Properties

Label 169.2.k.a.4.10
Level $169$
Weight $2$
Character 169.4
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 4.10
Character \(\chi\) \(=\) 169.4
Dual form 169.2.k.a.127.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.596805 + 0.0240504i) q^{2} +(0.703900 - 2.43014i) q^{3} +(-1.63792 - 0.132226i) q^{4} +(3.70001 + 1.40323i) q^{5} +(0.478537 - 1.43339i) q^{6} +(-0.324840 - 0.762428i) q^{7} +(-2.16021 - 0.262296i) q^{8} +(-2.87456 - 1.81776i) q^{9} +O(q^{10})\) \(q+(0.596805 + 0.0240504i) q^{2} +(0.703900 - 2.43014i) q^{3} +(-1.63792 - 0.132226i) q^{4} +(3.70001 + 1.40323i) q^{5} +(0.478537 - 1.43339i) q^{6} +(-0.324840 - 0.762428i) q^{7} +(-2.16021 - 0.262296i) q^{8} +(-2.87456 - 1.81776i) q^{9} +(2.17443 + 0.926440i) q^{10} +(-0.896359 - 1.41748i) q^{11} +(-1.47426 + 3.88730i) q^{12} +(-2.52376 + 2.57500i) q^{13} +(-0.175530 - 0.462833i) q^{14} +(6.01448 - 8.00382i) q^{15} +(1.96102 + 0.318697i) q^{16} +(6.43696 - 2.74253i) q^{17} +(-1.67183 - 1.15398i) q^{18} +(-6.17486 + 3.56505i) q^{19} +(-5.87476 - 2.78761i) q^{20} +(-2.08147 + 0.252736i) q^{21} +(-0.500860 - 0.867515i) q^{22} +(-1.23179 + 2.13353i) q^{23} +(-2.15799 + 5.06498i) q^{24} +(7.97846 + 7.06830i) q^{25} +(-1.56812 + 1.47608i) q^{26} +(-0.759544 + 0.672898i) q^{27} +(0.431248 + 1.29175i) q^{28} +(-0.333794 + 8.28302i) q^{29} +(3.78197 - 4.63207i) q^{30} +(0.422119 + 0.476474i) q^{31} +(5.42687 + 1.10790i) q^{32} +(-4.07562 + 1.18052i) q^{33} +(3.90757 - 1.48195i) q^{34} +(-0.132051 - 3.27682i) q^{35} +(4.46793 + 3.35743i) q^{36} +(-4.24111 + 0.865829i) q^{37} +(-3.77092 + 1.97913i) q^{38} +(4.48116 + 7.94564i) q^{39} +(-7.62472 - 4.00176i) q^{40} +(-3.37479 - 0.977520i) q^{41} +(-1.24831 + 0.100774i) q^{42} +(0.218974 - 1.07261i) q^{43} +(1.28073 + 2.44023i) q^{44} +(-8.08515 - 10.7594i) q^{45} +(-0.786451 + 1.24367i) q^{46} +(-1.62013 + 1.11829i) q^{47} +(2.15484 - 4.54123i) q^{48} +(4.37330 - 4.55308i) q^{49} +(4.59159 + 4.41028i) q^{50} +(-2.13377 - 17.5732i) q^{51} +(4.47419 - 3.88393i) q^{52} +(-0.146967 + 1.21038i) q^{53} +(-0.469483 + 0.383321i) q^{54} +(-1.32749 - 6.50248i) q^{55} +(0.501739 + 1.73221i) q^{56} +(4.31712 + 17.5152i) q^{57} +(-0.398420 + 4.93532i) q^{58} +(-1.82780 - 11.2469i) q^{59} +(-10.9095 + 12.3143i) q^{60} +(-1.57425 + 1.18297i) q^{61} +(0.240463 + 0.294514i) q^{62} +(-0.452139 + 2.78212i) q^{63} +(-0.645897 - 0.159199i) q^{64} +(-12.9512 + 5.98612i) q^{65} +(-2.46074 + 0.606519i) q^{66} +(-0.248094 - 3.07320i) q^{67} +(-10.9058 + 3.64091i) q^{68} +(4.31772 + 4.49522i) q^{69} -1.95880i q^{70} +(-2.34131 + 2.24886i) q^{71} +(5.73284 + 4.68072i) q^{72} +(4.05158 - 7.71964i) q^{73} +(-2.55194 + 0.414731i) q^{74} +(22.7930 - 14.4134i) q^{75} +(10.5853 - 