Properties

Label 169.2.k.a.4.5
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.5
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55556 - 0.0626871i) q^{2} +(0.386039 - 1.33276i) q^{3} +(0.422335 + 0.0340944i) q^{4} +(1.77605 + 0.673567i) q^{5} +(-0.684055 + 2.04899i) q^{6} +(-0.0926507 - 0.217459i) q^{7} +(2.43612 + 0.295798i) q^{8} +(0.908347 + 0.574404i) q^{9} +O(q^{10})\) \(q+(-1.55556 - 0.0626871i) q^{2} +(0.386039 - 1.33276i) q^{3} +(0.422335 + 0.0340944i) q^{4} +(1.77605 + 0.673567i) q^{5} +(-0.684055 + 2.04899i) q^{6} +(-0.0926507 - 0.217459i) q^{7} +(2.43612 + 0.295798i) q^{8} +(0.908347 + 0.574404i) q^{9} +(-2.72054 - 1.15911i) q^{10} +(-3.19758 - 5.05657i) q^{11} +(0.208477 - 0.549710i) q^{12} +(2.60949 - 2.48809i) q^{13} +(0.130492 + 0.344080i) q^{14} +(1.58333 - 2.10703i) q^{15} +(-4.60744 - 0.748782i) q^{16} +(-2.36370 + 1.00708i) q^{17} +(-1.37698 - 0.950464i) q^{18} +(6.49388 - 3.74924i) q^{19} +(0.727124 + 0.345025i) q^{20} +(-0.325588 + 0.0395335i) q^{21} +(4.65706 + 8.06627i) q^{22} +(0.0926363 - 0.160451i) q^{23} +(1.33466 - 3.13257i) q^{24} +(-1.04189 - 0.923033i) q^{25} +(-4.21520 + 3.70680i) q^{26} +(4.23197 - 3.74920i) q^{27} +(-0.0317155 - 0.0949995i) q^{28} +(-0.382988 + 9.50376i) q^{29} +(-2.59505 + 3.17836i) q^{30} +(0.647763 + 0.731173i) q^{31} +(2.31140 + 0.471875i) q^{32} +(-7.97359 + 2.30958i) q^{33} +(3.74001 - 1.41840i) q^{34} +(-0.0180790 - 0.448625i) q^{35} +(0.364043 + 0.273561i) q^{36} +(3.25171 - 0.663842i) q^{37} +(-10.3367 + 5.42511i) q^{38} +(-2.30866 - 4.43832i) q^{39} +(4.12743 + 2.16624i) q^{40} +(-2.35912 - 0.683327i) q^{41} +(0.508951 - 0.0410867i) q^{42} +(-2.39553 + 11.7341i) q^{43} +(-1.17805 - 2.24459i) q^{44} +(1.22637 + 1.63200i) q^{45} +(-0.154160 + 0.243784i) q^{46} +(-9.77929 + 6.75016i) q^{47} +(-2.77660 + 5.85155i) q^{48} +(4.81037 - 5.00812i) q^{49} +(1.56286 + 1.50115i) q^{50} +(0.429713 + 3.53901i) q^{51} +(1.18691 - 0.961838i) q^{52} +(-1.25300 + 10.3194i) q^{53} +(-6.81813 + 5.56683i) q^{54} +(-2.27313 - 11.1345i) q^{55} +(-0.161384 - 0.557162i) q^{56} +(-2.48995 - 10.1021i) q^{57} +(1.19153 - 14.7597i) q^{58} +(-0.702424 - 4.32219i) q^{59} +(0.740533 - 0.835889i) q^{60} +(3.90500 - 2.93441i) q^{61} +(-0.961802 - 1.17799i) q^{62} +(0.0407504 - 0.250747i) q^{63} +(5.49855 + 1.35527i) q^{64} +(6.31048 - 2.66130i) q^{65} +(12.5482 - 3.09286i) q^{66} +(0.141749 + 1.75588i) q^{67} +(-1.03261 + 0.344735i) q^{68} +(-0.178081 - 0.185402i) q^{69} +0.698998i q^{70} +(5.83750 - 5.60699i) q^{71} +(2.04293 + 1.66800i) q^{72} +(-2.90169 + 5.52870i) q^{73} +(-5.09986 + 0.828808i) q^{74} +(-1.63239 + 1.03226i) q^{75} +(2.87042 - 1.36203i) q^{76} +(-0.803340 + 1.16384i) q^{77} +(3.31304 + 7.04881i) q^{78} +(2.20556 + 3.19530i) q^{79} +(-7.67870 - 4.43330i) q^{80} +(-1.98090 - 4.17465i) q^{81} +(3.62693 + 1.21085i) q^{82} +(-0.00235729 + 0.00956391i) q^{83} +(-0.138855 + 0.00559566i) q^{84} +(-4.87638 + 0.196511i) q^{85} +(4.46197 - 18.1029i) q^{86} +(12.5184 + 4.17925i) q^{87} +(-6.29397 - 13.2643i) q^{88} +(3.94046 + 2.27503i) q^{89} +(-1.80539 - 2.61556i) q^{90} +(-0.782828 - 0.336934i) q^{91} +(0.0445940 - 0.0646056i) q^{92} +(1.22454 - 0.581051i) q^{93} +(15.6355 - 9.88726i) q^{94} +(14.0588 - 2.28478i) q^{95} +(1.52118 - 2.89837i) q^{96} +(-2.58407 - 2.10983i) q^{97} +(-7.79678 + 7.48891i) q^{98} -6.42983i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55556 0.0626871i −1.09995 0.0443265i −0.516357 0.856373i \(-0.672712\pi\)
−0.583592 + 0.812047i \(0.698353\pi\)
\(3\) 0.386039 1.33276i 0.222879 0.769469i −0.768659 0.639658i \(-0.779076\pi\)
0.991539 0.129811i \(-0.0414370\pi\)
\(4\) 0.422335 + 0.0340944i 0.211168 + 0.0170472i
\(5\) 1.77605 + 0.673567i 0.794274 + 0.301229i 0.718167 0.695871i \(-0.244982\pi\)
0.0761076 + 0.997100i \(0.475751\pi\)
\(6\) −0.684055 + 2.04899i −0.279264 + 0.836498i
\(7\) −0.0926507 0.217459i −0.0350187 0.0821918i 0.901552 0.432671i \(-0.142429\pi\)
−0.936570 + 0.350479i \(0.886019\pi\)
\(8\) 2.43612 + 0.295798i 0.861298 + 0.104581i
\(9\) 0.908347 + 0.574404i 0.302782 + 0.191468i
\(10\) −2.72054 1.15911i −0.860310 0.366544i
\(11\) −3.19758 5.05657i −0.964108 1.52461i −0.847066 0.531487i \(-0.821633\pi\)
−0.117042 0.993127i \(-0.537341\pi\)
\(12\) 0.208477 0.549710i 0.0601822 0.158688i
\(13\) 2.60949 2.48809i 0.723742 0.690071i
\(14\) 0.130492 + 0.344080i 0.0348755 + 0.0919591i
\(15\) 1.58333 2.10703i 0.408814 0.544032i
\(16\) −4.60744 0.748782i −1.15186 0.187196i
\(17\) −2.36370 + 1.00708i −0.573280 + 0.244252i −0.659096 0.752059i \(-0.729061\pi\)
0.0858153 + 0.996311i \(0.472651\pi\)
\(18\) −1.37698 0.950464i −0.324558 0.224026i
\(19\) 6.49388 3.74924i 1.48980 0.860135i 0.489866 0.871798i \(-0.337046\pi\)
0.999932 + 0.0116624i \(0.00371234\pi\)
\(20\) 0.727124 + 0.345025i 0.162590 + 0.0771499i
\(21\) −0.325588 + 0.0395335i −0.0710490 + 0.00862691i
\(22\) 4.65706 + 8.06627i 0.992889 + 1.71974i
\(23\) 0.0926363 0.160451i 0.0193160 0.0334563i −0.856206 0.516635i \(-0.827184\pi\)
0.875522 + 0.483179i \(0.160518\pi\)
\(24\) 1.33466 3.13257i 0.272437 0.639434i
\(25\) −1.04189 0.923033i −0.208378 0.184607i
\(26\) −4.21520 + 3.70680i −0.826668 + 0.726963i
\(27\) 4.23197 3.74920i 0.814443 0.721534i
\(28\) −0.0317155 0.0949995i −0.00599367 0.0179532i
\(29\) −0.382988 + 9.50376i −0.0711191 + 1.76480i 0.433211 + 0.901292i \(0.357380\pi\)
−0.504330 + 0.863511i \(0.668261\pi\)
\(30\) −2.59505 + 3.17836i −0.473789 + 0.580287i
\(31\) 0.647763 + 0.731173i 0.116342 + 0.131323i 0.803796 0.594905i \(-0.202810\pi\)
−0.687454 + 0.726228i \(0.741272\pi\)
\(32\) 2.31140 + 0.471875i 0.408601 + 0.0834165i
\(33\) −7.97359 + 2.30958i −1.38802 + 0.402046i
\(34\) 3.74001 1.41840i 0.641406 0.243253i
\(35\) −0.0180790 0.448625i −0.00305590 0.0758315i
\(36\) 0.364043 + 0.273561i 0.0606738 + 0.0455934i
\(37\) 3.25171 0.663842i 0.534578 0.109135i 0.0748503 0.997195i \(-0.476152\pi\)
0.459728 + 0.888060i \(0.347947\pi\)
\(38\) −10.3367 + 5.42511i −1.67683 + 0.880068i
\(39\) −2.30866 4.43832i −0.369681 0.710700i
\(40\) 4.12743 + 2.16624i 0.652604 + 0.342513i
\(41\) −2.35912 0.683327i −0.368433 0.106718i 0.0888364 0.996046i \(-0.471685\pi\)
−0.457269 + 0.889328i \(0.651172\pi\)
\(42\) 0.508951 0.0410867i 0.0785328 0.00633982i
