Properties

Label 169.2.k.a.4.12
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.12
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69738 + 0.0684019i) q^{2} +(0.785283 - 2.71111i) q^{3} +(0.882895 + 0.0712746i) q^{4} +(-1.38138 - 0.523888i) q^{5} +(1.51837 - 4.54806i) q^{6} +(1.73151 + 4.06400i) q^{7} +(-1.87901 - 0.228153i) q^{8} +(-4.19788 - 2.65458i) q^{9} +O(q^{10})\) \(q+(1.69738 + 0.0684019i) q^{2} +(0.785283 - 2.71111i) q^{3} +(0.882895 + 0.0712746i) q^{4} +(-1.38138 - 0.523888i) q^{5} +(1.51837 - 4.54806i) q^{6} +(1.73151 + 4.06400i) q^{7} +(-1.87901 - 0.228153i) q^{8} +(-4.19788 - 2.65458i) q^{9} +(-2.30888 - 0.983724i) q^{10} +(1.59018 + 2.51467i) q^{11} +(0.886555 - 2.33765i) q^{12} +(2.48065 - 2.61656i) q^{13} +(2.66104 + 7.01658i) q^{14} +(-2.50509 + 3.33367i) q^{15} +(-4.92237 - 0.799963i) q^{16} +(-1.15543 + 0.492281i) q^{17} +(-6.94381 - 4.79296i) q^{18} +(3.18093 - 1.83651i) q^{19} +(-1.18227 - 0.560995i) q^{20} +(12.3777 - 1.50292i) q^{21} +(2.52713 + 4.37712i) q^{22} +(-2.75331 + 4.76887i) q^{23} +(-2.09410 + 4.91503i) q^{24} +(-2.10881 - 1.86824i) q^{25} +(4.38958 - 4.27160i) q^{26} +(-4.15525 + 3.68123i) q^{27} +(1.23908 + 3.71150i) q^{28} +(-0.373600 + 9.27079i) q^{29} +(-4.48011 + 5.48714i) q^{30} +(-1.98567 - 2.24136i) q^{31} +(-4.59129 - 0.937318i) q^{32} +(8.06630 - 2.33643i) q^{33} +(-1.99487 + 0.756553i) q^{34} +(-0.262789 - 6.52104i) q^{35} +(-3.51708 - 2.64292i) q^{36} +(1.16711 - 0.238268i) q^{37} +(5.52486 - 2.89967i) q^{38} +(-5.14577 - 8.78005i) q^{39} +(2.47609 + 1.29955i) q^{40} +(-5.54364 - 1.60573i) q^{41} +(21.1124 - 1.70437i) q^{42} +(2.21895 - 10.8691i) q^{43} +(1.22473 + 2.33353i) q^{44} +(4.40816 + 5.86619i) q^{45} +(-4.99960 + 7.90623i) q^{46} +(-1.94201 + 1.34047i) q^{47} +(-6.03424 + 12.7169i) q^{48} +(-8.66890 + 9.02528i) q^{49} +(-3.45165 - 3.31535i) q^{50} +(0.427292 + 3.51907i) q^{51} +(2.37665 - 2.13334i) q^{52} +(0.371148 - 3.05668i) q^{53} +(-7.30483 + 5.96421i) q^{54} +(-0.879237 - 4.30679i) q^{55} +(-2.32630 - 8.03133i) q^{56} +(-2.48106 - 10.0660i) q^{57} +(-1.26828 + 15.7105i) q^{58} +(-1.74650 - 10.7466i) q^{59} +(-2.44934 + 2.76473i) q^{60} +(-7.37673 + 5.54325i) q^{61} +(-3.21712 - 3.94026i) q^{62} +(3.51954 - 21.6566i) q^{63} +(1.95505 + 0.481876i) q^{64} +(-4.79750 + 2.31487i) q^{65} +(13.8514 - 3.41405i) q^{66} +(0.378806 + 4.69235i) q^{67} +(-1.05521 + 0.352280i) q^{68} +(10.7668 + 11.2094i) q^{69} -11.0866i q^{70} +(2.04466 - 1.96392i) q^{71} +(7.28220 + 5.94573i) q^{72} +(1.98016 - 3.77288i) q^{73} +(1.99733 - 0.324597i) q^{74} +(-6.72101 + 4.25011i) q^{75} +(2.93933 - 1.39473i) q^{76} +(-7.46621 + 10.8167i) q^{77} +(-8.13373 - 15.2550i) q^{78} +(-3.28952 - 4.76569i) q^{79} +(6.38056 + 3.68382i) q^{80} +(0.329504 + 0.694416i) q^{81} +(-9.29981 - 3.10473i) q^{82} +(-1.64843 + 6.68795i) q^{83} +(11.0353 - 0.444708i) q^{84} +(1.85398 - 0.0747129i) q^{85} +(4.50986 - 18.2972i) q^{86} +(24.8408 + 8.29306i) q^{87} +(-2.41424 - 5.08789i) q^{88} +(13.2398 + 7.64402i) q^{89} +(7.08105 + 10.2587i) q^{90} +(14.9290 + 5.55077i) q^{91} +(-2.77078 + 4.01417i) q^{92} +(-7.63590 + 3.62328i) q^{93} +(-3.38801 + 2.14244i) q^{94} +(-5.35620 + 0.870467i) q^{95} +(-6.14663 + 11.7114i) q^{96} +(7.26259 + 5.92972i) q^{97} +(-15.3317 + 14.7263i) q^{98} -14.7776i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69738 + 0.0684019i 1.20023 + 0.0483675i 0.632308 0.774717i \(-0.282108\pi\)
0.567919 + 0.823085i \(0.307749\pi\)
\(3\) 0.785283 2.71111i 0.453383 1.56526i −0.330161 0.943925i \(-0.607103\pi\)
0.783544 0.621336i \(-0.213410\pi\)
\(4\) 0.882895 + 0.0712746i 0.441447 + 0.0356373i
\(5\) −1.38138 0.523888i −0.617771 0.234290i 0.0258110 0.999667i \(-0.491783\pi\)
−0.643582 + 0.765377i \(0.722552\pi\)
\(6\) 1.51837 4.54806i 0.619870 1.85674i
\(7\) 1.73151 + 4.06400i 0.654449 + 1.53605i 0.833684 + 0.552241i \(0.186227\pi\)
−0.179236 + 0.983806i \(0.557362\pi\)
\(8\) −1.87901 0.228153i −0.664330 0.0806642i
\(9\) −4.19788 2.65458i −1.39929 0.884860i
\(10\) −2.30888 0.983724i −0.730133 0.311081i
\(11\) 1.59018 + 2.51467i 0.479458 + 0.758202i 0.995129 0.0985847i \(-0.0314315\pi\)
−0.515671 + 0.856787i \(0.672457\pi\)
\(12\) 0.886555 2.33765i 0.255927 0.674823i
\(13\) 2.48065 2.61656i 0.688008 0.725703i
\(14\) 2.66104 + 7.01658i 0.711192 + 1.87526i
\(15\) −2.50509 + 3.33367i −0.646811 + 0.860749i
\(16\) −4.92237 0.799963i −1.23059 0.199991i
\(17\) −1.15543 + 0.492281i −0.280232 + 0.119396i −0.527510 0.849549i \(-0.676874\pi\)
0.247278 + 0.968945i \(0.420464\pi\)
\(18\) −6.94381 4.79296i −1.63667 1.12971i
\(19\) 3.18093 1.83651i 0.729756 0.421325i −0.0885768 0.996069i \(-0.528232\pi\)
0.818333 + 0.574744i \(0.194899\pi\)
\(20\) −1.18227 0.560995i −0.264364 0.125442i
\(21\) 12.3777 1.50292i 2.70103 0.327964i
\(22\) 2.52713 + 4.37712i 0.538786 + 0.933205i
\(23\) −2.75331 + 4.76887i −0.574104 + 0.994377i 0.422034 + 0.906580i \(0.361316\pi\)
−0.996138 + 0.0877974i \(0.972017\pi\)
\(24\) −2.09410 + 4.91503i −0.427456 + 1.00328i
\(25\) −2.10881 1.86824i −0.421761 0.373648i
\(26\) 4.38958 4.27160i 0.860866 0.837731i
\(27\) −4.15525 + 3.68123i −0.799679 + 0.708454i
\(28\) 1.23908 + 3.71150i 0.234164 + 0.701407i
\(29\) −0.373600 + 9.27079i −0.0693758 + 1.72154i 0.472709 + 0.881219i \(0.343276\pi\)
−0.542085 + 0.840324i \(0.682365\pi\)
\(30\) −4.48011 + 5.48714i −0.817952 + 1.00181i
\(31\) −1.98567 2.24136i −0.356638 0.402561i 0.542621 0.839977i \(-0.317432\pi\)
−0.899259 + 0.437417i \(0.855893\pi\)
\(32\) −4.59129 0.937318i −0.811633 0.165696i
\(33\) 8.06630 2.33643i 1.40416 0.406721i
\(34\) −1.99487 + 0.756553i −0.342117 + 0.129748i
\(35\) −0.262789 6.52104i −0.0444194 1.10226i
\(36\) −3.51708 2.64292i −0.586180 0.440486i
\(37\) 1.16711 0.238268i 0.191872 0.0391710i −0.103129 0.994668i \(-0.532885\pi\)
0.295001 + 0.955497i \(0.404680\pi\)
\(38\) 5.52486 2.89967i 0.896251 0.470389i
\(39\) −5.14577 8.78005i −0.823982 1.40593i
\(40\) 2.47609 + 1.29955i 0.391505 + 0.205478i
\(41\) −5.54364 1.60573i −0.865771 0.250774i −0.184525 0.982828i \(-0.559075\pi\)
−0.681246 + 0.732054i \(0.738562\pi\)
\(42\) 21.1124 1.70437i 3.25771 0.262990i
