Properties

Label 169.2.k.a.4.15
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.15
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.57861 + 0.103914i) q^{2} +(-0.381537 + 1.31722i) q^{3} +(4.64490 + 0.374975i) q^{4} +(-3.32428 - 1.26073i) q^{5} +(-1.12071 + 3.35694i) q^{6} +(0.633807 + 1.48760i) q^{7} +(6.81465 + 0.827448i) q^{8} +(0.946076 + 0.598262i) q^{9} +O(q^{10})\) \(q+(2.57861 + 0.103914i) q^{2} +(-0.381537 + 1.31722i) q^{3} +(4.64490 + 0.374975i) q^{4} +(-3.32428 - 1.26073i) q^{5} +(-1.12071 + 3.35694i) q^{6} +(0.633807 + 1.48760i) q^{7} +(6.81465 + 0.827448i) q^{8} +(0.946076 + 0.598262i) q^{9} +(-8.44101 - 3.59638i) q^{10} +(-2.92094 - 4.61910i) q^{11} +(-2.26613 + 5.97529i) q^{12} +(0.0292141 - 3.60543i) q^{13} +(1.47976 + 3.90180i) q^{14} +(2.92900 - 3.89779i) q^{15} +(8.28698 + 1.34677i) q^{16} +(0.607879 - 0.258993i) q^{17} +(2.37739 + 1.64099i) q^{18} +(-3.26641 + 1.88586i) q^{19} +(-14.9682 - 7.10251i) q^{20} +(-2.20131 + 0.267288i) q^{21} +(-7.05197 - 12.2144i) q^{22} +(-2.06885 + 3.58336i) q^{23} +(-3.68997 + 8.66068i) q^{24} +(5.71886 + 5.06647i) q^{25} +(0.449988 - 9.29396i) q^{26} +(-4.22844 + 3.74607i) q^{27} +(2.38616 + 7.14742i) q^{28} +(-0.0150965 + 0.374615i) q^{29} +(7.95778 - 9.74651i) q^{30} +(4.01307 + 4.52982i) q^{31} +(7.77699 + 1.58768i) q^{32} +(7.19881 - 2.08516i) q^{33} +(1.59439 - 0.604674i) q^{34} +(-0.231486 - 5.74426i) q^{35} +(4.17010 + 3.13363i) q^{36} +(8.68138 - 1.77232i) q^{37} +(-8.61876 + 4.52348i) q^{38} +(4.73800 + 1.41409i) q^{39} +(-21.6106 - 11.3421i) q^{40} +(-6.39824 - 1.85327i) q^{41} +(-5.70410 + 0.460483i) q^{42} +(-1.58264 + 7.75228i) q^{43} +(-11.8354 - 22.5505i) q^{44} +(-2.39078 - 3.18154i) q^{45} +(-5.70713 + 9.02510i) q^{46} +(7.99021 - 5.51524i) q^{47} +(-4.93577 + 10.4019i) q^{48} +(3.03783 - 3.16272i) q^{49} +(14.2202 + 13.6587i) q^{50} +(0.109222 + 0.899525i) q^{51} +(1.48765 - 16.7359i) q^{52} +(-0.387154 + 3.18850i) q^{53} +(-11.2928 + 9.22026i) q^{54} +(3.88658 + 19.0377i) q^{55} +(3.08826 + 10.6619i) q^{56} +(-1.23784 - 5.02211i) q^{57} +(-0.0778557 + 0.964416i) q^{58} +(0.599422 + 3.68839i) q^{59} +(15.0665 - 17.0066i) q^{60} +(-3.97645 + 2.98811i) q^{61} +(9.87743 + 12.0977i) q^{62} +(-0.290345 + 1.78656i) q^{63} +(3.58533 + 0.883705i) q^{64} +(-4.64261 + 11.9487i) q^{65} +(18.7796 - 4.62875i) q^{66} +(-0.700108 - 8.67239i) q^{67} +(2.92066 - 0.975058i) q^{68} +(-3.93073 - 4.09232i) q^{69} -14.8363i q^{70} +(0.998956 - 0.959510i) q^{71} +(5.95215 + 4.85978i) q^{72} +(-0.592291 + 1.12852i) q^{73} +(22.5700 - 3.66799i) q^{74} +(-8.85560 + 5.59994i) q^{75} +(-15.8793 + 7.53483i) q^{76} +(5.02006 - 7.27281i) q^{77} +(12.0705 + 4.13872i) q^{78} +(-2.22323 - 3.22090i) q^{79} +(-25.8504 - 14.9247i) q^{80} +(-1.88150 - 3.96518i) q^{81} +(-16.3060 - 5.44373i) q^{82} +(-1.29292 + 5.24558i) q^{83} +(-10.3251 + 0.416088i) q^{84} +(-2.34728 + 0.0945923i) q^{85} +(-4.88658 + 19.8256i) q^{86} +(-0.487690 - 0.162815i) q^{87} +(-16.0831 - 33.8945i) q^{88} +(2.98137 + 1.72129i) q^{89} +(-5.83426 - 8.45239i) q^{90} +(5.38196 - 2.24169i) q^{91} +(-10.9533 + 15.8686i) q^{92} +(-7.49791 + 3.55780i) q^{93} +(21.1767 - 13.3913i) q^{94} +(13.2361 - 2.15107i) q^{95} +(-5.05853 + 9.63823i) q^{96} +(-10.3543 - 8.45403i) q^{97} +(8.16202 - 7.83973i) q^{98} -6.11751i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57861 + 0.103914i 1.82335 + 0.0734785i 0.928155 0.372194i \(-0.121394\pi\)
0.895196 + 0.445673i \(0.147036\pi\)
\(3\) −0.381537 + 1.31722i −0.220280 + 0.760496i 0.771906 + 0.635736i \(0.219303\pi\)
−0.992187 + 0.124760i \(0.960184\pi\)
\(4\) 4.64490 + 0.374975i 2.32245 + 0.187488i
\(5\) −3.32428 1.26073i −1.48666 0.563818i −0.528223 0.849106i \(-0.677142\pi\)
−0.958442 + 0.285288i \(0.907911\pi\)
\(6\) −1.12071 + 3.35694i −0.457529 + 1.37047i
\(7\) 0.633807 + 1.48760i 0.239556 + 0.562260i 0.995751 0.0920873i \(-0.0293539\pi\)
−0.756194 + 0.654347i \(0.772944\pi\)
\(8\) 6.81465 + 0.827448i 2.40934 + 0.292547i
\(9\) 0.946076 + 0.598262i 0.315359 + 0.199421i
\(10\) −8.44101 3.59638i −2.66928 1.13728i
\(11\) −2.92094 4.61910i −0.880697 1.39271i −0.919343 0.393458i \(-0.871279\pi\)
0.0386459 0.999253i \(-0.487696\pi\)
\(12\) −2.26613 + 5.97529i −0.654174 + 1.72492i
\(13\) 0.0292141 3.60543i 0.00810254 0.999967i
\(14\) 1.47976 + 3.90180i 0.395481 + 1.04280i
\(15\) 2.92900 3.89779i 0.756265 1.00641i
\(16\) 8.28698 + 1.34677i 2.07175 + 0.336691i
\(17\) 0.607879 0.258993i 0.147432 0.0628150i −0.316990 0.948429i \(-0.602672\pi\)
0.464422 + 0.885614i \(0.346262\pi\)
\(18\) 2.37739 + 1.64099i 0.560356 + 0.386786i
\(19\) −3.26641 + 1.88586i −0.749366 + 0.432647i −0.825465 0.564453i \(-0.809087\pi\)
0.0760985 + 0.997100i \(0.475754\pi\)
\(20\) −14.9682 7.10251i −3.34700 1.58817i
\(21\) −2.20131 + 0.267288i −0.480366 + 0.0583270i
\(22\) −7.05197 12.2144i −1.50348 2.60411i
\(23\) −2.06885 + 3.58336i −0.431386 + 0.747183i −0.996993 0.0774924i \(-0.975309\pi\)
0.565607 + 0.824675i \(0.308642\pi\)
\(24\) −3.68997 + 8.66068i −0.753212 + 1.76785i
\(25\) 5.71886 + 5.06647i 1.14377 + 1.01329i
\(26\) 0.449988 9.29396i 0.0882499 1.82270i
\(27\) −4.22844 + 3.74607i −0.813764 + 0.720932i
\(28\) 2.38616 + 7.14742i 0.450942 + 1.35073i
\(29\) −0.0150965 + 0.374615i −0.00280334 + 0.0695643i −0.999985 0.00545940i \(-0.998262\pi\)
0.997182 + 0.0750237i \(0.0239032\pi\)
\(30\) 7.95778 9.74651i 1.45288 1.77946i
\(31\) 4.01307 + 4.52982i 0.720769 + 0.813581i 0.988708 0.149855i \(-0.0478808\pi\)
−0.267938 + 0.963436i \(0.586342\pi\)
\(32\) 7.77699 + 1.58768i 1.37479 + 0.280665i
\(33\) 7.19881 2.08516i 1.25315 0.362980i
\(34\) 1.59439 0.604674i 0.273436 0.103701i
\(35\) −0.231486 5.74426i −0.0391283 0.970958i
\(36\) 4.17010 + 3.13363i 0.695016 + 0.522271i
\(37\) 8.68138 1.77232i 1.42721 0.291367i 0.576541 0.817068i \(-0.304402\pi\)
0.850669 + 0.525701i \(0.176197\pi\)
\(38\) −8.61876 + 4.52348i −1.39815 + 0.733805i
\(39\) 4.73800 + 1.41409i 0.758687 + 0.226435i
\(40\) −21.6106 11.3421i −3.41694 1.79335i
\(41\) −6.39824 1.85327i −0.999237 0.289433i −0.262001 0.965068i \(-0.584382\pi\)
−0.737236 + 0.675635i \(0.763870\pi\)
\(42\) −5.70410 + 0.460483i −0.880162 + 0.0710540i
