Properties

Label 169.2.k.a.4.4
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.4
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59712 - 0.0643616i) q^{2} +(0.883856 - 3.05143i) q^{3} +(0.553124 + 0.0446528i) q^{4} +(-1.36888 - 0.519147i) q^{5} +(-1.60802 + 4.81660i) q^{6} +(-0.861700 - 2.02248i) q^{7} +(2.29299 + 0.278419i) q^{8} +(-5.99443 - 3.79065i) q^{9} +O(q^{10})\) \(q+(-1.59712 - 0.0643616i) q^{2} +(0.883856 - 3.05143i) q^{3} +(0.553124 + 0.0446528i) q^{4} +(-1.36888 - 0.519147i) q^{5} +(-1.60802 + 4.81660i) q^{6} +(-0.861700 - 2.02248i) q^{7} +(2.29299 + 0.278419i) q^{8} +(-5.99443 - 3.79065i) q^{9} +(2.15285 + 0.917242i) q^{10} +(2.94174 + 4.65200i) q^{11} +(0.625137 - 1.64835i) q^{12} +(-3.54638 - 0.650553i) q^{13} +(1.24606 + 3.28560i) q^{14} +(-2.79403 + 3.71818i) q^{15} +(-4.73972 - 0.770280i) q^{16} +(-0.364198 + 0.155170i) q^{17} +(9.32983 + 6.43991i) q^{18} +(-0.468898 + 0.270719i) q^{19} +(-0.733978 - 0.348277i) q^{20} +(-6.93308 + 0.841828i) q^{21} +(-4.39890 - 7.61912i) q^{22} +(4.58125 - 7.93496i) q^{23} +(2.87625 - 6.75080i) q^{24} +(-2.13824 - 1.89431i) q^{25} +(5.62210 + 1.26726i) q^{26} +(-9.73136 + 8.62123i) q^{27} +(-0.386317 - 1.15716i) q^{28} +(-0.0318105 + 0.789370i) q^{29} +(4.70170 - 5.75854i) q^{30} +(-2.66491 - 3.00807i) q^{31} +(2.99402 + 0.611233i) q^{32} +(16.7953 - 4.86482i) q^{33} +(0.591653 - 0.224384i) q^{34} +(0.129596 + 3.21588i) q^{35} +(-3.14640 - 2.36437i) q^{36} +(8.10616 - 1.65488i) q^{37} +(0.766309 - 0.402190i) q^{38} +(-5.11960 + 10.2465i) q^{39} +(-2.99428 - 1.57152i) q^{40} +(2.29150 + 0.663742i) q^{41} +(11.1271 - 0.898274i) q^{42} +(-0.192844 + 0.944614i) q^{43} +(1.41942 + 2.70449i) q^{44} +(6.23774 + 8.30092i) q^{45} +(-7.82750 + 12.3782i) q^{46} +(1.57569 - 1.08762i) q^{47} +(-6.53969 + 13.7821i) q^{48} +(1.50116 - 1.56287i) q^{49} +(3.29310 + 3.16306i) q^{50} +(0.151592 + 1.24847i) q^{51} +(-1.93254 - 0.518192i) q^{52} +(0.445337 - 3.66768i) q^{53} +(16.0970 - 13.1428i) q^{54} +(-1.61182 - 7.89522i) q^{55} +(-1.41277 - 4.87744i) q^{56} +(0.411639 + 1.67008i) q^{57} +(0.101610 - 1.25867i) q^{58} +(0.141757 + 0.872269i) q^{59} +(-1.71147 + 1.93185i) q^{60} +(9.37253 - 7.04300i) q^{61} +(4.06257 + 4.97575i) q^{62} +(-2.50112 + 15.3900i) q^{63} +(4.58229 + 1.12943i) q^{64} +(4.51683 + 2.73162i) q^{65} +(-27.1372 + 6.68871i) q^{66} +(-0.987347 - 12.2305i) q^{67} +(-0.208375 + 0.0695659i) q^{68} +(-20.1638 - 20.9927i) q^{69} -5.14448i q^{70} +(-7.70820 + 7.40383i) q^{71} +(-12.6898 - 10.3609i) q^{72} +(-3.33942 + 6.36273i) q^{73} +(-13.0530 + 2.12132i) q^{74} +(-7.67026 + 4.85038i) q^{75} +(-0.271447 + 0.128803i) q^{76} +(6.87369 - 9.95825i) q^{77} +(8.83608 - 16.0354i) q^{78} +(-0.175324 - 0.254001i) q^{79} +(6.08822 + 3.51503i) q^{80} +(8.58455 + 18.0916i) q^{81} +(-3.61708 - 1.20756i) q^{82} +(-1.27844 + 5.18682i) q^{83} +(-3.87244 + 0.156054i) q^{84} +(0.579099 - 0.0233369i) q^{85} +(0.368792 - 1.49625i) q^{86} +(2.38059 + 0.794757i) q^{87} +(5.45018 + 11.4860i) q^{88} +(-7.34066 - 4.23813i) q^{89} +(-9.42814 - 13.6590i) q^{90} +(1.74018 + 7.73307i) q^{91} +(2.88832 - 4.18445i) q^{92} +(-11.5343 + 5.47309i) q^{93} +(-2.58656 + 1.63564i) q^{94} +(0.782408 - 0.127154i) q^{95} +(4.51141 - 8.59578i) q^{96} +(3.98101 + 3.25040i) q^{97} +(-2.49811 + 2.39947i) q^{98} -39.0372i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.59712 0.0643616i −1.12933 0.0455105i −0.531446 0.847092i \(-0.678351\pi\)
−0.597886 + 0.801581i \(0.703992\pi\)
\(3\) 0.883856 3.05143i 0.510295 1.76174i −0.127817 0.991798i \(-0.540797\pi\)
0.638112 0.769944i \(-0.279716\pi\)
\(4\) 0.553124 + 0.0446528i 0.276562 + 0.0223264i
\(5\) −1.36888 0.519147i −0.612181 0.232170i 0.0289750 0.999580i \(-0.490776\pi\)
−0.641156 + 0.767410i \(0.721545\pi\)
\(6\) −1.60802 + 4.81660i −0.656470 + 1.96637i
\(7\) −0.861700 2.02248i −0.325692 0.764427i −0.999670 0.0256760i \(-0.991826\pi\)
0.673978 0.738751i \(-0.264584\pi\)
\(8\) 2.29299 + 0.278419i 0.810694 + 0.0984360i
\(9\) −5.99443 3.79065i −1.99814 1.26355i
\(10\) 2.15285 + 0.917242i 0.680790 + 0.290057i
\(11\) 2.94174 + 4.65200i 0.886969 + 1.40263i 0.915188 + 0.403028i \(0.132042\pi\)
−0.0282184 + 0.999602i \(0.508983\pi\)
\(12\) 0.625137 1.64835i 0.180461 0.475838i
\(13\) −3.54638 0.650553i −0.983588 0.180431i
\(14\) 1.24606 + 3.28560i 0.333025 + 0.878114i
\(15\) −2.79403 + 3.71818i −0.721416 + 0.960030i
\(16\) −4.73972 0.770280i −1.18493 0.192570i
\(17\) −0.364198 + 0.155170i −0.0883309 + 0.0376343i −0.435680 0.900102i \(-0.643492\pi\)
0.347349 + 0.937736i \(0.387082\pi\)
\(18\) 9.32983 + 6.43991i 2.19906 + 1.51790i
\(19\) −0.468898 + 0.270719i −0.107573 + 0.0621071i −0.552821 0.833300i \(-0.686449\pi\)
0.445248 + 0.895407i \(0.353115\pi\)
\(20\) −0.733978 0.348277i −0.164123 0.0778771i
\(21\) −6.93308 + 0.841828i −1.51292 + 0.183702i
\(22\) −4.39890 7.61912i −0.937848 1.62440i
\(23\) 4.58125 7.93496i 0.955258 1.65455i 0.221480 0.975165i \(-0.428911\pi\)
0.733778 0.679390i \(-0.237755\pi\)
\(24\) 2.87625 6.75080i 0.587111 1.37800i
\(25\) −2.13824 1.89431i −0.427648 0.378863i
\(26\) 5.62210 + 1.26726i 1.10259 + 0.248530i
\(27\) −9.73136 + 8.62123i −1.87280 + 1.65916i
\(28\) −0.386317 1.15716i −0.0730071 0.218683i
\(29\) −0.0318105 + 0.789370i −0.00590706 + 0.146582i 0.993544 + 0.113449i \(0.0361897\pi\)
−0.999451 + 0.0331337i \(0.989451\pi\)
\(30\) 4.70170 5.75854i 0.858409 1.05136i
\(31\) −2.66491 3.00807i −0.478633 0.540265i 0.458750 0.888565i \(-0.348297\pi\)
−0.937383 + 0.348301i \(0.886759\pi\)
\(32\) 2.99402 + 0.611233i 0.529272 + 0.108052i
\(33\) 16.7953 4.86482i 2.92369 0.846856i
\(34\) 0.591653 0.224384i 0.101468 0.0384816i
\(35\) 0.129596 + 3.21588i 0.0219057 + 0.543584i
\(36\) −3.14640 2.36437i −0.524400 0.394061i
\(37\) 8.10616 1.65488i 1.33264 0.272061i 0.519673 0.854365i \(-0.326054\pi\)
0.812971 + 0.582304i \(0.197848\pi\)
\(38\) 0.766309 0.402190i 0.124312 0.0652438i
\(39\) −5.11960 + 10.2465i −0.819792 + 1.64075i
\(40\) −2.99428 1.57152i −0.473437 0.248479i
\(41\) 2.29150 + 0.663742i 0.357872 + 0.103659i 0.452283 0.891874i \(-0.350610\pi\)
−0.0944109 + 0.995533i \(0.530097\pi\)
\(42\) 11.1271 0.898274i 1.71695 0.138607i