\(43\) 2.21895 10.8691i 0.338386 1.65753i −0.353437 0.935458i \(-0.614987\pi\)
0.691823 0.722067i \(-0.256808\pi\)
\(44\) 1.22473 + 2.33353i 0.184635 + 0.351793i
\(45\) 4.40816 + 5.86619i 0.657130 + 0.874481i
\(46\) −4.99960 + 7.90623i −0.737150 + 1.16571i
\(47\) −1.94201 + 1.34047i −0.283271 + 0.195528i −0.701224 0.712941i \(-0.747363\pi\)
0.417954 + 0.908468i \(0.362747\pi\)
\(48\) −6.03424 + 12.7169i −0.870968 + 1.83553i
\(49\) −8.66890 + 9.02528i −1.23841 + 1.28933i
\(50\) −3.45165 3.31535i −0.488137 0.468862i
\(51\) 0.427292 + 3.51907i 0.0598329 + 0.492768i
\(52\) 2.37665 2.13334i 0.329582 0.295841i
\(53\) 0.371148 3.05668i 0.0509812 0.419868i −0.944766 0.327744i \(-0.893712\pi\)
0.995748 0.0921232i \(-0.0293654\pi\)
\(54\) −7.30483 + 5.96421i −0.994062 + 0.811627i
\(55\) −0.879237 4.30679i −0.118556 0.580727i
\(56\) −2.32630 8.03133i −0.310865 1.07323i
\(57\) −2.48106 10.0660i −0.328624 1.33328i
\(58\) −1.26828 + 15.7105i −0.166533 + 2.06289i
\(59\) −1.74650 10.7466i −0.227375 1.39909i −0.810038 0.586378i \(-0.800553\pi\)
0.582663 0.812714i \(-0.302011\pi\)
\(60\) −2.44934 + 2.76473i −0.316208 + 0.356925i
\(61\) −7.37673 + 5.54325i −0.944494 + 0.709741i −0.956972 0.290181i \(-0.906284\pi\)
0.0124781 + 0.999922i \(0.496028\pi\)
\(62\) −3.21712 3.94026i −0.408575 0.500414i
\(63\) 3.51954 21.6566i 0.443421 2.72848i
\(64\) 1.95505 + 0.481876i 0.244381 + 0.0602345i
\(65\) −4.79750 + 2.31487i −0.595056 + 0.287125i
\(66\) 13.8514 3.41405i 1.70498 0.420241i
\(67\) 0.378806 + 4.69235i 0.0462785 + 0.573262i 0.977795 + 0.209563i \(0.0672042\pi\)
−0.931517 + 0.363699i \(0.881514\pi\)
\(68\) −1.05521 + 0.352280i −0.127963 + 0.0427202i
\(69\) 10.7668 + 11.2094i 1.29617 + 1.34946i
\(70\) 11.0866i 1.32511i
\(71\) 2.04466 1.96392i 0.242656 0.233075i −0.561523 0.827461i \(-0.689785\pi\)
0.804180 + 0.594386i \(0.202605\pi\)
\(72\) 7.28220 + 5.94573i 0.858216 + 0.700711i
\(73\) 1.98016 3.77288i 0.231760 0.441582i −0.741607 0.670835i \(-0.765936\pi\)
0.973367 + 0.229253i \(0.0736283\pi\)
\(74\) 1.99733 0.324597i 0.232185 0.0377337i
\(75\) −6.72101 + 4.25011i −0.776076 + 0.490761i
\(76\) 2.93933 1.39473i 0.337164 0.159986i
\(77\) −7.46621 + 10.8167i −0.850854 + 1.23267i
\(78\) −8.13373 15.2550i −0.920964 1.72729i
\(79\) −3.28952 4.76569i −0.370100 0.536182i 0.593044 0.805170i \(-0.297926\pi\)
−0.963143 + 0.268988i \(0.913311\pi\)
\(80\) 6.38056 + 3.68382i 0.713369 + 0.411864i
\(81\) 0.329504 + 0.694416i 0.0366116 + 0.0771573i
\(82\) −9.29981 3.10473i −1.02699 0.342860i
\(83\) −1.64843 + 6.68795i −0.180939 + 0.734098i 0.808421 + 0.588605i \(0.200323\pi\)
−0.989359 + 0.145492i \(0.953523\pi\)
\(84\) 11.0353 0.444708i 1.20405 0.0485216i
\(85\) 1.85398 0.0747129i 0.201092 0.00810375i
\(86\) 4.50986 18.2972i 0.486311 1.97304i
\(87\) 24.8408 + 8.29306i 2.66321 + 0.889110i
\(88\) −2.41424 5.08789i −0.257358 0.542371i
\(89\) 13.2398 + 7.64402i 1.40342 + 0.810264i 0.994742 0.102414i \(-0.0326568\pi\)
0.408677 + 0.912679i \(0.365990\pi\)
\(90\) 7.08105 + 10.2587i 0.746408 + 1.08136i
\(91\) 14.9290 + 5.55077i 1.56498 + 0.581878i
\(92\) −2.77078 + 4.01417i −0.288874 + 0.418506i
\(93\) −7.63590 + 3.62328i −0.791806 + 0.375716i
\(94\) −3.38801 + 2.14244i −0.349446 + 0.220976i
\(95\) −5.35620 + 0.870467i −0.549534 + 0.0893080i
\(96\) −6.14663 + 11.7114i −0.627338 + 1.19529i
\(97\) 7.26259 + 5.92972i 0.737405 + 0.602072i 0.924908 0.380192i \(-0.124142\pi\)
−0.187503 + 0.982264i \(0.560039\pi\)
\(98\) −15.3317 + 14.7263i −1.54874 + 1.48758i
\(99\) 14.7776i 1.48520i
\(100\) −1.72870 1.79976i −0.172870 0.179976i
\(101\) 10.0301 3.34854i 0.998032 0.333192i 0.229713 0.973259i \(-0.426221\pi\)
0.768320 + 0.640066i \(0.221093\pi\)
\(102\) 0.484565 + 6.00241i 0.0479791 + 0.594328i
\(103\) 10.0683 2.48160i 0.992054 0.244519i 0.290298 0.956936i \(-0.406246\pi\)
0.701757 + 0.712417i \(0.252399\pi\)
\(104\) −5.25813 + 4.35057i −0.515603 + 0.426608i
\(105\) −17.8856 4.40841i −1.74546 0.430216i
\(106\) 0.839062 5.16295i 0.0814969 0.501470i
\(107\) −9.20481 11.2738i −0.889863 1.08988i −0.995432 0.0954722i \(-0.969564\pi\)
0.105569 0.994412i \(-0.466334\pi\)
\(108\) −3.93103 + 2.95398i −0.378264 + 0.284247i
\(109\) 8.93489 10.0854i 0.855808 0.966007i −0.143914 0.989590i \(-0.545969\pi\)
0.999722 + 0.0235831i \(0.00750744\pi\)
\(110\) −1.19780 7.37039i −0.114206 0.702739i
\(111\) 0.270543 3.35128i 0.0256788 0.318089i
\(112\) −5.27208 21.3897i −0.498164 2.02113i
\(113\) 3.08242 + 10.6417i 0.289969 + 1.00109i 0.964771 + 0.263091i \(0.0847421\pi\)
−0.674801 + 0.737999i \(0.735771\pi\)
\(114\) −3.52275 17.2556i −0.329936 1.61613i
\(115\) 6.30171 5.14518i 0.587637 0.479791i
\(116\) −0.990622 + 8.15850i −0.0919769 + 0.757498i
\(117\) −17.3593 + 4.39892i −1.60487 + 0.406680i
\(118\) −2.22937 18.3605i −0.205230 1.69022i
\(119\) −4.00126 3.84326i −0.366795 0.352311i
\(120\) 5.46767 5.69245i 0.499127 0.519647i
\(121\) 0.920722 1.94038i 0.0837020 0.176398i
\(122\) −12.9003 + 8.90441i −1.16793 + 0.806167i
\(123\) −8.70665 + 13.7685i −0.785052 + 1.24146i
\(124\) −1.59339 2.12042i −0.143091 0.190419i
\(125\) 5.36718 + 10.2263i 0.480056 + 0.914669i
\(126\) 7.45534 36.5187i 0.664175 3.25334i
\(127\) 4.68130 0.377914i 0.415398 0.0335344i 0.128999 0.991645i \(-0.458824\pi\)
0.286399 + 0.958110i \(0.407542\pi\)
\(128\) 12.2874 + 3.55910i 1.08607 + 0.314583i
\(129\) −27.7249 14.5511i −2.44104 1.28116i
\(130\) −8.30150 + 3.60106i −0.728090 + 0.315834i
\(131\) −5.73440 + 3.00965i −0.501017 + 0.262954i −0.696246 0.717804i \(-0.745148\pi\)
0.195228 + 0.980758i \(0.437455\pi\)
\(132\) 7.28822 1.48790i 0.634358 0.129505i
\(133\) 12.9714 + 9.74737i 1.12476 + 0.845204i
\(134\) 0.322010 + 7.99060i 0.0278174 + 0.690283i
\(135\) 7.66853 2.90829i 0.660002 0.250306i
\(136\) 2.28337 0.661386i 0.195797 0.0567134i
\(137\) −3.63260 0.741600i −0.310354 0.0633592i 0.0423242 0.999104i \(-0.486524\pi\)
−0.352678 + 0.935745i \(0.614729\pi\)
\(138\) 17.5086 + 19.7631i 1.49043 + 1.68235i
\(139\) −5.31222 + 6.50629i −0.450577 + 0.551856i −0.949081 0.315031i \(-0.897985\pi\)
0.498505 + 0.866887i \(0.333883\pi\)
\(140\) 0.232770 5.77612i 0.0196726 0.488171i