\(43\) −1.58264 + 7.75228i −0.241350 + 1.18221i 0.660724 + 0.750629i \(0.270249\pi\)
−0.902074 + 0.431582i \(0.857956\pi\)
\(44\) −11.8354 22.5505i −1.78426 3.39962i
\(45\) −2.39078 3.18154i −0.356396 0.474277i
\(46\) −5.70713 + 9.02510i −0.841470 + 1.33068i
\(47\) 7.99021 5.51524i 1.16549 0.804481i 0.181622 0.983368i \(-0.441865\pi\)
0.983869 + 0.178888i \(0.0572499\pi\)
\(48\) −4.93577 + 10.4019i −0.712418 + 1.50139i
\(49\) 3.03783 3.16272i 0.433976 0.451817i
\(50\) 14.2202 + 13.6587i 2.01104 + 1.93163i
\(51\) 0.109222 + 0.899525i 0.0152942 + 0.125959i
\(52\) 1.48765 16.7359i 0.206299 2.32086i
\(53\) −0.387154 + 3.18850i −0.0531798 + 0.437975i 0.941664 + 0.336555i \(0.109262\pi\)
−0.994844 + 0.101420i \(0.967661\pi\)
\(54\) −11.2928 + 9.22026i −1.53675 + 1.25472i
\(55\) 3.88658 + 19.0377i 0.524066 + 2.56705i
\(56\) 3.08826 + 10.6619i 0.412686 + 1.42476i
\(57\) −1.23784 5.02211i −0.163956 0.665194i
\(58\) −0.0778557 + 0.964416i −0.0102230 + 0.126634i
\(59\) 0.599422 + 3.68839i 0.0780381 + 0.480188i 0.996423 + 0.0845005i \(0.0269295\pi\)
−0.918385 + 0.395687i \(0.870506\pi\)
\(60\) 15.0665 17.0066i 1.94508 2.19554i
\(61\) −3.97645 + 2.98811i −0.509132 + 0.382588i −0.824038 0.566535i \(-0.808284\pi\)
0.314905 + 0.949123i \(0.398027\pi\)
\(62\) 9.87743 + 12.0977i 1.25443 + 1.53640i
\(63\) −0.290345 + 1.78656i −0.0365800 + 0.225086i
\(64\) 3.58533 + 0.883705i 0.448167 + 0.110463i
\(65\) −4.64261 + 11.9487i −0.575845 + 1.48205i
\(66\) 18.7796 4.62875i 2.31161 0.569760i
\(67\) −0.700108 8.67239i −0.0855318 1.05950i −0.887094 0.461590i \(-0.847279\pi\)
0.801562 0.597912i \(-0.204003\pi\)
\(68\) 2.92066 0.975058i 0.354181 0.118243i
\(69\) −3.93073 4.09232i −0.473204 0.492657i
\(70\) 14.8363i 1.77327i
\(71\) 0.998956 0.959510i 0.118554 0.113873i −0.631103 0.775699i \(-0.717398\pi\)
0.749658 + 0.661826i \(0.230218\pi\)
\(72\) 5.95215 + 4.85978i 0.701467 + 0.572730i
\(73\) −0.592291 + 1.12852i −0.0693224 + 0.132083i −0.917651 0.397387i \(-0.869917\pi\)
0.848329 + 0.529470i \(0.177609\pi\)
\(74\) 22.5700 3.66799i 2.62371 0.426395i
\(75\) −8.85560 + 5.59994i −1.02256 + 0.646626i
\(76\) −15.8793 + 7.53483i −1.82148 + 0.864304i
\(77\) 5.02006 7.27281i 0.572088 0.828813i
\(78\) 12.0705 + 4.13872i 1.36671 + 0.468618i
\(79\) −2.22323 3.22090i −0.250133 0.362380i 0.677724 0.735316i \(-0.262966\pi\)
−0.927857 + 0.372936i \(0.878351\pi\)
\(80\) −25.8504 14.9247i −2.89016 1.66863i
\(81\) −1.88150 3.96518i −0.209056 0.440575i
\(82\) −16.3060 5.44373i −1.80069 0.601160i
\(83\) −1.29292 + 5.24558i −0.141916 + 0.575777i 0.856322 + 0.516443i \(0.172744\pi\)
−0.998238 + 0.0593346i \(0.981102\pi\)
\(84\) −10.3251 + 0.416088i −1.12656 + 0.0453989i
\(85\) −2.34728 + 0.0945923i −0.254599 + 0.0102600i
\(86\) −4.88658 + 19.8256i −0.526933 + 2.13785i
\(87\) −0.487690 0.162815i −0.0522859 0.0174556i
\(88\) −16.0831 33.8945i −1.71447 3.61316i
\(89\) 2.98137 + 1.72129i 0.316025 + 0.182457i 0.649619 0.760260i \(-0.274928\pi\)
−0.333595 + 0.942717i \(0.608262\pi\)
\(90\) −5.83426 8.45239i −0.614985 0.890960i
\(91\) 5.38196 2.24169i 0.564182 0.234993i
\(92\) −10.9533 + 15.8686i −1.14196 + 1.65442i
\(93\) −7.49791 + 3.55780i −0.777497 + 0.368927i
\(94\) 21.1767 13.3913i 2.18421 1.38121i
\(95\) 13.2361 2.15107i 1.35799 0.220695i
\(96\) −5.05853 + 9.63823i −0.516284 + 0.983698i
\(97\) −10.3543 8.45403i −1.05132 0.858377i −0.0611345 0.998130i \(-0.519472\pi\)
−0.990186 + 0.139753i \(0.955369\pi\)
\(98\) 8.16202 7.83973i 0.824489 0.791932i
\(99\) 6.11751i 0.614833i
\(100\) 24.6637 + 25.6777i 2.46637 + 2.56777i
\(101\) 2.13614 0.713148i 0.212554 0.0709609i −0.208397 0.978044i \(-0.566825\pi\)
0.420951 + 0.907083i \(0.361696\pi\)
\(102\) 0.188167 + 2.33087i 0.0186313 + 0.230791i
\(103\) 13.3753 3.29671i 1.31790 0.324834i 0.483189 0.875516i \(-0.339478\pi\)
0.834715 + 0.550681i \(0.185632\pi\)
\(104\) 3.18239 24.5456i 0.312059 2.40689i
\(105\) 7.65477 + 1.88673i 0.747029 + 0.184126i
\(106\) −1.32965 + 8.18167i −0.129147 + 0.794674i
\(107\) 1.54972 + 1.89807i 0.149817 + 0.183493i 0.844061 0.536247i \(-0.180158\pi\)
−0.694244 + 0.719740i \(0.744261\pi\)
\(108\) −21.0454 + 15.8146i −2.02509 + 1.52176i
\(109\) −4.61348 + 5.20755i −0.441892 + 0.498792i −0.926686 0.375835i \(-0.877356\pi\)
0.484795 + 0.874628i \(0.338894\pi\)
\(110\) 8.04367 + 49.4947i 0.766934 + 4.71913i
\(111\) −0.977739 + 12.1115i −0.0928029 + 1.14957i
\(112\) 3.24890 + 13.1813i 0.306992 + 1.24552i
\(113\) −5.45564 18.8350i −0.513223 1.77185i −0.627731 0.778430i \(-0.716016\pi\)
0.114508 0.993422i \(-0.463471\pi\)
\(114\) −2.67003 13.0787i −0.250071 1.22493i
\(115\) 11.3951 9.30383i 1.06260 0.867587i
\(116\) −0.210593 + 1.73439i −0.0195531 + 0.161034i
\(117\) 2.18463 3.39354i 0.201969 0.313733i
\(118\) 1.16240 + 9.57320i 0.107007 + 0.881285i
\(119\) 0.770556 + 0.740129i 0.0706367 + 0.0678475i
\(120\) 23.1853 24.1385i 2.11652 2.20353i
\(121\) −8.08856 + 17.0463i −0.735323 + 1.54966i
\(122\) −10.5642 + 7.29195i −0.956439 + 0.660182i
\(123\) 4.88233 7.72079i 0.440225 0.696160i
\(124\) 16.9418 + 22.5454i 1.52142 + 2.02464i
\(125\) −4.36244 8.31193i −0.390188 0.743441i
\(126\) −0.934336 + 4.57668i −0.0832372 + 0.407723i
\(127\) 0.594992 0.0480327i 0.0527970 0.00426222i −0.0540398 0.998539i \(-0.517210\pi\)
0.106837 + 0.994277i \(0.465928\pi\)
\(128\) −6.09469 1.76535i −0.538700 0.156036i
\(129\) −9.60761 5.04246i −0.845903 0.443964i
\(130\) −13.2131 + 30.3284i −1.15887 + 2.65998i
\(131\) 15.7024 8.24127i 1.37193 0.720043i 0.392107 0.919920i \(-0.371746\pi\)
0.979821 + 0.199877i \(0.0640541\pi\)
\(132\) 34.2197 6.98599i 2.97844 0.608053i
\(133\) −4.87568 3.66384i −0.422775 0.317695i
\(134\) −0.904118 22.4355i −0.0781039 1.93813i
\(135\) 18.7794 7.12207i 1.61627 0.612970i
\(136\) 4.35678 1.26196i 0.373591 0.108212i
\(137\) −0.713145 0.145590i −0.0609281 0.0124386i 0.169465 0.985536i \(-0.445796\pi\)
−0.230393 + 0.973098i \(0.574001\pi\)
\(138\) −9.71055 10.9609i −0.826617 0.933057i
\(139\) −14.4527 + 17.7013i −1.22586 + 1.50140i −0.421987 + 0.906602i \(0.638667\pi\)
−0.803872 + 0.594803i \(0.797230\pi\)
\(140\) 1.07873 26.7684i 0.0911691 2.26234i
