 16.8968i −1.17525 0.669476i
\(638\) 0.821836 0.431333i 0.0325368 0.0170766i
\(639\) 13.0791 2.67011i 0.517400 0.105628i
\(640\) 22.9921 + 17.2774i 0.908842 + 0.682950i
\(641\) −1.29655 32.1735i −0.0512106 1.27078i −0.796747 0.604313i \(-0.793448\pi\)
0.745536 0.666465i \(-0.232193\pi\)
\(642\) 2.29546 0.870555i 0.0905948 0.0343581i
\(643\) −37.4895 + 10.8590i −1.47844 + 0.428236i −0.916868 0.399191i \(-0.869291\pi\)
−0.561574 + 0.827427i \(0.689804\pi\)
\(644\) 1.39316 + 0.284416i 0.0548983 + 0.0112076i
\(645\) 5.28413 + 5.96455i 0.208063 + 0.234854i
\(646\) 18.4200 22.5604i 0.724726 0.887628i
\(647\) −0.00886095 + 0.219882i −0.000348360 + 0.00864446i −0.999354 0.0359433i \(-0.988556\pi\)
0.999005 + 0.0445878i \(0.0141974\pi\)
\(648\) 7.75062 + 23.2160i 0.304473 + 0.912009i
\(649\) −0.957301 + 0.848095i −0.0375774 + 0.0332906i
\(650\) 9.94995 17.4669i 0.390269 0.685109i
\(651\) 4.37441 + 3.87539i 0.171447 + 0.151889i
\(652\) −0.701216 + 1.64582i −0.0274618 + 0.0644551i
\(653\) 4.99591 8.65316i 0.195505 0.338624i −0.751561 0.659664i \(-0.770699\pi\)
0.947066 + 0.321039i \(0.104032\pi\)
\(654\) 2.20636 + 3.82152i 0.0862754 + 0.149433i
\(655\) 4.10899 0.498921i 0.160551 0.0194945i
\(656\) −3.58904 1.70302i −0.140128 0.0664917i
\(657\) 18.5697 10.7212i 0.724472 0.418274i
\(658\) 27.4493 + 18.9469i 1.07008 + 0.738626i
\(659\) 22.1350 9.43083i 0.862256 0.367373i 0.0848666 0.996392i \(-0.472954\pi\)
0.777390 + 0.629019i \(0.216543\pi\)
\(660\) 0.0242070 + 0.00393402i 0.000942257 + 0.000153132i
\(661\) 2.49535 3.32071i 0.0970579 0.129161i −0.748301 0.663359i \(-0.769130\pi\)
0.845359 + 0.534199i \(0.179387\pi\)
\(662\) −3.23856 8.53939i −0.125870 0.331893i
\(663\) 3.61231 1.39398i 0.140291 0.0541377i
\(664\) 10.0549 26.5127i 0.390207 1.02889i
\(665\) 36.4883 + 57.7017i 1.41496 + 2.23758i
\(666\) 7.98653 + 3.40274i 0.309472 + 0.131854i
\(667\) −6.95226 4.39634i −0.269193 0.170227i
\(668\) −0.201245 0.0244355i −0.00778639 0.000945439i
\(669\) −1.94522 4.56561i −0.0752067 0.176517i
\(670\) −12.0802 + 36.1847i −0.466699 + 1.39794i
\(671\) 1.21020 + 0.458968i 0.0467192 + 0.0177183i
\(672\) −1.15618 0.0933363i −0.0446005 0.00360053i
\(673\) 6.07690 20.9799i 0.234247 0.808716i −0.754134 0.656721i \(-0.771943\pi\)
0.988381 0.151995i \(-0.0485698\pi\)
\(674\) 16.3381 + 0.658402i 0.629319 + 0.0253607i
\(675\) 6.77743 0.260864
\(676\) 2.18089 0.959218i 0.0838803 0.0368930i
\(677\) 16.6696 0.640666 0.320333 0.947305i \(-0.396205\pi\)
0.320333 + 0.947305i \(0.396205\pi\)
\(678\) 2.62356 + 0.105726i 0.100757 + 0.00406037i