\(141\) 2.10914 + 6.31764i 0.177621 + 0.532041i
\(142\) 3.60489 3.19366i 0.302516 0.268006i
\(143\) 10.5245 + 2.07722i 0.880101 + 0.173706i
\(144\) 18.5400 + 16.4250i 1.54500 + 1.36875i
\(145\) 5.37293 12.6107i 0.446198 1.04726i
\(146\) 3.61915 6.26855i 0.299523 0.518789i
\(147\) 17.6610 + 30.5897i 1.45665 + 2.52300i
\(148\) 1.04742 0.127180i 0.0860974 0.0104541i
\(149\) −13.3870 6.35220i −1.09670 0.520392i −0.207654 0.978202i \(-0.566583\pi\)
−0.889050 + 0.457810i \(0.848634\pi\)
\(150\) −11.6988 + 6.75431i −0.955204 + 0.551487i
\(151\) 8.24099 + 5.68835i 0.670642 + 0.462911i 0.854095 0.520118i \(-0.174112\pi\)
−0.183452 + 0.983029i \(0.558727\pi\)
\(152\) −6.39600 + 2.72508i −0.518784 + 0.221033i
\(153\) 6.15714 + 1.00063i 0.497776 + 0.0808964i
\(154\) −13.4129 + 17.8493i −1.08084 + 1.43834i
\(155\) 1.56874 + 4.13644i 0.126005 + 0.332247i
\(156\) −3.91738 8.11863i −0.313641 0.650010i
\(157\) −1.59476 + 4.20502i −0.127275 + 0.335597i −0.983474 0.181049i \(-0.942051\pi\)
0.856199 + 0.516647i \(0.172820\pi\)
\(158\) −5.25757 8.31418i −0.418270 0.661440i
\(159\) −7.99555 3.40658i −0.634088 0.270160i
\(160\) 5.85125 + 3.70011i 0.462582 + 0.292519i
\(161\) −24.1480 2.93210i −1.90313 0.231082i
\(162\) 0.511794 + 1.20122i 0.0402103 + 0.0943771i
\(163\) −4.73271 + 14.1762i −0.370694 + 1.11036i 0.583739 + 0.811941i \(0.301589\pi\)
−0.954433 + 0.298424i \(0.903539\pi\)
\(164\) −4.78000 1.81282i −0.373255 0.141557i
\(165\) −12.3666 0.998338i −0.962741 0.0777205i
\(166\) −3.25548 + 11.2392i −0.252674 + 0.872332i
\(167\) 4.62021 + 0.186188i 0.357523 + 0.0144077i 0.218378 0.975864i \(-0.429924\pi\)
0.139145 + 0.990272i \(0.455565\pi\)
\(168\) −23.6006 −1.82083
\(169\) −0.692754 12.9815i −0.0532888 0.998579i
\(170\) 3.15202 0.241749
\(171\) −18.2283 0.734577i −1.39396 0.0561745i
\(172\) 2.73379 9.43814i 0.208449 0.719651i
\(173\) 11.4622 + 0.925322i 0.871452 + 0.0703509i 0.508097 0.861300i \(-0.330349\pi\)
0.363355 + 0.931651i \(0.381631\pi\)
\(174\) 41.5969 + 15.7756i 3.15345 + 1.19595i
\(175\) 3.94111 11.8051i 0.297920 0.892379i
\(176\) −5.81582 13.6502i −0.438384 1.02893i
\(177\) −30.5068 3.70419i −2.29303 0.278424i
\(178\) 21.9501 + 13.8804i 1.64523 + 1.04038i
\(179\) −7.01885 2.99045i −0.524613 0.223517i 0.113390 0.993551i \(-0.463829\pi\)
−0.638003 + 0.770034i \(0.720239\pi\)
\(180\) 3.47383 + 5.49342i 0.258924 + 0.409456i
\(181\) −5.97353 + 15.7509i −0.444009 + 1.17075i 0.507097 + 0.861889i \(0.330719\pi\)
−0.951106 + 0.308866i \(0.900051\pi\)
\(182\) 24.9604 + 10.4429i 1.85019 + 0.774080i
\(183\) 9.23555 + 24.3522i 0.682712 + 1.80016i
\(184\) 6.26151 8.33256i 0.461605 0.614285i
\(185\) −1.73705 0.282298i −0.127710 0.0207549i
\(186\) −13.2088 + 5.62776i −0.968519 + 0.412647i
\(187\) −3.07527 2.12270i −0.224886 0.155227i
\(188\) −1.81013 + 1.04508i −0.132017 + 0.0762201i
\(189\) −22.1554 10.5129i −1.61157 0.764698i
\(190\) −9.15103 + 1.11114i −0.663885 + 0.0806103i
\(191\) −6.78911 11.7591i −0.491243 0.850857i 0.508706 0.860940i \(-0.330124\pi\)
−0.999949 + 0.0100827i \(0.996791\pi\)
\(192\) 2.84168 4.92194i 0.205081 0.355210i
\(193\) −7.07452 + 16.6045i −0.509235 + 1.19522i 0.444828 + 0.895616i \(0.353265\pi\)
−0.954064 + 0.299604i \(0.903146\pi\)
\(194\) 11.9218 + 10.5618i 0.855932 + 0.758289i
\(195\) 2.50849 + 14.8244i 0.179637 + 1.06160i
\(196\) −8.29700 + 7.35050i −0.592643 + 0.525036i
\(197\) −0.296585 0.888379i −0.0211308 0.0632944i 0.937443 0.348139i \(-0.113186\pi\)
−0.958574 + 0.284844i \(0.908058\pi\)
\(198\) 1.01081 25.0831i 0.0718354 1.78258i
\(199\) 8.20113 10.0446i 0.581363 0.712040i −0.397260 0.917706i \(-0.630039\pi\)
0.978622 + 0.205666i \(0.0659362\pi\)
\(200\) 3.53622 + 3.99157i 0.250049 + 0.282246i
\(201\) 13.0190 + 2.65784i 0.918286 + 0.187469i
\(202\) 17.2539 4.99765i 1.21398 0.351634i
\(203\) −38.3234 + 14.5341i −2.68977 + 1.02010i
\(204\) 0.126434 + 3.13742i 0.00885214 + 0.219664i
\(205\) 6.81664 + 5.12237i 0.476095 + 0.357762i
\(206\) 17.2594 3.52352i 1.20252 0.245496i
\(207\) 24.2174 12.7103i 1.68322 0.883424i
\(208\) −14.3038 + 10.8952i −0.991792 + 0.755449i
\(209\) 9.67649 + 5.07861i 0.669337 + 0.351295i
\(210\) −30.0571 8.70614i −2.07414 0.600781i
\(211\) 12.9203 1.04303i 0.889467 0.0718052i 0.372721 0.927944i \(-0.378425\pi\)
0.516747 + 0.856138i \(0.327143\pi\)
\(212\) 0.545549 2.67228i 0.0374684 0.183533i
\(213\) −3.71877 7.08553i −0.254806 0.485492i
\(214\) −14.8529 19.7656i −1.01532 1.35115i
\(215\) −8.75940 + 13.8519i −0.597386 + 0.944691i
\(216\) 8.64764 5.96903i 0.588397 0.406141i
\(217\) 5.67069 11.9507i 0.384951 0.811267i
\(218\) 15.8557 16.5076i 1.07389 1.11803i
\(219\) −8.67370 8.33121i −0.586115 0.562971i
\(220\) −0.469309 3.86511i −0.0316408 0.260586i
\(221\) −1.57813 + 4.24442i −0.106156 + 0.285511i
\(222\) 0.688447 5.66987i 0.0462056 0.380537i
\(223\) 3.33669 2.72433i 0.223442 0.182434i −0.514112 0.857723i \(-0.671878\pi\)
0.737553 + 0.675289i \(0.235981\pi\)
\(224\) −4.14059 20.2820i −0.276655 1.35515i
\(225\) 3.89313 + 13.4406i 0.259542 + 0.896043i
\(226\) 4.50411 + 18.2739i 0.299609 + 1.21556i
\(227\) 1.14789 14.2191i 0.0761879 0.943756i −0.839890 0.542756i \(-0.817381\pi\)
0.916078 0.401000i \(-0.131337\pi\)
\(228\) −1.47306 9.06409i −0.0975557 0.600284i
\(229\) 4.43091 5.00146i 0.292802 0.330506i −0.583640 0.812013i \(-0.698372\pi\)
0.876442 + 0.481507i \(0.159910\pi\)
\(230\) 11.0483 8.30227i 0.728504 0.547435i
\(231\) 23.4621 + 28.7359i 1.54369 + 1.89068i
\(232\) 2.81715 17.3346i 0.184955 1.13808i
\(233\) −13.3133 3.28143i −0.872181 0.214973i −0.222272 0.974985i \(-0.571347\pi\)
−0.649910 + 0.760011i \(0.725193\pi\)
\(234\) −29.7662 + 6.27921i −1.94588 + 0.410485i
\(235\) 3.38490 0.834303i 0.220806 0.0544239i
\(236\) −0.776011 9.61262i −0.0505140 0.625728i
\(237\) −15.5035 + 5.17583i −1.00706 + 0.336206i
\(238\) −6.52876 6.79716i −0.423197 0.440595i
\(239\) 1.05281i 0.0681008i −0.999420 0.0340504i \(-0.989159\pi\)
0.999420 0.0340504i \(-0.0108407\pi\)
\(240\) 14.9978 14.4056i 0.968103 0.929876i
\(241\) −9.05517 7.39332i −0.583295 0.476246i 0.294258 0.955726i \(-0.404928\pi\)
−0.877552 + 0.479481i \(0.840825\pi\)
\(242\) 1.69554 3.23058i 0.108993 0.207669i