\(141\) 4.21622 + 12.6291i 0.355070 + 1.06356i
\(142\) 2.67562 2.37039i 0.224533 0.198919i
\(143\) −16.7392 + 10.3963i −1.39980 + 0.869383i
\(144\) 7.03440 + 6.23193i 0.586200 + 0.519328i
\(145\) 0.522475 1.22629i 0.0433892 0.101838i
\(146\) −1.64455 + 2.84845i −0.136104 + 0.235740i
\(147\) 3.00694 + 5.20818i 0.248009 + 0.429563i
\(148\) 40.9887 4.97693i 3.36925 0.409101i
\(149\) −17.2271 8.17434i −1.41130 0.669668i −0.437948 0.899001i \(-0.644294\pi\)
−0.973348 + 0.229332i \(0.926346\pi\)
\(150\) −23.4170 + 13.5198i −1.91199 + 1.10389i
\(151\) 9.28831 + 6.41125i 0.755872 + 0.521741i 0.882559 0.470202i \(-0.155819\pi\)
−0.126687 + 0.991943i \(0.540434\pi\)
\(152\) −23.8199 + 10.1487i −1.93205 + 0.823169i
\(153\) 0.730046 + 0.118644i 0.0590207 + 0.00959180i
\(154\) 13.7005 18.2321i 1.10402 1.46918i
\(155\) −7.62969 20.1178i −0.612832 1.61590i
\(156\) 21.4773 + 8.34493i 1.71956 + 0.668129i
\(157\) 5.69361 15.0128i 0.454399 1.19815i −0.490688 0.871335i \(-0.663255\pi\)
0.945088 0.326817i \(-0.105976\pi\)
\(158\) −5.39813 8.53647i −0.429452 0.679125i
\(159\) −4.05224 1.72650i −0.321364 0.136920i
\(160\) −23.8513 15.0826i −1.88561 1.19239i
\(161\) −6.64186 0.806468i −0.523452 0.0635586i
\(162\) −4.43961 10.4202i −0.348809 0.818684i
\(163\) −0.106045 + 0.317643i −0.00830607 + 0.0248797i −0.952608 0.304201i \(-0.901611\pi\)
0.944302 + 0.329081i \(0.106739\pi\)
\(164\) −29.0243 11.0075i −2.26642 0.859538i
\(165\) −26.5597 2.14412i −2.06767 0.166920i
\(166\) −3.87902 + 13.3919i −0.301070 + 1.03942i
\(167\) −6.28018 0.253083i −0.485975 0.0195841i −0.203930 0.978985i \(-0.565372\pi\)
−0.282045 + 0.959401i \(0.591013\pi\)
\(168\) −15.2223 −1.17443
\(169\) −12.9983 0.210659i −0.999869 0.0162045i
\(170\) −6.06255 −0.464977
\(171\) −4.21852 0.170000i −0.322598 0.0130003i
\(172\) −10.2581 + 35.4151i −0.782174 + 2.70038i
\(173\) 20.1134 + 1.62372i 1.52920 + 0.123449i 0.816221 0.577740i \(-0.196065\pi\)
0.712975 + 0.701190i \(0.247347\pi\)
\(174\) −1.24064 0.470514i −0.0940529 0.0356695i
\(175\) −3.91222 + 11.7185i −0.295736 + 0.885838i
\(176\) −17.9849 42.2122i −1.35567 3.18187i
\(177\) −5.08712 0.617688i −0.382371 0.0464283i
\(178\) 7.50892 + 4.74835i 0.562817 + 0.355904i
\(179\) −6.18386 2.63470i −0.462204 0.196927i 0.148296 0.988943i \(-0.452621\pi\)
−0.610500 + 0.792016i \(0.709031\pi\)
\(180\) −9.91192 15.6744i −0.738791 1.16830i
\(181\) 0.654370 1.72543i 0.0486390 0.128250i −0.908495 0.417895i \(-0.862768\pi\)
0.957134 + 0.289645i \(0.0935372\pi\)
\(182\) 14.1109 5.22117i 1.04597 0.387019i
\(183\) −2.41883 6.37793i −0.178805 0.471470i
\(184\) −17.0636 + 22.7075i −1.25794 + 1.67402i
\(185\) −31.0938 5.05323i −2.28606 0.371521i
\(186\) −19.7039 + 8.39503i −1.44476 + 0.615554i
\(187\) −2.97189 2.05135i −0.217326 0.150010i
\(188\) 39.1818 22.6216i 2.85763 1.64985i
\(189\) −8.25267 3.91594i −0.600294 0.284843i
\(190\) 34.3541 4.17135i 2.49231 0.302621i
\(191\) 7.53238 + 13.0465i 0.545024 + 0.944009i 0.998605 + 0.0527943i \(0.0168128\pi\)
−0.453581 + 0.891215i \(0.649854\pi\)
\(192\) −2.53197 + 4.38550i −0.182729 + 0.316496i
\(193\) −0.458739 + 1.07670i −0.0330208 + 0.0775026i −0.935673 0.352867i \(-0.885207\pi\)
0.902653 + 0.430370i \(0.141617\pi\)
\(194\) −25.8212 22.8756i −1.85385 1.64237i
\(195\) −13.9677 10.6742i −1.00024 0.764394i
\(196\) 15.2964 13.5514i 1.09260 0.967957i
\(197\) 0.657798 + 1.97034i 0.0468661 + 0.140381i 0.969369 0.245609i \(-0.0789880\pi\)
−0.922503 + 0.385990i \(0.873860\pi\)
\(198\) 0.635697 15.7747i 0.0451770 1.12106i
\(199\) −1.25696 + 1.53950i −0.0891039 + 0.109132i −0.817233 0.576308i \(-0.804493\pi\)
0.728129 + 0.685440i \(0.240390\pi\)
\(200\) 34.7798 + 39.2582i 2.45930 + 2.77598i
\(201\) 11.6906 + 2.38664i 0.824588 + 0.168341i
\(202\) 5.58237 1.61695i 0.392774 0.113768i
\(203\) −0.566845 + 0.214976i −0.0397847 + 0.0150884i
\(204\) 0.170026 + 4.21916i 0.0119042 + 0.295400i
\(205\) 18.9331 + 14.2273i 1.32234 + 0.993677i
\(206\) 34.8322 7.11104i 2.42687 0.495449i
\(207\) −4.10108 + 2.15242i −0.285045 + 0.149603i
\(208\) 5.09777 29.8388i 0.353467 2.06895i
\(209\) 18.2520 + 9.57938i 1.26252 + 0.662620i
\(210\) 19.5426 + 5.66058i 1.34857 + 0.390617i
\(211\) 4.56596 0.368603i 0.314334 0.0253756i 0.0777069 0.996976i \(-0.475240\pi\)
0.236627 + 0.971601i \(0.423958\pi\)
\(212\) −2.99391 + 14.6651i −0.205622 + 1.00720i
\(213\) 0.882746 + 1.68193i 0.0604848 + 0.115244i
\(214\) 3.79889 + 5.05541i 0.259687 + 0.345581i
\(215\) 15.0347 23.7755i 1.02536 1.62147i
\(216\) −31.9150 + 22.0294i −2.17154 + 1.49891i
\(217\) −4.19505 + 8.84088i −0.284779 + 0.600158i
\(218\) −12.4375 + 12.9488i −0.842374 + 0.877004i
\(219\) −1.26052 1.21075i −0.0851781 0.0818147i
\(220\) 10.9141 + 89.8858i 0.735829 + 6.06010i
\(221\) −0.916023 2.19923i −0.0616184 0.147936i
\(222\) −3.77976 + 31.1291i −0.253681 + 2.08925i
\(223\) 2.49454 2.03673i 0.167047 0.136390i −0.545235 0.838284i \(-0.683559\pi\)
0.712281 + 0.701894i \(0.247662\pi\)
\(224\) 2.56727 + 12.5753i 0.171533 + 0.840224i
\(225\) 2.37940 + 8.21464i 0.158627 + 0.547643i
\(226\) −12.1107 49.1351i −0.805593 3.26842i
\(227\) 0.629942 7.80323i 0.0418107 0.517919i −0.941625 0.336663i \(-0.890702\pi\)
0.983436 0.181256i \(-0.0580162\pi\)
\(228\) −3.86647 23.7914i −0.256063 1.57562i
\(229\) 17.1729 19.3842i 1.13482 1.28094i 0.180029 0.983661i \(-0.442381\pi\)
0.954789 0.297283i \(-0.0960806\pi\)
\(230\) 30.3504 22.8068i 2.00124 1.50384i
\(231\) 7.66454 + 9.38735i 0.504290 + 0.617643i
\(232\) −0.412852 + 2.54038i −0.0271050 + 0.166784i
\(233\) 7.55195 + 1.86139i 0.494745 + 0.121944i 0.478791 0.877929i \(-0.341075\pi\)
0.0159542 + 0.999873i \(0.494921\pi\)
\(234\) 5.98595 8.52358i 0.391314 0.557204i
\(235\) −33.5150 + 8.26070i −2.18628 + 0.538869i
\(236\) 1.40120 + 17.3570i 0.0912104 + 1.12984i
\(237\) 5.09087 1.69958i 0.330688 0.110400i
\(238\) 1.91005 + 1.98857i 0.123810 + 0.128900i
\(239\) 3.83283i 0.247925i −0.992287 0.123963i \(-0.960440\pi\)
0.992287 0.123963i \(-0.0395603\pi\)
\(240\) 29.5220 28.3562i 1.90564 1.83039i
\(241\) −12.9967 10.6115i −0.837192 0.683546i 0.113549 0.993532i \(-0.463778\pi\)
−0.950741 + 0.309987i \(0.899675\pi\)
\(242\) −22.6286 + 43.1151i −1.45462 + 2.77155i