5.02279i) q^{76} +(-0.789552 + 1.14386i) q^{77} +(2.48328 + 4.84977i) q^{78} +(-3.06556 - 4.44123i) q^{79} +(6.80859 + 3.93094i) q^{80} +(-3.27346 - 6.89866i) q^{81} +(-1.99058 - 0.664553i) q^{82} +(-1.84811 + 7.49807i) q^{83} +(3.44269 - 0.138736i) q^{84} +(27.6652 - 1.11487i) q^{85} +(0.156481 - 0.634870i) q^{86} +(19.8940 + 6.64159i) q^{87} +(1.56452 + 3.29715i) q^{88} +(-14.6210 - 8.44146i) q^{89} +(-4.56649 - 6.61570i) q^{90} +(2.78307 + 1.08772i) q^{91} +(2.29968 - 3.33166i) q^{92} +(1.45503 - 0.690420i) q^{93} +(-0.993795 + 0.628438i) q^{94} +(-27.8496 + 4.52600i) q^{95} +(6.51234 - 12.4082i) q^{96} +(-0.0230764 - 0.0188413i) q^{97} +(2.71951 - 2.61212i) q^{98} +5.70399i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.596805 + 0.0240504i 0.422005 + 0.0170062i 0.250360 0.968153i \(-0.419451\pi\)
0.171644 + 0.985159i \(0.445092\pi\)
\(3\) 0.703900 2.43014i 0.406397 1.40304i −0.452897 0.891563i \(-0.649610\pi\)
0.859294 0.511482i \(-0.170903\pi\)
\(4\) −1.63792 0.132226i −0.818959 0.0661132i
\(5\) 3.70001 + 1.40323i 1.65469 + 0.627543i 0.992550 0.121834i \(-0.0388776\pi\)
0.662144 + 0.749377i \(0.269647\pi\)
\(6\) 0.478537 1.43339i 0.195362 0.585180i
\(7\) −0.324840 0.762428i −0.122778 0.288171i 0.847237 0.531215i \(-0.178264\pi\)
−0.970015 + 0.243044i \(0.921854\pi\)
\(8\) −2.16021 0.262296i −0.763748 0.0927358i
\(9\) −2.87456 1.81776i −0.958186 0.605920i
\(10\) 2.17443 + 0.926440i 0.687617 + 0.292966i
\(11\) −0.896359 1.41748i −0.270262 0.427386i 0.682598 0.730794i \(-0.260850\pi\)
−0.952861 + 0.303408i \(0.901875\pi\)
\(12\) −1.47426 + 3.88730i −0.425582 + 1.12217i
\(13\) −2.52376 + 2.57500i −0.699965 + 0.714177i
\(14\) −0.175530 0.462833i −0.0469122 0.123697i
\(15\) 6.01448 8.00382i 1.55293 2.06658i
\(16\) 1.96102 + 0.318697i 0.490255 + 0.0796742i
\(17\) 6.43696 2.74253i 1.56119 0.665162i 0.573165 0.819440i \(-0.305715\pi\)
0.988027 + 0.154278i \(0.0493051\pi\)
\(18\) −1.67183 1.15398i −0.394054 0.271996i
\(19\) −6.17486 + 3.56505i −1.41661 + 0.817880i −0.995999 0.0893619i \(-0.971517\pi\)
−0.420610 + 0.907242i \(0.638184\pi\)
\(20\) −5.87476 2.78761i −1.31364 0.623329i
\(21\) −2.08147 + 0.252736i −0.454213 + 0.0551514i
\(22\) −0.500860 0.867515i −0.106784 0.184955i
\(23\) −1.23179 + 2.13353i −0.256846 + 0.444871i −0.965395 0.260791i \(-0.916017\pi\)
0.708549 + 0.705662i \(0.249350\pi\)
\(24\) −2.15799 + 5.06498i −0.440497 + 1.03388i
\(25\) 7.97846 + 7.06830i 1.59569 + 1.41366i
\(26\) −1.56812 + 1.47608i −0.307534 + 0.289482i
\(27\) −0.759544 + 0.672898i −0.146174 + 0.129499i
\(28\) 0.431248 + 1.29175i 0.0814983 + 0.244117i
\(29\) −0.333794 + 8.28302i −0.0619841 + 1.53812i 0.606916 + 0.794766i \(0.292406\pi\)
−0.668900 + 0.743352i \(0.733235\pi\)
\(30\) 3.78197 4.63207i 0.690490 0.845696i