\(43\) −2.39553 + 11.7341i −0.365314 + 1.78943i 0.216689 + 0.976241i \(0.430474\pi\)
−0.582003 + 0.813186i \(0.697731\pi\)
\(44\) −1.17805 2.24459i −0.177598 0.338385i
\(45\) 1.22637 + 1.63200i 0.182817 + 0.243285i
\(46\) −0.154160 + 0.243784i −0.0227296 + 0.0359440i
\(47\) −9.77929 + 6.75016i −1.42646 + 0.984611i −0.429798 + 0.902925i \(0.641415\pi\)
−0.996658 + 0.0816863i \(0.973969\pi\)
\(48\) −2.77660 + 5.85155i −0.400767 + 0.844599i
\(49\) 4.81037 5.00812i 0.687195 0.715446i
\(50\) 1.56286 + 1.50115i 0.221022 + 0.212295i
\(51\) 0.429713 + 3.53901i 0.0601719 + 0.495560i
\(52\) 1.18691 0.961838i 0.164595 0.133383i
\(53\) −1.25300 + 10.3194i −0.172113 + 1.41748i 0.609041 + 0.793139i \(0.291554\pi\)
−0.781154 + 0.624338i \(0.785369\pi\)
\(54\) −6.81813 + 5.56683i −0.927830 + 0.757550i
\(55\) −2.27313 11.1345i −0.306509 1.50138i
\(56\) −0.161384 0.557162i −0.0215658 0.0744539i
\(57\) −2.48995 10.1021i −0.329802 1.33806i
\(58\) 1.19153 14.7597i 0.156455 1.93804i
\(59\) −0.702424 4.32219i −0.0914478 0.562701i −0.991827 0.127594i \(-0.959275\pi\)
0.900379 0.435107i \(-0.143289\pi\)
\(60\) 0.740533 0.835889i 0.0956024 0.107913i
\(61\) 3.90500 2.93441i 0.499983 0.375713i −0.320623 0.947207i \(-0.603892\pi\)
0.820606 + 0.571494i \(0.193636\pi\)
\(62\) −0.961802 1.17799i −0.122149 0.149605i
\(63\) 0.0407504 0.250747i 0.00513407 0.0315912i
\(64\) 5.49855 + 1.35527i 0.687319 + 0.169409i
\(65\) 6.31048 2.66130i 0.782718 0.330094i
\(66\) 12.5482 3.09286i 1.54458 0.380704i
\(67\) 0.141749 + 1.75588i 0.0173174 + 0.214514i 0.999628 + 0.0272578i \(0.00867750\pi\)
−0.982311 + 0.187257i \(0.940040\pi\)
\(68\) −1.03261 + 0.344735i −0.125222 + 0.0418053i
\(69\) −0.178081 0.185402i −0.0214384 0.0223198i
\(70\) 0.698998i 0.0835463i
\(71\) 5.83750 5.60699i 0.692783 0.665427i −0.261201 0.965284i \(-0.584118\pi\)
0.953984 + 0.299857i \(0.0969390\pi\)
\(72\) 2.04293 + 1.66800i 0.240762 + 0.196576i
\(73\) −2.90169 + 5.52870i −0.339617 + 0.647086i −0.994037 0.109046i \(-0.965221\pi\)
0.654420 + 0.756131i \(0.272913\pi\)
\(74\) −5.09986 + 0.828808i −0.592847 + 0.0963470i
\(75\) −1.63239 + 1.03226i −0.188492 + 0.119195i
\(76\) 2.87042 1.36203i 0.329260 0.156236i
\(77\) −0.803340 + 1.16384i −0.0915491 + 0.132632i
\(78\) 3.31304 + 7.04881i 0.375128 + 0.798121i
\(79\) 2.20556 + 3.19530i 0.248144 + 0.359499i 0.927186 0.374600i \(-0.122220\pi\)
−0.679042 + 0.734099i \(0.737605\pi\)
\(80\) −7.67870 4.43330i −0.858504 0.495658i
\(81\) −1.98090 4.17465i −0.220100 0.463850i
\(82\) 3.62693 + 1.21085i 0.400527 + 0.133716i
\(83\) −0.00235729 + 0.00956391i −0.000258747 + 0.00104978i −0.971071 0.238791i \(-0.923249\pi\)
0.970812 + 0.239841i \(0.0770952\pi\)
\(84\) −0.138855 + 0.00559566i −0.0151503 + 0.000610537i
\(85\) −4.87638 + 0.196511i −0.528917 + 0.0213146i
\(86\) 4.46197 18.1029i 0.481146 1.95209i
\(87\) 12.5184 + 4.17925i 1.34211 + 0.448062i
\(88\) −6.29397 13.2643i −0.670939 1.41397i
\(89\) 3.94046 + 2.27503i 0.417688 + 0.241153i 0.694088 0.719890i \(-0.255808\pi\)
−0.276399 + 0.961043i \(0.589141\pi\)
\(90\) −1.80539 2.61556i −0.190305 0.275705i
\(91\) −0.782828 0.336934i −0.0820627 0.0353203i
\(92\) 0.0445940 0.0646056i 0.00464925 0.00673560i
\(93\) 1.22454 0.581051i 0.126979 0.0602522i
\(94\) 15.6355 9.88726i 1.61267 1.01979i
\(95\) 14.0588 2.28478i 1.44241 0.234414i
\(96\) 1.52118 2.89837i 0.155255 0.295814i
\(97\) −2.58407 2.10983i −0.262372 0.214220i 0.492123 0.870526i \(-0.336221\pi\)
−0.754495 + 0.656305i \(0.772118\pi\)
\(98\) −7.79678 + 7.48891i −0.787593 + 0.756494i
\(99\) 6.42983i 0.646222i
\(100\) −0.408556 0.425352i −0.0408556 0.0425352i
\(101\) −8.91559 + 2.97646i −0.887135 + 0.296169i −0.723477 0.690348i \(-0.757457\pi\)
−0.163657 + 0.986517i \(0.552329\pi\)
\(102\) −0.446597 5.53209i −0.0442197 0.547759i
\(103\) −14.2343 + 3.50845i −1.40255 + 0.345697i −0.866790 0.498673i \(-0.833821\pi\)
−0.535759 + 0.844371i \(0.679975\pi\)
\(104\) 7.09299 5.28939i 0.695525 0.518668i
\(105\) −0.604889 0.149092i −0.0590311 0.0145499i
\(106\) 2.59602 15.9739i 0.252147 1.55152i
\(107\) −1.01817 1.24703i −0.0984302 0.120555i 0.723041 0.690805i \(-0.242744\pi\)
−0.821471 + 0.570250i \(0.806846\pi\)
\(108\) 1.91514 1.43913i 0.184284 0.138481i
\(109\) −4.76320 + 5.37654i −0.456232 + 0.514979i −0.930944 0.365162i \(-0.881014\pi\)
0.474712 + 0.880141i \(0.342552\pi\)
\(110\) 2.83801 + 17.4630i 0.270593 + 1.66503i
\(111\) 0.370545 4.59002i 0.0351705 0.435665i
\(112\) 0.264053 + 1.07131i 0.0249507 + 0.101229i
\(113\) 0.928340 + 3.20500i 0.0873309 + 0.301501i 0.992280 0.124019i \(-0.0395783\pi\)
−0.904949 + 0.425520i \(0.860091\pi\)
\(114\) 3.24001 + 15.8706i 0.303454 + 1.48642i
\(115\) 0.272601 0.222572i 0.0254202 0.0207549i
\(116\) −0.485775 + 4.00071i −0.0451030 + 0.371457i
\(117\) 3.79949 0.761147i 0.351263 0.0703681i
\(118\) 0.821720 + 6.76747i 0.0756454 + 0.622996i
\(119\) 0.437996 + 0.420701i 0.0401510 + 0.0385656i
\(120\) 4.48043 4.66462i 0.409005 0.425820i
\(121\) −10.6288 + 22.3997i −0.966253 + 2.03633i
\(122\) −6.25842 + 4.31988i −0.566611 + 0.391103i
\(123\) −1.82142 + 2.88035i −0.164232 + 0.259712i
\(124\) 0.248644 + 0.330885i 0.0223289 + 0.0297144i
\(125\) −5.64240 10.7507i −0.504672 0.961572i
\(126\) −0.0791085 + 0.387499i −0.00704754 + 0.0345212i
\(127\) −3.23519 + 0.261172i −0.287077 + 0.0231752i −0.223166 0.974780i \(-0.571639\pi\)
−0.0639106 + 0.997956i \(0.520357\pi\)
\(128\) −13.0003 3.76557i −1.14907 0.332832i
\(129\) 14.7139 + 7.72246i 1.29549 + 0.679925i
\(130\) −9.98318 + 3.74424i −0.875583 + 0.328392i
\(131\) 2.21782 1.16400i 0.193772 0.101699i −0.365047 0.930989i \(-0.618947\pi\)
0.558819 + 0.829290i \(0.311255\pi\)
\(132\) −3.44627 + 0.703561i −0.299959 + 0.0612372i
\(133\) −1.41697 1.06478i −0.122867 0.0923284i
\(134\) −0.110429 2.74026i −0.00953960 0.236723i
\(135\) 10.0415 3.80825i 0.864238 0.327762i
\(136\) −6.05613 + 1.75418i −0.519309 + 0.150420i
\(137\) −14.1388 2.88645i −1.20796 0.246606i −0.446478 0.894795i \(-0.647322\pi\)
−0.761480 + 0.648188i \(0.775527\pi\)
\(138\) 0.265394 + 0.299568i 0.0225919 + 0.0255009i
\(139\) −5.90020 + 7.22644i −0.500449 + 0.612938i −0.961624 0.274371i \(-0.911530\pi\)
0.461175 + 0.887309i \(0.347428\pi\)
\(140\) 0.00766023 0.190087i 0.000647407 0.0160652i
\(141\) 5.22115 + 15.6393i 0.439700 + 1.31706i