\(243\) −10.7871 + 1.75307i −0.691992 + 0.112460i
\(244\) −19.5907 + 12.3884i −1.25417 + 0.793087i
\(245\) −14.0860 + 6.68387i −0.899919 + 0.427017i
\(246\) 13.3919 19.4015i 0.853837 1.23700i
\(247\) 6.70393 + 11.8319i 0.426561 + 0.752847i
\(248\) 23.5995 + 34.1898i 1.49857 + 2.17105i
\(249\) −6.41628 3.70444i −0.406615 0.234759i
\(250\) −10.3853 21.8865i −0.656823 1.38422i
\(251\) −10.4189 3.47833i −0.657633 0.219550i −0.0317842 0.999495i \(-0.510119\pi\)
−0.625848 + 0.779945i \(0.715247\pi\)
\(252\) −2.01854 + 8.18955i −0.127156 + 0.515893i
\(253\) 22.5949 0.910544i 1.42053 0.0572454i
\(254\) 1.53924 0.0620293i 0.0965807 0.00389207i
\(255\) 0.770977 3.12798i 0.0482804 0.195881i
\(256\) −22.5376 7.52414i −1.40860 0.470259i
\(257\) −1.46728 3.09222i −0.0915262 0.192887i 0.852525 0.522687i \(-0.175070\pi\)
−0.944051 + 0.329799i \(0.893019\pi\)
\(258\) −24.2503 14.0009i −1.50976 0.871658i
\(259\) 8.13881 + 11.7911i 0.505721 + 0.732664i
\(260\) −26.0449 + 53.7595i −1.61524 + 3.33402i
\(261\) −0.238401 + 0.345383i −0.0147566 + 0.0213787i
\(262\) 41.3468 19.6193i 2.55441 1.21208i
\(263\) −18.5638 + 11.7391i −1.14469 + 0.723861i −0.965616 0.259974i \(-0.916286\pi\)
−0.179079 + 0.983835i \(0.557312\pi\)
\(264\) 50.7827 8.25299i 3.12546 0.507937i
\(265\) 5.30687 10.1114i 0.325998 0.621138i
\(266\) −12.1917 9.95426i −0.747524 0.610335i
\(267\) −3.40482 + 3.27038i −0.208372 + 0.200144i
\(268\) 40.5450i 2.47668i
\(269\) 7.20348 + 7.49962i 0.439204 + 0.457260i 0.903606 0.428365i \(-0.140910\pi\)
−0.464402 + 0.885625i \(0.653731\pi\)
\(270\) 49.1647 16.4136i 2.99207 0.998898i
\(271\) 0.979373 + 12.1317i 0.0594927 + 0.736949i 0.955895 + 0.293708i \(0.0948894\pi\)
−0.896402 + 0.443241i \(0.853829\pi\)
\(272\) 5.38629 1.32760i 0.326592 0.0804976i
\(273\) 0.899379 + 7.94450i 0.0544329 + 0.480823i
\(274\) −1.82379 0.449524i −0.110179 0.0271568i
\(275\) 6.69806 41.2148i 0.403908 2.48535i
\(276\) −16.7233 20.4824i −1.00663 1.23289i
\(277\) 19.1789 14.4120i 1.15235 0.865934i 0.159724 0.987162i \(-0.448940\pi\)
0.992625 + 0.121228i \(0.0386832\pi\)
\(278\) −39.1072 + 44.1429i −2.34549 + 2.64751i
\(279\) 1.08665 + 6.68643i 0.0650561 + 0.400306i
\(280\) 3.17559 39.3367i 0.189778 2.35082i
\(281\) 0.950183 + 3.85504i 0.0566832 + 0.229973i 0.992451 0.122645i \(-0.0391377\pi\)
−0.935767 + 0.352618i \(0.885292\pi\)
\(282\) 9.55963 + 33.0037i 0.569268 + 1.96534i
\(283\) 0.0492759 + 0.241369i 0.00292915 + 0.0143479i 0.981229 0.192846i \(-0.0617719\pi\)
−0.978300 + 0.207194i \(0.933567\pi\)
\(284\) 4.99985 4.08225i 0.296686 0.242237i
\(285\) −2.21662 + 18.2555i −0.131301 + 1.08136i
\(286\) −44.2441 + 25.0686i −2.61621 + 1.48234i
\(287\) −1.29832 10.6926i −0.0766375 0.631166i
\(288\) 6.40777 + 6.15475i 0.377582 + 0.362672i
\(289\) −11.4739 + 11.9456i −0.674934 + 0.702681i
\(290\) 1.47469 3.10784i 0.0865966 0.182499i
\(291\) 15.0864 10.4134i 0.884378 0.610442i
\(292\) −3.17430 + 5.01975i −0.185762 + 0.293759i
\(293\) 12.4734 + 16.5991i 0.728707 + 0.969732i 0.999974 + 0.00722828i \(0.00230085\pi\)
−0.271267 + 0.962504i \(0.587443\pi\)
\(294\) 7.21252 + 13.7423i 0.420643 + 0.801468i
\(295\) 2.65743 13.0170i 0.154722 0.757877i
\(296\) 60.6270 4.89432i 3.52388 0.284477i
\(297\) 29.6545 + 8.58954i 1.72073 + 0.498416i
\(298\) −43.5724 22.8686i −2.52408 1.32474i
\(299\) 12.8591 + 7.56380i 0.743663 + 0.437426i
\(300\) −43.2332 + 22.6906i −2.49607 + 1.31004i
\(301\) −12.5354 + 2.55911i −0.722526 + 0.147505i
\(302\) 23.2847 + 17.4973i 1.33988 + 1.00686i
\(303\) 0.124356 + 3.08585i 0.00714405 + 0.177278i
\(304\) −29.6085 + 11.2290i −1.69816 + 0.644029i
\(305\) 16.9861 4.92007i 0.972619 0.281723i
\(306\) 1.87017 + 0.381798i 0.106911 + 0.0218260i
\(307\) −2.44358 2.75824i −0.139463 0.157421i 0.674629 0.738157i \(-0.264303\pi\)
−0.814092 + 0.580736i \(0.802765\pi\)
\(308\) 26.0448 31.8991i 1.48404 1.81762i
\(309\) −0.760676 + 18.8760i −0.0432733 + 1.07382i
\(310\) −17.5834 52.6689i −0.998673 2.99139i
\(311\) 2.36566 2.09579i 0.134144 0.118842i −0.593383 0.804920i \(-0.702208\pi\)
0.727527 + 0.686079i \(0.240670\pi\)
\(312\) 31.1177 + 13.5570i 1.76169 + 0.767511i
\(313\) 15.8786 + 14.0672i 0.897513 + 0.795127i 0.979487 0.201507i \(-0.0645840\pi\)
−0.0819741 + 0.996634i \(0.526122\pi\)
\(314\) 16.2416 38.1205i 0.916568 2.15126i
\(315\) 3.21757 5.57300i 0.181290 0.314003i
\(316\) −9.11892 15.7944i −0.512979 0.888506i
\(317\) 2.03005 0.246493i 0.114019 0.0138444i −0.0633281 0.997993i \(-0.520171\pi\)
0.177347 + 0.984148i \(0.443248\pi\)
\(318\) −10.2697 4.87305i −0.575898 0.273267i
\(319\) 1.77448 1.02450i 0.0993518 0.0573608i
\(320\) −10.8045 7.45784i −0.603993 0.416906i
\(321\) −3.09145 + 1.31714i −0.172548 + 0.0735157i
\(322\) −17.0429 2.76975i −0.949766 0.154352i
\(323\) −1.49716 + 1.99236i −0.0833041 + 0.110858i
\(324\) −7.25254 19.1234i −0.402919 1.06241i
\(325\) 18.4339 20.4709i 1.02253 1.13552i
\(326\) −0.306456 + 0.808057i −0.0169730 + 0.0447542i
\(327\) −5.09926 8.06384i −0.281990 0.445931i
\(328\) −42.0683 17.9236i −2.32283 0.989666i
\(329\) 13.2687 + 8.39063i 0.731528 + 0.462590i
\(330\) −68.2643 8.28878i −3.75783 0.456283i
\(331\) 12.6917 + 29.7885i 0.697599 + 1.63733i 0.768506 + 0.639843i \(0.221001\pi\)
−0.0709066 + 0.997483i \(0.522589\pi\)
\(332\) −7.97245 + 23.8804i −0.437545 + 1.31061i
\(333\) 9.27356 + 3.51700i 0.508188 + 0.192730i
\(334\) −16.1678 1.30520i −0.884664 0.0714174i
\(335\) −8.60623 + 29.7121i −0.470209 + 1.62335i
\(336\) −18.6022 0.749644i −1.01483 0.0408964i
\(337\) −31.0373 −1.69071 −0.845354 0.534207i \(-0.820610\pi\)
−0.845354 + 0.534207i \(0.820610\pi\)
\(338\) −33.4956 1.89392i −1.82192 0.103015i
\(339\) 26.8914 1.46054
\(340\) −10.9384 0.440802i −0.593217 0.0239058i
\(341\) 9.20175 31.7681i 0.498303 1.72034i
\(342\) −10.8602 0.876729i −0.587254 0.0474081i
\(343\) 17.2136 + 6.52828i 0.929450 + 0.352494i
\(344\) −17.1997 + 51.5195i −0.927347 + 2.77774i
\(345\) 7.90752 + 18.5596i 0.425727 + 0.999217i
\(346\) 51.6959 + 6.27702i 2.77919 + 0.337455i
\(347\) −9.28103 5.86897i −0.498232 0.315063i 0.261607 0.965175i \(-0.415748\pi\)
−0.759838 + 0.650112i \(0.774722\pi\)