\(31\) 0.422119 + 0.476474i 0.0758148 + 0.0855772i 0.785194 0.619250i \(-0.212563\pi\)
−0.709379 + 0.704827i \(0.751025\pi\)
\(32\) 5.42687 + 1.10790i 0.959344 + 0.195851i
\(33\) −4.07562 + 1.18052i −0.709475 + 0.205502i
\(34\) 3.90757 1.48195i 0.670142 0.254152i
\(35\) −0.132051 3.27682i −0.0223207 0.553883i
\(36\) 4.46793 + 3.35743i 0.744655 + 0.559572i
\(37\) −4.24111 + 0.865829i −0.697235 + 0.142341i −0.535553 0.844502i \(-0.679897\pi\)
−0.161681 + 0.986843i \(0.551692\pi\)
\(38\) −3.77092 + 1.97913i −0.611725 + 0.321058i
\(39\) 4.48116 + 7.94564i 0.717559 + 1.27232i
\(40\) −7.62472 4.00176i −1.20557 0.632734i
\(41\) −3.37479 0.977520i −0.527054 0.152663i 0.00401474 0.999992i \(-0.498722\pi\)
−0.531068 + 0.847329i \(0.678209\pi\)
\(42\) −1.24831 + 0.100774i −0.192618 + 0.0155497i
\(43\) 0.218974 1.07261i 0.0333932 0.163571i −0.959675 0.281113i \(-0.909296\pi\)
0.993068 + 0.117542i \(0.0375015\pi\)
\(44\) 1.28073 + 2.44023i 0.193078 + 0.367879i
\(45\) −8.08515 10.7594i −1.20526 1.60391i
\(46\) −0.786451 + 1.24367i −0.115956 + 0.183370i
\(47\) −1.62013 + 1.11829i −0.236320 + 0.163120i −0.680339 0.732897i \(-0.738168\pi\)
0.444019 + 0.896017i \(0.353552\pi\)
\(48\) 2.15484 4.54123i 0.311024 0.655470i
\(49\) 4.37330 4.55308i 0.624756 0.650440i
\(50\) 4.59159 + 4.41028i 0.649349 + 0.623708i
\(51\) −2.13377 17.5732i −0.298788 2.46074i
\(52\) 4.47419 3.88393i 0.620459 0.538605i
\(53\) −0.146967 + 1.21038i −0.0201874 + 0.166258i −0.999316 0.0369841i \(-0.988225\pi\)
0.979128 + 0.203242i \(0.0651480\pi\)
\(54\) −0.469483 + 0.383321i −0.0638886 + 0.0521634i
\(55\) −1.32749 6.50248i −0.178999 0.876794i
\(56\) 0.501739 + 1.73221i 0.0670478 + 0.231476i
\(57\) 4.31712 + 17.5152i 0.571816 + 2.31995i
\(58\) −0.398420 + 4.93532i −0.0523151 + 0.648039i
\(59\) −1.82780 11.2469i −0.237960 1.46423i −0.781007 0.624523i \(-0.785294\pi\)
0.543047 0.839702i \(-0.317271\pi\)
\(60\) −10.9095 + 12.3143i −1.40842 + 1.58977i
\(61\) −1.57425 + 1.18297i −0.201562 + 0.151464i −0.696730 0.717333i \(-0.745363\pi\)
0.495169 + 0.868797i \(0.335106\pi\)
\(62\) 0.240463 + 0.294514i 0.0305388 + 0.0374033i
\(63\) −0.452139 + 2.78212i −0.0569642 + 0.350515i
\(64\) −0.645897 0.159199i −0.0807371 0.0198999i
\(65\) −12.9512 + 5.98612i −1.60640 + 0.742487i
\(66\) −2.46074 + 0.606519i −0.302897 + 0.0746573i
\(67\) −0.248094 3.07320i −0.0303095 0.375451i −0.994075 0.108699i \(-0.965332\pi\)
0.963765 0.266752i \(-0.0859504\pi\)
\(68\) −10.9058 + 3.64091i −1.32253 + 0.441525i
\(69\) 4.31772 + 4.49522i 0.519792 + 0.541161i
\(70\) 1.95880i 0.234121i
\(71\) −2.34131 + 2.24886i −0.277862 + 0.266890i −0.818681 0.574249i \(-0.805294\pi\)
0.540819 + 0.841139i \(0.318115\pi\)
\(72\) 5.73284 + 4.68072i 0.675622 + 0.551628i