\(679\) 5.00984 17.2960i 0.192260 0.663758i
\(680\) −34.4211 2.77876i −1.31999 0.106561i
\(681\) −4.90747 1.86116i −0.188054 0.0713197i
\(682\) 0.355670 1.06536i 0.0136193 0.0407948i
\(683\) −12.6262 29.6348i −0.483129 1.13395i −0.966067 0.258291i \(-0.916841\pi\)
0.482938 0.875655i \(-0.339570\pi\)
\(684\) 2.96035 + 0.359451i 0.113192 + 0.0137440i
\(685\) −39.4321 24.9354i −1.50662 0.952731i
\(686\) 12.4185 + 5.29104i 0.474142 + 0.202013i
\(687\) −2.86842 4.53604i −0.109437 0.173061i
\(688\) −12.1664 + 32.0800i −0.463838 + 1.22304i
\(689\) 28.7794 3.66389i 1.09641 0.139583i
\(690\) 0.764009 + 2.01453i 0.0290853 + 0.0766917i
\(691\) −7.14387 + 9.50676i −0.271765 + 0.361654i −0.914606 0.404346i \(-0.867499\pi\)
0.642841 + 0.766000i \(0.277756\pi\)
\(692\) 1.80320 + 0.293048i 0.0685473 + 0.0111400i
\(693\) −1.74686 + 0.744266i −0.0663576 + 0.0282723i
\(694\) 19.0242 + 13.1315i 0.722150 + 0.498464i
\(695\) 18.5755 10.7246i 0.704610 0.406807i
\(696\) 3.16398 + 1.50133i 0.119931 + 0.0569077i
\(697\) 4.25308 0.516417i 0.161097 0.0195607i
\(698\) 16.7525 + 29.0161i 0.634090 + 1.09828i
\(699\) 1.68076 2.91117i 0.0635723 0.110110i
\(700\) 1.20583 2.83018i 0.0455760 0.106971i
\(701\) 30.4795 + 27.0025i 1.15120 + 1.01987i 0.999506 + 0.0314419i \(0.0100099\pi\)
0.151690 + 0.988428i \(0.451529\pi\)
\(702\) −6.39331 4.74651i −0.241300 0.179146i
\(703\) 9.17823 8.13120i 0.346163 0.306674i
\(704\) 0.435498 + 1.30448i 0.0164135 + 0.0491643i
\(705\) 0.205288 5.09418i 0.00773160 0.191858i
\(706\) 5.28902 6.47787i 0.199055 0.243798i
\(707\) −45.5285 51.3911i −1.71228 1.93276i
\(708\) −0.396899 0.0810275i −0.0149164 0.00304520i
\(709\) −36.2618 + 10.5033i −1.36184 + 0.394461i −0.877146 0.480223i \(-0.840556\pi\)
−0.484692 + 0.874685i \(0.661068\pi\)
\(710\) 17.3938 6.59660i 0.652778 0.247566i
\(711\) 1.85411 + 46.0093i 0.0695347 + 1.72548i
\(712\) −43.2060 32.4672i −1.61921 1.21676i
\(713\) −9.75282 + 1.99105i −0.365246 + 0.0745655i
\(714\) −5.20103 + 2.72971i −0.194644 + 0.102157i
\(715\) 1.57152 0.756888i 0.0587714 0.0283060i
\(716\) −4.25098 2.23109i −0.158867 0.0833797i
\(717\) 2.77287 + 0.803173i 0.103555 + 0.0299950i
\(718\) −45.7824 + 3.69593i −1.70858 + 0.137931i
\(719\) −3.54560 + 17.3675i −0.132228 + 0.647698i 0.858608 + 0.512632i \(0.171330\pi\)
−0.990837 + 0.135065i \(0.956876\pi\)
\(720\) 14.7833 + 28.1672i 0.550940 + 1.04973i
\(721\) −11.1367 14.8203i −0.414753 0.551936i
\(722\) −8.62882 + 13.6454i −0.321131 + 0.507829i
\(723\) −3.62532 + 2.50238i −0.134827 + 0.0930645i