\(142\) −9.43208 + 8.35610i −0.791523 + 0.701228i
\(143\) −20.9253 5.23920i −1.74986 0.438124i
\(144\) −3.75505 3.32669i −0.312921 0.277224i
\(145\) −7.08163 + 16.6212i −0.588097 + 1.38031i
\(146\) 4.86034 8.41835i 0.402244 0.696708i
\(147\) −4.81764 8.34439i −0.397352 0.688234i
\(148\) 1.39595 0.169499i 0.114746 0.0139327i
\(149\) 10.3849 + 4.92772i 0.850768 + 0.403694i 0.803584 0.595192i \(-0.202924\pi\)
0.0471843 + 0.998886i \(0.484975\pi\)
\(150\) 2.60400 1.50342i 0.212615 0.122754i
\(151\) 13.8024 + 9.52709i 1.12322 + 0.775304i 0.976850 0.213926i \(-0.0686251\pi\)
0.146371 + 0.989230i \(0.453241\pi\)
\(152\) 16.9289 7.21272i 1.37311 0.585029i
\(153\) −2.72552 0.442941i −0.220346 0.0358096i
\(154\) 1.32260 1.76007i 0.106578 0.141830i
\(155\) 0.657966 + 1.73491i 0.0528491 + 0.139352i
\(156\) −0.823706 1.95317i −0.0659493 0.156379i
\(157\) −0.0204700 + 0.0539750i −0.00163368 + 0.00430767i −0.935831 0.352450i \(-0.885349\pi\)
0.934197 + 0.356758i \(0.116118\pi\)
\(158\) −3.23058 5.10875i −0.257011 0.406430i
\(159\) 13.2696 + 5.65363i 1.05234 + 0.448362i
\(160\) 3.78732 + 2.39495i 0.299414 + 0.189338i
\(161\) −0.0434743 0.00527873i −0.00342625 0.000416022i
\(162\) 2.81972 + 6.61812i 0.221538 + 0.519969i
\(163\) 0.692112 2.07313i 0.0542104 0.162380i −0.917950 0.396696i \(-0.870157\pi\)
0.972161 + 0.234316i \(0.0752850\pi\)
\(164\) −0.973042 0.369026i −0.0759818 0.0288161i
\(165\) −15.7172 1.26882i −1.22358 0.0987775i
\(166\) 0.00426645 0.0147295i 0.000331141 0.00114323i
\(167\) 20.2222 + 0.814929i 1.56484 + 0.0630611i 0.807466 0.589915i \(-0.200839\pi\)
0.757379 + 0.652976i \(0.226480\pi\)
\(168\) −0.804864 −0.0620966
\(169\) 0.618846 12.9853i 0.0476036 0.998866i
\(170\) 7.59784 0.582728
\(171\) 8.05228 + 0.324496i 0.615773 + 0.0248148i
\(172\) −1.41178 + 4.87403i −0.107647 + 0.371641i
\(173\) 1.83159 + 0.147861i 0.139253 + 0.0112417i 0.149896 0.988702i \(-0.452106\pi\)
−0.0106436 + 0.999943i \(0.503388\pi\)
\(174\) −19.2112 7.28583i −1.45639 0.552337i
\(175\) −0.104190 + 0.312088i −0.00787604 + 0.0235916i
\(176\) 10.9464 + 25.6922i 0.825116 + 1.93662i
\(177\) −6.03160 0.732369i −0.453363 0.0550482i
\(178\) −5.98703 3.78597i −0.448747 0.283770i
\(179\) −7.09034 3.02091i −0.529957 0.225793i 0.110378 0.993890i \(-0.464794\pi\)
−0.640334 + 0.768096i \(0.721204\pi\)
\(180\) 0.462298 + 0.731065i 0.0344576 + 0.0544904i
\(181\) 3.55344 9.36965i 0.264125 0.696440i −0.735692 0.677316i \(-0.763143\pi\)
0.999817 0.0191243i \(-0.00608781\pi\)
\(182\) 1.19662 + 0.573195i 0.0886992 + 0.0424881i
\(183\) −2.40339 6.33722i −0.177664 0.468461i
\(184\) 0.273134 0.363475i 0.0201357 0.0267958i
\(185\) 6.22235 + 1.01123i 0.457476 + 0.0743471i
\(186\) −1.94127 + 0.827100i −0.142341 + 0.0606459i
\(187\) 12.6505 + 8.73199i 0.925094 + 0.638546i
\(188\) −4.36028 + 2.51741i −0.318006 + 0.183601i
\(189\) −1.20739 0.572915i −0.0878249 0.0416734i
\(190\) −22.0126 + 2.67282i −1.59696 + 0.193907i
\(191\) −3.36707 5.83194i −0.243633 0.421984i 0.718114 0.695926i \(-0.245006\pi\)
−0.961746 + 0.273942i \(0.911672\pi\)
\(192\) 3.92891 6.80506i 0.283544 0.491113i
\(193\) 1.81640 4.26325i 0.130747 0.306875i −0.841720 0.539914i \(-0.818457\pi\)
0.972467 + 0.233039i \(0.0748669\pi\)
\(194\) 3.88742 + 3.44396i 0.279101 + 0.247262i
\(195\) −1.11079 9.43772i −0.0795455 0.675849i
\(196\) 2.20234 1.95110i 0.157310 0.139364i
\(197\) 3.50161 + 10.4886i 0.249480 + 0.747283i 0.996585 + 0.0825767i \(0.0263149\pi\)
−0.747105 + 0.664706i \(0.768557\pi\)
\(198\) −0.403067 + 10.0020i −0.0286447 + 0.710812i
\(199\) 15.4258 18.8932i 1.09351 1.33930i 0.157420 0.987532i \(-0.449682\pi\)
0.936086 0.351771i \(-0.114420\pi\)
\(200\) −2.26513 2.55681i −0.160169 0.180794i
\(201\) 2.39488 + 0.488918i 0.168922 + 0.0344856i
\(202\) 14.0554 4.07119i 0.988932 0.286448i
\(203\) 2.10216 0.797245i 0.147543 0.0559556i
\(204\) 0.0608227 + 1.50930i 0.00425844 + 0.105672i
\(205\) −3.72965 2.80265i −0.260490 0.195746i
\(206\) 22.3623 4.56530i 1.55806 0.318080i
\(207\) 0.176309 0.0925343i 0.0122543 0.00643158i
\(208\) −13.8861 + 9.50978i −0.962827 + 0.659384i
\(209\) −39.7230 20.8483i −2.74770 1.44210i
\(210\) 0.931597 + 0.269840i 0.0642863 + 0.0186208i
\(211\) −18.6988 + 1.50952i −1.28728 + 0.103920i −0.705081 0.709127i \(-0.749089\pi\)
−0.582198 + 0.813047i \(0.697807\pi\)
\(212\) −0.881020 + 4.31552i −0.0605087 + 0.296391i
\(213\) −5.21927 9.94450i −0.357619 0.681386i
\(214\) 1.50566 + 2.00366i 0.102925 + 0.136968i
\(215\) −12.1583 + 19.2267i −0.829186 + 1.31125i
\(216\) 11.4186 7.88169i 0.776937 0.536281i
\(217\) 0.0989846 0.208606i 0.00671951 0.0141611i
\(218\) 7.74650 8.06496i 0.524659 0.546228i
\(219\) 6.24827 + 6.00154i 0.422219 + 0.405547i
\(220\) −0.580397 4.78000i −0.0391304 0.322268i
\(221\) −3.66234 + 8.50903i −0.246356 + 0.572379i
\(222\) −0.864141 + 7.11684i −0.0579973 + 0.477651i
\(223\) −5.70856 + 4.66089i −0.382273 + 0.312116i −0.804026 0.594595i \(-0.797313\pi\)
0.421752 + 0.906711i \(0.361415\pi\)
\(224\) −0.111539 0.546354i −0.00745250 0.0365048i
\(225\) −0.416203 1.43690i −0.0277469 0.0957933i
\(226\) −1.24318 5.04378i −0.0826951 0.335507i
\(227\) −0.101166 + 1.25317i −0.00671465 + 0.0831758i −0.999247 0.0388086i \(-0.987644\pi\)
0.992532 + 0.121984i \(0.0389258\pi\)
\(228\) −0.707168 4.35138i −0.0468334 0.288177i
\(229\) 13.3850 15.1086i 0.884507 0.998402i −0.115480 0.993310i \(-0.536841\pi\)
0.999987 0.00509257i \(-0.00162102\pi\)
\(230\) −0.438001 + 0.329136i −0.0288809 + 0.0217026i
\(231\) 1.24100 + 1.51995i 0.0816516 + 0.100005i
\(232\) −3.74420 + 23.0390i −0.245819 + 1.51258i
\(233\) 21.2309 + 5.23294i 1.39088 + 0.342821i 0.862445 0.506151i \(-0.168932\pi\)
0.528436 + 0.848973i \(0.322778\pi\)
\(234\) −5.95806 + 0.945834i −0.389491 + 0.0618311i
\(235\) −21.9152 + 5.40161i −1.42959 + 0.352362i
\(236\) −0.149296 1.84936i −0.00971833 0.120383i
\(237\) 5.10999 1.70597i 0.331930 0.110814i
\(238\) −0.654958 0.681884i −0.0424546 0.0442000i
\(239\) 3.61921i 0.234107i 0.993126 + 0.117053i \(0.0373449\pi\)
−0.993126 + 0.117053i \(0.962655\pi\)
\(240\) −8.87279 + 8.52243i −0.572736 + 0.550121i
\(241\) −5.93921 4.84922i −0.382578 0.312366i 0.421568 0.906797i \(-0.361480\pi\)
−0.804147 + 0.594431i \(0.797377\pi\)
\(242\) 17.9379 34.1779i 1.15309 2.19704i