\(348\) −2.20422 0.939131i −0.118159 0.0503427i
\(349\) −4.90223 7.75225i −0.262410 0.414969i 0.688122 0.725595i \(-0.258435\pi\)
−0.950532 + 0.310627i \(0.899461\pi\)
\(350\) −11.3058 + 29.8110i −0.604321 + 1.59346i
\(351\) 13.3827 + 15.3548i 0.714315 + 0.819579i
\(352\) −15.3825 40.5602i −0.819888 2.16187i
\(353\) −9.11776 + 12.1335i −0.485289 + 0.645803i −0.973975 0.226657i \(-0.927220\pi\)
0.488685 + 0.872460i \(0.337477\pi\)
\(354\) −13.0535 2.12140i −0.693786 0.112751i
\(355\) −4.53050 + 1.93027i −0.240454 + 0.102448i
\(356\) 13.2027 + 9.11319i 0.699743 + 0.482998i
\(357\) −1.26891 + 0.732604i −0.0671577 + 0.0387735i
\(358\) −15.6720 7.43645i −0.828290 0.393028i
\(359\) −11.1571 + 1.35471i −0.588848 + 0.0714991i −0.409537 0.912293i \(-0.634310\pi\)
−0.179311 + 0.983792i \(0.557387\pi\)
\(360\) −13.6597 23.6594i −0.719931 1.24696i
\(361\) −2.38703 + 4.13446i −0.125633 + 0.217603i
\(362\) 1.86666 4.38122i 0.0981096 0.230272i
\(363\) −19.3676 17.1582i −1.01653 0.900571i
\(364\) 25.8392 8.39433i 1.35434 0.439982i
\(365\) 3.39170 3.00479i 0.177530 0.157278i
\(366\) −5.57445 16.6975i −0.291381 0.872794i
\(367\) −0.389655 + 9.66919i −0.0203398 + 0.504727i 0.956624 + 0.291324i \(0.0940958\pi\)
−0.976964 + 0.213403i \(0.931545\pi\)
\(368\) −21.9705 + 26.9090i −1.14529 + 1.40273i
\(369\) −4.94448 5.58116i −0.257399 0.290544i
\(370\) −79.6536 16.2614i −4.14099 0.845390i
\(371\) −4.98860 + 1.44496i −0.258995 + 0.0750188i
\(372\) −36.1611 + 13.7141i −1.87487 + 0.711043i
\(373\) −1.51600 37.6192i −0.0784957 1.94785i −0.262516 0.964928i \(-0.584552\pi\)
0.184020 0.982922i \(-0.441089\pi\)
\(374\) −7.45018 5.59845i −0.385240 0.289489i
\(375\) 12.6131 2.57497i 0.651335 0.132971i
\(376\) 59.0140 30.9730i 3.04342 1.59731i
\(377\) 1.35021 + 0.0653734i 0.0695393 + 0.00336690i
\(378\) −20.8735 10.9552i −1.07362 0.563477i
\(379\) 19.8251 + 5.74240i 1.01835 + 0.294967i 0.745083 0.666972i \(-0.232410\pi\)
0.273263 + 0.961939i \(0.411897\pi\)
\(380\) 62.2868 5.02831i 3.19525 0.257947i
\(381\) −0.163742 + 0.802061i −0.00838875 + 0.0410908i
\(382\) 18.0673 + 34.4244i 0.924405 + 1.76131i
\(383\) −8.37806 11.1492i −0.428099 0.569696i 0.532925 0.846163i \(-0.321093\pi\)
−0.961023 + 0.276467i \(0.910836\pi\)
\(384\) 4.65070 7.35449i 0.237330 0.375307i
\(385\) −25.8572 + 17.8479i −1.31780 + 0.909614i
\(386\) −1.29479 + 2.72872i −0.0659032 + 0.138888i
\(387\) −6.13519 + 6.38741i −0.311869 + 0.324690i
\(388\) −44.9247 43.1508i −2.28071 2.19065i
\(389\) 0.0438925 + 0.361487i 0.00222544 + 0.0183281i 0.993779 0.111367i \(-0.0355231\pi\)
−0.991554 + 0.129696i \(0.958600\pi\)
\(390\) −34.9079 28.9760i −1.76763 1.46726i
\(391\) −0.329548 + 2.71407i −0.0166659 + 0.137256i
\(392\) 23.3187 19.0392i 1.17777 0.961622i
\(393\) 4.86450 + 23.8279i 0.245381 + 1.20196i
\(394\) 1.49146 + 5.14910i 0.0751384 + 0.259408i
\(395\) 3.32994 + 13.5101i 0.167547 + 0.679766i
\(396\) 2.29391 28.4152i 0.115274 1.42792i
\(397\) 0.766347 + 4.71552i 0.0384618 + 0.236665i 0.999162 0.0409218i \(-0.0130294\pi\)
−0.960701 + 0.277587i \(0.910465\pi\)
\(398\) −3.40119 + 3.83915i −0.170486 + 0.192439i
\(399\) 6.68633 5.02445i 0.334735 0.251537i
\(400\) 40.5687 + 49.6877i 2.02844 + 2.48438i
\(401\) 1.59975 9.84367i 0.0798878 0.491569i −0.916015 0.401143i \(-0.868613\pi\)
0.995903 0.0904262i \(-0.0288229\pi\)
\(402\) 29.8973 + 7.36903i 1.49114 + 0.367534i
\(403\) 16.4492 14.3365i 0.819394 0.714154i
\(404\) 10.1896 2.51150i 0.506950 0.124952i
\(405\) 1.25560 + 15.5535i 0.0623915 + 0.772857i
\(406\) −1.48401 + 0.495436i −0.0736502 + 0.0245881i
\(407\) −33.5443 34.9233i −1.66273 1.73108i
\(408\) 6.22032i 0.307952i
\(409\) 14.8237 14.2383i 0.732983 0.704040i −0.230123 0.973162i \(-0.573913\pi\)
0.963106 + 0.269122i \(0.0867334\pi\)
\(410\) 47.3426 + 38.6540i 2.33808 + 1.90899i
\(411\) 0.463864 0.883820i 0.0228807 0.0435956i
\(412\) 63.3630 10.2975i 3.12167 0.507321i
\(413\) −5.10693 + 3.22943i −0.251296 + 0.158910i
\(414\) −10.7988 + 5.12407i −0.530730 + 0.251834i
\(415\) 10.9113 15.8078i 0.535615 0.775973i
\(416\) 5.95148 27.9930i 0.291795 1.37247i
\(417\) −17.8023 25.7910i −0.871780 1.26299i
\(418\) 46.0693 + 26.5981i 2.25332 + 1.30096i
\(419\) 8.69914 + 18.3330i 0.424981 + 0.895628i 0.997147 + 0.0754899i \(0.0240521\pi\)
−0.572166 + 0.820138i \(0.693897\pi\)
\(420\) 34.8482 + 11.6340i 1.70042 + 0.567683i
\(421\) −8.93777 + 36.2620i −0.435600 + 1.76730i 0.184557 + 0.982822i \(0.440915\pi\)
−0.620157 + 0.784478i \(0.712931\pi\)
\(422\) 11.8121 0.476012i 0.575005 0.0231719i
\(423\) 10.8589 0.437599i 0.527978 0.0212768i
\(424\) −5.27664 + 21.4082i −0.256256 + 1.03967i
\(425\) 4.78855 + 1.59865i 0.232279 + 0.0775461i
\(426\) 2.10148 + 4.42877i 0.101817 + 0.214575i
\(427\) −6.96541 4.02148i −0.337080 0.194613i
\(428\) 6.48659 + 9.39745i 0.313541 + 0.454243i
\(429\) −7.30760 26.0157i −0.352814 1.25605i
\(430\) 41.2392 59.7453i 1.98873 2.88117i
\(431\) −7.53081 + 3.57342i −0.362746 + 0.172125i −0.601338 0.798995i \(-0.705366\pi\)
0.238592 + 0.971120i \(0.423314\pi\)
\(432\) −40.0861 + 25.3489i −1.92864 + 1.21960i
\(433\) −11.3924 + 1.85145i −0.547485 + 0.0889750i −0.427862 0.903844i \(-0.640733\pi\)
−0.119624 + 0.992819i \(0.538169\pi\)
\(434\) −11.7361 + 22.3612i −0.563350 + 1.07337i
\(435\) 1.41595 + 1.15609i 0.0678898 + 0.0554303i
\(436\) −23.3819 + 22.4586i −1.11979 + 1.07557i
\(437\) 15.6063i 0.746551i
\(438\) −3.12458 3.25303i −0.149298 0.155436i
\(439\) −21.3518 + 7.12829i −1.01907 + 0.340215i −0.776633 0.629953i \(-0.783074\pi\)
−0.242435 + 0.970168i \(0.577946\pi\)
\(440\) 10.7329 + 132.951i 0.511673 + 6.33821i
\(441\) 4.76615 1.17475i 0.226960 0.0559405i
\(442\) −2.13353 5.76615i −0.101482 0.274268i
\(443\) −8.88196 2.18921i −0.421995 0.104012i 0.0225992 0.999745i \(-0.492806\pi\)
−0.444594 + 0.895732i \(0.646652\pi\)
\(444\) −9.08301 + 55.8900i −0.431061 + 2.65242i
\(445\) −7.74082 9.48079i −0.366950 0.449433i
\(446\) 6.64409 4.99271i 0.314607 0.236412i
\(447\) 17.3402 19.5730i 0.820161 0.925771i
\(448\) 0.957809 + 5.89364i 0.0452522 + 0.278448i
\(449\) −1.27920 + 15.8458i −0.0603694 + 0.747809i 0.893785 + 0.448495i \(0.148040\pi\)
−0.954155 + 0.299314i \(0.903242\pi\)