\(43\) −0.192844 + 0.944614i −0.0294085 + 0.144052i −0.991844 0.127458i \(-0.959318\pi\)
0.962435 + 0.271511i \(0.0875232\pi\)
\(44\) 1.41942 + 2.70449i 0.213986 + 0.407717i
\(45\) 6.23774 + 8.30092i 0.929867 + 1.23743i
\(46\) −7.82750 + 12.3782i −1.15410 + 1.82507i
\(47\) 1.57569 1.08762i 0.229838 0.158646i −0.447580 0.894244i \(-0.647714\pi\)
0.677418 + 0.735598i \(0.263099\pi\)
\(48\) −6.53969 + 13.7821i −0.943922 + 1.98927i
\(49\) 1.50116 1.56287i 0.214451 0.223267i
\(50\) 3.29310 + 3.16306i 0.465714 + 0.447324i
\(51\) 0.151592 + 1.24847i 0.0212271 + 0.174821i
\(52\) −1.93254 0.518192i −0.267995 0.0718603i
\(53\) 0.445337 3.66768i 0.0611717 0.503794i −0.929632 0.368489i \(-0.879875\pi\)
0.990804 0.135306i \(-0.0432016\pi\)
\(54\) 16.0970 13.1428i 2.19052 1.78851i
\(55\) −1.61182 7.89522i −0.217338 1.06459i
\(56\) −1.41277 4.87744i −0.188789 0.651776i
\(57\) 0.411639 + 1.67008i 0.0545229 + 0.221208i
\(58\) 0.101610 1.25867i 0.0133421 0.165271i
\(59\) 0.141757 + 0.872269i 0.0184552 + 0.113560i 0.994643 0.103366i \(-0.0329612\pi\)
−0.976188 + 0.216926i \(0.930397\pi\)
\(60\) −1.71147 + 1.93185i −0.220950 + 0.249401i
\(61\) 9.37253 7.04300i 1.20003 0.901764i 0.203030 0.979172i \(-0.434921\pi\)
0.996999 + 0.0774088i \(0.0246647\pi\)
\(62\) 4.06257 + 4.97575i 0.515947 + 0.631921i
\(63\) −2.50112 + 15.3900i −0.315112 + 1.93896i
\(64\) 4.58229 + 1.12943i 0.572786 + 0.141179i
\(65\) 4.51683 + 2.73162i 0.560243 + 0.338816i
\(66\) −27.1372 + 6.68871i −3.34035 + 0.823323i
\(67\) −0.987347 12.2305i −0.120624 1.49419i −0.720140 0.693829i \(-0.755922\pi\)
0.599516 0.800363i \(-0.295360\pi\)
\(68\) −0.208375 + 0.0695659i −0.0252692 + 0.00843610i
\(69\) −20.1638 20.9927i −2.42743 2.52723i
\(70\) 5.14448i 0.614883i
\(71\) −7.70820 + 7.40383i −0.914795 + 0.878672i −0.992982 0.118266i \(-0.962266\pi\)
0.0781870 + 0.996939i \(0.475087\pi\)
\(72\) −12.6898 10.3609i −1.49550 1.22104i
\(73\) −3.33942 + 6.36273i −0.390850 + 0.744702i −0.998785 0.0492849i \(-0.984306\pi\)
0.607935 + 0.793987i \(0.291998\pi\)
\(74\) −13.0530 + 2.12132i −1.51738 + 0.246598i
\(75\) −7.67026 + 4.85038i −0.885685 + 0.560073i
\(76\) −0.271447 + 0.128803i −0.0311371 + 0.0147748i
\(77\) 6.87369 9.95825i 0.783329 1.13485i
\(78\) 8.83608 16.0354i 1.00049 1.81565i
\(79\) −0.175324 0.254001i −0.0197255 0.0285773i 0.812997 0.582268i \(-0.197834\pi\)
−0.832723 + 0.553690i \(0.813219\pi\)
\(80\) 6.08822 + 3.51503i 0.680683 + 0.392993i
\(81\) 8.58455 + 18.0916i 0.953839 + 2.01017i
\(82\) −3.61708 1.20756i −0.399439 0.133352i
\(83\) −1.27844 + 5.18682i −0.140327 + 0.569328i 0.858112 + 0.513463i \(0.171638\pi\)
−0.998438 + 0.0558646i \(0.982208\pi\)
\(84\) −3.87244 + 0.156054i −0.422518 + 0.0170269i
\(85\) 0.579099 0.0233369i 0.0628121 0.00253124i
\(86\) 0.368792 1.49625i 0.0397678 0.161344i
\(87\) 2.38059 + 0.794757i 0.255226 + 0.0852069i
\(88\) 5.45018 + 11.4860i 0.580991 + 1.22441i
\(89\) −7.34066 4.23813i −0.778108 0.449241i 0.0576511 0.998337i \(-0.481639\pi\)
−0.835759 + 0.549096i \(0.814972\pi\)
\(90\) −9.42814 13.6590i −0.993813 1.43979i
\(91\) 1.74018 + 7.73307i 0.182420 + 0.810646i
\(92\) 2.88832 4.18445i 0.301128 0.436259i
\(93\) −11.5343 + 5.47309i −1.19605 + 0.567533i
\(94\) −2.58656 + 1.63564i −0.266783 + 0.168704i
\(95\) 0.782408 0.127154i 0.0802733 0.0130457i
\(96\) 4.51141 8.59578i 0.460444 0.877303i
\(97\) 3.98101 + 3.25040i 0.404211 + 0.330028i 0.812644 0.582760i \(-0.198027\pi\)
−0.408433 + 0.912788i \(0.633925\pi\)
\(98\) −2.49811 + 2.39947i −0.252347 + 0.242383i
\(99\) 39.0372i 3.92338i
\(100\) −1.09812 1.14327i −0.109812 0.114327i
\(101\) 4.51963 1.50887i 0.449720 0.150139i −0.0827814 0.996568i \(-0.526380\pi\)
0.532501 + 0.846429i \(0.321252\pi\)
\(102\) −0.161756 2.00371i −0.0160162 0.198397i
\(103\) −6.43346 + 1.58571i −0.633908 + 0.156244i −0.543159 0.839630i \(-0.682772\pi\)
−0.0907484 + 0.995874i \(0.528926\pi\)
\(104\) −7.95067 2.47909i −0.779627 0.243095i
\(105\) 9.92758 + 2.44693i 0.968832 + 0.238796i
\(106\) −0.947312 + 5.82905i −0.0920111 + 0.566167i
\(107\) 5.44947 + 6.67439i 0.526820 + 0.645238i 0.967633 0.252361i \(-0.0812071\pi\)
−0.440813 + 0.897599i \(0.645310\pi\)
\(108\) −5.76761 + 4.33408i −0.554989 + 0.417047i
\(109\) 7.16609 8.08885i 0.686387 0.774771i −0.297276 0.954792i \(-0.596078\pi\)
0.983663 + 0.180021i \(0.0576164\pi\)
\(110\) 2.06612 + 12.7133i 0.196996 + 1.21217i
\(111\) 2.11492 26.1980i 0.200740 2.48661i
\(112\) 2.52634 + 10.2498i 0.238717 + 0.968512i
\(113\) 3.51359 + 12.1303i 0.330531 + 1.14112i 0.937958 + 0.346749i \(0.112714\pi\)
−0.607428 + 0.794375i \(0.707799\pi\)
\(114\) −0.549946 2.69381i −0.0515072 0.252299i
\(115\) −10.3906 + 8.48366i −0.968928 + 0.791105i
\(116\) −0.0528427 + 0.435199i −0.00490632 + 0.0404072i
\(117\) 18.7925 + 17.3427i 1.73737 + 1.60334i
\(118\) −0.170263 1.40224i −0.0156739 0.129087i
\(119\) 0.627658 + 0.602874i 0.0575373 + 0.0552654i
\(120\) −7.44189 + 7.74783i −0.679349 + 0.707277i
\(121\) −8.27159 + 17.4320i −0.751963 + 1.58473i
\(122\) −15.4223 + 10.6453i −1.39627 + 0.963777i
\(123\) 4.05072 6.40570i 0.365241 0.577582i
\(124\) −1.33971 1.78283i −0.120309 0.160103i
\(125\) 5.34537 + 10.1848i 0.478105 + 0.910952i
\(126\) 4.98511 24.4187i 0.444109 2.17539i
\(127\) 1.68122 0.135722i 0.149184 0.0120434i −0.00564906 0.999984i \(-0.501798\pi\)
0.154833 + 0.987941i \(0.450516\pi\)
\(128\) −13.1160 3.79910i −1.15930 0.335796i
\(129\) 2.71197 + 1.42335i 0.238776 + 0.125319i
\(130\) −7.03809 4.65342i −0.617281 0.408132i
\(131\) 13.6425 7.16013i 1.19195 0.625583i 0.252275 0.967655i \(-0.418821\pi\)
0.939674 + 0.342072i \(0.111129\pi\)
\(132\) 9.50711 1.94089i 0.827488 0.168933i
\(133\) 0.951574 + 0.715061i 0.0825119 + 0.0620037i
\(134\) 0.789734 + 19.5971i 0.0682227 + 1.69293i
\(135\) 17.7967 6.74941i 1.53170 0.580897i
\(136\) −0.878303 + 0.254404i −0.0753139 + 0.0218149i
\(137\) 5.15430 + 1.05226i 0.440362 + 0.0899005i 0.415091 0.909780i \(-0.363750\pi\)
0.0252713 + 0.999681i \(0.491955\pi\)
\(138\) 30.8528 + 34.8256i 2.62636 + 2.96455i
\(139\) −7.30354 + 8.94521i −0.619478 + 0.758723i −0.985089 0.172045i \(-0.944963\pi\)
0.365611 + 0.930768i \(0.380860\pi\)
\(140\) −0.0719157 + 1.78457i −0.00607799 + 0.150824i