\(243\) 10.4134 1.69234i 0.668020 0.108564i
\(244\) 1.74926 1.10617i 0.111985 0.0708151i
\(245\) 11.9168 5.65458i 0.761334 0.361258i
\(246\) 3.01390 4.36639i 0.192159 0.278391i
\(247\) 7.61725 25.9409i 0.484674 1.65058i
\(248\) 1.36175 + 1.97283i 0.0864711 + 0.125275i
\(249\) 0.0118364 + 0.00683374i 0.000750101 + 0.000433071i
\(250\) 8.10319 + 17.0771i 0.512491 + 1.08005i
\(251\) −10.0791 3.36491i −0.636189 0.212391i −0.0197640 0.999805i \(-0.506291\pi\)
−0.616425 + 0.787414i \(0.711420\pi\)
\(252\) 0.0257594 0.104510i 0.00162269 0.00658351i
\(253\) −1.10754 + 0.0446325i −0.0696306 + 0.00280602i
\(254\) 5.04892 0.203465i 0.316797 0.0127665i
\(255\) −1.62057 + 6.57490i −0.101484 + 0.411736i
\(256\) 9.24334 + 3.08588i 0.577709 + 0.192867i
\(257\) 1.69826 + 3.57900i 0.105934 + 0.223252i 0.949495 0.313782i \(-0.101596\pi\)
−0.843561 + 0.537034i \(0.819545\pi\)
\(258\) −22.4043 12.9352i −1.39483 0.805307i
\(259\) −0.445632 0.645609i −0.0276902 0.0401162i
\(260\) 2.75587 0.908811i 0.170912 0.0563620i
\(261\) −5.80688 + 8.41272i −0.359437 + 0.520734i
\(262\) −3.52293 + 1.67165i −0.217647 + 0.103275i
\(263\) 11.7643 7.43930i 0.725419 0.458727i −0.120039 0.992769i \(-0.538302\pi\)
0.845458 + 0.534042i \(0.179328\pi\)
\(264\) −20.1078 + 3.26783i −1.23755 + 0.201121i
\(265\) −9.17620 + 17.4838i −0.563689 + 1.07402i
\(266\) 2.13744 + 1.74516i 0.131055 + 0.107003i
\(267\) 4.55324 4.37344i 0.278654 0.267650i
\(268\) 0.746401i 0.0455937i
\(269\) 2.40954 + 2.50859i 0.146912 + 0.152952i 0.790592 0.612343i \(-0.209773\pi\)
−0.643680 + 0.765295i \(0.722593\pi\)
\(270\) −15.8590 + 5.29451i −0.965147 + 0.322213i
\(271\) −0.285994 3.54267i −0.0173729 0.215202i −0.999619 0.0276047i \(-0.991212\pi\)
0.982246 0.187597i \(-0.0600700\pi\)
\(272\) 11.6447 2.87015i 0.706062 0.174029i
\(273\) −0.751254 + 0.913252i −0.0454679 + 0.0552725i
\(274\) 21.8128 + 5.37638i 1.31776 + 0.324799i
\(275\) −1.33586 + 8.21986i −0.0805552 + 0.495676i
\(276\) −0.0688887 0.0843734i −0.00414661 0.00507868i
\(277\) 8.29004 6.22956i 0.498100 0.374298i −0.321797 0.946809i \(-0.604287\pi\)
0.819897 + 0.572511i \(0.194030\pi\)
\(278\) 9.63115 10.8713i 0.577638 0.652018i
\(279\) 0.168405 + 1.03624i 0.0100821 + 0.0620379i
\(280\) 0.0886600 1.09825i 0.00529845 0.0656331i
\(281\) 5.36333 + 21.7599i 0.319949 + 1.29809i 0.882104 + 0.471054i \(0.156126\pi\)
−0.562155 + 0.827032i \(0.690028\pi\)
\(282\) −7.14146 24.6552i −0.425268 1.46819i
\(283\) 5.04592 + 24.7166i 0.299949 + 1.46925i 0.798294 + 0.602268i \(0.205736\pi\)
−0.498345 + 0.866979i \(0.666059\pi\)
\(284\) 2.65655 2.16900i 0.157637 0.128707i
\(285\) 2.38219 19.6191i 0.141108 1.16213i
\(286\) 32.2221 + 9.46165i 1.90533 + 0.559479i
\(287\) 0.0699783 + 0.576323i 0.00413069 + 0.0340193i
\(288\) 1.82850 + 1.75630i 0.107746 + 0.103491i
\(289\) −7.20346 + 7.49960i −0.423733 + 0.441153i
\(290\) 12.0579 25.4114i 0.708062 1.49221i
\(291\) −3.80944 + 2.62947i −0.223313 + 0.154142i
\(292\) −1.41398 + 2.23603i −0.0827470 + 0.130854i
\(293\) −5.60220 7.45518i −0.327284 0.435536i 0.605569 0.795793i \(-0.292946\pi\)
−0.932853 + 0.360257i \(0.882689\pi\)
\(294\) 6.97106 + 13.2822i 0.406560 + 0.774636i
\(295\) 1.66374 8.14955i 0.0968669 0.474485i
\(296\) 8.11792 0.655346i 0.471845 0.0380912i
\(297\) −32.4902 9.41090i −1.88527 0.546076i
\(298\) −15.8455 8.31638i −0.917908 0.481755i
\(299\) −0.157482 0.649181i −0.00910743 0.0375431i
\(300\) −0.724610 + 0.380305i −0.0418354 + 0.0219569i
\(301\) 2.77362 0.566240i 0.159869 0.0326375i
\(302\) −20.8733 15.6852i −1.20112 0.902584i
\(303\) 0.525146 + 13.0314i 0.0301689 + 0.748633i
\(304\) −32.7275 + 12.4119i −1.87705 + 0.711872i
\(305\) 8.91200 2.58139i 0.510300 0.147810i
\(306\) 4.21196 + 0.859878i 0.240782 + 0.0491560i
\(307\) −0.479043 0.540728i −0.0273404 0.0308610i 0.734681 0.678412i \(-0.237332\pi\)
−0.762022 + 0.647551i \(0.775793\pi\)
\(308\) −0.378959 + 0.464141i −0.0215932 + 0.0264469i
\(309\) −0.819083 + 20.3253i −0.0465960 + 1.15627i
\(310\) −0.914751 2.74001i −0.0519544 0.155622i
\(311\) 14.4791 12.8273i 0.821033 0.727372i −0.143978 0.989581i \(-0.545989\pi\)
0.965011 + 0.262209i \(0.0844509\pi\)
\(312\) −4.31132 11.4952i −0.244081 0.650786i
\(313\) 14.7892 + 13.1020i 0.835933 + 0.740572i 0.968075 0.250659i \(-0.0806473\pi\)
−0.132143 + 0.991231i \(0.542186\pi\)
\(314\) 0.0352260 0.0826783i 0.00198792 0.00466581i
\(315\) 0.241270 0.417892i 0.0135940 0.0235455i
\(316\) 0.822542 + 1.42468i 0.0462716 + 0.0801448i
\(317\) −0.887560 + 0.107769i −0.0498504 + 0.00605293i −0.145424 0.989369i \(-0.546455\pi\)
0.0955735 + 0.995422i \(0.469532\pi\)
\(318\) −20.2872 9.62642i −1.13765 0.539823i
\(319\) 49.2811 28.4524i 2.75921 1.59303i
\(320\) 8.85285 + 6.11068i 0.494889 + 0.341597i
\(321\) −2.05505 + 0.875574i −0.114702 + 0.0488698i
\(322\) 0.0672961 + 0.0109367i 0.00375027 + 0.000609478i
\(323\) −11.5738 + 15.4019i −0.643982 + 0.856985i
\(324\) −0.694271 1.83064i −0.0385706 0.101702i
\(325\) −5.01538 + 0.183667i −0.278203 + 0.0101880i
\(326\) −1.20658 + 3.18150i −0.0668265 + 0.176207i
\(327\) 5.32686 + 8.42375i 0.294576 + 0.465834i
\(328\) −5.54497 2.36249i −0.306170 0.130447i
\(329\) 2.37394 + 1.50119i 0.130880 + 0.0827632i
\(330\) 24.3695 + 2.95899i 1.34150 + 0.162887i
\(331\) −9.23344 21.6717i −0.507516 1.19118i −0.954923 0.296853i \(-0.904063\pi\)
0.447408 0.894330i \(-0.352347\pi\)
\(332\) −0.00132164 + 0.00395881i −7.25346e−5 + 0.000217268i
\(333\) 3.33500 + 1.26480i 0.182757 + 0.0693105i
\(334\) −31.4059 2.53535i −1.71846 0.138728i
\(335\) −0.930947 + 3.21400i −0.0508631 + 0.175600i
\(336\) 1.52973 + 0.0616459i 0.0834535 + 0.00336306i
\(337\) −17.5512 −0.956075 −0.478038 0.878339i \(-0.658652\pi\)
−0.478038 + 0.878339i \(0.658652\pi\)
\(338\) −1.77666 + 20.1606i −0.0966377 + 1.09659i
\(339\) 4.62987 0.251460
\(340\) −2.06617 0.0832637i −0.112054 0.00451561i
\(341\) 1.62596 5.61345i 0.0880504 0.303985i
\(342\) −12.5055 1.00955i −0.676219 0.0545901i
\(343\) −3.08184 1.16879i −0.166404 0.0631086i
\(344\) −9.30670 + 27.8770i −0.501784 + 1.50303i
\(345\) −0.191400 0.449233i −0.0103046 0.0241859i
\(346\) −2.83988 0.344824i −0.152673 0.0185378i
\(347\) −13.4698 8.51777i −0.723096 0.457258i 0.121549 0.992585i \(-0.461214\pi\)
−0.844645 + 0.535328i \(0.820188\pi\)