\(243\) −14.2970 + 2.32349i −0.917155 + 0.149052i
\(244\) −6.90797 + 4.36834i −0.442238 + 0.279654i
\(245\) 16.7033 7.92580i 1.06713 0.506360i
\(246\) −15.7203 + 22.7747i −1.00229 + 1.45206i
\(247\) 3.08544 12.8788i 0.196322 0.819461i
\(248\) 3.21972 + 4.66457i 0.204453 + 0.296201i
\(249\) 16.8373 + 9.72101i 1.06702 + 0.616044i
\(250\) 8.41063 + 17.7250i 0.531935 + 1.12103i
\(251\) 22.1915 + 7.40861i 1.40071 + 0.467627i 0.913922 0.405890i \(-0.133038\pi\)
0.486793 + 0.873517i \(0.338167\pi\)
\(252\) 4.65095 18.8697i 0.292982 1.18868i
\(253\) −16.3704 + 0.659704i −1.02920 + 0.0414753i
\(254\) 7.97178 0.321252i 0.500194 0.0201571i
\(255\) 1.25334 5.08502i 0.0784875 0.318436i
\(256\) 16.7931 + 5.60636i 1.04957 + 0.350398i
\(257\) −1.16278 2.45050i −0.0725320 0.152858i 0.863946 0.503585i \(-0.167986\pi\)
−0.936478 + 0.350727i \(0.885935\pi\)
\(258\) −46.0643 26.5952i −2.86784 1.65575i
\(259\) 2.98918 + 4.33058i 0.185739 + 0.269089i
\(260\) −4.40068 + 1.70185i −0.272918 + 0.105544i
\(261\) 26.1784 37.9259i 1.62040 2.34756i
\(262\) −9.93931 + 4.71626i −0.614053 + 0.291372i
\(263\) −10.2732 + 6.49641i −0.633476 + 0.400586i −0.812254 0.583304i \(-0.801760\pi\)
0.178779 + 0.983889i \(0.442785\pi\)
\(264\) −15.6897 + 2.54982i −0.965634 + 0.156931i
\(265\) −2.11405 + 4.02799i −0.129865 + 0.247438i
\(266\) 21.3506 + 17.4322i 1.30909 + 1.06884i
\(267\) 31.1208 29.8919i 1.90456 1.82936i
\(268\) 4.16985i 0.254714i
\(269\) −1.08172 1.12619i −0.0659537 0.0686651i 0.687408 0.726272i \(-0.258748\pi\)
−0.753362 + 0.657606i \(0.771569\pi\)
\(270\) 13.2153 4.41192i 0.804258 0.268501i
\(271\) −2.21800 27.4748i −0.134734 1.66898i −0.612485 0.790482i \(-0.709830\pi\)
0.477751 0.878495i \(-0.341452\pi\)
\(272\) 6.08125 1.49889i 0.368730 0.0908837i
\(273\) 26.7722 36.1151i 1.62033 2.18579i
\(274\) −6.11516 1.50725i −0.369430 0.0910564i
\(275\) 1.34462 8.27380i 0.0810838 0.498929i
\(276\) 8.70700 + 10.6641i 0.524100 + 0.641906i
\(277\) −21.9441 + 16.4899i −1.31849 + 0.990784i −0.319427 + 0.947611i \(0.603490\pi\)
−0.999068 + 0.0431734i \(0.986253\pi\)
\(278\) −9.46188 + 10.6803i −0.567486 + 0.640559i
\(279\) 2.38575 + 14.6801i 0.142831 + 0.878875i
\(280\) −0.994011 + 12.3130i −0.0594035 + 0.735844i
\(281\) 1.75220 + 7.10898i 0.104528 + 0.424086i 0.999769 0.0214961i \(-0.00684294\pi\)
−0.895241 + 0.445582i \(0.852997\pi\)
\(282\) 3.14786 + 10.8677i 0.187452 + 0.647161i
\(283\) 0.929659 + 4.55377i 0.0552625 + 0.270694i 0.998029 0.0627612i \(-0.0199907\pi\)
−0.942766 + 0.333455i \(0.891786\pi\)
\(284\) 1.94520 1.58820i 0.115426 0.0942425i
\(285\) −1.84620 + 15.2048i −0.109359 + 0.900655i
\(286\) 17.7219 + 4.24571i 1.04792 + 0.251054i
\(287\) −3.07315 25.3097i −0.181402 1.49398i
\(288\) 16.7855 + 16.1227i 0.989095 + 0.950038i
\(289\) −10.6836 + 11.1229i −0.628450 + 0.654285i
\(290\) 9.98249 21.0377i 0.586192 1.23537i
\(291\) 21.7793 15.0332i 1.27673 0.881261i
\(292\) 2.01718 3.18992i 0.118047 0.186676i
\(293\) 7.00542 + 9.32252i 0.409261 + 0.544628i 0.956265 0.292503i \(-0.0944880\pi\)
−0.547004 + 0.837130i \(0.684232\pi\)
\(294\) 27.8850 + 53.1304i 1.62628 + 3.09863i
\(295\) −3.21745 + 15.7601i −0.187327 + 0.917590i
\(296\) −2.24737 + 0.181427i −0.130626 + 0.0105452i
\(297\) −15.8647 4.59527i −0.920564 0.266644i
\(298\) −22.2882 11.6978i −1.29112 0.677634i
\(299\) 5.64803 + 19.0341i 0.326634 + 1.10077i
\(300\) −6.23687 + 3.27336i −0.360086 + 0.188988i
\(301\) 48.0142 9.80217i 2.76749 0.564988i
\(302\) 13.5990 + 10.2190i 0.782533 + 0.588036i
\(303\) −1.20180 29.8223i −0.0690414 1.71324i
\(304\) −17.1269 + 6.49537i −0.982294 + 0.372535i
\(305\) 13.0941 3.79275i 0.749766 0.217172i
\(306\) 10.3825 + 2.11961i 0.593531 + 0.121170i
\(307\) −13.6622 15.4215i −0.779744 0.880149i 0.215605 0.976481i \(-0.430827\pi\)
−0.995349 + 0.0963317i \(0.969289\pi\)
\(308\) −7.36283 + 9.01784i −0.419536 + 0.513839i
\(309\) 1.17853 29.2449i 0.0670442 1.66368i
\(310\) 2.37981 + 7.12840i 0.135164 + 0.404866i
\(311\) 5.87373 5.20367i 0.333069 0.295073i −0.479967 0.877286i \(-0.659352\pi\)
0.813036 + 0.582213i \(0.197813\pi\)
\(312\) 7.66574 + 17.6718i 0.433987 + 1.00047i
\(313\) −7.41551 6.56957i −0.419149 0.371334i 0.427025 0.904240i \(-0.359562\pi\)
−0.846175 + 0.532906i \(0.821100\pi\)
\(314\) −2.99453 + 7.02843i −0.168991 + 0.396637i
\(315\) −16.2074 + 28.0721i −0.913186 + 1.58168i
\(316\) −2.56462 4.44206i −0.144271 0.249885i
\(317\) 34.1646 4.14833i 1.91887 0.232994i 0.928492 0.371351i \(-0.121105\pi\)
0.990382 + 0.138358i \(0.0441824\pi\)
\(318\) −13.3384 6.32917i −0.747982 0.354922i
\(319\) −23.9071 + 13.8028i −1.33854 + 0.772806i
\(320\) −2.44821 1.68988i −0.136859 0.0944670i
\(321\) −37.7930 + 16.1021i −2.10940 + 0.898732i
\(322\) −40.7878 6.62866i −2.27301 0.369401i
\(323\) −2.77125 + 3.68787i −0.154197 + 0.205199i
\(324\) 0.241423 + 0.636581i 0.0134124 + 0.0353656i
\(325\) −10.1196 + 0.883367i −0.561333 + 0.0490004i
\(326\) −9.00287 + 23.7386i −0.498623 + 1.31476i
\(327\) −20.3262 32.1434i −1.12404 1.77753i
\(328\) 10.0502 + 4.28199i 0.554929 + 0.236433i
\(329\) −8.81027 5.57127i −0.485726 0.307154i
\(330\) −20.9225 2.54046i −1.15175 0.139848i
\(331\) 5.85354 + 13.7388i 0.321739 + 0.755150i 0.999797 + 0.0201415i \(0.00641167\pi\)
−0.678058 + 0.735009i \(0.737178\pi\)
\(332\) −1.93207 + 5.78726i −0.106036 + 0.317617i
\(333\) −5.53190 2.09797i −0.303146 0.114968i
\(334\) 7.82950 + 0.632063i 0.428411 + 0.0345849i
\(335\) 1.93499 6.68036i 0.105720 0.364987i
\(336\) −62.1298 2.50375i −3.38946 0.136590i
\(337\) 8.14796 0.443848 0.221924 0.975064i \(-0.428766\pi\)
0.221924 + 0.975064i \(0.428766\pi\)
\(338\) −0.287904 22.0819i −0.0156599 1.20110i
\(339\) 31.2715 1.69843
\(340\) 1.64220 + 0.0661782i 0.0890605 + 0.00358902i
\(341\) 2.47871 8.55749i 0.134230 0.463414i
\(342\) −30.8901 2.49371i −1.67035 0.134844i
\(343\) −22.7760 8.63781i −1.22979 0.466398i
\(344\) −6.64924 + 19.9169i −0.358503 + 1.07385i
\(345\) −9.00054 21.1250i −0.484573 1.13733i
\(346\) 19.3923 + 2.35465i 1.04254 + 0.126587i
\(347\) −1.63100 1.03138i −0.0875567 0.0553675i 0.489970 0.871739i \(-0.337008\pi\)
−0.577527 + 0.816372i \(0.695982\pi\)