\(73\) 4.05158 7.71964i 0.474201 0.903515i −0.524442 0.851446i \(-0.675726\pi\)
0.998643 0.0520689i \(-0.0165816\pi\)
\(74\) −2.55194 + 0.414731i −0.296657 + 0.0482114i
\(75\) 22.7930 14.4134i 2.63191 1.66432i
\(76\) 10.5853 5.02279i 1.21422 0.576153i
\(77\) −0.789552 + 1.14386i −0.0899778 + 0.130355i
\(78\) 2.48328 + 4.84977i 0.281176 + 0.549128i
\(79\) −3.06556 4.44123i −0.344903 0.499678i 0.611693 0.791095i \(-0.290489\pi\)
−0.956596 + 0.291417i \(0.905873\pi\)
\(80\) 6.80859 + 3.93094i 0.761223 + 0.439492i
\(81\) −3.27346 6.89866i −0.363717 0.766518i
\(82\) −1.99058 0.664553i −0.219823 0.0733877i
\(83\) −1.84811 + 7.49807i −0.202856 + 0.823020i 0.777997 + 0.628269i \(0.216236\pi\)
−0.980853 + 0.194751i \(0.937610\pi\)
\(84\) 3.44269 0.138736i 0.375628 0.0151373i
\(85\) 27.6652 1.11487i 3.00071 0.120925i
\(86\) 0.156481 0.634870i 0.0168738 0.0684597i
\(87\) 19.8940 + 6.64159i 2.13286 + 0.712053i
\(88\) 1.56452 + 3.29715i 0.166778 + 0.351478i
\(89\) −14.6210 8.44146i −1.54983 0.894793i −0.998154 0.0607327i \(-0.980656\pi\)
−0.551673 0.834060i \(-0.686010\pi\)
\(90\) −4.56649 6.61570i −0.481350 0.697356i
\(91\) 2.78307 + 1.08772i 0.291745 + 0.114024i
\(92\) 2.29968 3.33166i 0.239758 0.347350i
\(93\) 1.45503 0.690420i 0.150879 0.0715932i
\(94\) −0.993795 + 0.628438i −0.102502 + 0.0648184i
\(95\) −27.8496 + 4.52600i −2.85731 + 0.464358i
\(96\) 6.51234 12.4082i 0.664663 1.26641i
\(97\) −0.0230764 0.0188413i −0.00234305 0.00191304i 0.631273 0.775561i \(-0.282533\pi\)
−0.633616 + 0.773648i \(0.718430\pi\)
\(98\) 2.71951 2.61212i 0.274712 0.263864i
\(99\) 5.70399i 0.573272i
\(100\) −12.1334 12.6323i −1.21334 1.26323i
\(101\) −3.57391 + 1.19315i −0.355618 + 0.118723i −0.488863 0.872360i \(-0.662588\pi\)
0.133246 + 0.991083i \(0.457460\pi\)
\(102\) −0.850804 10.5391i −0.0842421 1.04353i
\(103\) 8.48507 2.09138i 0.836058 0.206070i 0.202030 0.979379i \(-0.435246\pi\)
0.634029 + 0.773309i \(0.281400\pi\)
\(104\) 6.12725 4.90056i 0.600826 0.480540i
\(105\) −8.05609 1.98565i −0.786194 0.193779i
\(106\) −0.116821 + 0.718825i −0.0113466 + 0.0698185i
\(107\) 6.44814 + 7.89753i 0.623365 + 0.763483i 0.985690 0.168568i \(-0.0539144\pi\)
−0.362325 + 0.932052i \(0.618017\pi\)
\(108\) 1.33305 1.00172i 0.128272 0.0963904i
\(109\) 2.13815 2.41347i 0.204798 0.231169i −0.637134 0.770753i \(-0.719880\pi\)
0.841932 + 0.539584i \(0.181419\pi\)
\(110\) −0.635865 3.91264i −0.0606274 0.373055i
\(111\) −0.881228 + 10.9160i −0.0836425 + 1.03610i
\(112\) −0.394035 1.59866i −0.0372328 0.151059i
\(113\) −2.01280 6.94901i −0.189349 0.653707i −0.997870 0.0652400i \(-0.979219\pi\)
0.808521 0.588467i \(-0.200268\pi\)
\(114\) 2.15523 + 10.5570i 0.201856 + 0.988754i
\(115\) −7.55147 + 6.16558i −0.704178 + 0.574943i