\(141\) −1.92611 5.76940i −0.162208 0.485871i
\(142\) 12.7874 11.3287i 1.07310 0.950680i
\(143\) −7.40616 18.4115i −0.619334 1.53965i
\(144\) 25.4921 + 22.5840i 2.12434 + 1.88200i
\(145\) 0.453344 1.06404i 0.0376481 0.0883634i
\(146\) 5.74296 9.94710i 0.475291 0.823228i
\(147\) −3.44217 5.96202i −0.283906 0.491739i
\(148\) 4.55761 0.553394i 0.374633 0.0454887i
\(149\) −15.8141 7.50389i −1.29554 0.614743i −0.348940 0.937145i \(-0.613458\pi\)
−0.946603 + 0.322402i \(0.895510\pi\)
\(150\) 12.5625 7.25294i 1.02572 0.592200i
\(151\) 5.72225 + 3.94979i 0.465670 + 0.321429i 0.777691 0.628646i \(-0.216391\pi\)
−0.312021 + 0.950075i \(0.601006\pi\)
\(152\) −1.15055 + 0.490204i −0.0933220 + 0.0397608i
\(153\) 2.77135 + 0.450389i 0.224051 + 0.0364118i
\(154\) −11.6190 + 15.4621i −0.936286 + 1.24597i
\(155\) 2.08631 + 5.50116i 0.167577 + 0.441864i
\(156\) −3.28931 + 5.43898i −0.263355 + 0.435467i
\(157\) 5.57259 14.6937i 0.444741 1.17269i −0.505954 0.862560i \(-0.668860\pi\)
0.950695 0.310126i \(-0.100371\pi\)
\(158\) 0.263665 + 0.416953i 0.0209761 + 0.0331710i
\(159\) −10.7980 4.60061i −0.856340 0.364852i
\(160\) −3.78113 2.39104i −0.298924 0.189028i
\(161\) −19.9960 2.42795i −1.57591 0.191350i
\(162\) −12.5461 29.4468i −0.985717 2.31356i
\(163\) −4.04866 + 12.1272i −0.317115 + 0.949876i 0.662512 + 0.749051i \(0.269490\pi\)
−0.979627 + 0.200825i \(0.935638\pi\)
\(164\) 1.23785 + 0.469453i 0.0966596 + 0.0366581i
\(165\) −25.5163 2.05989i −1.98644 0.160362i
\(166\) 2.37564 8.20168i 0.184386 0.636574i
\(167\) 5.82561 + 0.234764i 0.450799 + 0.0181666i 0.264628 0.964351i \(-0.414751\pi\)
0.186171 + 0.982517i \(0.440392\pi\)
\(168\) −16.1318 −1.24460
\(169\) 12.1536 + 4.61421i 0.934889 + 0.354939i
\(170\) −0.926390 −0.0710509
\(171\) 3.83698 + 0.154625i 0.293421 + 0.0118245i
\(172\) −0.148846 + 0.513877i −0.0113494 + 0.0391828i
\(173\) 13.7852 + 1.11285i 1.04807 + 0.0846088i 0.592482 0.805583i \(-0.298148\pi\)
0.455585 + 0.890192i \(0.349430\pi\)
\(174\) −3.75092 1.42254i −0.284357 0.107842i
\(175\) −1.98870 + 5.95688i −0.150332 + 0.450298i
\(176\) −10.3597 24.3151i −0.780893 1.83282i
\(177\) 2.78696 + 0.338398i 0.209480 + 0.0254355i
\(178\) 11.4511 + 7.24125i 0.858297 + 0.542754i
\(179\) 17.1525 + 7.30798i 1.28203 + 0.546224i 0.922172 0.386781i \(-0.126413\pi\)
0.359863 + 0.933005i \(0.382823\pi\)
\(180\) 3.07958 + 4.86997i 0.229539 + 0.362986i
\(181\) 2.86278 7.54854i 0.212789 0.561079i −0.785543 0.618807i \(-0.787616\pi\)
0.998332 + 0.0577280i \(0.0183856\pi\)
\(182\) −2.28156 12.4626i −0.169120 0.923790i
\(183\) −13.2072 34.8246i −0.976306 2.57431i
\(184\) 12.7140 16.9193i 0.937289 1.24730i
\(185\) −11.9555 1.94295i −0.878984 0.142849i
\(186\) 18.7739 7.99879i 1.37657 0.586500i
\(187\) −1.79323 1.23778i −0.131134 0.0905151i
\(188\) 0.920117 0.531230i 0.0671064 0.0387439i
\(189\) 25.8218 + 12.2526i 1.87826 + 0.891246i
\(190\) −1.25778 + 0.152722i −0.0912490 + 0.0110796i
\(191\) 7.69177 + 13.3225i 0.556557 + 0.963985i 0.997781 + 0.0665877i \(0.0212112\pi\)
−0.441224 + 0.897397i \(0.645455\pi\)
\(192\) 7.49647 12.9843i 0.541011 0.937059i
\(193\) −0.358818 + 0.842178i −0.0258283 + 0.0606213i −0.932394 0.361443i \(-0.882284\pi\)
0.906566 + 0.422064i \(0.138694\pi\)
\(194\) −6.14894 5.44749i −0.441468 0.391107i
\(195\) 12.3276 11.3684i 0.882795 0.814108i
\(196\) 0.900112 0.797430i 0.0642937 0.0569593i
\(197\) 2.74868 + 8.23330i 0.195835 + 0.586599i 0.999969 0.00784979i \(-0.00249869\pi\)
−0.804134 + 0.594448i \(0.797370\pi\)
\(198\) −2.51249 + 62.3469i −0.178555 + 4.43080i
\(199\) −6.47130 + 7.92590i −0.458738 + 0.561852i −0.951237 0.308461i \(-0.900186\pi\)
0.492499 + 0.870313i \(0.336084\pi\)
\(200\) −4.37554 4.93897i −0.309398 0.349238i
\(201\) −38.1931 7.79717i −2.69393 0.549970i
\(202\) −7.31549 + 2.11896i −0.514716 + 0.149089i
\(203\) 1.62390 0.615863i 0.113975 0.0432251i
\(204\) 0.0281014 + 0.697328i 0.00196749 + 0.0488227i
\(205\) −2.79221 2.09821i −0.195016 0.146545i
\(206\) 10.3770 2.11849i 0.723003 0.147602i
\(207\) −57.5406 + 30.1997i −3.99935 + 2.09902i
\(208\) 16.3077 + 5.81514i 1.13074 + 0.403208i
\(209\) −2.63876 1.38493i −0.182527 0.0957975i
\(210\) −15.6980 4.54698i −1.08327 0.313772i
\(211\) 20.8180 1.68061i 1.43317 0.115698i 0.660654 0.750690i \(-0.270279\pi\)
0.772518 + 0.634993i \(0.218997\pi\)
\(212\) 0.410098 2.00879i 0.0281657 0.137965i
\(213\) 15.7793 + 30.0649i 1.08118 + 2.06001i
\(214\) −8.27387 11.0105i −0.565590 0.752664i
\(215\) 0.754374 1.19295i 0.0514479 0.0813583i
\(216\) −24.7142 + 17.0590i −1.68159 + 1.16072i
\(217\) −3.78741 + 7.98179i −0.257106 + 0.541840i
\(218\) −11.9657 + 12.4576i −0.810419 + 0.843736i
\(219\) 16.4638 + 15.8137i 1.11252 + 1.06859i
\(220\) −0.538993 4.43901i −0.0363389 0.299278i
\(221\) 1.39253 0.313362i 0.0936716 0.0210790i
\(222\) −5.06393 + 41.7052i −0.339869 + 2.79907i
\(223\) −12.2148 + 9.97305i −0.817961 + 0.667845i −0.946087 0.323913i \(-0.895001\pi\)
0.128126 + 0.991758i \(0.459104\pi\)
\(224\) −1.34373 6.58205i −0.0897821 0.439782i
\(225\) 5.63684 + 19.4606i 0.375789 + 1.29738i
\(226\) −4.83088 19.5997i −0.321346 1.30375i
\(227\) 0.605010 7.49439i 0.0401559 0.497420i −0.945152 0.326631i \(-0.894086\pi\)
0.985308 0.170789i \(-0.0546315\pi\)
\(228\) 0.153113 + 0.942145i 0.0101402 + 0.0623951i
\(229\) 4.26635 4.81571i 0.281928 0.318231i −0.590439 0.807082i \(-0.701045\pi\)
0.872367 + 0.488851i \(0.162584\pi\)
\(230\) 17.1410 12.8806i 1.13024 0.849324i
\(231\) −24.3115 29.7762i −1.59958 1.95913i
\(232\) −0.292717 + 1.80116i −0.0192178 + 0.118252i
\(233\) 21.2257 + 5.23168i 1.39054 + 0.342739i 0.862319 0.506365i \(-0.169011\pi\)
0.528226 + 0.849104i \(0.322857\pi\)
\(234\) −28.8976 28.9079i −1.88909 1.88977i
\(235\) −2.72156 + 0.670805i −0.177535 + 0.0437585i
\(236\) 0.0394602 + 0.488803i 0.00256864 + 0.0318183i
\(237\) −0.930025 + 0.310488i −0.0604116 + 0.0201684i
\(238\) −0.963641 1.00326i −0.0624636 0.0650315i
\(239\) 8.24769i 0.533499i 0.963766 + 0.266749i \(0.0859496\pi\)
−0.963766 + 0.266749i \(0.914050\pi\)
\(240\) 16.1070 15.4710i 1.03970 0.998646i
\(241\) 10.1247 + 8.26657i 0.652190 + 0.532496i 0.899766 0.436372i \(-0.143737\pi\)
−0.247577 + 0.968868i \(0.579634\pi\)