\(450\) 5.28192 + 21.4296i 0.248992 + 1.01020i
\(451\) 10.1284 + 34.9674i 0.476929 + 1.64655i
\(452\) −18.2782 89.5327i −0.859736 4.21126i
\(453\) −11.9889 + 9.78860i −0.563286 + 0.459908i
\(454\) 2.43524 20.0560i 0.114291 0.941275i
\(455\) −20.7173 + 0.666793i −0.971243 + 0.0312598i
\(456\) −4.27990 35.2481i −0.200425 1.65064i
\(457\) −2.75153 2.64288i −0.128711 0.123629i 0.625605 0.780140i \(-0.284852\pi\)
−0.754316 + 0.656511i \(0.772032\pi\)
\(458\) 46.2965 48.1998i 2.16329 2.25223i
\(459\) −1.60018 + 3.37230i −0.0746898 + 0.157405i
\(460\) 56.4180 38.9425i 2.63050 1.81570i
\(461\) −10.2751 + 16.2488i −0.478560 + 0.756782i −0.995036 0.0995201i \(-0.968269\pi\)
0.516476 + 0.856302i \(0.327244\pi\)
\(462\) 18.7884 + 25.0028i 0.874113 + 1.16323i
\(463\) −18.5768 35.3952i −0.863339 1.64496i −0.759638 0.650347i \(-0.774624\pi\)
−0.103701 0.994608i \(-0.533069\pi\)
\(464\) −0.629623 + 3.08410i −0.0292295 + 0.143176i
\(465\) 29.4106 2.37427i 1.36388 0.110104i
\(466\) 19.2801 + 5.58455i 0.893133 + 0.258699i
\(467\) 7.41643 + 3.89244i 0.343192 + 0.180121i 0.627509 0.778609i \(-0.284075\pi\)
−0.284317 + 0.958730i \(0.591767\pi\)
\(468\) 11.4199 14.9435i 0.527885 0.690762i
\(469\) 12.4573 6.53810i 0.575225 0.301902i
\(470\) −87.2804 + 17.8184i −4.02594 + 0.821902i
\(471\) 17.6028 + 13.2277i 0.811095 + 0.609499i
\(472\) 1.03290 + 25.6311i 0.0475430 + 1.17977i
\(473\) 40.4313 15.3336i 1.85903 0.705039i
\(474\) 13.3040 3.85354i 0.611072 0.176999i
\(475\) −28.2348 5.76418i −1.29550 0.264479i
\(476\) 3.30163 + 3.72677i 0.151330 + 0.170816i
\(477\) −2.27384 + 2.78495i −0.104112 + 0.127514i
\(478\) 0.398286 9.88336i 0.0182172 0.452054i
\(479\) 5.50913 + 16.5018i 0.251718 + 0.753989i 0.996259 + 0.0864120i \(0.0275401\pi\)
−0.744541 + 0.667577i \(0.767332\pi\)
\(480\) 28.9673 25.6627i 1.32217 1.17134i
\(481\) −6.13635 31.3519i −0.279793 1.42952i
\(482\) −32.4107 28.7134i −1.47627 1.30786i
\(483\) 3.59641 8.44108i 0.163642 0.384083i
\(484\) −43.9625 + 76.1453i −1.99830 + 3.46115i
\(485\) 23.7624 + 41.1576i 1.07899 + 1.86887i
\(486\) −27.9979 + 3.39955i −1.27001 + 0.154207i
\(487\) −17.2844 8.20153i −0.783229 0.371647i −0.00528942 0.999986i \(-0.501684\pi\)
−0.777939 + 0.628339i \(0.783735\pi\)
\(488\) −29.5706 + 17.0726i −1.33860 + 0.772841i
\(489\) −0.377945 0.260877i −0.0170913 0.0117973i
\(490\) −37.0167 + 15.7713i −1.67224 + 0.712477i
\(491\) −8.90765 1.44763i −0.401997 0.0653308i −0.0439481 0.999034i \(-0.513994\pi\)
−0.358048 + 0.933703i \(0.616558\pi\)
\(492\) 25.5731 34.0316i 1.15292 1.53426i
\(493\) 0.0878459 + 0.231631i 0.00395638 + 0.0104321i
\(494\) 16.0573 + 31.2065i 0.722452 + 1.40405i
\(495\) −7.71255 + 20.3363i −0.346654 + 0.914050i
\(496\) 27.1557 + 42.9432i 1.21933 + 1.92821i
\(497\) 2.06051 + 0.877902i 0.0924266 + 0.0393793i
\(498\) −16.1601 10.2190i −0.724152 0.457926i
\(499\) 11.5227 + 1.39911i 0.515826 + 0.0626326i 0.374311 0.927303i \(-0.377879\pi\)
0.141516 + 0.989936i \(0.454802\pi\)
\(500\) −17.1463 40.2439i −0.766807 1.79976i
\(501\) 2.72949 8.17581i 0.121944 0.365268i
\(502\) −26.5047 10.0519i −1.18296 0.448639i
\(503\) 24.5403 + 1.98109i 1.09420 + 0.0883326i 0.614360 0.789026i \(-0.289414\pi\)
0.479836 + 0.877358i \(0.340696\pi\)
\(504\) −3.45689 + 11.9346i −0.153982 + 0.531608i
\(505\) −8.00022 0.322398i −0.356005 0.0143465i
\(506\) 58.3580 2.59433
\(507\) 5.23681 17.0412i 0.232575 0.756827i
\(508\) 2.78169 0.123418
\(509\) −31.7793 1.28066i −1.40859 0.0567643i −0.675733 0.737146i \(-0.736173\pi\)
−0.732858 + 0.680382i \(0.761814\pi\)
\(510\) 2.31309 7.98571i 0.102425 0.353613i
\(511\) −2.05418 0.165830i −0.0908715 0.00733590i
\(512\) −45.4679 17.2437i −2.00942 0.762071i
\(513\) 6.74725 20.2105i 0.297899 0.892315i
\(514\) −3.46220 8.12609i −0.152711 0.358426i
\(515\) −48.6195 5.90347i −2.14243 0.260138i
\(516\) −42.7356 27.0244i −1.88133 1.18968i
\(517\) −48.8144 20.7979i −2.14685 0.914689i
\(518\) 19.7615 + 31.2504i 0.868272 + 1.37306i
\(519\) −9.81282 + 25.8743i −0.430735 + 1.13575i
\(520\) −41.5246 + 77.5843i −1.82098 + 3.40230i
\(521\) −5.20813 13.7327i −0.228172 0.601641i 0.771217 0.636572i \(-0.219648\pi\)
−0.999390 + 0.0349309i \(0.988879\pi\)
\(522\) −0.650632 + 0.865833i −0.0284774 + 0.0378965i
\(523\) −6.87206 1.11682i −0.300494 0.0488350i 0.00829494 0.999966i \(-0.497360\pi\)
−0.308789 + 0.951131i \(0.599924\pi\)
\(524\) 76.0265 32.3919i 3.32123 1.41505i
\(525\) −13.9432 9.62430i −0.608531 0.420039i
\(526\) −49.0887 + 28.3414i −2.14037 + 1.23574i
\(527\) 3.61266 + 1.71423i 0.157370 + 0.0746729i
\(528\) 62.4646 7.58458i 2.71842 0.330076i
\(529\) 2.93968 + 5.09167i 0.127812 + 0.221377i
\(530\) 14.7350 25.5219i 0.640050 1.10860i
\(531\) −1.63953 + 3.84811i −0.0711494 + 0.166994i
\(532\) −21.2732 18.8464i −0.922312 0.817097i
\(533\) −6.86877 + 23.0143i −0.297519 + 0.996859i
\(534\) −9.11954 + 8.07921i −0.394641 + 0.349622i
\(535\) −2.75876 8.26350i −0.119272 0.357262i
\(536\) 2.40497 59.6786i 0.103879 2.57772i
\(537\) 5.82985 7.14027i 0.251576 0.308125i
\(538\) 17.7956 + 20.0871i 0.767224 + 0.866017i
\(539\) −23.4822 4.79393i −1.01145 0.206489i
\(540\) 89.8989 26.0395i 3.86863 1.12056i
\(541\) 14.3700 5.44983i 0.617815 0.234306i −0.0257859 0.999667i \(-0.508209\pi\)
0.643601 + 0.765361i \(0.277440\pi\)
\(542\) 1.26476 + 31.3847i 0.0543261 + 1.34809i
\(543\) 2.02311 + 1.52027i 0.0868198 + 0.0652408i
\(544\) 5.13867 1.04907i 0.220318 0.0449783i
\(545\) 21.9019 11.4950i 0.938173 0.492391i
\(546\) 1.49360 + 20.5792i 0.0639201 + 0.880708i
\(547\) −6.13271 3.21870i −0.262216 0.137621i 0.328493 0.944507i \(-0.393459\pi\)
−0.590709 + 0.806885i \(0.701152\pi\)
\(548\) −3.25790 0.943661i −0.139170 0.0403112i
\(549\) −5.54970 + 0.448018i −0.236855 + 0.0191209i
\(550\) 21.5545 105.581i 0.919086 4.50198i
\(551\) −0.657162 1.25212i −0.0279960 0.0533420i
\(552\) −23.4003 31.1402i −0.995984 1.32541i
\(553\) 3.38231 5.34870i 0.143831 0.227450i
\(554\) 50.9525 35.1700i 2.16476 1.49423i
\(555\) 18.5196 39.0293i 0.786115 1.65670i
\(556\) −73.7688 + 76.8014i −3.12849 + 3.25711i
\(557\) 17.8106 + 17.1073i 0.754659 + 0.724860i 0.967678 0.252188i \(-0.0811501\pi\)