\(116\) 1.64196 13.5228i 0.152452 1.25556i
\(117\) 11.9354 2.81441i 1.10343 0.260192i
\(118\) −0.820349 6.75618i −0.0755192 0.621957i
\(119\) −4.18197 4.01684i −0.383360 0.368223i
\(120\) −15.0919 + 15.7123i −1.37769 + 1.43433i
\(121\) 3.50983 7.39682i 0.319076 0.672438i
\(122\) −0.967968 + 0.668140i −0.0876357 + 0.0604906i
\(123\) −4.75103 + 7.51315i −0.428386 + 0.677438i
\(124\) −0.628393 0.836239i −0.0564314 0.0750965i
\(125\) 10.4070 + 19.8289i 0.930832 + 1.77355i
\(126\) −0.336750 + 1.64951i −0.0300001 + 0.146950i
\(127\) −15.1340 + 1.22174i −1.34292 + 0.108412i −0.730931 0.682451i \(-0.760914\pi\)
−0.611993 + 0.790863i \(0.709632\pi\)
\(128\) −11.0219 3.19253i −0.974207 0.282182i
\(129\) −2.45245 1.28715i −0.215926 0.113327i
\(130\) −7.87333 + 3.26106i −0.690537 + 0.286014i
\(131\) 8.69381 4.56286i 0.759582 0.398659i −0.0400131 0.999199i \(-0.512740\pi\)
0.799595 + 0.600540i \(0.205048\pi\)
\(132\) 6.83163 1.39469i 0.594617 0.121392i
\(133\) 4.72394 + 3.54981i 0.409618 + 0.307808i
\(134\) −0.0741521 1.84006i −0.00640576 0.158957i
\(135\) −3.75455 + 1.42391i −0.323140 + 0.122551i
\(136\) −14.6245 + 4.23604i −1.25404 + 0.363238i
\(137\) 2.53524 + 0.517573i 0.216600 + 0.0442193i 0.307100 0.951677i \(-0.400641\pi\)
−0.0904998 + 0.995896i \(0.528846\pi\)
\(138\) 2.46872 + 2.78661i 0.210152 + 0.237212i
\(139\) −4.33081 + 5.30428i −0.367334 + 0.449903i −0.924889 0.380237i \(-0.875842\pi\)
0.557555 + 0.830140i \(0.311740\pi\)
\(140\) −0.216992 + 5.38461i −0.0183392 + 0.455083i
\(141\) 1.57721 + 4.72431i 0.132825 + 0.397859i
\(142\) −1.45139 + 1.28582i −0.121798 + 0.107903i
\(143\) 5.91220 + 1.26925i 0.494403 + 0.106140i
\(144\) −5.05775 4.48077i −0.421479 0.373398i
\(145\) −12.8580 + 30.1789i −1.06780 + 2.50622i
\(146\) 2.60366 4.50967i 0.215481 0.373223i
\(147\) −7.98629 13.8327i −0.658698 1.14090i
\(148\) 7.06108 0.857370i 0.580417 0.0704754i
\(149\) 4.62535 + 2.19476i 0.378923 + 0.179801i 0.608622 0.793460i \(-0.291723\pi\)
−0.229698 + 0.973262i \(0.573774\pi\)
\(150\) 13.9496 8.05383i 1.13898 0.657592i
\(151\) 15.8714 + 10.9553i 1.29160 + 0.891526i 0.997925 0.0643796i \(-0.0205069\pi\)
0.293673 + 0.955906i \(0.405122\pi\)
\(152\) 14.2741 6.08161i 1.15778 0.493283i
\(153\) −23.4887 3.81728i −1.89895 0.308609i
\(154\) −0.498719 + 0.663674i −0.0401879 + 0.0534804i
\(155\) 0.893242 + 2.35529i 0.0717469 + 0.189181i
\(156\) −6.28914 13.6068i −0.503534 1.08942i
\(157\) −3.72482 + 9.82155i −0.297273 + 0.783845i 0.700276 + 0.713873i \(0.253060\pi\)
−0.997549 + 0.0699728i \(0.977709\pi\)
\(158\) −1.72273 2.72428i −0.137053 0.216732i
\(159\) 2.83795 + 1.20914i 0.225064 + 0.0958907i
\(160\) 18.5248 + 11.7144i 1.46452 + 0.926104i
\(161\) 2.02680 + 0.246098i 0.159734 + 0.0193952i