\(242\) 14.3326 27.3086i 0.921338 1.75546i
\(243\) 24.2947 3.94828i 1.55851 0.253282i
\(244\) 5.49866 3.47714i 0.352016 0.222601i
\(245\) −2.86626 + 1.36006i −0.183119 + 0.0868909i
\(246\) −6.88175 + 9.96993i −0.438764 + 0.635660i
\(247\) 1.83901 0.655027i 0.117013 0.0416784i
\(248\) −5.27311 7.63942i −0.334843 0.485104i
\(249\) 14.6972 + 8.48546i 0.931400 + 0.537744i
\(250\) −7.88167 16.6103i −0.498481 1.05053i
\(251\) −15.4576 5.16051i −0.975675 0.325728i −0.216261 0.976336i \(-0.569386\pi\)
−0.759414 + 0.650607i \(0.774514\pi\)
\(252\) −2.07064 + 8.40091i −0.130438 + 0.529208i
\(253\) 50.3903 2.03066i 3.16801 0.127666i
\(254\) −2.69383 + 0.108558i −0.169026 + 0.00681152i
\(255\) 0.440629 1.78770i 0.0275933 0.111950i
\(256\) 11.7502 + 3.92279i 0.734386 + 0.245174i
\(257\) −11.1820 23.5656i −0.697516 1.46998i −0.874124 0.485703i \(-0.838564\pi\)
0.176607 0.984281i \(-0.443488\pi\)
\(258\) −4.23973 2.44781i −0.263954 0.152394i
\(259\) −10.3321 14.9686i −0.642003 0.930102i
\(260\) 2.37639 + 1.71261i 0.147377 + 0.106212i
\(261\) 3.18291 4.61124i 0.197017 0.285428i
\(262\) −22.2495 + 10.5575i −1.37458 + 0.652245i
\(263\) −4.18742 + 2.64796i −0.258207 + 0.163280i −0.657297 0.753631i \(-0.728300\pi\)
0.399090 + 0.916912i \(0.369326\pi\)
\(264\) 39.8659 6.47884i 2.45358 0.398745i
\(265\) −2.51368 + 4.78941i −0.154414 + 0.294211i
\(266\) −1.47375 1.20328i −0.0903615 0.0737779i
\(267\) −19.4204 + 18.6536i −1.18851 + 1.14158i
\(268\) 6.80906i 0.415930i
\(269\) −13.8362 14.4050i −0.843609 0.878290i 0.150284 0.988643i \(-0.451981\pi\)
−0.993892 + 0.110353i \(0.964802\pi\)
\(270\) −28.8579 + 9.63417i −1.75623 + 0.586317i
\(271\) −2.19663 27.2101i −0.133436 1.65290i −0.623951 0.781464i \(-0.714473\pi\)
0.490515 0.871433i \(-0.336809\pi\)
\(272\) 1.84572 0.454929i 0.111913 0.0275841i
\(273\) 25.1350 + 1.52489i 1.52124 + 0.0922908i
\(274\) −8.16430 2.01232i −0.493223 0.121569i
\(275\) 2.52219 15.5197i 0.152094 0.935871i
\(276\) −10.2157 12.5119i −0.614912 0.753131i
\(277\) −2.30589 + 1.73276i −0.138548 + 0.104112i −0.667756 0.744380i \(-0.732745\pi\)
0.529209 + 0.848492i \(0.322489\pi\)
\(278\) 12.2403 13.8165i 0.734127 0.828658i
\(279\) 4.57212 + 28.1334i 0.273726 + 1.68430i
\(280\) −0.598202 + 7.41006i −0.0357494 + 0.442836i
\(281\) 6.56297 + 26.6270i 0.391514 + 1.58843i 0.754279 + 0.656553i \(0.227986\pi\)
−0.362766 + 0.931880i \(0.618167\pi\)
\(282\) 2.70489 + 9.33837i 0.161074 + 0.556092i
\(283\) −1.58435 7.76065i −0.0941797 0.461323i −0.999342 0.0362575i \(-0.988456\pi\)
0.905163 0.425065i \(-0.139749\pi\)
\(284\) −4.59419 + 3.75104i −0.272615 + 0.222583i
\(285\) 0.303536 2.49984i 0.0179799 0.148078i
\(286\) 10.6435 + 29.8820i 0.629364 + 1.76696i
\(287\) −0.632180 5.20647i −0.0373164 0.307328i
\(288\) −15.6304 15.0132i −0.921033 0.884664i
\(289\) −11.6678 + 12.1474i −0.686338 + 0.714554i
\(290\) −0.792526 + 1.67021i −0.0465387 + 0.0980783i
\(291\) 13.4370 9.27488i 0.787690 0.543703i
\(292\) −2.13123 + 3.37027i −0.124721 + 0.197230i
\(293\) −17.3337 23.0670i −1.01265 1.34759i −0.936567 0.350488i \(-0.886016\pi\)
−0.0760812 0.997102i \(-0.524241\pi\)
\(294\) 5.11383 + 9.74358i 0.298244 + 0.568257i
\(295\) 0.258787 1.26762i 0.0150672 0.0738039i
\(296\) 19.0481 1.53772i 1.10715 0.0893782i
\(297\) −68.7331 19.9088i −3.98830 1.15523i
\(298\) 24.7740 + 13.0024i 1.43512 + 0.753209i
\(299\) −21.4090 + 25.1600i −1.23811 + 1.45504i
\(300\) −4.45919 + 2.34036i −0.257451 + 0.135121i
\(301\) 2.07664 0.423949i 0.119696 0.0244360i
\(302\) −8.88489 6.67656i −0.511268 0.384193i
\(303\) −0.609514 15.1249i −0.0350157 0.868905i
\(304\) 2.43098 0.921948i 0.139426 0.0528774i
\(305\) −16.4862 + 4.77529i −0.943998 + 0.273432i
\(306\) −4.39718 0.897692i −0.251370 0.0513176i
\(307\) 2.74864 + 3.10257i 0.156873 + 0.177073i 0.821693 0.569931i \(-0.193030\pi\)
−0.664820 + 0.747004i \(0.731492\pi\)
\(308\) 4.24667 5.20122i 0.241976 0.296367i
\(309\) −0.847591 + 21.0328i −0.0482178 + 1.19651i
\(310\) −2.97802 8.92027i −0.169140 0.506637i
\(311\) −8.88731 + 7.87347i −0.503953 + 0.446464i −0.876396 0.481592i \(-0.840059\pi\)
0.372442 + 0.928055i \(0.378520\pi\)
\(312\) −14.5920 + 22.0697i −0.826109 + 1.24945i
\(313\) −19.5547 17.3239i −1.10530 0.979206i −0.105411 0.994429i \(-0.533616\pi\)
−0.999884 + 0.0152228i \(0.995154\pi\)
\(314\) −9.84579 + 23.1089i −0.555630 + 1.30411i
\(315\) 11.4134 19.7686i 0.643074 1.11384i
\(316\) −0.0856340 0.148323i −0.00481729 0.00834379i
\(317\) 5.57492 0.676918i 0.313119 0.0380195i 0.0375312 0.999295i \(-0.488051\pi\)
0.275588 + 0.961276i \(0.411128\pi\)
\(318\) 16.9496 + 8.04269i 0.950487 + 0.451012i
\(319\) −3.76572 + 2.17414i −0.210840 + 0.121729i
\(320\) −5.68626 3.92494i −0.317872 0.219411i
\(321\) 25.1830 10.7295i 1.40558 0.598860i
\(322\) 31.7797 + 5.16470i 1.77101 + 0.287818i
\(323\) 0.128764 0.171354i 0.00716464 0.00953440i
\(324\) 3.94048 + 10.3902i 0.218916 + 0.577233i
\(325\) 6.35065 + 8.10899i 0.352271 + 0.449806i
\(326\) 7.24670 19.1080i 0.401358 1.05829i
\(327\) −18.3487 29.0162i −1.01469 1.60460i
\(328\) 5.06959 + 2.15995i 0.279921 + 0.119263i
\(329\) −3.55747 2.24961i −0.196129 0.124025i
\(330\) 40.6199 + 4.93215i 2.23605 + 0.271506i
\(331\) 8.59123 + 20.1644i 0.472217 + 1.10833i 0.970453 + 0.241292i \(0.0775710\pi\)
−0.498236 + 0.867041i \(0.666019\pi\)
\(332\) −0.938740 + 2.81187i −0.0515201 + 0.154321i
\(333\) −54.8649 20.8075i −3.00658 1.14024i
\(334\) −9.28906 0.749891i −0.508275 0.0410322i
\(335\) −4.99786 + 17.2546i −0.273062 + 0.942721i
\(336\) 33.5093 + 1.35038i 1.82808 + 0.0736692i
\(337\) 29.9480 1.63137 0.815686 0.578495i \(-0.196360\pi\)
0.815686 + 0.578495i \(0.196360\pi\)
\(338\) −19.1137 8.15165i −1.03965 0.443391i
\(339\) 40.1203 2.17903
\(340\) 0.321355 + 0.0129502i 0.0174279 + 0.000702322i
\(341\) 6.15402 21.2461i 0.333259 1.15054i
\(342\) −6.11814 0.493908i −0.330831 0.0267075i
\(343\) −18.8432 7.14629i −1.01744 0.385863i
\(344\) −0.705188 + 2.11230i −0.0380212 + 0.113887i
\(345\) 16.7035 + 39.2045i 0.899284 + 2.11070i
\(346\) −21.9449 2.66459i −1.17977 0.143250i
\(347\) −10.6855 6.75712i −0.573629 0.362741i 0.215936 0.976407i \(-0.430720\pi\)
−0.789566 + 0.613666i \(0.789694\pi\)
\(348\) 1.28127 + 0.545899i 0.0686834 + 0.0292632i