\(348\) 21.3407 + 9.09242i 1.14398 + 0.487405i
\(349\) 15.8919 + 25.1311i 0.850676 + 1.34524i 0.937130 + 0.348980i \(0.113472\pi\)
−0.0864542 + 0.996256i \(0.527554\pi\)
\(350\) 7.49704 19.7681i 0.400733 1.05665i
\(351\) −0.675566 + 20.0043i −0.0360591 + 1.06775i
\(352\) −4.94394 13.0361i −0.263513 0.694826i
\(353\) −15.9554 + 21.2328i −0.849219 + 1.13011i 0.140920 + 0.990021i \(0.454994\pi\)
−0.990140 + 0.140085i \(0.955263\pi\)
\(354\) −51.5281 8.37414i −2.73869 0.445080i
\(355\) −3.85332 + 1.64175i −0.204513 + 0.0871348i
\(356\) 11.1446 + 7.69253i 0.590660 + 0.407703i
\(357\) −13.5616 + 7.82981i −0.717758 + 0.414398i
\(358\) −11.7091 5.55603i −0.618844 0.293645i
\(359\) 4.47395 0.543236i 0.236126 0.0286709i −0.00161819 0.999999i \(-0.500515\pi\)
0.237744 + 0.971328i \(0.423592\pi\)
\(360\) −6.94458 12.0284i −0.366011 0.633950i
\(361\) −2.75444 + 4.77084i −0.144971 + 0.251097i
\(362\) −11.2167 + 26.3266i −0.589538 + 1.38370i
\(363\) −4.53756 4.01992i −0.238160 0.210991i
\(364\) 12.7851 + 5.96480i 0.670120 + 0.312640i
\(365\) −4.71191 + 4.17439i −0.246633 + 0.218498i
\(366\) 14.0105 + 41.9665i 0.732340 + 2.19362i
\(367\) −1.40217 + 34.7946i −0.0731929 + 1.81626i 0.380148 + 0.924926i \(0.375873\pi\)
−0.453341 + 0.891337i \(0.649768\pi\)
\(368\) 17.3677 21.2716i 0.905354 1.10886i
\(369\) 19.0090 + 21.4567i 0.989568 + 1.11699i
\(370\) −2.92912 0.597983i −0.152277 0.0310877i
\(371\) 13.0650 3.78432i 0.678301 0.196472i
\(372\) −6.99994 + 2.65473i −0.362930 + 0.137641i
\(373\) 1.07988 + 26.7969i 0.0559139 + 1.38749i 0.747052 + 0.664766i \(0.231469\pi\)
−0.691138 + 0.722723i \(0.742890\pi\)
\(374\) −5.07469 3.81338i −0.262406 0.197185i
\(375\) 31.9394 6.52048i 1.64934 0.336716i
\(376\) 3.95487 2.07568i 0.203957 0.107045i
\(377\) 23.3308 + 23.9751i 1.20160 + 1.23478i
\(378\) −36.8869 19.3598i −1.89726 0.995759i
\(379\) 24.5431 + 7.10900i 1.26070 + 0.365165i 0.840273 0.542163i \(-0.182395\pi\)
0.420423 + 0.907328i \(0.361882\pi\)
\(380\) −4.79100 + 0.386770i −0.245773 + 0.0198409i
\(381\) 2.65158 12.9883i 0.135845 0.665410i
\(382\) −10.7193 20.4240i −0.548449 1.04498i
\(383\) −13.4666 17.9208i −0.688111 0.915709i 0.311290 0.950315i \(-0.399239\pi\)
−0.999401 + 0.0346056i \(0.988982\pi\)
\(384\) 19.2982 30.5177i 0.984809 1.55735i
\(385\) 15.9804 11.0305i 0.814436 0.562164i
\(386\) −13.1439 + 27.7002i −0.669008 + 1.40990i
\(387\) −38.1678 + 39.7369i −1.94018 + 2.01994i
\(388\) 5.98947 + 5.75296i 0.304069 + 0.292062i
\(389\) −3.15739 26.0035i −0.160086 1.31843i −0.822275 0.569091i \(-0.807295\pi\)
0.662188 0.749337i \(-0.269628\pi\)
\(390\) 3.24383 + 25.3341i 0.164258 + 1.28284i
\(391\) 0.833620 6.86548i 0.0421580 0.347202i
\(392\) 18.3481 14.9807i 0.926718 0.756642i
\(393\) 3.65636 + 17.9100i 0.184439 + 0.903441i
\(394\) −0.442649 1.52820i −0.0223003 0.0769897i
\(395\) 2.04738 + 8.30655i 0.103015 + 0.417948i
\(396\) 1.05327 13.0470i 0.0529286 0.655638i
\(397\) −0.621792 3.82604i −0.0312069 0.192024i 0.966766 0.255662i \(-0.0822935\pi\)
−0.997973 + 0.0636388i \(0.979729\pi\)
\(398\) 14.6075 16.4884i 0.732206 0.826490i
\(399\) 36.6124 27.5124i 1.83291 1.37735i
\(400\) 8.88581 + 10.8831i 0.444290 + 0.544157i
\(401\) −0.104751 + 0.644561i −0.00523103 + 0.0321879i −0.989535 0.144296i \(-0.953908\pi\)
0.984304 + 0.176484i \(0.0564723\pi\)
\(402\) 21.9163 + 5.40188i 1.09308 + 0.269421i
\(403\) −10.7904 0.364404i −0.537509 0.0181522i
\(404\) 9.09419 2.24152i 0.452453 0.111520i
\(405\) −0.0913743 1.13187i −0.00454043 0.0562433i
\(406\) −66.0434 + 22.0485i −3.27768 + 1.09425i
\(407\) 2.45509 + 2.55602i 0.121694 + 0.126697i
\(408\) 6.70985i 0.332187i
\(409\) 19.8489 19.0652i 0.981467 0.942712i −0.0168989 0.999857i \(-0.505379\pi\)
0.998366 + 0.0571454i \(0.0181998\pi\)
\(410\) 11.2200 + 9.16086i 0.554117 + 0.452423i
\(411\) −4.86317 + 9.26601i −0.239883 + 0.457058i
\(412\) 9.06608 1.47338i 0.446654 0.0725883i
\(413\) 40.6502 25.7056i 2.00027 1.26489i
\(414\) 41.9754 19.9176i 2.06298 0.978896i
\(415\) 5.78084 8.37499i 0.283770 0.411112i
\(416\) −13.8419 + 9.68821i −0.678656 + 0.475004i
\(417\) 13.4677 + 19.5113i 0.659515 + 0.955472i
\(418\) 16.0773 + 9.28221i 0.786365 + 0.454008i
\(419\) −8.52940 17.9753i −0.416688 0.878152i −0.997923 0.0644164i \(-0.979481\pi\)
0.581235 0.813736i \(-0.302570\pi\)
\(420\) −15.4769 5.16695i −0.755196 0.252121i
\(421\) −2.62612 + 10.6546i −0.127989 + 0.519273i 0.871589 + 0.490237i \(0.163090\pi\)
−0.999578 + 0.0290357i \(0.990756\pi\)
\(422\) 22.0019 0.886646i 1.07104 0.0431613i
\(423\) 11.7107 0.471925i 0.569393 0.0229458i
\(424\) −1.39478 + 5.65885i −0.0677366 + 0.274818i
\(425\) 3.35627 + 1.12049i 0.162803 + 0.0543517i
\(426\) −5.82749 12.2812i −0.282343 0.595025i
\(427\) −35.3007 20.3808i −1.70832 0.986298i
\(428\) −7.32334 10.6097i −0.353987 0.512839i
\(429\) 13.8962 26.9018i 0.670917 1.29883i
\(430\) −15.8155 + 22.9127i −0.762691 + 1.10495i
\(431\) −17.5964 + 8.34961i −0.847590 + 0.402186i −0.802396 0.596792i \(-0.796442\pi\)
−0.0451938 + 0.998978i \(0.514391\pi\)
\(432\) 23.3985 14.7963i 1.12576 0.711890i
\(433\) −27.2004 + 4.42050i −1.30717 + 0.212436i −0.773791 0.633441i \(-0.781642\pi\)
−0.533379 + 0.845876i \(0.679078\pi\)
\(434\) 10.4427 19.8970i 0.501268 0.955086i
\(435\) −29.9698 24.4696i −1.43694 1.17323i
\(436\) 8.60740 8.26752i 0.412220 0.395943i
\(437\) 20.2259i 0.967537i
\(438\) −14.1527 14.7345i −0.676241 0.704041i
\(439\) −22.1297 + 7.38798i −1.05619 + 0.352609i −0.791147 0.611626i \(-0.790516\pi\)
−0.265047 + 0.964236i \(0.585387\pi\)
\(440\) 0.669488 + 8.29309i 0.0319166 + 0.395358i
\(441\) 60.3493 14.8748i 2.87378 0.708323i
\(442\) −2.96900 + 7.09643i −0.141221 + 0.337543i
\(443\) −0.207203 0.0510709i −0.00984449 0.00242645i 0.234390 0.972143i \(-0.424691\pi\)
−0.244235 + 0.969716i \(0.578537\pi\)
\(444\) 0.477722 2.93954i 0.0226717 0.139504i
\(445\) −14.2846 17.4955i −0.677155 0.829364i
\(446\) 5.84998 4.39597i 0.277004 0.208155i
\(447\) −27.7341 + 31.3053i −1.31178 + 1.48069i
\(448\) 1.42684 + 8.77968i 0.0674117 + 0.414801i
\(449\) −1.71064 + 21.1900i −0.0807299 + 1.00002i 0.821908 + 0.569620i \(0.192909\pi\)
−0.902638 + 0.430400i \(0.858373\pi\)