\(162\) −1.78770 4.19588i −0.140455 0.329660i
\(163\) −1.04738 + 3.13728i −0.0820370 + 0.245731i −0.981564 0.191135i \(-0.938783\pi\)
0.899527 + 0.436866i \(0.143911\pi\)
\(164\) 5.39837 + 2.04733i 0.421542 + 0.159870i
\(165\) −16.7364 1.35110i −1.30293 0.105183i
\(166\) −1.28329 + 4.43043i −0.0996027 + 0.343868i
\(167\) −7.66565 0.308915i −0.593186 0.0239046i −0.258142 0.966107i \(-0.583110\pi\)
−0.335044 + 0.942202i \(0.608751\pi\)
\(168\) 4.56268 0.352019
\(169\) −0.261281 12.9974i −0.0200985 0.999798i
\(170\) 16.5375 1.26837
\(171\) 24.2304 + 0.976451i 1.85294 + 0.0746711i
\(172\) −0.500488 + 1.72788i −0.0381618 + 0.131750i
\(173\) −11.7219 0.946291i −0.891201 0.0719452i −0.373623 0.927581i \(-0.621884\pi\)
−0.517579 + 0.855636i \(0.673167\pi\)
\(174\) 11.7131 + 4.44219i 0.887967 + 0.336761i
\(175\) 2.79735 8.37907i 0.211459 0.633398i
\(176\) −1.30603 3.06537i −0.0984458 0.231061i
\(177\) −28.6182 3.47488i −2.15108 0.261188i
\(178\) −8.52289 5.38955i −0.638817 0.403964i
\(179\) 4.93785 + 2.10382i 0.369072 + 0.157247i 0.568536 0.822658i \(-0.307510\pi\)
−0.199464 + 0.979905i \(0.563920\pi\)
\(180\) 11.8201 + 18.6921i 0.881021 + 1.39322i
\(181\) 9.25186 24.3951i 0.687685 1.81328i 0.115233 0.993338i \(-0.463238\pi\)
0.572452 0.819938i \(-0.305992\pi\)
\(182\) 1.63479 + 0.716091i 0.121179 + 0.0530802i
\(183\) 1.76667 + 4.65834i 0.130596 + 0.344354i
\(184\) 3.22054 4.28576i 0.237421 0.315950i
\(185\) −16.9071 2.74767i −1.24304 0.202013i
\(186\) 0.884973 0.377052i 0.0648894 0.0276468i
\(187\) −9.65731 6.66596i −0.706212 0.487463i
\(188\) 2.80150 1.61745i 0.204320 0.117964i
\(189\) 0.759767 + 0.360514i 0.0552649 + 0.0262235i
\(190\) −16.7296 + 2.03134i −1.21369 + 0.147369i
\(191\) 8.65735 + 14.9950i 0.626424 + 1.08500i 0.988264 + 0.152757i \(0.0488153\pi\)
−0.361840 + 0.932240i \(0.617851\pi\)
\(192\) −0.841524 + 1.45756i −0.0607318 + 0.105190i
\(193\) −6.72766 + 15.7904i −0.484267 + 1.13662i 0.481322 + 0.876544i \(0.340157\pi\)
−0.965589 + 0.260073i \(0.916253\pi\)
\(194\) −0.0133190 0.0117996i −0.000956246 0.000847160i
\(195\) 5.43076 + 35.6870i 0.388905 + 2.55560i
\(196\) −7.76513 + 6.87931i −0.554652 + 0.491379i
\(197\) 0.213116 + 0.638360i 0.0151839 + 0.0454812i 0.955856 0.293836i \(-0.0949321\pi\)
−0.940672 + 0.339318i \(0.889804\pi\)
\(198\) −0.137183 + 3.40417i −0.00974919 + 0.241924i
\(199\) 0.373580 0.457553i 0.0264824 0.0324351i −0.761194 0.648524i \(-0.775386\pi\)
0.787676 + 0.616089i \(0.211284\pi\)
\(200\) −15.3811 17.3617i −1.08761 1.22766i
\(201\) −7.64294 1.56032i −0.539092 0.110056i
\(202\) −2.16162 + 0.626122i −0.152091 + 0.0440538i
\(203\) 6.42364 2.43616i 0.450851 0.170985i
\(204\) 1.17130 + 29.0656i 0.0820077 + 2.03500i
\(205\) −11.1151 8.35243i −0.776310 0.583359i