\(348\) 5.14446 + 2.19185i 0.275772 + 0.117496i
\(349\) 9.09194 + 14.3777i 0.486680 + 0.769623i 0.995847 0.0910447i \(-0.0290206\pi\)
−0.509167 + 0.860668i \(0.670046\pi\)
\(350\) 0.181638 0.478941i 0.00970898 0.0256005i
\(351\) 1.71494 20.3130i 0.0915367 1.08423i
\(352\) −5.00481 13.1966i −0.266757 0.703381i
\(353\) 13.0609 17.3809i 0.695161 0.925092i −0.304462 0.952524i \(-0.598477\pi\)
0.999624 + 0.0274325i \(0.00873313\pi\)
\(354\) 9.33663 + 1.51735i 0.496236 + 0.0806462i
\(355\) 14.1444 6.02636i 0.750706 0.319846i
\(356\) 1.58663 + 1.09517i 0.0840913 + 0.0580440i
\(357\) 0.729776 0.421337i 0.0386239 0.0222995i
\(358\) 10.8401 + 5.14369i 0.572917 + 0.271853i
\(359\) −21.6019 + 2.62295i −1.14010 + 0.138434i −0.668734 0.743502i \(-0.733164\pi\)
−0.471370 + 0.881935i \(0.656241\pi\)
\(360\) 2.50484 + 4.33851i 0.132017 + 0.228660i
\(361\) 18.6136 32.2398i 0.979665 1.69683i
\(362\) −6.11496 + 14.3523i −0.321395 + 0.754342i
\(363\) 25.7503 + 22.8128i 1.35154 + 1.19736i
\(364\) −0.319128 0.168989i −0.0167269 0.00885744i
\(365\) −8.87750 + 7.86478i −0.464669 + 0.411661i
\(366\) 3.34137 + 10.0086i 0.174656 + 0.523158i
\(367\) −0.356956 + 8.85777i −0.0186330 + 0.462372i 0.962759 + 0.270359i \(0.0871425\pi\)
−0.981392 + 0.192013i \(0.938499\pi\)
\(368\) −0.546959 + 0.669903i −0.0285122 + 0.0349211i
\(369\) −1.75039 1.97579i −0.0911219 0.102855i
\(370\) −9.61587 1.96309i −0.499905 0.102056i
\(371\) 2.36014 0.683622i 0.122532 0.0354919i
\(372\) 0.536977 0.203648i 0.0278410 0.0105587i
\(373\) 0.462888 + 11.4864i 0.0239674 + 0.594745i 0.965896 + 0.258931i \(0.0833703\pi\)
−0.941928 + 0.335814i \(0.890989\pi\)
\(374\) −19.1312 14.3762i −0.989253 0.743375i
\(375\) −16.5063 + 3.36978i −0.852381 + 0.174015i
\(376\) −25.8202 + 13.5515i −1.33158 + 0.698864i
\(377\) 22.6468 + 25.7528i 1.16637 + 1.32634i
\(378\) 1.84226 + 0.966894i 0.0947557 + 0.0497317i
\(379\) −24.3776 7.06104i −1.25219 0.362701i −0.415105 0.909773i \(-0.636255\pi\)
−0.837086 + 0.547072i \(0.815742\pi\)
\(380\) 6.01544 0.485616i 0.308585 0.0249116i
\(381\) −0.900830 + 4.41256i −0.0461509 + 0.226062i
\(382\) 4.87211 + 9.28303i 0.249279 + 0.474961i
\(383\) −18.6110 24.7667i −0.950977 1.26552i −0.964081 0.265607i \(-0.914428\pi\)
0.0131042 0.999914i \(-0.495829\pi\)
\(384\) −10.0372 + 15.8726i −0.512209 + 0.809993i
\(385\) −2.21070 + 1.52593i −0.112668 + 0.0777688i
\(386\) −3.09278 + 6.51789i −0.157418 + 0.331752i
\(387\) −8.91606 + 9.28260i −0.453229 + 0.471861i
\(388\) −1.01941 0.979156i −0.0517527 0.0497091i
\(389\) −4.26286 35.1078i −0.216135 1.78004i −0.547771 0.836628i \(-0.684523\pi\)
0.331636 0.943408i \(-0.392400\pi\)
\(390\) 1.13629 + 14.7506i 0.0575380 + 0.746926i
\(391\) −0.0573778 + 0.472548i −0.00290172 + 0.0238978i
\(392\) 13.2000 10.7775i 0.666702 0.544345i
\(393\) −0.695170 3.40517i −0.0350667 0.171768i
\(394\) −4.78948 16.5352i −0.241291 0.833032i
\(395\) 1.76493 + 7.16060i 0.0888033 + 0.360289i
\(396\) 0.219221 2.71554i 0.0110163 0.136461i
\(397\) 3.61349 + 22.2347i 0.181356 + 1.11593i 0.904892 + 0.425640i \(0.139951\pi\)
−0.723537 + 0.690286i \(0.757485\pi\)
\(398\) −25.1802 + 28.4226i −1.26217 + 1.42469i
\(399\) −1.96611 + 1.47743i −0.0984284 + 0.0739641i
\(400\) 4.10929 + 5.03297i 0.205464 + 0.251648i
\(401\) −4.32572 + 26.6172i −0.216016 + 1.32920i 0.621770 + 0.783200i \(0.286414\pi\)
−0.837786 + 0.545999i \(0.816150\pi\)
\(402\) −3.69474 0.910672i −0.184277 0.0454202i
\(403\) 3.50955 + 0.296297i 0.174823 + 0.0147596i
\(404\) −3.86685 + 0.953093i −0.192383 + 0.0474181i
\(405\) −0.706266 8.74867i −0.0350946 0.434725i
\(406\) −3.32003 + 1.10839i −0.164770 + 0.0550083i
\(407\) −13.7544 14.3198i −0.681780 0.709808i
\(408\) 8.74855i 0.433118i
\(409\) 20.1139 19.3196i 0.994566 0.955294i −0.00443437 0.999990i \(-0.501412\pi\)
0.999001 + 0.0446963i \(0.0142320\pi\)
\(410\) 5.62602 + 4.59350i 0.277849 + 0.226857i
\(411\) −9.30507 + 17.7293i −0.458985 + 0.874523i
\(412\) −6.13127 + 0.996429i −0.302066 + 0.0490905i
\(413\) −0.874819 + 0.553202i −0.0430470 + 0.0272213i
\(414\) −0.280061 + 0.132891i −0.0137643 + 0.00653122i
\(415\) −0.0106286 + 0.0153982i −0.000521738 + 0.000755868i
\(416\) 7.20562 4.51960i 0.353285 0.221592i
\(417\) 7.35340 + 10.6532i 0.360097 + 0.521691i
\(418\) 60.4848 + 34.9209i 2.95841 + 1.70804i
\(419\) 9.56380 + 20.1553i 0.467222 + 0.984650i 0.991133 + 0.132876i \(0.0424214\pi\)
−0.523910 + 0.851773i \(0.675527\pi\)
\(420\) −0.250383 0.0835900i −0.0122174 0.00407877i
\(421\) 7.00953 28.4388i 0.341624 1.38602i −0.509235 0.860627i \(-0.670072\pi\)
0.850859 0.525394i \(-0.176082\pi\)
\(422\) 29.1818 1.17599i 1.42055 0.0572462i
\(423\) −12.7603 + 0.514223i −0.620427 + 0.0250024i
\(424\) −6.10492 + 24.7686i −0.296481 + 1.20287i
\(425\) 3.39227 + 1.13251i 0.164549 + 0.0549346i
\(426\) 7.49552 + 15.7965i 0.363159 + 0.765342i
\(427\) −0.999916 0.577302i −0.0483893 0.0279376i
\(428\) −0.387492 0.561379i −0.0187301 0.0271353i
\(429\) −15.0605 + 25.8658i −0.727130 + 1.24881i
\(430\) 20.1182 29.1463i 0.970186 1.40556i
\(431\) −13.1066 + 6.21917i −0.631324 + 0.299567i −0.717336 0.696727i \(-0.754639\pi\)
0.0860122 + 0.996294i \(0.472588\pi\)
\(432\) −22.3059 + 14.1054i −1.07319 + 0.678646i
\(433\) 0.177668 0.0288738i 0.00853817 0.00138759i −0.156141 0.987735i \(-0.549905\pi\)
0.164679 + 0.986347i \(0.447341\pi\)
\(434\) −0.167054 + 0.318294i −0.00801884 + 0.0152786i
\(435\) 19.4183 + 15.8545i 0.931035 + 0.760166i
\(436\) −2.19498 + 2.10830i −0.105120 + 0.100969i
\(437\) 1.38926i 0.0664575i
\(438\) −9.34336 9.72747i −0.446443 0.464796i
\(439\) −10.5037 + 3.50665i −0.501314 + 0.167363i −0.556068 0.831137i \(-0.687691\pi\)
0.0547543 + 0.998500i \(0.482562\pi\)
\(440\) −2.24404 27.7974i −0.106980 1.32519i
\(441\) 7.24617 1.78602i 0.345056 0.0850486i
\(442\) 6.23041 13.0068i 0.296350 0.618669i
\(443\) −26.5040 6.53266i −1.25924 0.310376i −0.447445 0.894311i \(-0.647666\pi\)
−0.811800 + 0.583935i \(0.801512\pi\)
\(444\) 0.312988 1.92589i 0.0148538 0.0913989i
\(445\) 5.46608 + 6.69474i 0.259117 + 0.317361i
\(446\) 9.17220 6.89246i 0.434316 0.326368i
\(447\) 10.5765 11.9384i 0.500249 0.564665i
\(448\) −0.214728 1.32128i −0.0101450 0.0624245i
\(449\) 2.70746 33.5379i 0.127773 1.58275i −0.542125 0.840298i \(-0.682380\pi\)