\(450\) 5.68874 + 23.0801i 0.268170 + 1.08801i
\(451\) −4.77750 16.4938i −0.224964 0.776665i
\(452\) 1.96296 + 9.61523i 0.0923301 + 0.452263i
\(453\) 21.8932 17.8753i 1.02863 0.839854i
\(454\) 2.92101 24.0567i 0.137090 1.12904i
\(455\) −17.7146 15.4888i −0.830471 0.726126i
\(456\) 2.36533 + 19.4802i 0.110767 + 0.912245i
\(457\) −17.2968 16.6138i −0.809112 0.777162i 0.168917 0.985630i \(-0.445973\pi\)
−0.978029 + 0.208468i \(0.933152\pi\)
\(458\) 7.86303 8.18628i 0.367415 0.382520i
\(459\) 2.98889 6.29895i 0.139509 0.294010i
\(460\) 5.93046 4.09350i 0.276509 0.190861i
\(461\) 4.91911 7.77896i 0.229106 0.362302i −0.710996 0.703196i \(-0.751755\pi\)
0.940102 + 0.340894i \(0.110730\pi\)
\(462\) 37.8585 + 50.3805i 1.76134 + 2.34391i
\(463\) −9.38940 17.8900i −0.436362 0.831419i −0.999985 0.00538699i \(-0.998285\pi\)
0.563623 0.826032i \(-0.309407\pi\)
\(464\) 9.25529 45.3354i 0.429666 2.10464i
\(465\) 12.4463 1.00477i 0.577181 0.0465949i
\(466\) −22.3732 6.48047i −1.03642 0.300202i
\(467\) −14.6987 7.71449i −0.680176 0.356984i 0.0889903 0.996032i \(-0.471636\pi\)
−0.769166 + 0.639048i \(0.779328\pi\)
\(468\) −15.6400 + 2.64650i −0.722959 + 0.122335i
\(469\) −18.4138 + 9.66431i −0.850271 + 0.446257i
\(470\) 5.80252 1.18459i 0.267650 0.0546412i
\(471\) 10.1479 + 7.62569i 0.467593 + 0.351373i
\(472\) 0.829808 + 20.5915i 0.0381950 + 0.947799i
\(473\) 30.8608 11.7040i 1.41898 0.538149i
\(474\) −26.6693 + 7.72487i −1.22496 + 0.354815i
\(475\) −10.1390 2.06990i −0.465210 0.0949733i
\(476\) −3.25877 3.67839i −0.149365 0.168599i
\(477\) −9.67224 + 11.8463i −0.442861 + 0.542407i
\(478\) 0.0720144 1.78702i 0.00329386 0.0817364i
\(479\) −0.919635 2.75464i −0.0420192 0.125863i 0.925437 0.378902i \(-0.123698\pi\)
−0.967456 + 0.253039i \(0.918570\pi\)
\(480\) 14.6263 12.9578i 0.667596 0.591438i
\(481\) 2.27175 3.64488i 0.103583 0.166192i
\(482\) −14.8643 13.1686i −0.677051 0.599815i
\(483\) −26.9123 + 63.1655i −1.22455 + 2.87413i
\(484\) 0.951200 1.64753i 0.0432364 0.0748876i
\(485\) −6.92588 11.9960i −0.314488 0.544709i
\(486\) −24.4264 + 2.96590i −1.10800 + 0.134536i
\(487\) 3.11392 + 1.47757i 0.141105 + 0.0669553i 0.497936 0.867214i \(-0.334091\pi\)
−0.356831 + 0.934169i \(0.616143\pi\)
\(488\) 15.1256 8.73279i 0.684706 0.395315i
\(489\) 34.7167 + 23.9632i 1.56994 + 1.08365i
\(490\) 28.8939 12.3105i 1.30529 0.556133i
\(491\) −14.7440 2.39614i −0.665389 0.108136i −0.181670 0.983360i \(-0.558150\pi\)
−0.483719 + 0.875223i \(0.660714\pi\)
\(492\) −8.66840 + 11.5355i −0.390802 + 0.520062i
\(493\) −4.13217 10.8956i −0.186104 0.490715i
\(494\) 6.11809 21.6492i 0.275266 0.974043i
\(495\) −7.74178 + 20.4134i −0.347967 + 0.917514i
\(496\) 7.98122 + 12.6213i 0.358367 + 0.566712i
\(497\) 11.5217 + 4.90894i 0.516820 + 0.220196i
\(498\) 27.9143 + 17.6519i 1.25087 + 0.791001i
\(499\) 29.7087 + 3.60729i 1.32994 + 0.161484i 0.754469 0.656336i \(-0.227895\pi\)
0.575474 + 0.817820i \(0.304818\pi\)
\(500\) 4.00978 + 9.41130i 0.179323 + 0.420886i
\(501\) 4.13295 12.3797i 0.184647 0.553084i
\(502\) 37.1606 + 14.0931i 1.65856 + 0.629008i
\(503\) −11.2437 0.907686i −0.501332 0.0404717i −0.172785 0.984959i \(-0.555277\pi\)
−0.328547 + 0.944488i \(0.606559\pi\)
\(504\) −11.5543 + 39.8899i −0.514668 + 1.77684i
\(505\) −15.6096 0.629046i −0.694619 0.0279922i
\(506\) −27.8319 −1.23728
\(507\) −35.7384 8.31604i −1.58720 0.369328i
\(508\) 4.16003 0.184572
\(509\) −17.5536 0.707386i −0.778049 0.0313543i −0.351936 0.936024i \(-0.614477\pi\)
−0.426113 + 0.904670i \(0.640118\pi\)
\(510\) 2.47522 8.54546i 0.109605 0.378399i
\(511\) 18.7616 + 1.51460i 0.829966 + 0.0670018i
\(512\) 4.19833 + 1.59222i 0.185542 + 0.0703667i
\(513\) −6.45695 + 19.3409i −0.285081 + 0.853923i
\(514\) −1.80605 4.23896i −0.0796615 0.186973i
\(515\) −15.2081 1.84660i −0.670151 0.0813710i
\(516\) −23.4410 14.8232i −1.03193 0.652555i
\(517\) −6.45898 2.75192i −0.284066 0.121029i
\(518\) 4.77755 + 7.55509i 0.209914 + 0.331952i
\(519\) 11.5097 30.3486i 0.505219 1.33215i
\(520\) 9.54268 3.25510i 0.418474 0.142746i
\(521\) −12.3183 32.4808i −0.539677 1.42301i −0.876481 0.481436i \(-0.840116\pi\)
0.336805 0.941574i \(-0.390654\pi\)
\(522\) 47.0288 62.5839i 2.05839 2.73922i
\(523\) 26.1976 + 4.25752i 1.14554 + 0.186168i 0.703411 0.710783i \(-0.251659\pi\)
0.442129 + 0.896951i \(0.354223\pi\)
\(524\) −5.27739 + 2.24848i −0.230544 + 0.0982255i
\(525\) −28.9099 19.9551i −1.26173 0.870912i
\(526\) −17.8819 + 10.3241i −0.779690 + 0.450154i
\(527\) 3.39768 + 1.61222i 0.148005 + 0.0702294i
\(528\) −41.5744 + 5.04804i −1.80929 + 0.219688i
\(529\) −3.66139 6.34171i −0.159191 0.275726i
\(530\) −3.86387 + 6.69242i −0.167836 + 0.290700i
\(531\) −21.1962 + 49.7493i −0.919836 + 2.15893i
\(532\) 10.7576 + 9.53044i 0.466403 + 0.413197i
\(533\) −17.9533 + 10.5220i −0.777645 + 0.455758i
\(534\) 54.8684 48.6091i 2.37439 2.10352i
\(535\) 6.80910 + 20.3957i 0.294383 + 0.881784i
\(536\) 0.358794 8.90339i 0.0154976 0.384568i
\(537\) −13.6192 + 16.6805i −0.587713 + 0.719818i
\(538\) −1.75905 1.98556i −0.0758382 0.0856037i
\(539\) −36.4808 7.44760i −1.57134 0.320791i
\(540\) 6.97779 2.02114i 0.300276 0.0869761i
\(541\) −17.5064 + 6.63931i −0.752660 + 0.285446i −0.700945 0.713216i \(-0.747238\pi\)
−0.0517154 + 0.998662i \(0.516469\pi\)
\(542\) −1.88545 46.7869i −0.0809869 2.00967i
\(543\) 38.0115 + 28.5638i 1.63123 + 1.22579i
\(544\) 5.76632 1.17720i 0.247229 0.0504722i
\(545\) −17.6261 + 9.25088i −0.755019 + 0.396264i
\(546\) 47.9128 59.4697i 2.05048 2.54507i
\(547\) −24.6067 12.9146i −1.05211 0.552188i −0.152236 0.988344i \(-0.548647\pi\)
−0.899871 + 0.436156i \(0.856340\pi\)
\(548\) −3.15434 0.913667i −0.134747 0.0390299i
\(549\) 45.6816 3.68780i 1.94965 0.157392i
\(550\) 2.84828 13.9518i 0.121451 0.594906i
\(551\) 15.8375 + 30.1759i 0.674701 + 1.28554i
\(552\) −17.6734 23.5191i −0.752231 1.00104i
\(553\) 13.6719 21.6204i 0.581389 0.919394i
\(554\) −38.3754 + 26.4886i −1.63041 + 1.12539i
\(555\) −2.12941 + 4.48765i −0.0903886 + 0.190490i
\(556\) −5.15386 + 5.36574i −0.218573 + 0.227558i
\(557\) 8.61825 + 8.27794i 0.365167 + 0.350748i 0.852741 0.522334i \(-0.174939\pi\)
−0.487574 + 0.873082i \(0.662118\pi\)