\(206\) 5.11423 1.04408i 0.356325 0.0727443i
\(207\) 7.41909 3.89384i 0.515663 0.270641i
\(208\) −5.76979 + 4.24532i −0.400063 + 0.294360i
\(209\) 10.5883 + 5.55715i 0.732406 + 0.384396i
\(210\) −4.76016 1.37880i −0.328482 0.0951459i
\(211\) 18.8950 1.52536i 1.30079 0.105010i 0.589418 0.807828i \(-0.299357\pi\)
0.711370 + 0.702818i \(0.248075\pi\)
\(212\) 0.400763 1.96307i 0.0275245 0.134824i
\(213\) 3.81700 + 7.27268i 0.261536 + 0.498316i
\(214\) 3.65834 + 4.86837i 0.250079 + 0.332795i
\(215\) 2.31532 3.66138i 0.157903 0.249704i
\(216\) 1.81727 1.25437i 0.123650 0.0853491i
\(217\) 0.226156 0.476613i 0.0153524 0.0323546i
\(218\) 1.33410 1.38895i 0.0903569 0.0940715i
\(219\) −15.9079 15.2798i −1.07496 1.03251i
\(220\) 1.31452 + 10.8260i 0.0886249 + 0.729892i
\(221\) −9.18331 + 23.4967i −0.617736 + 1.58056i
\(222\) −0.788455 + 6.49351i −0.0529176 + 0.435816i
\(223\) 7.99217 6.52540i 0.535195 0.436973i −0.325910 0.945401i \(-0.605671\pi\)
0.861105 + 0.508428i \(0.169773\pi\)
\(224\) −0.918169 4.49749i −0.0613477 0.300501i
\(225\) −10.0861 34.8212i −0.672405 2.32141i
\(226\) −1.03412 4.19561i −0.0687889 0.279088i
\(227\) 1.68507 20.8734i 0.111842 1.38542i −0.660794 0.750567i \(-0.729780\pi\)
0.772637 0.634849i \(-0.218938\pi\)
\(228\) −4.75511 29.2593i −0.314915 1.93775i
\(229\) −3.80883 + 4.29928i −0.251695 + 0.284104i −0.860755 0.509019i \(-0.830008\pi\)
0.609061 + 0.793124i \(0.291547\pi\)
\(230\) −4.65504 + 3.49803i −0.306944 + 0.230653i
\(231\) 2.22399 + 2.72389i 0.146328 + 0.179219i
\(232\) 2.89367 17.8055i 0.189979 1.16899i
\(233\) −13.3788 3.29759i −0.876477 0.216032i −0.224686 0.974431i \(-0.572136\pi\)
−0.651791 + 0.758399i \(0.725982\pi\)
\(234\) 7.19081 1.39260i 0.470078 0.0910370i
\(235\) −7.56370 + 1.86429i −0.493402 + 0.121613i
\(236\) 1.50665 + 18.6632i 0.0980746 + 1.21487i
\(237\) −12.9507 + 4.32357i −0.841237 + 0.280846i
\(238\) −2.39921 2.49784i −0.155518 0.161911i
\(239\) 12.0681i 0.780623i −0.920683 0.390312i \(-0.872367\pi\)
0.920683 0.390312i \(-0.127633\pi\)
\(240\) 14.3453 13.7789i 0.925986 0.889422i
\(241\) −0.690176 0.563511i −0.0444582 0.0362990i 0.609956 0.792435i \(-0.291187\pi\)
−0.654414 + 0.756136i \(0.727085\pi\)
\(242\) 2.27258 4.33004i 0.146087 0.278346i
\(243\) −22.0737 + 3.58733i −1.41603 + 0.230127i
\(244\) 2.73490 1.72945i 0.175084 0.110717i
\(245\) 22.5702 10.7097i 1.44196 0.684219i
\(246\) −3.01613 + 4.36962i −0.192301 + 0.278597i
\(247\) 6.40382 24.8976i 0.407465 1.58420i
\(248\) −0.786886 1.14000i −0.0499673 0.0723901i
\(249\) 16.9205 + 9.76906i 1.07229 + 0.619089i
\(250\) 5.73407 + 12.0843i 0.362654 + 0.764277i
\(251\) 12.8958 + 4.30524i 0.813974 + 0.271744i 0.693024 0.720914i \(-0.256278\pi\)
0.120950 + 0.992659i \(0.461406\pi\)