\(349\) −5.75573 9.10196i −0.308097 0.487217i 0.655273 0.755392i \(-0.272554\pi\)
−0.963370 + 0.268175i \(0.913579\pi\)
\(350\) 3.55958 9.38584i 0.190268 0.501694i
\(351\) 40.1196 24.2434i 2.14143 1.29402i
\(352\) 5.96418 + 15.7262i 0.317892 + 0.838212i
\(353\) 7.09239 9.43825i 0.377490 0.502348i −0.570215 0.821495i \(-0.693140\pi\)
0.947705 + 0.319148i \(0.103397\pi\)
\(354\) −4.42931 0.719834i −0.235415 0.0382587i
\(355\) 14.3953 6.13325i 0.764021 0.325519i
\(356\) −3.87105 2.67199i −0.205165 0.141615i
\(357\) 2.39438 1.38240i 0.126724 0.0731643i
\(358\) −26.9241 12.7757i −1.42298 0.675214i
\(359\) −3.24620 + 0.394160i −0.171328 + 0.0208030i −0.205751 0.978604i \(-0.565964\pi\)
0.0344230 + 0.999407i \(0.489041\pi\)
\(360\) 11.9919 + 20.7706i 0.632030 + 1.09471i
\(361\) −9.35342 + 16.2006i −0.492285 + 0.852663i
\(362\) −5.05804 + 11.8716i −0.265845 + 0.623960i
\(363\) 45.8816 + 40.6475i 2.40816 + 2.13344i
\(364\) 0.617232 + 4.35505i 0.0323517 + 0.228267i
\(365\) 7.87446 6.97616i 0.412168 0.365149i
\(366\) 18.8521 + 56.4689i 0.985415 + 2.95168i
\(367\) −0.235287 + 5.83859i −0.0122819 + 0.304772i 0.981360 + 0.192181i \(0.0615560\pi\)
−0.993641 + 0.112591i \(0.964085\pi\)
\(368\) −27.8260 + 34.0807i −1.45053 + 1.77658i
\(369\) −11.2202 12.6650i −0.584102 0.659315i
\(370\) 18.9692 + 3.87260i 0.986164 + 0.201327i
\(371\) −7.80156 + 2.25975i −0.405037 + 0.117320i
\(372\) −6.62428 + 2.51226i −0.343453 + 0.130255i
\(373\) −0.844786 20.9632i −0.0437414 1.08543i −0.860822 0.508907i \(-0.830050\pi\)
0.817080 0.576524i \(-0.195591\pi\)
\(374\) 2.78433 + 2.09229i 0.143974 + 0.108190i
\(375\) 35.8026 7.30915i 1.84884 0.377443i
\(376\) 3.91585 2.05520i 0.201945 0.105989i
\(377\) 0.626338 2.77871i 0.0322581 0.143111i
\(378\) −40.4518 21.2308i −2.08062 1.09199i
\(379\) −18.4560 5.34584i −0.948021 0.274598i −0.232031 0.972708i \(-0.574537\pi\)
−0.715990 + 0.698111i \(0.754024\pi\)
\(380\) 0.438446 0.0353950i 0.0224918 0.00181573i
\(381\) 1.07181 5.25006i 0.0549104 0.268969i
\(382\) −11.4272 21.7727i −0.584666 1.11399i
\(383\) 10.7256 + 14.2731i 0.548050 + 0.729322i 0.985454 0.169943i \(-0.0543583\pi\)
−0.437404 + 0.899265i \(0.644102\pi\)
\(384\) −23.1853 + 36.6647i −1.18317 + 1.87104i
\(385\) −14.5790 + 10.0632i −0.743017 + 0.512868i
\(386\) 0.627279 1.32196i 0.0319276 0.0672861i
\(387\) 4.73669 4.93141i 0.240779 0.250678i
\(388\) 2.05685 + 1.97564i 0.104421 + 0.100298i
\(389\) −0.664603 5.47350i −0.0336967 0.277517i −0.999812 0.0194054i \(-0.993823\pi\)
0.966115 0.258112i \(-0.0831004\pi\)
\(390\) −20.4202 + 17.3632i −1.03402 + 0.879222i
\(391\) −0.437213 + 3.60077i −0.0221108 + 0.182099i
\(392\) 3.87727 3.16569i 0.195831 0.159891i
\(393\) −9.79060 47.9575i −0.493870 2.41914i
\(394\) −3.86005 13.3265i −0.194467 0.671377i
\(395\) 0.108134 + 0.438715i 0.00544079 + 0.0220741i
\(396\) 1.74312 21.5924i 0.0875950 1.08506i
\(397\) −1.04354 6.42115i −0.0523737 0.322268i −0.999996 0.00287474i \(-0.999085\pi\)
0.947622 0.319393i \(-0.103479\pi\)
\(398\) 10.8455 12.2421i 0.543638 0.613640i
\(399\) 3.02301 2.27164i 0.151340 0.113724i
\(400\) 8.67551 + 10.6256i 0.433775 + 0.531278i
\(401\) −4.02228 + 24.7501i −0.200863 + 1.23596i 0.669224 + 0.743061i \(0.266627\pi\)
−0.870087 + 0.492899i \(0.835937\pi\)
\(402\) 60.4970 + 14.9112i 3.01731 + 0.743701i
\(403\) 7.49388 + 12.4014i 0.373297 + 0.617758i
\(404\) 2.56729 0.632780i 0.127727 0.0314820i
\(405\) −2.35903 29.2218i −0.117221 1.45204i
\(406\) −2.63319 + 0.879089i −0.130683 + 0.0436284i
\(407\) 31.5448 + 32.8416i 1.56362 + 1.62790i
\(408\) 2.90493i 0.143816i
\(409\) −1.46359 + 1.40580i −0.0723701 + 0.0695124i −0.728037 0.685538i \(-0.759567\pi\)
0.655667 + 0.755050i \(0.272388\pi\)
\(410\) 4.32444 + 3.53079i 0.213569 + 0.174374i
\(411\) 7.76655 14.7979i 0.383096 0.729928i
\(412\) −3.62931 + 0.589820i −0.178803 + 0.0290583i
\(413\) 1.64200 1.03834i 0.0807974 0.0510932i
\(414\) 93.8428 44.5290i 4.61212 2.18848i
\(415\) 4.44275 6.43643i 0.218086 0.315952i
\(416\) −10.2203 4.11543i −0.501090 0.201775i
\(417\) 20.8404 + 30.1925i 1.02056 + 1.47853i
\(418\) 4.12527 + 2.38173i 0.201774 + 0.116494i
\(419\) 11.7784 + 24.8224i 0.575411 + 1.21265i 0.957475 + 0.288516i \(0.0931620\pi\)
−0.382064 + 0.924136i \(0.624787\pi\)
\(420\) 5.38192 + 1.79675i 0.262611 + 0.0876723i
\(421\) −0.889620 + 3.60933i −0.0433574 + 0.175908i −0.988629 0.150378i \(-0.951951\pi\)
0.945271 + 0.326286i \(0.105797\pi\)
\(422\) −33.3570 + 1.34424i −1.62379 + 0.0654366i
\(423\) −13.5681 + 0.546777i −0.659706 + 0.0265852i
\(424\) 2.04230 8.28595i 0.0991830 0.402401i
\(425\) 1.07268 + 0.358114i 0.0520328 + 0.0173711i
\(426\) −23.2663 49.0328i −1.12726 2.37564i
\(427\) −22.3207 12.8868i −1.08017 0.623638i
\(428\) 2.71620 + 3.93510i 0.131293 + 0.190210i
\(429\) −62.7273 + 6.32625i −3.02850 + 0.305434i
\(430\) −1.28160 + 1.85672i −0.0618044 + 0.0895391i
\(431\) 4.50564 2.13795i 0.217029 0.102981i −0.317075 0.948401i \(-0.602701\pi\)
0.534103 + 0.845419i \(0.320649\pi\)
\(432\) 52.7647 33.3664i 2.53864 1.60534i
\(433\) 0.871118 0.141570i 0.0418632 0.00680344i −0.139444 0.990230i \(-0.544531\pi\)
0.181307 + 0.983427i \(0.441967\pi\)
\(434\) 6.56265 12.5041i 0.315017 0.600216i
\(435\) −2.84614 2.32380i −0.136462 0.111418i
\(436\) 4.32493 4.15415i 0.207127 0.198948i
\(437\) 4.96092i 0.237313i
\(438\) −25.2769 26.3160i −1.20778 1.25743i
\(439\) −23.5308 + 7.85575i −1.12307 + 0.374934i −0.816748 0.576995i \(-0.804225\pi\)
−0.306318 + 0.951929i \(0.599097\pi\)
\(440\) −1.49770 18.5524i −0.0714002 0.884451i
\(441\) −14.9229 + 3.67815i −0.710612 + 0.175150i
\(442\) −2.24420 + 0.410850i −0.106746 + 0.0195421i
\(443\) 24.8032 + 6.11343i 1.17843 + 0.290458i 0.779429 0.626491i \(-0.215509\pi\)
0.399005 + 0.916949i \(0.369356\pi\)
\(444\) 2.33963 14.3963i 0.111034 0.683219i
\(445\) 7.84826 + 9.61237i 0.372043 + 0.455670i
\(446\) 20.1503 15.1420i 0.954144 0.716992i
\(447\) −36.8750 + 41.6232i −1.74413 + 1.96871i
\(448\) −1.66430 10.2408i −0.0786307 0.483834i
\(449\) 1.37281 17.0053i 0.0647870 0.802530i −0.880027 0.474923i \(-0.842476\pi\)
0.944814 0.327607i \(-0.106242\pi\)
\(450\) −7.75018 31.4437i −0.365347 1.48227i