−0.213019 + 0.977048i \(0.568330\pi\)
\(558\) 2.10723 + 17.3546i 0.0892061 + 0.734679i
\(559\) 27.9041 + 5.93257i 1.18022 + 0.250921i
\(560\) 5.81786 47.9144i 0.245849 2.02475i
\(561\) 3.83596 3.13197i 0.161954 0.132232i
\(562\) 2.04955 + 10.0394i 0.0864553 + 0.423486i
\(563\) −2.63546 9.09868i −0.111072 0.383463i 0.885652 0.464350i \(-0.153712\pi\)
−0.996723 + 0.0808865i \(0.974225\pi\)
\(564\) 14.8483 + 60.2420i 0.625227 + 2.53665i
\(565\) −5.60991 + 69.4912i −0.236011 + 2.92352i
\(566\) 0.101981 + 0.627517i 0.00428660 + 0.0263765i
\(567\) 4.70609 5.31208i 0.197637 0.223086i
\(568\) 7.60148 5.71214i 0.318951 0.239676i
\(569\) 25.5911 + 31.3434i 1.07283 + 1.31398i 0.946753 + 0.321962i \(0.104342\pi\)
0.126081 + 0.992020i \(0.459760\pi\)
\(570\) −7.61279 + 46.8434i −0.318865 + 1.96205i
\(571\) 28.5365 + 7.03363i 1.19422 + 0.294348i 0.785819 0.618456i \(-0.212242\pi\)
0.408398 + 0.912804i \(0.366088\pi\)
\(572\) −81.6502 + 42.0131i −3.41397 + 1.75666i
\(573\) −20.0589 + 4.94408i −0.837974 + 0.206542i
\(574\) −2.23674 27.7070i −0.0933598 1.15647i
\(575\) −29.9865 + 10.0110i −1.25052 + 0.417486i
\(576\) 2.86331 + 2.98102i 0.119305 + 0.124209i
\(577\) 33.4826i 1.39390i −0.717121 0.696949i \(-0.754540\pi\)
0.717121 0.696949i \(-0.245460\pi\)
\(578\) −30.8279 + 29.6106i −1.28227 + 1.23164i
\(579\) −1.24322 1.01506i −0.0516666 0.0421845i
\(580\) 2.88668 5.50010i 0.119863 0.228379i
\(581\) −8.62278 + 1.40134i −0.357733 + 0.0581373i
\(582\) 39.9839 25.2843i 1.65739 1.04807i
\(583\) 15.8589 7.52513i 0.656807 0.311659i
\(584\) −4.97004 + 7.20035i −0.205662 + 0.297953i
\(585\) −11.5407 + 8.52684i −0.477149 + 0.352541i
\(586\) 30.4392 + 44.0988i 1.25743 + 1.82171i
\(587\) 0.00406777 + 0.00234853i 0.000167895 + 9.69340e-5i 0.500084 0.865977i \(-0.333302\pi\)
−0.499916 + 0.866074i \(0.666636\pi\)
\(588\) 12.0140 + 25.3190i 0.495450 + 1.04414i
\(589\) −21.6510 7.22816i −0.892114 0.297831i
\(590\) 8.20513 33.2895i 0.337800 1.37051i
\(591\) −2.84635 + 0.114704i −0.117083 + 0.00471829i
\(592\) 74.3293 2.99537i 3.05492 0.123109i
\(593\) −6.99047 + 28.3614i −0.287064 + 1.16466i 0.633396 + 0.773828i \(0.281660\pi\)
−0.920460 + 0.390837i \(0.872186\pi\)
\(594\) 75.5748 + 25.2306i 3.10087 + 1.03522i
\(595\) −1.62844 3.43186i −0.0667595 0.140693i
\(596\) −76.9528 44.4287i −3.15211 1.81987i
\(597\) −1.54828 2.24307i −0.0633670 0.0918029i
\(598\) 32.3727 + 20.8403i 1.32382 + 0.852224i
\(599\) −14.6978 + 21.2935i −0.600538 + 0.870029i −0.998885 0.0472056i \(-0.984968\pi\)
0.398348 + 0.917235i \(0.369584\pi\)
\(600\) −64.9815 + 30.8341i −2.65286 + 1.25880i
\(601\) 6.71705 4.24761i 0.273994 0.173264i −0.390401 0.920645i \(-0.627664\pi\)
0.664395 + 0.747381i \(0.268689\pi\)
\(602\) −32.5897 + 5.29634i −1.32826 + 0.215863i
\(603\) 4.52601 8.62359i 0.184313 0.351180i
\(604\) 40.7392 + 33.2625i 1.65766 + 1.35343i
\(605\) 48.3795 46.4691i 1.96691 1.88924i
\(606\) 7.97013i 0.323764i
\(607\) 9.20130 + 9.57957i 0.373469 + 0.388823i 0.881240 0.472670i \(-0.156710\pi\)
−0.507770 + 0.861492i \(0.669530\pi\)
\(608\) −28.3970 + 9.48031i −1.15165 + 0.384477i
\(609\) −0.0668980 0.828680i −0.00271084 0.0335798i
\(610\) 44.3117 10.9218i 1.79413 0.442213i
\(611\) −19.6514 28.9693i −0.795011 1.17197i
\(612\) 3.34650 + 0.824839i 0.135274 + 0.0333421i
\(613\) −5.57502 + 34.3045i −0.225173 + 1.38554i 0.590503 + 0.807036i \(0.298929\pi\)
−0.815676 + 0.578509i \(0.803635\pi\)
\(614\) −6.01443 7.36633i −0.242722 0.297281i
\(615\) −25.9641 + 19.5108i −1.04697 + 0.786750i
\(616\) 40.2278 45.4078i 1.62082 1.82953i
\(617\) −7.72887 47.5576i −0.311153 1.91460i −0.396089 0.918212i \(-0.629633\pi\)
0.0849367 0.996386i \(-0.472931\pi\)
\(618\) −3.92297 + 48.5947i −0.157805 + 1.95476i
\(619\) −4.29688 17.4331i −0.172706 0.700697i −0.991883 0.127155i \(-0.959415\pi\)
0.819177 0.573541i \(-0.194431\pi\)
\(620\) −27.8955 96.3064i −1.12031 3.86776i
\(621\) −4.67550 22.9021i −0.187621 0.919031i
\(622\) 6.31790 5.15840i 0.253325 0.206833i
\(623\) −0.670984 + 5.52605i −0.0268824 + 0.221397i
\(624\) 37.3592 + 18.0995i 1.49557 + 0.724559i
\(625\) −0.581850 4.79196i −0.0232740 0.191679i
\(626\) 39.4830 + 37.9239i 1.57806 + 1.51574i
\(627\) −19.5820 + 20.3870i −0.782028 + 0.814177i
\(628\) 32.0757 67.5981i 1.27996 2.69746i
\(629\) 4.81821 3.32577i 0.192115 0.132607i
\(630\) 8.87597 14.0362i 0.353627 0.559217i
\(631\) −16.2303 21.5986i −0.646118 0.859827i 0.350946 0.936396i \(-0.385860\pi\)
−0.997064 + 0.0765688i \(0.975604\pi\)
\(632\) −12.4854 23.7889i −0.496642 0.946272i
\(633\) −1.25655 + 6.15501i −0.0499435 + 0.244639i
\(634\) 5.26033 0.424658i 0.208914 0.0168653i
\(635\) −2.03848 0.590453i −0.0808946 0.0234314i
\(636\) −18.1749 9.53891i −0.720681 0.378242i
\(637\) −11.3142 11.0451i −0.448285 0.437622i
\(638\) 4.68215 2.45738i 0.185368 0.0972886i
\(639\) 1.51913 0.310132i 0.0600958 0.0122686i
\(640\) 18.0348 + 13.5523i 0.712890 + 0.535702i
\(641\) 1.11405 + 27.6448i 0.0440021 + 1.09190i 0.858850 + 0.512227i \(0.171179\pi\)
−0.814848 + 0.579675i \(0.803180\pi\)
\(642\) −8.10850 + 3.07515i −0.320017 + 0.121366i
\(643\) −38.2119 + 11.0682i −1.50693 + 0.436488i −0.926018 0.377479i \(-0.876791\pi\)
−0.580912 + 0.813966i \(0.697304\pi\)
\(644\) −30.5484 6.23650i −1.20378 0.245752i
\(645\) 25.5812 + 28.8752i 1.00726 + 1.13696i
\(646\) −4.06762 + 4.98193i −0.160038 + 0.196011i
\(647\) 0.935352 23.2105i 0.0367725 0.912500i −0.870554 0.492073i \(-0.836239\pi\)
0.907326 0.420427i \(-0.138120\pi\)
\(648\) −9.54078 28.5781i −0.374797 1.12266i
\(649\) 15.2862 13.5424i 0.600035 0.531584i
\(650\) 49.6610 50.8710i 1.94786 1.99532i
\(651\) −10.0448 8.89892i −0.393687 0.348776i
\(652\) −0.611676 + 1.43566i −0.0239551 + 0.0562247i
\(653\) 8.52200 14.7605i 0.333492 0.577624i −0.649702 0.760189i \(-0.725106\pi\)
0.983194 + 0.182564i \(0.0584398\pi\)
\(654\) −12.3110 21.3234i −0.481400 0.833809i
\(655\) −62.5894 + 7.59973i −2.44557 + 0.296946i
\(656\) −50.5262 23.9750i −1.97272 0.936065i
\(657\) −1.23550 + 0.713317i −0.0482015 + 0.0278291i
\(658\) 33.3429 + 23.0149i 1.29984 + 0.897216i
\(659\) −19.5057 + 8.31060i −0.759834 + 0.323735i −0.736900 0.676002i \(-0.763711\pi\)
−0.0229343 + 0.999737i \(0.507301\pi\)