\(558\) 3.04537 + 25.0809i 0.128921 + 1.06176i
\(559\) −22.9353 32.7685i −0.970058 1.38596i
\(560\) −3.92304 + 32.3092i −0.165779 + 1.36531i
\(561\) −8.16983 + 6.67046i −0.344931 + 0.281627i
\(562\) 2.48788 + 12.1865i 0.104945 + 0.514055i
\(563\) 0.00932645 + 0.0321986i 0.000393063 + 0.00135701i 0.960714 0.277539i \(-0.0895187\pi\)
−0.960321 + 0.278896i \(0.910032\pi\)
\(564\) 1.41186 + 5.72814i 0.0594500 + 0.241198i
\(565\) 1.31709 16.3151i 0.0554105 0.686382i
\(566\) 1.26649 + 7.79306i 0.0532348 + 0.327567i
\(567\) −2.25157 + 2.54149i −0.0945569 + 0.106733i
\(568\) −4.29000 + 3.22373i −0.180004 + 0.135265i
\(569\) 8.19251 + 10.0340i 0.343448 + 0.420647i 0.917228 0.398362i \(-0.130421\pi\)
−0.573781 + 0.819009i \(0.694524\pi\)
\(570\) −4.17373 + 25.6820i −0.174818 + 1.07570i
\(571\) 2.61102 + 0.643558i 0.109268 + 0.0269321i 0.293570 0.955937i \(-0.405157\pi\)
−0.184303 + 0.982870i \(0.559003\pi\)
\(572\) 9.14395 + 2.58409i 0.382328 + 0.108046i
\(573\) −37.2115 + 9.17182i −1.55453 + 0.383158i
\(574\) −3.48507 43.1703i −0.145464 1.80189i
\(575\) 14.7156 4.91278i 0.613682 0.204877i
\(576\) −6.92788 7.21268i −0.288661 0.300528i
\(577\) 7.00210i 0.291501i −0.989321 0.145751i \(-0.953440\pi\)
0.989321 0.145751i \(-0.0465597\pi\)
\(578\) −18.8950 + 18.1489i −0.785928 + 0.754894i
\(579\) 39.4612 + 32.2191i 1.63995 + 1.33898i
\(580\) 5.64256 10.7510i 0.234295 0.446411i
\(581\) −30.0341 + 4.88101i −1.24602 + 0.202499i
\(582\) 37.9960 24.0272i 1.57499 0.995961i
\(583\) 8.27675 3.92737i 0.342788 0.162655i
\(584\) −4.58153 + 6.63749i −0.189585 + 0.274661i
\(585\) 26.2843 + 3.01777i 1.08672 + 0.124769i
\(586\) 11.2532 + 16.3030i 0.464864 + 0.673472i
\(587\) 5.02876 + 2.90336i 0.207559 + 0.119834i 0.600177 0.799868i \(-0.295097\pi\)
−0.392617 + 0.919702i \(0.628430\pi\)
\(588\) 13.4125 + 28.2663i 0.553123 + 1.16568i
\(589\) −10.4326 3.48291i −0.429867 0.143511i
\(590\) −6.53925 + 26.5308i −0.269217 + 1.09226i
\(591\) −2.64140 + 0.106445i −0.108653 + 0.00437855i
\(592\) −5.93556 + 0.239195i −0.243950 + 0.00983086i
\(593\) 4.90803 19.9127i 0.201549 0.817716i −0.779886 0.625921i \(-0.784723\pi\)
0.981435 0.191795i \(-0.0614307\pi\)
\(594\) −26.6141 8.88508i −1.09199 0.364559i
\(595\) 3.51382 + 7.40521i 0.144052 + 0.303584i
\(596\) −11.3665 6.56248i −0.465592 0.268809i
\(597\) −20.7917 30.1220i −0.850948 1.23281i
\(598\) 8.28486 + 32.6943i 0.338793 + 1.33697i
\(599\) 2.52104 3.65236i 0.103007 0.149231i −0.768091 0.640341i \(-0.778793\pi\)
0.871098 + 0.491109i \(0.163408\pi\)
\(600\) 13.5985 6.45257i 0.555157 0.263425i
\(601\) 30.6314 19.3702i 1.24948 0.790125i 0.264770 0.964312i \(-0.414704\pi\)
0.984713 + 0.174187i \(0.0557296\pi\)
\(602\) 82.1687 13.3537i 3.34895 0.544257i
\(603\) 10.8660 20.7035i 0.442499 0.843112i
\(604\) 6.87049 + 5.60959i 0.279556 + 0.228251i
\(605\) −2.28841 + 2.19804i −0.0930369 + 0.0893632i
\(606\) 50.7018i 2.05962i
\(607\) −19.1390 19.9258i −0.776826 0.808762i 0.208755 0.977968i \(-0.433059\pi\)
−0.985581 + 0.169206i \(0.945880\pi\)
\(608\) −16.3260 + 5.45041i −0.662106 + 0.221043i
\(609\) 9.30897 + 115.312i 0.377219 + 4.67269i
\(610\) 22.4850 5.54207i 0.910393 0.224392i
\(611\) −1.31002 + 8.40660i −0.0529977 + 0.340095i
\(612\) 5.36479 + 1.32230i 0.216859 + 0.0534509i
\(613\) −6.97994 + 42.9493i −0.281917 + 1.73470i 0.330176 + 0.943919i \(0.392892\pi\)
−0.612093 + 0.790786i \(0.709672\pi\)
\(614\) −22.1351 27.1105i −0.893299 1.09409i
\(615\) 19.2403 14.4581i 0.775844 0.583009i
\(616\) 16.4969 18.6212i 0.664680 0.750269i
\(617\) 3.32322 + 20.4486i 0.133788 + 0.823228i 0.964024 + 0.265816i \(0.0856415\pi\)
−0.830236 + 0.557412i \(0.811794\pi\)
\(618\) 4.00082 49.5590i 0.160936 1.99356i
\(619\) −5.03093 20.4113i −0.202210 0.820399i −0.981142 0.193290i \(-0.938084\pi\)
0.778932 0.627109i \(-0.215762\pi\)
\(620\) 1.09021 + 3.76385i 0.0437840 + 0.151160i
\(621\) −6.11462 29.9514i −0.245371 1.20191i
\(622\) 10.3259 8.43082i 0.414030 0.338045i
\(623\) −8.14041 + 67.0423i −0.326139 + 2.68599i
\(624\) 18.3057 + 47.3351i 0.732813 + 1.89492i
\(625\) −0.358709 2.95423i −0.0143483 0.118169i
\(626\) −12.1375 11.6583i −0.485114 0.465958i
\(627\) 21.3675 22.2459i 0.853334 0.888415i
\(628\) −1.70771 + 3.59893i −0.0681451 + 0.143613i
\(629\) −1.23122 + 0.849848i −0.0490919 + 0.0338857i
\(630\) −29.4303 + 46.5403i −1.17253 + 1.85421i
\(631\) 18.7614 + 24.9670i 0.746882 + 0.993919i 0.999652 + 0.0263924i \(0.00840195\pi\)
−0.252770 + 0.967526i \(0.581342\pi\)
\(632\) 5.09372 + 9.70528i 0.202617 + 0.386055i
\(633\) 7.31828 35.8473i 0.290876 1.42480i
\(634\) 58.2739 4.70436i 2.31435 0.186834i
\(635\) −6.66463 1.93043i −0.264478 0.0766069i
\(636\) −6.81642 3.57753i −0.270289 0.141858i
\(637\) 2.11067 + 45.0712i 0.0836278 + 1.78579i
\(638\) −41.5235 + 21.7932i −1.64393 + 0.862801i
\(639\) −13.7966 + 2.81660i −0.545786 + 0.111423i
\(640\) −15.1090 11.3537i −0.597237 0.448795i
\(641\) −1.08037 26.8092i −0.0426722 1.05890i −0.868721 0.495301i \(-0.835058\pi\)
0.826049 0.563598i \(-0.190583\pi\)
\(642\) −65.2504 + 24.7462i −2.57523 + 0.976656i
\(643\) 11.1658 3.23421i 0.440335 0.127545i −0.0506424 0.998717i \(-0.516127\pi\)
0.490978 + 0.871172i \(0.336640\pi\)
\(644\) −21.1112 4.30988i −0.831898 0.169833i
\(645\) 30.6754 + 34.6254i 1.20784 + 1.36337i
\(646\) −4.95612 + 6.07015i −0.194996 + 0.238827i
\(647\) 0.468426 11.6239i 0.0184157 0.456981i −0.963505 0.267690i \(-0.913740\pi\)
0.981921 0.189292i \(-0.0606191\pi\)
\(648\) −0.460708 1.37999i −0.0180983 0.0542111i
\(649\) 24.2470 21.4810i 0.951778 0.843202i
\(650\) −17.2371 + 0.807209i −0.676097 + 0.0316614i
\(651\) −27.9466 24.7585i −1.09531 0.970364i
\(652\) −5.18889 + 12.1788i −0.203212 + 0.476957i
\(653\) −18.0431 + 31.2516i −0.706082 + 1.22297i 0.260218 + 0.965550i \(0.416206\pi\)
−0.966300 + 0.257420i \(0.917128\pi\)
\(654\) −32.3026 55.9498i −1.26313 2.18781i
\(655\) 9.49810 1.15328i 0.371121 0.0450623i
\(656\) 26.0033 + 12.3387i 1.01526 + 0.481746i
\(657\) −18.3279 + 10.5816i −0.715038 + 0.412828i
\(658\) −14.5733 10.0592i −0.568125 0.392148i
\(659\) 40.1629 17.1118i 1.56452 0.666581i 0.575973 0.817469i \(-0.304623\pi\)