\(451\) 3.65329 + 12.6126i 0.172027 + 0.593905i
\(452\) 1.40180 + 6.86646i 0.0659350 + 0.322971i
\(453\) 17.1101 13.9700i 0.803904 0.656367i
\(454\) −1.44862 + 11.9305i −0.0679872 + 0.559925i
\(455\) 1.63251 11.4890i 0.0765331 0.538615i
\(456\) 0.478899 + 3.94409i 0.0224265 + 0.184699i
\(457\) −8.43265 8.09967i −0.394463 0.378887i 0.469085 0.883153i \(-0.344584\pi\)
−0.863548 + 0.504266i \(0.831763\pi\)
\(458\) −7.12380 + 7.41667i −0.332874 + 0.346558i
\(459\) 2.20638 4.64985i 0.102985 0.217036i
\(460\) −6.12611 + 4.22855i −0.285631 + 0.197157i
\(461\) −1.95861 + 3.09729i −0.0912214 + 0.144255i −0.887718 0.460389i \(-0.847710\pi\)
0.796496 + 0.604644i \(0.206684\pi\)
\(462\) 36.9119 + 49.1208i 1.71730 + 2.28531i
\(463\) −12.4257 23.6752i −0.577472 1.10028i −0.982550 0.185999i \(-0.940448\pi\)
0.405078 0.914282i \(-0.367244\pi\)
\(464\) 0.758809 3.71689i 0.0352268 0.172552i
\(465\) 18.6304 1.50400i 0.863963 0.0697463i
\(466\) −33.5633 9.72172i −1.55479 0.450350i
\(467\) −14.2185 7.46245i −0.657954 0.345321i 0.102481 0.994735i \(-0.467322\pi\)
−0.760435 + 0.649414i \(0.775014\pi\)
\(468\) 9.62017 + 10.4318i 0.444692 + 0.482211i
\(469\) −23.8852 + 12.5359i −1.10291 + 0.578854i
\(470\) 4.38983 0.896190i 0.202488 0.0413381i
\(471\) −39.9114 29.9915i −1.83902 1.38193i
\(472\) 0.0821918 + 2.03957i 0.00378319 + 0.0938788i
\(473\) −4.96164 + 1.88170i −0.228136 + 0.0865207i
\(474\) 1.50534 0.436028i 0.0691426 0.0200274i
\(475\) 1.51544 + 0.309380i 0.0695333 + 0.0141953i
\(476\) 0.320253 + 0.361491i 0.0146788 + 0.0165689i
\(477\) −16.5724 + 20.2975i −0.758798 + 0.929359i
\(478\) 0.530834 13.1725i 0.0242798 0.602497i
\(479\) 12.7700 + 38.2507i 0.583475 + 1.74772i 0.660640 + 0.750703i \(0.270285\pi\)
−0.0771647 + 0.997018i \(0.524587\pi\)
\(480\) −10.6380 + 9.42449i −0.485558 + 0.430167i
\(481\) −29.8241 + 0.595358i −1.35986 + 0.0271460i
\(482\) −15.6383 13.8543i −0.712304 0.631047i
\(483\) −25.0823 + 58.8704i −1.14128 + 2.67869i
\(484\) −5.35360 + 9.27272i −0.243346 + 0.421487i
\(485\) −3.76209 6.51613i −0.170828 0.295882i
\(486\) −39.0556 + 4.74221i −1.77160 + 0.215111i
\(487\) 21.9614 + 10.4208i 0.995168 + 0.472213i 0.855398 0.517971i \(-0.173312\pi\)
0.139770 + 0.990184i \(0.455364\pi\)
\(488\) 23.4520 13.5400i 1.06162 0.612928i
\(489\) 33.4268 + 23.0729i 1.51161 + 1.04339i
\(490\) 4.66529 1.98769i 0.210756 0.0897948i
\(491\) −14.5834 2.37004i −0.658142 0.106958i −0.177837 0.984060i \(-0.556910\pi\)
−0.480305 + 0.877102i \(0.659474\pi\)
\(492\) 2.52658 3.36227i 0.113907 0.151583i
\(493\) −0.110901 0.292423i −0.00499474 0.0131701i
\(494\) −2.97927 + 0.927793i −0.134044 + 0.0417434i
\(495\) −20.2660 + 53.4371i −0.910891 + 2.40182i
\(496\) 10.3139 + 16.3101i 0.463108 + 0.732346i
\(497\) 21.6163 + 9.20983i 0.969622 + 0.413117i
\(498\) −22.9271 14.4982i −1.02739 0.649680i
\(499\) −14.1283 1.71548i −0.632468 0.0767955i −0.201977 0.979390i \(-0.564737\pi\)
−0.430491 + 0.902595i \(0.641660\pi\)
\(500\) 2.50188 + 5.87212i 0.111887 + 0.262609i
\(501\) 5.86536 17.5689i 0.262045 0.784921i
\(502\) 24.3555 + 9.23680i 1.08704 + 0.412259i
\(503\) −10.8388 0.874999i −0.483279 0.0390143i −0.163573 0.986531i \(-0.552302\pi\)
−0.319706 + 0.947517i \(0.603584\pi\)
\(504\) −10.0199 + 34.5928i −0.446323 + 1.54089i
\(505\) −6.97015 0.280887i −0.310168 0.0124993i
\(506\) −80.6099 −3.58355
\(507\) 24.8219 33.0074i 1.10238 1.46591i
\(508\) 0.935981 0.0415274
\(509\) 8.87897 + 0.357810i 0.393554 + 0.0158597i 0.236254 0.971691i \(-0.424080\pi\)
0.157299 + 0.987551i \(0.449721\pi\)
\(510\) −0.818796 + 2.82681i −0.0362569 + 0.125173i
\(511\) 15.7461 + 1.27116i 0.696567 + 0.0562327i
\(512\) 7.02163 + 2.66295i 0.310315 + 0.117687i
\(513\) 2.22909 6.67694i 0.0984168 0.294794i
\(514\) 16.3423 + 38.3568i 0.720828 + 1.69185i
\(515\) 9.62984 + 1.16927i 0.424342 + 0.0515244i
\(516\) 1.43650 + 0.908388i 0.0632384 + 0.0399895i
\(517\) 9.69488 + 4.13060i 0.426380 + 0.181664i
\(518\) 15.5381 + 24.5715i 0.682705 + 1.07961i
\(519\) 15.5799 41.0808i 0.683882 1.80325i
\(520\) 9.59649 + 7.52114i 0.420834 + 0.329824i
\(521\) 0.193112 + 0.509194i 0.00846038 + 0.0223082i 0.939180 0.343426i \(-0.111587\pi\)
−0.930720 + 0.365734i \(0.880818\pi\)
\(522\) −5.38026 + 7.15982i −0.235488 + 0.313377i
\(523\) 17.1707 + 2.79051i 0.750823 + 0.122021i 0.523768 0.851861i \(-0.324526\pi\)
0.227055 + 0.973882i \(0.427090\pi\)
\(524\) 7.86570 3.35126i 0.343615 0.146401i
\(525\) 16.4193 + 11.3334i 0.716595 + 0.494630i
\(526\) 6.85822 3.95960i 0.299033 0.172647i
\(527\) 1.43732 + 0.682016i 0.0626105 + 0.0297091i
\(528\) −83.3524 + 10.1208i −3.62745 + 0.440452i
\(529\) −30.4758 52.7856i −1.32503 2.29503i
\(530\) 4.32289 7.48746i 0.187774 0.325235i
\(531\) 2.45671 5.76610i 0.106612 0.250228i
\(532\) 0.494409 + 0.438008i 0.0214353 + 0.0189901i
\(533\) −7.69473 3.84462i −0.333296 0.166529i
\(534\) 32.2173 28.5420i 1.39418 1.23513i
\(535\) −3.99467 11.9655i −0.172705 0.517314i
\(536\) 1.14123 28.3192i 0.0492935 1.22320i
\(537\) 37.4601 45.8802i 1.61652 1.97988i
\(538\) 21.1709 + 23.8970i 0.912743 + 1.03027i
\(539\) 11.6865 + 2.38581i 0.503372 + 0.102764i
\(540\) 10.1452 2.93859i 0.436579 0.126457i
\(541\) −29.2370 + 11.0881i −1.25700 + 0.476716i −0.891044 0.453917i \(-0.850026\pi\)
−0.365953 + 0.930633i \(0.619257\pi\)
\(542\) 1.75698 + 43.5991i 0.0754689 + 1.87274i
\(543\) −20.5035 15.4074i −0.879891 0.661195i
\(544\) −1.18526 + 0.241972i −0.0508176 + 0.0103745i
\(545\) −14.0088 + 7.35239i −0.600072 + 0.314942i
\(546\) −40.0453 4.05316i −1.71378 0.173459i
\(547\) −1.37899 0.723750i −0.0589614 0.0309453i 0.434985 0.900438i \(-0.356754\pi\)
−0.493946 + 0.869492i \(0.664446\pi\)
\(548\) 2.80398 + 0.812184i 0.119780 + 0.0346948i
\(549\) −82.8805 + 6.69080i −3.53725 + 0.285557i
\(550\) −5.02710 + 24.6244i −0.214356 + 1.04999i
\(551\) −0.198781 0.378746i −0.00846836 0.0161351i
\(552\) −40.3905 53.7500i −1.71914 2.28775i
\(553\) −0.362635 + 0.573462i −0.0154208 + 0.0243861i
\(554\) 3.79430 2.61902i 0.161204 0.111271i
\(555\) −16.4957 + 34.7640i −0.700204 + 1.47565i
\(556\) −4.43919 + 4.62169i −0.188264 + 0.196003i
\(557\) 11.0581 + 10.6214i 0.468546 + 0.450045i 0.889431 0.457069i \(-0.151101\pi\)
−0.420885 + 0.907114i \(0.638280\pi\)