0.669898 0.742453i \(-0.266338\pi\)
\(450\) 0.557355 + 2.26128i 0.0262740 + 0.106598i
\(451\) 4.08819 + 14.1141i 0.192505 + 0.664605i
\(452\) 0.282798 + 1.38524i 0.0133017 + 0.0651560i
\(453\) 18.0256 14.7174i 0.846915 0.691485i
\(454\) 0.235928 1.94304i 0.0110727 0.0911916i
\(455\) −1.16339 1.12570i −0.0545408 0.0527736i
\(456\) −3.07763 25.3465i −0.144123 1.18696i
\(457\) −15.8233 15.1985i −0.740181 0.710954i 0.224471 0.974481i \(-0.427935\pi\)
−0.964652 + 0.263527i \(0.915114\pi\)
\(458\) −21.7684 + 22.6633i −1.01717 + 1.05899i
\(459\) −6.22736 + 13.1239i −0.290668 + 0.612570i
\(460\) 0.122718 0.0847058i 0.00572173 0.00394943i
\(461\) −8.34641 + 13.1988i −0.388731 + 0.614729i −0.981686 0.190507i \(-0.938987\pi\)
0.592955 + 0.805236i \(0.297961\pi\)
\(462\) −1.83517 2.44217i −0.0853798 0.113620i
\(463\) −0.494061 0.941354i −0.0229609 0.0437484i 0.873705 0.486456i \(-0.161710\pi\)
−0.896666 + 0.442707i \(0.854018\pi\)
\(464\) 8.88084 43.5012i 0.412283 2.01949i
\(465\) 2.56622 0.207167i 0.119006 0.00960714i
\(466\) −32.6980 9.47108i −1.51470 0.438739i
\(467\) 15.7745 + 8.27912i 0.729959 + 0.383112i 0.788387 0.615180i \(-0.210917\pi\)
−0.0584283 + 0.998292i \(0.518609\pi\)
\(468\) 1.63061 0.191918i 0.0753749 0.00887141i
\(469\) 0.368698 0.193508i 0.0170249 0.00893535i
\(470\) 34.4291 7.02875i 1.58810 0.324212i
\(471\) 0.0640335 + 0.0481180i 0.00295051 + 0.00221716i
\(472\) −0.432692 10.7371i −0.0199163 0.494217i
\(473\) 66.9940 25.4075i 3.08039 1.16824i
\(474\) −8.05587 + 2.33341i −0.370018 + 0.107177i
\(475\) −10.2266 2.08777i −0.469227 0.0957934i
\(476\) 0.170638 + 0.192610i 0.00782116 + 0.00882826i
\(477\) −7.06566 + 8.65386i −0.323514 + 0.396233i
\(478\) 0.226877 5.62991i 0.0103771 0.257506i
\(479\) −3.11951 9.34408i −0.142534 0.426942i 0.852936 0.522015i \(-0.174820\pi\)
−0.995470 + 0.0950734i \(0.969691\pi\)
\(480\) 4.65395 4.12304i 0.212423 0.188190i
\(481\) 6.83360 9.82283i 0.311586 0.447882i
\(482\) 8.93484 + 7.91558i 0.406971 + 0.360545i
\(483\) −0.0238180 + 0.0559030i −0.00108376 + 0.00254367i
\(484\) −5.25261 + 9.09779i −0.238755 + 0.413536i
\(485\) −3.16833 5.48770i −0.143866 0.249184i
\(486\) −16.3048 + 1.97976i −0.739601 + 0.0898038i
\(487\) −26.7244 12.6809i −1.21100 0.574625i −0.287334 0.957830i \(-0.592769\pi\)
−0.923663 + 0.383205i \(0.874820\pi\)
\(488\) 10.3810 5.99349i 0.469927 0.271313i
\(489\) −2.49580 1.72273i −0.112864 0.0779044i
\(490\) −18.8918 + 8.04903i −0.853443 + 0.363618i
\(491\) 16.2711 + 2.64430i 0.734302 + 0.119336i 0.516052 0.856557i \(-0.327401\pi\)
0.218250 + 0.975893i \(0.429965\pi\)
\(492\) −0.867455 + 1.15437i −0.0391079 + 0.0520431i
\(493\) −8.66574 22.8497i −0.390285 1.02910i
\(494\) −13.4753 + 39.8753i −0.606282 + 1.79407i
\(495\) 4.33092 11.4197i 0.194661 0.513278i
\(496\) −2.43704 3.85387i −0.109426 0.173044i
\(497\) −1.76014 0.749925i −0.0789530 0.0336387i
\(498\) −0.0179839 0.0113723i −0.000805877 0.000509606i
\(499\) −17.7948 2.16068i −0.796605 0.0967254i −0.287894 0.957662i \(-0.592955\pi\)
−0.508712 + 0.860937i \(0.669878\pi\)
\(500\) −2.01645 4.73277i −0.0901782 0.211656i
\(501\) 8.89267 26.6368i 0.397295 1.19004i
\(502\) 15.4678 + 5.86616i 0.690362 + 0.261820i
\(503\) 14.0832 + 1.13691i 0.627938 + 0.0506924i 0.390339 0.920671i \(-0.372358\pi\)
0.237599 + 0.971363i \(0.423640\pi\)
\(504\) 0.173443 0.598796i 0.00772579 0.0266725i
\(505\) −17.8394 0.718903i −0.793843 0.0319908i
\(506\) 1.72565 0.0767146
\(507\) −17.0673 5.83759i −0.757987 0.259256i
\(508\) −1.37524 −0.0610164
\(509\) 3.12924 + 0.126104i 0.138701 + 0.00558946i 0.109519 0.993985i \(-0.465069\pi\)
0.0291817 + 0.999574i \(0.490710\pi\)
\(510\) 2.93306 10.1261i 0.129878 0.448391i
\(511\) 1.47111 + 0.118760i 0.0650781 + 0.00525364i
\(512\) 11.1250 + 4.21917i 0.491662 + 0.186463i
\(513\) 13.4253 40.2135i 0.592739 1.77547i
\(514\) −2.41739 5.67383i −0.106627 0.250262i
\(515\) −27.6441 3.35660i −1.21814 0.147909i
\(516\) 5.95091 + 3.76313i 0.261974 + 0.165663i
\(517\) 65.4028 + 27.8655i 2.87641 + 1.22552i
\(518\) 0.652737 + 1.03222i 0.0286796 + 0.0453532i
\(519\) 0.904126 2.38398i 0.0396867 0.104645i
\(520\) 16.1603 4.61663i 0.708675 0.202452i
\(521\) −12.7398 33.5920i −0.558140 1.47169i −0.855945 0.517067i \(-0.827024\pi\)
0.297805 0.954627i \(-0.403745\pi\)
\(522\) 9.56034 12.7225i 0.418445 0.556849i
\(523\) −21.8759 3.55517i −0.956565 0.155457i −0.337961 0.941160i \(-0.609737\pi\)
−0.618604 + 0.785703i \(0.712301\pi\)
\(524\) 0.976349 0.415983i 0.0426520 0.0181723i
\(525\) 0.375717 + 0.259338i 0.0163976 + 0.0113185i
\(526\) −18.7665 + 10.8348i −0.818258 + 0.472421i
\(527\) −2.26746 1.07592i −0.0987722 0.0468680i
\(528\) 38.4672 4.67077i 1.67407 0.203269i
\(529\) 11.4828 + 19.8889i 0.499254 + 0.864733i
\(530\) 15.3702 26.6219i 0.667638 1.15638i
\(531\) 1.84464 4.32952i 0.0800504 0.187885i
\(532\) −0.562133 0.498006i −0.0243716 0.0215913i
\(533\) −7.85627 + 4.08656i −0.340293 + 0.177009i
\(534\) −7.35701 + 6.51774i −0.318369 + 0.282050i
\(535\) −0.968362 2.90060i −0.0418659 0.125404i
\(536\) −0.174068 + 4.31945i −0.00751859 + 0.186572i
\(537\) −6.76329 + 8.28353i −0.291858 + 0.357461i
\(538\) −3.59093 4.05332i −0.154816 0.174751i
\(539\) −40.7055 8.31008i −1.75331 0.357941i
\(540\) 4.37074 1.26600i 0.188086 0.0544799i
\(541\) −10.7988 + 4.09546i −0.464278 + 0.176078i −0.575641 0.817702i \(-0.695248\pi\)
0.111363 + 0.993780i \(0.464478\pi\)
\(542\) 0.222802 + 5.52878i 0.00957018 + 0.237482i
\(543\) −11.1157 8.35293i −0.477021 0.358458i
\(544\) −5.93865 + 1.21238i −0.254617 + 0.0519805i
\(545\) −12.0811 + 6.34067i −0.517499 + 0.271605i
\(546\) 1.22587 1.37353i 0.0524625 0.0587816i
\(547\) 24.7649 + 12.9976i 1.05887 + 0.555738i 0.901935 0.431871i \(-0.142147\pi\)
0.156935 + 0.987609i \(0.449839\pi\)
\(548\) −5.87290 1.70111i −0.250878 0.0726676i
\(549\) 5.23263 0.422422i 0.223323 0.0180285i
\(550\) 2.59329 12.7028i 0.110578 0.541648i
\(551\) 33.1448 + 63.1522i 1.41202 + 2.69037i
\(552\) −0.378985 0.504338i −0.0161307 0.0214660i
\(553\) 0.490501 0.775665i 0.0208582 0.0329846i
\(554\) −13.2862 + 9.17081i −0.564477 + 0.389630i
\(555\) 3.74979 7.90252i 0.159170 0.335443i
\(556\) −2.73824 + 2.85081i −0.116127 + 0.120901i
\(557\) −13.9028 13.3539i −0.589082 0.565821i 0.337779 0.941225i \(-0.390324\pi\)