\(660\) −122.563 19.9185i −4.77077 0.775326i
\(661\) −7.91508 + 10.5331i −0.307861 + 0.409689i −0.926684 0.375842i \(-0.877354\pi\)
0.618823 + 0.785531i \(0.287610\pi\)
\(662\) 29.6315 + 78.1318i 1.15166 + 3.03668i
\(663\) 3.24637 0.367514i 0.126078 0.0142731i
\(664\) −13.1512 + 34.6770i −0.510367 + 1.34573i
\(665\) 11.5890 + 18.3266i 0.449403 + 0.710674i
\(666\) 23.5474 + 10.0326i 0.912443 + 0.388756i
\(667\) −1.31115 0.829120i −0.0507679 0.0321037i
\(668\) −29.0759 3.53046i −1.12498 0.136597i
\(669\) 1.73106 + 4.06295i 0.0669266 + 0.157083i
\(670\) −25.2796 + 75.7217i −0.976636 + 2.92538i
\(671\) 25.4174 + 9.63953i 0.981226 + 0.372130i
\(672\) −17.5440 1.41629i −0.676773 0.0546348i
\(673\) 12.4232 42.8899i 0.478879 1.65328i −0.249702 0.968323i \(-0.580333\pi\)
0.728581 0.684960i \(-0.240180\pi\)
\(674\) −80.0329 3.22522i −3.08275 0.124231i
\(675\) −43.1612 −1.66128
\(676\) −60.2968 5.85253i −2.31911 0.225097i
\(677\) 27.6346 1.06208 0.531042 0.847346i \(-0.321801\pi\)
0.531042 + 0.847346i \(0.321801\pi\)
\(678\) 69.3424 + 2.79440i 2.66308 + 0.107318i
\(679\) 6.01358 20.7613i 0.230780 0.796745i
\(680\) −16.0742 1.29764i −0.616417 0.0497623i
\(681\) 10.0382 + 3.80699i 0.384665 + 0.145884i
\(682\) 27.0289 80.9614i 1.03499 3.10017i
\(683\) 0.498629 + 1.17033i 0.0190795 + 0.0447813i 0.929247 0.369460i \(-0.120457\pi\)
−0.910167 + 0.414241i \(0.864047\pi\)
\(684\) −19.5309 2.37148i −0.746781 0.0906756i
\(685\) 2.18715 + 1.38307i 0.0835666 + 0.0528443i
\(686\) 43.7089 + 18.6226i 1.66881 + 0.711014i
\(687\) 18.9811 + 30.0163i 0.724176 + 1.14519i
\(688\) −23.5558 + 62.1115i −0.898056 + 2.36798i
\(689\) 11.4846 + 1.48901i 0.437529 + 0.0567267i
\(690\) 18.4618 + 48.6797i 0.702828 + 1.85320i
\(691\) −2.53276 + 3.37050i −0.0963509 + 0.128220i −0.845043 0.534698i \(-0.820426\pi\)
0.748693 + 0.662917i \(0.230682\pi\)
\(692\) 92.8161 + 15.0841i 3.52834 + 0.573411i
\(693\) 9.10040 3.87732i 0.345696 0.147287i
\(694\) −23.3223 16.0982i −0.885301 0.611079i
\(695\) 70.3614 40.6232i 2.66896 1.54092i
\(696\) −3.18872 1.51306i −0.120868 0.0573525i
\(697\) −4.36934 + 0.530534i −0.165501 + 0.0200954i
\(698\) −11.8354 20.4994i −0.447975 0.775915i
\(699\) −5.33321 + 9.23738i −0.201720 + 0.349390i
\(700\) −22.5660 + 52.9644i −0.852916 + 2.00187i
\(701\) 6.70840 + 5.94313i 0.253373 + 0.224469i 0.780242 0.625477i \(-0.215096\pi\)
−0.526869 + 0.849946i \(0.676634\pi\)
\(702\) 32.9131 + 40.9847i 1.24223 + 1.54687i
\(703\) −25.0146 + 22.1610i −0.943444 + 0.835818i
\(704\) −6.39063 19.1423i −0.240856 0.721451i
\(705\) 1.90606 47.2983i 0.0717862 1.78136i
\(706\) −24.7720 + 30.3401i −0.932305 + 1.14187i
\(707\) 2.41478 + 2.72572i 0.0908171 + 0.102511i
\(708\) −23.3976 4.77665i −0.879334 0.179517i
\(709\) 13.4418 3.89345i 0.504816 0.146222i −0.0160316 0.999871i \(-0.505103\pi\)
0.520847 + 0.853650i \(0.325616\pi\)
\(710\) −11.8830 + 4.50661i −0.445960 + 0.169130i
\(711\) −0.176399 4.37729i −0.00661547 0.164161i
\(712\) 18.8927 + 14.1969i 0.708034 + 0.532053i
\(713\) −24.5345 + 5.00875i −0.918823 + 0.187579i
\(714\) −3.34814 + 1.75724i −0.125301 + 0.0657630i
\(715\) 68.7528 13.4566i 2.57121 0.503250i
\(716\) −27.7355 14.5567i −1.03652 0.544010i
\(717\) 5.04867 + 1.46237i 0.188546 + 0.0546131i
\(718\) −28.9105 + 2.33390i −1.07893 + 0.0871003i
\(719\) 5.38127 26.3592i 0.200687 0.983032i −0.747242 0.664552i \(-0.768622\pi\)
0.947930 0.318480i \(-0.103172\pi\)
\(720\) −15.5275 29.5852i −0.578677 1.10258i
\(721\) 13.3815 + 17.8076i 0.498354 + 0.663189i
\(722\) −6.58485 + 10.4131i −0.245063 + 0.387536i
\(723\) 18.9364 13.0708i 0.704251 0.486109i
\(724\) 3.68648 7.76910i 0.137007 0.288736i
\(725\) −1.98431 + 2.06588i −0.0736954 + 0.0767250i
\(726\) −48.1584 46.2568i −1.78733 1.71675i
\(727\) 1.14208 + 9.40585i 0.0423573 + 0.348843i 0.998444 + 0.0557602i \(0.0177582\pi\)
−0.956087 + 0.293083i \(0.905319\pi\)
\(728\) 38.5310 10.8230i 1.42805 0.401128i
\(729\) 3.39357 27.9486i 0.125688 1.03513i
\(730\) 9.05811 7.39572i 0.335256 0.273728i
\(731\) 1.04573 + 5.12234i 0.0386778 + 0.189457i
\(732\) −8.84366 30.5319i −0.326871 1.12849i
\(733\) 11.5030 + 46.6694i 0.424872 + 1.72377i 0.659515 + 0.751691i \(0.270762\pi\)
−0.234644 + 0.972081i \(0.575392\pi\)
\(734\) −2.00953 + 24.8925i −0.0741733 + 0.918801i
\(735\) −3.42980 21.1044i −0.126510 0.778448i
\(736\) −21.7787 + 24.5831i −0.802774 + 0.906144i
\(737\) −38.0137 + 28.5654i −1.40025 + 1.05222i
\(738\) −12.1699 14.9054i −0.447981 0.548677i
\(739\) 6.89519 42.4278i 0.253644 1.56073i −0.477577 0.878590i \(-0.658485\pi\)
0.731220 0.682141i \(-0.238951\pi\)
\(740\) −142.533 35.1312i −5.23961 1.29145i
\(741\) −18.1430 + 4.31622i −0.666501 + 0.158560i
\(742\) −13.0138 + 3.20761i −0.477751 + 0.117755i
\(743\) 0.652198 + 8.07892i 0.0239268 + 0.296387i 0.997643 + 0.0686211i \(0.0218600\pi\)
−0.973716 + 0.227766i \(0.926858\pi\)
\(744\) −54.0395 + 18.0410i −1.98118 + 0.661416i
\(745\) 46.9620 + 48.8926i 1.72055 + 1.79129i
\(746\) 97.1628i 3.55738i
\(747\) −4.36143 + 4.18921i −0.159576 + 0.153275i
\(748\) −13.0350 10.6427i −0.476605 0.389136i
\(749\) −1.84134 + 3.50838i −0.0672810 + 0.128193i
\(750\) 32.7917 5.32917i 1.19738 0.194594i
\(751\) 35.9846 22.7553i 1.31310 0.830351i 0.319972 0.947427i \(-0.396326\pi\)
0.993123 + 0.117076i \(0.0373520\pi\)
\(752\) 73.6424 34.9438i 2.68546 1.27427i
\(753\) 8.55690 12.3968i 0.311831 0.451765i
\(754\) 3.47486 + 0.308878i 0.126547 + 0.0112487i
\(755\) −22.7941 33.0229i −0.829561 1.20183i
\(756\) −36.8645 21.2837i −1.34075 0.774082i
\(757\) −3.14650 6.63111i −0.114361 0.241012i 0.838197 0.545368i \(-0.183610\pi\)
−0.952558 + 0.304356i \(0.901559\pi\)
\(758\) 50.5244 + 16.8675i 1.83513 + 0.612656i
\(759\) −7.42141 + 30.1098i −0.269380 + 1.09292i
\(760\) 91.9790 3.70663i 3.33643 0.134453i
\(761\) −40.9851 + 1.65164i −1.48571 + 0.0598721i −0.769784 0.638304i \(-0.779636\pi\)
−0.715926 + 0.698176i \(0.753995\pi\)
\(762\) −0.505572 + 2.05118i −0.0183149 + 0.0743066i
\(763\) −10.6708 3.56244i −0.386309 0.128969i
\(764\) 30.0951 + 63.4240i 1.08880 + 2.29460i
\(765\) −2.27730 1.31480i −0.0823360 0.0475367i
\(766\) −20.4452 29.6199i −0.738714 1.07021i