\(558\) −5.49150 45.2265i −0.232474 1.91459i
\(559\) 1.29842 3.22450i 0.0549173 0.136382i
\(560\) 1.86288 15.3422i 0.0787212 0.648327i
\(561\) −5.36194 + 4.37788i −0.226381 + 0.184834i
\(562\) −8.76807 42.9488i −0.369859 1.81169i
\(563\) 4.40348 + 15.2026i 0.185585 + 0.640713i 0.998313 + 0.0580693i \(0.0184944\pi\)
−0.812728 + 0.582644i \(0.802018\pi\)
\(564\) −0.807757 3.27720i −0.0340127 0.137995i
\(565\) 1.48774 18.4290i 0.0625898 0.775314i
\(566\) 2.03090 + 12.4966i 0.0853651 + 0.525273i
\(567\) 29.1926 32.9516i 1.22597 1.38384i
\(568\) −19.7362 + 14.8308i −0.828111 + 0.622285i
\(569\) 3.83040 + 4.69139i 0.160579 + 0.196673i 0.848627 0.528992i \(-0.177430\pi\)
−0.688048 + 0.725665i \(0.741532\pi\)
\(570\) −0.645677 + 3.97301i −0.0270444 + 0.166411i
\(571\) −20.4823 5.04844i −0.857159 0.211271i −0.213840 0.976869i \(-0.568597\pi\)
−0.643319 + 0.765598i \(0.722443\pi\)
\(572\) −3.27440 10.5145i −0.136910 0.439635i
\(573\) 47.4511 11.6957i 1.98230 0.488593i
\(574\) 0.674568 + 8.35603i 0.0281559 + 0.348774i
\(575\) −24.8271 + 8.28851i −1.03536 + 0.345655i
\(576\) −23.1869 24.1402i −0.966122 1.00584i
\(577\) 11.6054i 0.483140i −0.970383 0.241570i \(-0.922338\pi\)
0.970383 0.241570i \(-0.0776624\pi\)
\(578\) 19.4166 18.6499i 0.807623 0.775733i
\(579\) 2.25270 + 1.83927i 0.0936190 + 0.0764375i
\(580\) 0.298268 0.568301i 0.0123849 0.0235974i
\(581\) 11.5919 1.88387i 0.480913 0.0781559i
\(582\) −22.0574 + 13.9482i −0.914308 + 0.578173i
\(583\) 18.3721 8.71766i 0.760894 0.361049i
\(584\) −9.42876 + 13.6599i −0.390165 + 0.565251i
\(585\) −16.7212 33.4962i −0.691336 1.38490i
\(586\) 26.1994 + 37.9564i 1.08229 + 1.56796i
\(587\) 1.42678 + 0.823752i 0.0588895 + 0.0339999i 0.529156 0.848525i \(-0.322509\pi\)
−0.470266 + 0.882525i \(0.655842\pi\)
\(588\) −1.63773 3.45144i −0.0675388 0.142335i
\(589\) 2.06391 + 0.689035i 0.0850421 + 0.0283912i
\(590\) −0.494899 + 2.00789i −0.0203747 + 0.0826633i
\(591\) 27.5527 1.11034i 1.13337 0.0456732i
\(592\) −39.6957 + 1.59968i −1.63148 + 0.0657465i
\(593\) 11.3385 46.0022i 0.465617 1.88908i 0.00793408 0.999969i \(-0.497474\pi\)
0.457683 0.889115i \(-0.348679\pi\)
\(594\) 108.493 + 36.2204i 4.45154 + 1.48614i
\(595\) −0.546208 1.15111i −0.0223923 0.0471908i
\(596\) −8.41210 4.85673i −0.344573 0.198939i
\(597\) 18.4656 + 26.7520i 0.755747 + 1.09489i
\(598\) 35.8119 38.8056i 1.46446 1.58688i
\(599\) 0.376857 0.545971i 0.0153979 0.0223078i −0.815209 0.579166i \(-0.803378\pi\)
0.830607 + 0.556859i \(0.187994\pi\)
\(600\) −18.9382 + 8.98631i −0.773150 + 0.366864i
\(601\) 37.6677 23.8196i 1.53650 0.971623i 0.545446 0.838146i \(-0.316360\pi\)
0.991052 0.133477i \(-0.0426142\pi\)
\(602\) −3.34392 + 0.543440i −0.136288 + 0.0221490i
\(603\) −40.4429 + 77.0574i −1.64696 + 3.13802i
\(604\) 2.98875 + 2.44024i 0.121610 + 0.0992918i
\(605\) 20.3726 19.5681i 0.828263 0.795558i
\(606\) 24.1955i 0.982876i
\(607\) 22.5163 + 23.4419i 0.913908 + 0.951479i 0.998992 0.0448953i \(-0.0142954\pi\)
−0.0850842 + 0.996374i \(0.527116\pi\)
\(608\) −1.56936 + 0.523930i −0.0636460 + 0.0212482i
\(609\) −0.443969 5.49954i −0.0179905 0.222853i
\(610\) 26.6377 6.56561i 1.07853 0.265834i
\(611\) −6.29554 + 2.83204i −0.254690 + 0.114572i
\(612\) 1.51279 + 0.372869i 0.0611509 + 0.0150723i
\(613\) −2.44999 + 15.0754i −0.0989543 + 0.608890i 0.889449 + 0.457035i \(0.151089\pi\)
−0.988403 + 0.151855i \(0.951475\pi\)
\(614\) −4.19021 5.13208i −0.169103 0.207114i
\(615\) −8.87044 + 6.66570i −0.357691 + 0.268787i
\(616\) 18.5338 20.9204i 0.746750 0.842906i
\(617\) −5.11773 31.4907i −0.206032 1.26777i −0.859627 0.510922i \(-0.829304\pi\)
0.653595 0.756844i \(-0.273260\pi\)
\(618\) 2.70740 33.5372i 0.108908 1.34907i
\(619\) −4.93346 20.0158i −0.198293 0.804505i −0.982844 0.184440i \(-0.940953\pi\)
0.784551 0.620064i \(-0.212893\pi\)
\(620\) 0.908349 + 3.13598i 0.0364802 + 0.125944i
\(621\) 23.8273 + 116.714i 0.956158 + 4.68357i
\(622\) 14.7008 12.0029i 0.589449 0.481271i
\(623\) −2.24611 + 18.4984i −0.0899884 + 0.741121i
\(624\) 32.1582 44.6221i 1.28736 1.78631i
\(625\) −0.308118 2.53758i −0.0123247 0.101503i
\(626\) 30.1161 + 28.9269i 1.20368 + 1.15615i
\(627\) −6.55829 + 6.82791i −0.261913 + 0.272680i
\(628\) 3.73845 7.87862i 0.149180 0.314391i
\(629\) −2.69546 + 1.86054i −0.107475 + 0.0741846i
\(630\) −19.5009 + 30.8382i −0.776935 + 1.22862i
\(631\) 13.4680 + 17.9227i 0.536153 + 0.713490i 0.983508 0.180867i \(-0.0578902\pi\)
−0.447355 + 0.894357i \(0.647634\pi\)
\(632\) −0.331297 0.631234i −0.0131783 0.0251091i
\(633\) 13.2719 65.0101i 0.527511 2.58392i
\(634\) −8.94737 + 0.722306i −0.355345 + 0.0286864i
\(635\) −2.37184 0.687012i −0.0941236 0.0272632i
\(636\) −5.76722 3.02687i −0.228685 0.120023i
\(637\) −6.34039 + 4.56594i −0.251216 + 0.180909i
\(638\) 6.15423 3.22999i 0.243648 0.127876i
\(639\) 74.2715 15.1626i 2.93814 0.599825i
\(640\) 15.9819 + 12.0096i 0.631741 + 0.474723i
\(641\) −1.53581 38.1108i −0.0606610 1.50529i −0.687526 0.726160i \(-0.741303\pi\)
0.626865 0.779128i \(-0.284338\pi\)
\(642\) −40.9107 + 15.5154i −1.61462 + 0.612343i
\(643\) −1.93094 + 0.559303i −0.0761488 + 0.0220568i −0.316073 0.948735i \(-0.602365\pi\)
0.239924 + 0.970792i \(0.422877\pi\)
\(644\) −10.9519 2.23584i −0.431564 0.0881043i
\(645\) −2.97343 3.35631i −0.117079 0.132155i
\(646\) −0.216680 + 0.265385i −0.00852517 + 0.0104414i
\(647\) 0.0524075 1.30048i 0.00206035 0.0511271i −0.997832 0.0658163i \(-0.979035\pi\)
0.999892 + 0.0146892i \(0.00467589\pi\)
\(648\) 14.6472 + 43.8738i 0.575398 + 1.72353i
\(649\) −3.64078 + 3.22545i −0.142913 + 0.126610i
\(650\) −9.62082 13.3597i −0.377359 0.524012i
\(651\) 21.0083 + 18.6118i 0.823381 + 0.729452i
\(652\) −2.78092 + 6.52706i −0.108909 + 0.255620i
\(653\) −7.50494 + 12.9989i −0.293691 + 0.508688i −0.974680 0.223606i \(-0.928217\pi\)
0.680989 + 0.732294i \(0.261550\pi\)
\(654\) 27.4375 + 47.5232i 1.07289 + 1.85830i
\(655\) −22.3921 + 2.71889i −0.874930 + 0.106236i
\(656\) −10.3498 4.91105i −0.404093 0.191744i
\(657\) 44.1368 25.4824i 1.72194 0.994163i
\(658\) 5.53690 + 3.82185i 0.215851 + 0.148991i
\(659\) −38.5105 + 16.4078i −1.50016 + 0.639157i −0.977031 0.213098i \(-0.931644\pi\)
−0.523126 + 0.852255i \(0.675234\pi\)