\(724\) −1.36235 + 2.87109i −0.0506312 + 0.106703i
\(725\) −12.3282 + 12.8350i −0.457858 + 0.476680i
\(726\) 2.95084 + 2.83432i 0.109516 + 0.105191i
\(727\) 0.223779 + 1.84299i 0.00829952 + 0.0683527i 0.996270 0.0862889i \(-0.0275008\pi\)
−0.987971 + 0.154642i \(0.950578\pi\)
\(728\) −37.1630 + 21.7443i −1.37735 + 0.805898i
\(729\) −2.76701 + 22.7884i −0.102482 + 0.844014i
\(730\) 23.1465 18.8985i 0.856691 0.699466i
\(731\) −7.40133 36.2541i −0.273748 1.34091i
\(732\) 0.114056 + 0.393767i 0.00421563 + 0.0145540i
\(733\) 3.40352 + 13.8086i 0.125712 + 0.510034i 0.999709 + 0.0241031i \(0.00767301\pi\)
−0.873997 + 0.485930i \(0.838481\pi\)
\(734\) 1.43691 17.7994i 0.0530374 0.656986i
\(735\) −1.26981 7.81347i −0.0468378 0.288204i
\(736\) 1.31010 1.47880i 0.0482909 0.0545092i
\(737\) −1.19807 + 0.900294i −0.0441316 + 0.0331627i
\(738\) −2.75015 3.36832i −0.101234 0.123990i
\(739\) −6.31535 + 38.8599i −0.232314 + 1.42948i 0.564587 + 0.825374i \(0.309035\pi\)
−0.796901 + 0.604110i \(0.793529\pi\)
\(740\) −1.18497 0.292069i −0.0435603 0.0107367i
\(741\) −4.90002 + 2.60808i −0.180007 + 0.0958100i
\(742\) −42.7325 + 10.5326i −1.56876 + 0.386665i
\(743\) 0.917898 + 11.3702i 0.0336744 + 0.417132i 0.991530 + 0.129881i \(0.0414595\pi\)
−0.957855 + 0.287252i \(0.907258\pi\)
\(744\) 4.01984 1.34202i 0.147375 0.0492009i
\(745\) 13.7422 + 14.3071i 0.503474 + 0.524172i
\(746\) 35.7149i 1.30761i
\(747\) 20.3161 19.5139i 0.743328 0.713976i
\(748\) −0.0882117 0.0720226i −0.00322534 0.00263341i
\(749\) 12.4181 23.6608i 0.453749 0.864547i
\(750\) −0.960589 + 0.156111i −0.0350757 + 0.00570036i
\(751\) 14.5871 9.22435i 0.532292 0.336601i −0.241129 0.970493i \(-0.577518\pi\)
0.773422 + 0.633892i \(0.218543\pi\)
\(752\) 19.8320 9.41040i 0.723199 0.343162i
\(753\) 0.186295 0.269895i 0.00678898 0.00983554i
\(754\) 20.6183 3.47362i 0.750876 0.126502i
\(755\) 1.41568 + 2.05096i 0.0515217 + 0.0746421i
\(756\) −1.05532 0.609287i −0.0383815 0.0221595i
\(757\) 2.49451 + 5.25707i 0.0906645 + 0.191071i 0.943717 0.330753i \(-0.107303\pi\)
−0.853053 + 0.521825i \(0.825252\pi\)
\(758\) 12.9138 + 4.31126i 0.469050 + 0.156592i
\(759\) −0.0202559 + 0.0821812i −0.000735241 + 0.00298299i
\(760\) 49.4670 1.99345i 1.79436 0.0723101i
\(761\) 36.9334 1.48836i 1.33883 0.0539532i 0.639524 0.768771i \(-0.279132\pi\)
0.699310 + 0.714818i \(0.253491\pi\)
\(762\) −1.76071 + 7.14350i −0.0637840 + 0.258782i
\(763\) 45.5587 + 15.2097i 1.64933 + 0.550629i
\(764\) 0.247432 + 0.521451i 0.00895177 + 0.0188654i
\(765\) −29.7108 17.1536i −1.07420 0.620188i