−0.926861 + 0.375404i \(0.877504\pi\)
\(558\) −0.197006 1.62249i −0.00833992 0.0686855i
\(559\) 22.9443 + 36.5801i 0.970439 + 1.54718i
\(560\) −0.252625 + 2.08055i −0.0106753 + 0.0879193i
\(561\) 16.5212 13.4892i 0.697526 0.569513i
\(562\) −6.97894 34.1851i −0.294389 1.44201i
\(563\) 6.64317 + 22.9349i 0.279976 + 0.966590i 0.970061 + 0.242861i \(0.0780860\pi\)
−0.690085 + 0.723728i \(0.742427\pi\)
\(564\) 1.67187 + 6.78303i 0.0703982 + 0.285617i
\(565\) −0.510005 + 6.31755i −0.0214561 + 0.265781i
\(566\) −6.29985 38.7645i −0.264802 1.62939i
\(567\) −0.724285 + 0.817549i −0.0304171 + 0.0343338i
\(568\) 15.8794 11.9326i 0.666284 0.500680i
\(569\) −22.1808 27.1666i −0.929869 1.13888i −0.990053 0.140695i \(-0.955066\pi\)
0.0601843 0.998187i \(-0.480831\pi\)
\(570\) −4.93550 + 30.3694i −0.206725 + 1.27203i
\(571\) 18.4689 + 4.55217i 0.772899 + 0.190503i 0.605993 0.795470i \(-0.292776\pi\)
0.166907 + 0.985973i \(0.446622\pi\)
\(572\) −8.65884 2.92613i −0.362044 0.122348i
\(573\) −9.07240 + 2.23614i −0.379005 + 0.0934163i
\(574\) −0.0727277 0.900894i −0.00303559 0.0376026i
\(575\) −0.244618 + 0.0816654i −0.0102013 + 0.00340568i
\(576\) 4.21612 + 4.38945i 0.175672 + 0.182894i
\(577\) 25.1843i 1.04844i 0.851584 + 0.524219i \(0.175643\pi\)
−0.851584 + 0.524219i \(0.824357\pi\)
\(578\) 11.6756 11.2145i 0.485640 0.466463i
\(579\) −4.98069 4.06660i −0.206990 0.169002i
\(580\) −3.55751 + 6.77827i −0.147718 + 0.281452i
\(581\) 0.00229816 0.000373488i 9.53439e−5 1.54949e-5i
\(582\) 6.09066 3.85150i 0.252466 0.159650i
\(583\) 56.1873 26.6612i 2.32704 1.10419i
\(584\) −8.70423 + 12.6103i −0.360184 + 0.521816i
\(585\) 7.26077 + 1.20737i 0.300196 + 0.0499188i
\(586\) 8.24724 + 11.9482i 0.340691 + 0.493575i
\(587\) −8.14672 4.70351i −0.336251 0.194135i 0.322362 0.946617i \(-0.395523\pi\)
−0.658613 + 0.752482i \(0.728857\pi\)
\(588\) −1.75016 3.68839i −0.0721754 0.152106i
\(589\) 6.94784 + 2.31953i 0.286281 + 0.0955746i
\(590\) −3.09893 + 12.5729i −0.127581 + 0.517616i
\(591\) 15.3306 0.617800i 0.630615 0.0254129i
\(592\) −15.4791 + 0.623788i −0.636189 + 0.0256375i
\(593\) 7.27877 29.5311i 0.298903 1.21270i −0.608881 0.793261i \(-0.708381\pi\)
0.907784 0.419437i \(-0.137772\pi\)
\(594\) 49.9506 + 16.6760i 2.04950 + 0.684223i
\(595\) 0.494533 + 1.04221i 0.0202739 + 0.0427263i
\(596\) 4.21792 + 2.43522i 0.172773 + 0.0997504i
\(597\) −19.2251 27.8524i −0.786832 1.13992i
\(598\) 0.204278 + 1.01971i 0.00835356 + 0.0416992i
\(599\) 6.51400 9.43716i 0.266155 0.385592i −0.667005 0.745053i \(-0.732424\pi\)
0.933160 + 0.359461i \(0.117040\pi\)
\(600\) −4.28204 + 2.03185i −0.174813 + 0.0829500i
\(601\) −14.0853 + 8.90701i −0.574552 + 0.363324i −0.789921 0.613208i \(-0.789879\pi\)
0.215370 + 0.976533i \(0.430904\pi\)
\(602\) −4.35005 + 0.706951i −0.177295 + 0.0288132i
\(603\) −0.879825 + 1.67637i −0.0358292 + 0.0682669i
\(604\) 5.50441 + 4.49421i 0.223971 + 0.182867i
\(605\) −33.9650 + 32.6238i −1.38087 + 1.32635i
\(606\) 20.3041i 0.824796i
\(607\) −12.3197 12.8262i −0.500041 0.520598i 0.422570 0.906330i \(-0.361128\pi\)
−0.922611 + 0.385733i \(0.873949\pi\)
\(608\) 16.7791 5.60169i 0.680482 0.227178i
\(609\) −0.251020 3.10945i −0.0101719 0.126001i
\(610\) −14.0250 + 3.45685i −0.567856 + 0.139964i
\(611\) −8.72395 + 41.9462i −0.352933 + 1.69696i
\(612\) −1.13598 0.279995i −0.0459194 0.0113181i
\(613\) −2.05046 + 12.6170i −0.0828173 + 0.509596i 0.912188 + 0.409772i \(0.134392\pi\)
−0.995005 + 0.0998233i \(0.968172\pi\)
\(614\) 0.711285 + 0.871166i 0.0287051 + 0.0351574i
\(615\) −5.17505 + 3.88880i −0.208678 + 0.156811i
\(616\) −2.30129 + 2.59762i −0.0927217 + 0.104661i
\(617\) 4.27497 + 26.3049i 0.172104 + 1.05900i 0.919058 + 0.394122i \(0.128951\pi\)
−0.746955 + 0.664875i \(0.768485\pi\)
\(618\) 2.54827 31.5660i 0.102507 1.26977i
\(619\) 4.22062 + 17.1237i 0.169641 + 0.688261i 0.992731 + 0.120351i \(0.0384019\pi\)
−0.823090 + 0.567911i \(0.807752\pi\)
\(620\) 0.218731 + 0.755148i 0.00878446 + 0.0303275i
\(621\) −0.209528 1.02633i −0.00840806 0.0411854i
\(622\) −23.3273 + 19.0461i −0.935338 + 0.763679i
\(623\) 0.129639 1.06767i 0.00519388 0.0427754i
\(624\) 7.31368 + 22.1780i 0.292782 + 0.887829i
\(625\) −1.94097 15.9853i −0.0776388 0.639413i
\(626\) −22.1842 21.3082i −0.886657 0.851646i
\(627\) −43.1204 + 44.8930i −1.72206 + 1.79286i
\(628\) −0.0104855 + 0.0220976i −0.000418415 + 0.000881791i
\(629\) −7.01752 + 4.84384i −0.279807 + 0.193137i
\(630\) −0.401507 + 0.634933i −0.0159964 + 0.0252963i
\(631\) 5.96241 + 7.93453i 0.237360 + 0.315869i 0.902367 0.430968i \(-0.141828\pi\)
−0.665007 + 0.746837i \(0.731572\pi\)
\(632\) 4.42783 + 8.43653i 0.176130 + 0.335587i
\(633\) −5.20663 + 25.5038i −0.206945 + 1.01368i
\(634\) 1.38741 0.112004i 0.0551012 0.00444823i
\(635\) −5.92178 1.71527i −0.234999 0.0680682i
\(636\) 5.41145 + 2.84015i 0.214578 + 0.112619i
\(637\) 0.0919462 25.0372i 0.00364304 0.992012i
\(638\) −78.4435 + 41.1703i −3.10561 + 1.62995i
\(639\) 8.52315 1.74001i 0.337171 0.0688339i
\(640\) −20.5528 15.4444i −0.812419 0.610493i
\(641\) 0.137617 + 3.41494i 0.00543555 + 0.134882i 0.999628 + 0.0272668i \(0.00868037\pi\)
−0.994193 + 0.107615i \(0.965679\pi\)
\(642\) 3.25164 1.23319i 0.128332 0.0486700i
\(643\) −36.8885 + 10.6849i −1.45474 + 0.421371i −0.909075 0.416632i \(-0.863210\pi\)
−0.545666 + 0.838003i \(0.683723\pi\)
\(644\) −0.0181807 0.00371163i −0.000716422 0.000146259i
\(645\) 20.9311 + 23.6263i 0.824160 + 0.930285i
\(646\) 18.9693 23.2331i 0.746335 0.914095i
\(647\) −1.14466 + 28.4044i −0.0450011 + 1.11669i 0.806130 + 0.591738i \(0.201558\pi\)
−0.851131 + 0.524953i \(0.824083\pi\)
\(648\) −3.59085 10.7559i −0.141062 0.422532i
\(649\) −19.6094 + 17.3724i −0.769736 + 0.681927i
\(650\) 7.81326 + 0.0286933i 0.306461 + 0.00112544i
\(651\) −0.239809 0.212453i −0.00939887 0.00832667i
\(652\) 0.362986 0.851958i 0.0142156 0.0333653i
\(653\) 13.8855 24.0504i 0.543381 0.941164i −0.455326 0.890325i \(-0.650477\pi\)
0.998707 0.0508390i \(-0.0161895\pi\)
\(654\) −7.75821 13.4376i −0.303370 0.525452i
\(655\) 4.72299 0.573475i 0.184543 0.0224075i
\(656\) 10.3578 + 4.91486i 0.404406 + 0.191893i
\(657\) −5.81145 + 3.35524i −0.226726 + 0.130900i
\(658\) −3.59871 2.48401i −0.140292 0.0968368i
\(659\) −11.0140 + 4.69261i −0.429043 + 0.182798i −0.595683 0.803220i \(-0.703118\pi\)