0.988551 + 0.150887i \(0.0482131\pi\)
\(660\) −10.8473 1.76285i −0.422230 0.0686190i
\(661\) 14.0234 18.6618i 0.545448 0.725860i −0.439589 0.898199i \(-0.644876\pi\)
0.985038 + 0.172339i \(0.0551324\pi\)
\(662\) 8.99590 + 23.7202i 0.349636 + 0.921913i
\(663\) 10.2678 + 7.61154i 0.398769 + 0.295608i
\(664\) 4.62329 12.1906i 0.179418 0.473087i
\(665\) −12.8119 20.2604i −0.496823 0.785663i
\(666\) −9.24621 3.93944i −0.358283 0.152650i
\(667\) −43.1825 27.3070i −1.67203 1.05733i
\(668\) 4.06589 + 0.493688i 0.157314 + 0.0191014i
\(669\) −4.76570 11.1855i −0.184253 0.432457i
\(670\) 3.74136 11.2067i 0.144541 0.432954i
\(671\) −25.6698 9.73528i −0.990972 0.375826i
\(672\) −58.2382 4.70147i −2.24659 0.181363i
\(673\) 4.26838 14.7361i 0.164534 0.568037i −0.835300 0.549795i \(-0.814706\pi\)
0.999834 0.0182418i \(-0.00580687\pi\)
\(674\) 13.8302 + 0.557336i 0.532718 + 0.0214678i
\(675\) 15.6401 0.601986
\(676\) 0.313624 11.5107i 0.0120625 0.442719i
\(677\) −28.0136 −1.07665 −0.538326 0.842737i \(-0.680943\pi\)
−0.538326 + 0.842737i \(0.680943\pi\)
\(678\) 53.0795 + 2.13903i 2.03851 + 0.0821490i
\(679\) −11.5232 + 39.7825i −0.442218 + 1.52671i
\(680\) −3.50069 0.282605i −0.134245 0.0108374i
\(681\) −37.6482 14.2781i −1.44268 0.547137i
\(682\) 4.79265 14.3557i 0.183520 0.549710i
\(683\) 8.74241 + 20.5192i 0.334519 + 0.785145i 0.999275 + 0.0380840i \(0.0121255\pi\)
−0.664756 + 0.747061i \(0.731464\pi\)
\(684\) −16.0414 1.94777i −0.613357 0.0744750i
\(685\) 4.62947 + 2.92750i 0.176883 + 0.111854i
\(686\) −38.0687 16.2195i −1.45347 0.619265i
\(687\) −10.0800 15.9402i −0.384576 0.608158i
\(688\) −19.6174 + 51.7268i −0.747905 + 1.97206i
\(689\) −7.07730 8.55369i −0.269624 0.325870i
\(690\) −13.8323 36.4728i −0.526587 1.38850i
\(691\) 14.9937 19.9530i 0.570387 0.759047i −0.418419 0.908254i \(-0.637416\pi\)
0.988806 + 0.149207i \(0.0476722\pi\)
\(692\) 10.0539 + 1.63392i 0.382193 + 0.0621124i
\(693\) 60.0560 25.5875i 2.28134 0.971988i
\(694\) −2.69787 1.86221i −0.102410 0.0706884i
\(695\) 10.7467 6.20464i 0.407647 0.235355i
\(696\) −44.7839 21.2502i −1.69753 0.805487i
\(697\) 7.19574 0.873721i 0.272558 0.0330946i
\(698\) 25.2556 + 43.7440i 0.955938 + 1.65573i
\(699\) −19.3510 + 33.5169i −0.731922 + 1.26773i
\(700\) 4.32099 10.1417i 0.163318 0.383321i
\(701\) −5.84306 5.17650i −0.220689 0.195514i 0.545533 0.838090i \(-0.316327\pi\)
−0.766222 + 0.642576i \(0.777866\pi\)
\(702\) −2.51502 + 33.9086i −0.0949235 + 1.27980i
\(703\) 3.27492 2.90133i 0.123516 0.109426i
\(704\) 1.89712 + 5.68257i 0.0715004 + 0.214170i
\(705\) 0.396216 9.83200i 0.0149224 0.370294i
\(706\) −28.5347 + 34.9486i −1.07392 + 1.31531i
\(707\) 30.9757 + 34.9643i 1.16496 + 1.31497i
\(708\) −26.6703 5.44477i −1.00233 0.204627i
\(709\) −26.9400 + 7.80327i −1.01175 + 0.293058i −0.742381 0.669978i \(-0.766304\pi\)
−0.269373 + 0.963036i \(0.586816\pi\)
\(710\) −6.65283 + 2.52309i −0.249676 + 0.0946898i
\(711\) 1.15810 + 28.7381i 0.0434323 + 1.07776i
\(712\) −23.1337 17.3839i −0.866973 0.651488i
\(713\) 16.1559 3.29826i 0.605044 0.123521i
\(714\) −23.5548 + 12.3625i −0.881516 + 0.462655i
\(715\) −13.4500 8.38306i −0.503003 0.313509i
\(716\) −5.98376 3.14052i −0.223624 0.117367i
\(717\) −2.85429 0.826756i −0.106595 0.0308758i
\(718\) 7.63114 0.616049i 0.284791 0.0229907i
\(719\) −6.75780 + 33.1019i −0.252024 + 1.23449i 0.634906 + 0.772589i \(0.281039\pi\)
−0.886930 + 0.461904i \(0.847166\pi\)
\(720\) −17.0059 32.4020i −0.633771 1.20755i
\(721\) 27.5185 + 36.6205i 1.02484 + 1.36382i
\(722\) −5.00166 + 7.90950i −0.186143 + 0.294361i
\(723\) −27.1550 + 18.7437i −1.00990 + 0.697087i
\(724\) −6.39664 + 13.4806i −0.237729 + 0.501003i
\(725\) 18.1079 18.8523i 0.672511 0.700158i
\(726\) −7.42697 7.13370i −0.275641 0.264757i
\(727\) 2.41176 + 19.8626i 0.0894472 + 0.736664i 0.966571 + 0.256399i \(0.0825362\pi\)
−0.877124 + 0.480264i \(0.840541\pi\)
\(728\) −26.7852 13.8360i −0.992726 0.512797i
\(729\) −5.20590 + 42.8745i −0.192811 + 1.58794i
\(730\) −8.28343 + 6.76321i −0.306583 + 0.250318i
\(731\) 2.78683 + 13.6508i 0.103075 + 0.504894i
\(732\) 6.41833 + 22.1587i 0.237228 + 0.819007i
\(733\) 2.43622 + 9.88411i 0.0899837 + 0.365078i 0.998620 0.0525093i \(-0.0167219\pi\)
−0.908637 + 0.417587i \(0.862876\pi\)
\(734\) −4.76004 + 58.9636i −0.175696 + 2.17639i
\(735\) −8.37093 51.5084i −0.308766 1.89991i
\(736\) 17.1112 19.3145i 0.630726 0.711942i
\(737\) −11.1974 + 8.41427i −0.412460 + 0.309944i
\(738\) 30.7977 + 37.7204i 1.13368 + 1.38851i
\(739\) 1.29912 7.99383i 0.0477891 0.294058i −0.952144 0.305651i \(-0.901126\pi\)
0.999933 + 0.0115927i \(0.00369016\pi\)
\(740\) −1.51351 0.373047i −0.0556377 0.0137135i
\(741\) −32.4930 18.4785i −1.19366 0.678825i
\(742\) 22.4351 5.52975i 0.823618 0.203004i
\(743\) 0.122842 + 1.52168i 0.00450665 + 0.0558249i 0.998620 0.0525226i \(-0.0167261\pi\)
−0.994113 + 0.108347i \(0.965444\pi\)
\(744\) 15.1746 5.06602i 0.556327 0.185729i
\(745\) 15.1646 + 15.7881i 0.555589 + 0.578430i
\(746\) 45.5582i 1.66801i
\(747\) 24.6736 23.6993i 0.902760 0.867113i
\(748\) −2.56384 2.09331i −0.0937433 0.0765390i
\(749\) 29.8787 56.9291i 1.09174 2.08014i
\(750\) 54.6593 8.88299i 1.99587 0.324361i
\(751\) −3.46866 + 2.19345i −0.126573 + 0.0800400i −0.596252 0.802797i \(-0.703344\pi\)
0.469679 + 0.882837i \(0.344370\pi\)
\(752\) 10.6316 5.04476i 0.387694 0.183963i
\(753\) 37.5122 54.3457i 1.36702 1.98047i
\(754\) 37.9612 + 42.2907i 1.38247 + 1.54014i
\(755\) −8.40387 12.1751i −0.305848 0.443098i
\(756\) −18.8116 10.8609i −0.684170 0.395006i
\(757\) 11.5686 + 24.3804i 0.420469 + 0.886119i 0.997585 + 0.0694572i \(0.0221267\pi\)
−0.577116 + 0.816662i \(0.695822\pi\)
\(758\) 41.1727 + 13.7455i 1.49546 + 0.499257i
\(759\) −11.0669 + 44.9000i −0.401701 + 1.62977i
\(760\) 10.2629 0.413582i 0.372276 0.0150022i
\(761\) 39.6854 1.59927i 1.43859 0.0579734i 0.691349 0.722521i \(-0.257017\pi\)
0.747246 + 0.664548i \(0.231376\pi\)
\(762\) 5.38915 21.8647i 0.195228 0.792073i
\(763\) 56.4579 + 18.8484i 2.04391 + 0.682359i
\(764\) −5.15595 10.8659i −0.186536 0.393115i
\(765\) −7.98112 4.60790i −0.288558 0.166599i
\(766\) −21.6321 31.3395i −0.781599 1.13234i