\(660\) −14.0217 2.27875i −0.545794 0.0887001i
\(661\) −11.8957 + 15.8303i −0.462688 + 0.615726i −0.969131 0.246547i \(-0.920704\pi\)
0.506442 + 0.862274i \(0.330960\pi\)
\(662\) −12.4234 32.7578i −0.482848 1.27317i
\(663\) 0.274594 4.52616i 0.0106644 0.175782i
\(664\) −4.37555 + 11.5374i −0.169804 + 0.447737i
\(665\) −0.931367 1.47284i −0.0361169 0.0571142i
\(666\) 86.2864 + 36.7632i 3.34353 + 1.42455i
\(667\) 6.11789 + 3.86872i 0.236886 + 0.149797i
\(668\) 3.21180 + 0.389983i 0.124268 + 0.0150889i
\(669\) 19.6359 + 46.0872i 0.759168 + 1.78183i
\(670\) 9.09271 27.2360i 0.351282 1.05222i
\(671\) 60.3356 + 22.8823i 2.32923 + 0.883360i
\(672\) −21.2723 1.71728i −0.820597 0.0662454i
\(673\) 1.51845 5.24228i 0.0585318 0.202075i −0.925923 0.377712i \(-0.876711\pi\)
0.984455 + 0.175636i \(0.0561983\pi\)
\(674\) −47.8305 1.92750i −1.84236 0.0742446i
\(675\) 37.1393 1.42949
\(676\) 6.51639 + 3.09492i 0.250630 + 0.119035i
\(677\) −21.0704 −0.809801 −0.404901 0.914361i \(-0.632694\pi\)
−0.404901 + 0.914361i \(0.632694\pi\)
\(678\) −64.0767 2.58220i −2.46085 0.0991689i
\(679\) 3.14344 10.8524i 0.120634 0.416477i
\(680\) 1.33436 + 0.107721i 0.0511705 + 0.00413091i
\(681\) −22.3338 8.47011i −0.855834 0.324575i
\(682\) −11.1961 + 33.5365i −0.428721 + 1.28418i
\(683\) −5.73253 13.4547i −0.219349 0.514831i 0.773558 0.633726i \(-0.218475\pi\)
−0.992907 + 0.118895i \(0.962065\pi\)
\(684\) 2.11542 + 0.256858i 0.0808851 + 0.00982122i
\(685\) −6.50934 4.11626i −0.248709 0.157274i
\(686\) 29.6349 + 12.6262i 1.13146 + 0.482072i
\(687\) −10.9240 17.2748i −0.416775 0.659077i
\(688\) 1.64165 4.32866i 0.0625871 0.165029i
\(689\) −3.96535 + 12.7172i −0.151068 + 0.484489i
\(690\) −24.1541 63.6892i −0.919531 2.42460i
\(691\) 21.2389 28.2638i 0.807965 1.07521i −0.187703 0.982226i \(-0.560104\pi\)
0.995668 0.0929807i \(-0.0296395\pi\)
\(692\) 7.57522 + 1.23109i 0.287967 + 0.0467991i
\(693\) −78.9520 + 33.6383i −2.99914 + 1.27781i
\(694\) 16.6311 + 11.4796i 0.631309 + 0.435761i
\(695\) 14.6415 8.45330i 0.555385 0.320652i
\(696\) 5.23738 + 2.48517i 0.198522 + 0.0942000i
\(697\) −0.937553 + 0.113839i −0.0355123 + 0.00431198i
\(698\) 8.60676 + 14.9073i 0.325771 + 0.564251i
\(699\) 34.7246 60.1447i 1.31340 2.27488i
\(700\) −1.36599 + 3.20609i −0.0516295 + 0.121179i
\(701\) 30.0505 + 26.6224i 1.13499 + 1.00552i 0.999892 + 0.0146840i \(0.00467423\pi\)
0.135101 + 0.990832i \(0.456864\pi\)
\(702\) −65.6361 + 36.1373i −2.47727 + 1.36392i
\(703\) −3.35296 + 2.97046i −0.126459 + 0.112033i
\(704\) 8.22581 + 24.6393i 0.310022 + 0.928629i
\(705\) −0.358559 + 8.89754i −0.0135041 + 0.335101i
\(706\) −11.9348 + 14.6175i −0.449173 + 0.550137i
\(707\) −6.94624 7.84068i −0.261240 0.294879i
\(708\) 1.52642 + 0.311621i 0.0573665 + 0.0117114i
\(709\) 35.9551 10.4145i 1.35032 0.391126i 0.477273 0.878755i \(-0.341625\pi\)
0.873051 + 0.487629i \(0.162138\pi\)
\(710\) −23.3857 + 8.86901i −0.877648 + 0.332848i
\(711\) 0.0881403 + 2.18718i 0.00330552 + 0.0820256i
\(712\) −15.6521 11.7618i −0.586586 0.440791i
\(713\) −36.0775 + 7.36528i −1.35111 + 0.275832i
\(714\) −3.91308 + 2.05375i −0.146444 + 0.0768595i
\(715\) 0.579866 + 29.0480i 0.0216857 + 1.08633i
\(716\) 9.16111 + 4.80812i 0.342367 + 0.179688i
\(717\) 25.1672 + 7.28977i 0.939887 + 0.272242i
\(718\) 5.20993 0.420589i 0.194433 0.0156963i
\(719\) −8.68575 + 42.5456i −0.323924 + 1.58668i 0.413016 + 0.910724i \(0.364475\pi\)
−0.736939 + 0.675959i \(0.763730\pi\)
\(720\) −23.1711 44.1489i −0.863537 1.64533i
\(721\) 8.75078 + 11.6452i 0.325896 + 0.433689i
\(722\) 15.9812 25.2722i 0.594759 0.940536i
\(723\) 34.1736 23.5883i 1.27093 0.877259i
\(724\) 1.92054 4.04745i 0.0713762 0.150422i
\(725\) 1.56333 1.62760i 0.0580607 0.0604476i
\(726\) −70.6621 67.8719i −2.62252 2.51896i
\(727\) −3.79581 31.2613i −0.140779 1.15942i −0.876249 0.481859i \(-0.839962\pi\)
0.735470 0.677557i \(-0.236961\pi\)
\(728\) 1.83718 + 18.2163i 0.0680902 + 0.675142i
\(729\) 2.18395 17.9864i 0.0808870 0.666164i
\(730\) −13.0254 + 10.6349i −0.482093 + 0.393616i
\(731\) −0.0763424 0.373950i −0.00282363 0.0138310i
\(732\) −5.75022 19.8521i −0.212534 0.733753i
\(733\) 2.23827 + 9.08103i 0.0826725 + 0.335416i 0.997685 0.0680109i \(-0.0216653\pi\)
−0.915012 + 0.403427i \(0.867819\pi\)
\(734\) 0.751561 9.30976i 0.0277406 0.343629i
\(735\) 1.61675 + 9.94827i 0.0596348 + 0.366948i
\(736\) 18.5665 20.9572i 0.684369 0.772493i
\(737\) 53.9916 40.5721i 1.98881 1.49449i
\(738\) 17.1049 + 20.9497i 0.629639 + 0.771168i
\(739\) −1.13554 + 6.98723i −0.0417714 + 0.257030i −0.999534 0.0305310i \(-0.990280\pi\)
0.957762 + 0.287561i \(0.0928443\pi\)
\(740\) −6.52611 1.60854i −0.239904 0.0591311i
\(741\) −0.373348 6.19054i −0.0137153 0.227415i
\(742\) 12.6054 3.10696i 0.462761 0.114060i
\(743\) 2.84146 + 35.1978i 0.104243 + 1.29128i 0.811511 + 0.584337i \(0.198645\pi\)
−0.707268 + 0.706945i \(0.750073\pi\)
\(744\) −27.9718 + 9.33836i −1.02550 + 0.342361i
\(745\) 17.7520 + 18.4818i 0.650382 + 0.677120i
\(746\) 33.5350i 1.22780i
\(747\) 27.3249 26.2459i 0.999766 0.960288i
\(748\) −0.936607 0.764716i −0.0342457 0.0279608i
\(749\) 8.80304 16.7728i 0.321656 0.612865i
\(750\) −57.6513 + 9.36925i −2.10513 + 0.342117i
\(751\) −12.0678 + 7.63122i −0.440360 + 0.278467i −0.736192 0.676773i \(-0.763378\pi\)
0.295831 + 0.955240i \(0.404403\pi\)
\(752\) −8.30611 + 3.94130i −0.302893 + 0.143724i
\(753\) −29.4092 + 42.6066i −1.07173 + 1.55267i
\(754\) −1.17918 + 4.39761i −0.0429431 + 0.160151i
\(755\) −5.78255 8.37747i −0.210449 0.304887i
\(756\) 13.7356 + 7.93022i 0.499557 + 0.288419i
\(757\) 17.1502 + 36.1432i 0.623333 + 1.31365i 0.931994 + 0.362474i \(0.118068\pi\)
−0.308661 + 0.951172i \(0.599881\pi\)
\(758\) 29.1323 + 9.72579i 1.05813 + 0.353257i
\(759\) 38.3414 155.557i 1.39170 5.64636i
\(760\) 1.82945 0.0737244i 0.0663612 0.00267427i
\(761\) −17.6022 + 0.709344i −0.638079 + 0.0257137i −0.357198 0.934029i \(-0.616268\pi\)
−0.280881 + 0.959742i \(0.590627\pi\)
\(762\) −2.04970 + 8.31598i −0.0742530 + 0.301256i
\(763\) −22.5346 7.52315i −0.815807 0.272356i
\(764\) 3.65961 + 7.71247i 0.132400 + 0.279027i
\(765\) −3.55983 2.05527i −0.128706 0.0743083i
\(766\) −16.2113 23.4861i −0.585739 0.848589i