0.166640 + 0.986018i \(0.446708\pi\)
\(660\) −6.59465 1.07174i −0.256696 0.0417172i
\(661\) −22.1053 + 29.4168i −0.859796 + 1.14418i 0.128511 + 0.991708i \(0.458980\pi\)
−0.988308 + 0.152473i \(0.951276\pi\)
\(662\) 13.0047 + 34.2905i 0.505441 + 1.33274i
\(663\) 9.92669 + 8.16583i 0.385521 + 0.317135i
\(664\) −0.00857164 + 0.0226015i −0.000332644 + 0.000877110i
\(665\) −1.79941 2.84553i −0.0697780 0.110345i
\(666\) −5.10851 2.17653i −0.197951 0.0843390i
\(667\) 1.48941 + 0.941843i 0.0576700 + 0.0364683i
\(668\) 8.51278 + 1.03364i 0.329369 + 0.0399927i
\(669\) 4.00813 + 9.40742i 0.154963 + 0.363712i
\(670\) 1.64962 4.94123i 0.0637305 0.190896i
\(671\) −27.3246 10.3629i −1.05486 0.400054i
\(672\) −0.771216 0.0622590i −0.0297503 0.00240169i
\(673\) 1.62502 5.61021i 0.0626398 0.216258i −0.923093 0.384578i \(-0.874347\pi\)
0.985732 + 0.168320i \(0.0538342\pi\)
\(674\) 27.3020 + 1.10023i 1.05164 + 0.0423794i
\(675\) −7.86988 −0.302912
\(676\) 0.704086 5.46303i 0.0270802 0.210117i
\(677\) 37.8776 1.45576 0.727878 0.685707i \(-0.240507\pi\)
0.727878 + 0.685707i \(0.240507\pi\)
\(678\) −7.20206 0.290233i −0.276594 0.0111463i
\(679\) −0.219385 + 0.757406i −0.00841923 + 0.0290666i
\(680\) −11.9376 0.963700i −0.457785 0.0369562i
\(681\) 1.63112 + 0.618602i 0.0625047 + 0.0237049i
\(682\) −2.88117 + 8.63015i −0.110326 + 0.330466i
\(683\) 13.7692 + 32.3174i 0.526862 + 1.23659i 0.944660 + 0.328051i \(0.106392\pi\)
−0.417798 + 0.908540i \(0.637198\pi\)
\(684\) 3.38970 + 0.411584i 0.129608 + 0.0157373i
\(685\) −23.1670 14.6499i −0.885165 0.559745i
\(686\) 4.72073 + 2.01132i 0.180238 + 0.0767924i
\(687\) −14.9690 23.6715i −0.571101 0.903125i
\(688\) 19.8235 52.2703i 0.755764 1.99278i
\(689\) 22.4058 + 30.0459i 0.853595 + 1.14466i
\(690\) 0.269574 + 0.710809i 0.0102625 + 0.0270600i
\(691\) −21.2727 + 28.3088i −0.809252 + 1.07692i 0.186281 + 0.982497i \(0.440357\pi\)
−0.995532 + 0.0944218i \(0.969900\pi\)
\(692\) 0.768502 + 0.124894i 0.0292141 + 0.00474775i
\(693\) −1.39823 + 0.595728i −0.0531142 + 0.0226298i
\(694\) 20.4191 + 14.0943i 0.775100 + 0.535013i
\(695\) −15.3466 + 8.86034i −0.582128 + 0.336092i
\(696\) 29.2600 + 13.8841i 1.10910 + 0.526274i
\(697\) 6.26440 0.760636i 0.237281 0.0288111i
\(698\) −13.2418 22.9355i −0.501209 0.868120i
\(699\) 15.1702 26.2755i 0.573789 0.993832i
\(700\) −0.0546436 + 0.128253i −0.00206534 + 0.00484752i
\(701\) 16.0083 + 14.1821i 0.604624 + 0.535650i 0.908943 0.416920i \(-0.136890\pi\)
−0.304319 + 0.952570i \(0.598429\pi\)
\(702\) −3.94106 + 31.4907i −0.148746 + 1.18854i
\(703\) 18.6273 16.5024i 0.702543 0.622399i
\(704\) −10.7291 32.1374i −0.404366 1.21123i
\(705\) −1.26106 + 31.2929i −0.0474944 + 1.17856i
\(706\) −21.4066 + 26.2184i −0.805649 + 0.986741i
\(707\) 1.47329 + 1.66301i 0.0554089 + 0.0625438i
\(708\) −2.52239 0.514949i −0.0947971 0.0193530i
\(709\) 19.5972 5.67639i 0.735987 0.213181i 0.111005 0.993820i \(-0.464593\pi\)
0.624983 + 0.780639i \(0.285106\pi\)
\(710\) −22.3803 + 8.48771i −0.839916 + 0.318538i
\(711\) 0.168018 + 4.16932i 0.00630116 + 0.156362i
\(712\) 8.92649 + 6.70782i 0.334534 + 0.251386i
\(713\) 0.177324 0.0362009i 0.00664082 0.00135573i
\(714\) −1.16163 + 0.609669i −0.0434728 + 0.0228163i
\(715\) −33.6354 23.3997i −1.25789 0.875097i
\(716\) −2.89150 1.51758i −0.108061 0.0567146i
\(717\) 4.82353 + 1.39715i 0.180138 + 0.0521776i
\(718\) 33.7676 2.72600i 1.26019 0.101733i
\(719\) 3.22677 15.8057i 0.120338 0.589455i −0.874243 0.485489i \(-0.838642\pi\)
0.994581 0.103966i \(-0.0331533\pi\)
\(720\) −4.42842 8.43765i −0.165037 0.314453i
\(721\) 2.08176 + 2.77032i 0.0775289 + 0.103172i
\(722\) −30.9757 + 48.9842i −1.15280 + 1.82300i
\(723\) −8.75561 + 6.04356i −0.325625 + 0.224762i
\(724\) 1.82019 3.83598i 0.0676470 0.142563i
\(725\) 9.17131 9.54834i 0.340614 0.354617i
\(726\) −38.6261 37.1009i −1.43355 1.37694i
\(727\) −0.853477 7.02901i −0.0316537 0.260692i −0.999941 0.0108527i \(-0.996545\pi\)
0.968287 0.249839i \(-0.0803777\pi\)
\(728\) −1.80740 1.05237i −0.0669866 0.0390034i
\(729\) 3.43541 28.2932i 0.127238 1.04790i
\(730\) 14.3025 11.6777i 0.529361 0.432210i
\(731\) −6.15480 30.1482i −0.227644 1.11507i
\(732\) −0.798972 2.75837i −0.0295309 0.101952i
\(733\) −2.60397 10.5647i −0.0961797 0.390216i 0.903047 0.429542i \(-0.141325\pi\)
−0.999226 + 0.0393259i \(0.987479\pi\)
\(734\) 1.11054 13.7565i 0.0409906 0.507760i
\(735\) −2.93586 18.0651i −0.108291 0.666340i
\(736\) 0.289832 0.327152i 0.0106833 0.0120590i
\(737\) 8.42546 6.33132i 0.310356 0.233217i
\(738\) 2.59899 + 3.18319i 0.0956703 + 0.117175i
\(739\) 2.00385 12.3302i 0.0737128 0.453573i −0.923787 0.382906i \(-0.874923\pi\)
0.997500 0.0706668i \(-0.0225127\pi\)
\(740\) 2.59344 + 0.639226i 0.0953368 + 0.0234984i
\(741\) −31.6325 20.1662i −1.16205 0.740823i
\(742\) −3.71420 + 0.915468i −0.136352 + 0.0336079i
\(743\) −2.01326 24.9387i −0.0738595 0.914914i −0.922513 0.385965i \(-0.873868\pi\)
0.848654 0.528949i \(-0.177414\pi\)
\(744\) 3.15500 1.05329i 0.115668 0.0386156i
\(745\) 15.1250 + 15.7468i 0.554139 + 0.576920i
\(746\) 17.8969i 0.655252i
\(747\) −0.00763479 + 0.00733332i −0.000279342 + 0.000268312i
\(748\) 5.04503 + 4.11914i 0.184464 + 0.150611i
\(749\) −0.176844 + 0.336949i −0.00646175 + 0.0123118i
\(750\) 25.8878 4.20718i 0.945290 0.153625i
\(751\) −7.38563 + 4.67039i −0.269505 + 0.170425i −0.662382 0.749166i \(-0.730454\pi\)
0.392877 + 0.919591i \(0.371480\pi\)
\(752\) 50.1119 23.7784i 1.82739 0.867109i
\(753\) −8.37555 + 12.1341i −0.305222 + 0.442190i
\(754\) −33.6141 41.4798i −1.22415 1.51061i
\(755\) 18.0966 + 26.2174i 0.658602 + 0.954150i
\(756\) −0.490391 0.283128i −0.0178354 0.0102972i
\(757\) −3.39361 7.15189i −0.123343 0.259940i 0.832381 0.554203i \(-0.186977\pi\)
−0.955724 + 0.294264i \(0.904926\pi\)
\(758\) 37.4782 + 12.5121i 1.36127 + 0.454459i
\(759\) −0.368070 + 1.49332i −0.0133601 + 0.0542040i
\(760\) 34.9248 1.40742i 1.26686 0.0510526i
\(761\) −19.1074 + 0.770002i −0.692643 + 0.0279126i −0.384091 0.923295i \(-0.625485\pi\)
−0.308552 + 0.951208i \(0.599844\pi\)
\(762\) 1.67791 6.80754i 0.0607842 0.246611i
\(763\) 1.61049 + 0.537661i 0.0583037 + 0.0194646i
\(764\) −1.22320 2.57783i −0.0442537 0.0932627i
\(765\) −4.54232 2.62251i −0.164228 0.0948171i