\(252\) 1.10844 4.49711i 0.0698250 0.283291i
\(253\) 4.12835 0.166367i 0.259547 0.0104594i
\(254\) −9.06142 + 0.365163i −0.568564 + 0.0229123i
\(255\) 16.7642 68.0152i 1.04982 4.25928i
\(256\) −5.23915 1.74909i −0.327447 0.109318i
\(257\) 12.1540 + 25.6141i 0.758147 + 1.59776i 0.800989 + 0.598679i \(0.204308\pi\)
−0.0428420 + 0.999082i \(0.513641\pi\)
\(258\) −1.43268 0.827157i −0.0891946 0.0514965i
\(259\) 2.03782 + 2.95229i 0.126624 + 0.183446i
\(260\) 22.0046 8.09228i 1.36467 0.501862i
\(261\) 16.0161 23.2033i 0.991369 1.43625i
\(262\) 5.29825 2.51405i 0.327327 0.155318i
\(263\) 8.01836 5.07050i 0.494433 0.312661i −0.263875 0.964557i \(-0.585001\pi\)
0.758308 + 0.651896i \(0.226026\pi\)
\(264\) 9.11383 1.48114i 0.560917 0.0911579i
\(265\) −2.24222 + 4.27219i −0.137738 + 0.262438i
\(266\) 2.73390 + 2.23216i 0.167626 + 0.136862i
\(267\) −30.8057 + 29.5893i −1.88528 + 1.81084i
\(268\) 5.06645i 0.309482i
\(269\) −11.2902 11.7544i −0.688378 0.716677i 0.281691 0.959505i \(-0.409105\pi\)
−0.970069 + 0.242828i \(0.921925\pi\)
\(270\) −2.27498 + 0.759500i −0.138451 + 0.0462217i
\(271\) 1.48422 + 18.3854i 0.0901601 + 1.11683i 0.870729 + 0.491763i \(0.163647\pi\)
−0.780569 + 0.625070i \(0.785070\pi\)
\(272\) 13.4970 3.32672i 0.818379 0.201712i
\(273\) 4.60232 5.99762i 0.278545 0.362993i
\(274\) 1.50060 + 0.369864i 0.0906544 + 0.0223443i
\(275\) 2.86760 17.6450i 0.172923 1.06404i
\(276\) −6.47768 7.93372i −0.389910 0.477554i
\(277\) 18.8669 14.1775i 1.13360 0.851846i 0.143149 0.989701i \(-0.454277\pi\)
0.990452 + 0.137855i \(0.0440209\pi\)
\(278\) −2.71222 + 3.06146i −0.162668 + 0.183614i
\(279\) −0.347290 2.13696i −0.0207917 0.127937i
\(280\) −0.574239 + 7.11323i −0.0343174 + 0.425097i
\(281\) 3.47530 + 14.0998i 0.207319 + 0.841125i 0.978791 + 0.204862i \(0.0656746\pi\)
−0.771472 + 0.636263i \(0.780479\pi\)
\(282\) 0.827662 + 2.85742i 0.0492866 + 0.170157i
\(283\) 3.60804 + 17.6733i 0.214475 + 1.05057i 0.934320 + 0.356435i \(0.116008\pi\)
−0.719845 + 0.694135i \(0.755787\pi\)
\(284\) 4.13222 3.37386i 0.245202 0.200202i
\(285\) −8.60450 + 70.8644i −0.509687 + 4.19765i
\(286\) 3.49791 + 0.899683i 0.206835 + 0.0531994i
\(287\) 0.350979 + 2.89057i 0.0207176 + 0.170625i
\(288\) −13.5859 13.0495i −0.800559 0.768948i
\(289\) 22.1367 23.0467i 1.30216 1.35569i
\(290\) −8.39954 + 17.7016i −0.493238 + 1.03948i
\(291\) −0.0620306 + 0.0428166i −0.00363630 + 0.00250995i
\(292\) −7.65689 + 12.1084i −0.448085 + 0.708590i
\(293\) 5.03801 + 6.70437i 0.294324 + 0.391674i 0.922247 0.386602i \(-0.126351\pi\)
−0.627923 + 0.778275i \(0.716095\pi\)
\(294\) −4.43357 8.44747i −0.258571 0.492666i
\(295\) 9.01912 44.1785i 0.525113 2.57217i
\(296\) 9.38878 0.757940i 0.545712 0.0440544i
\(297\) 1.63464 + 0.473480i 0.0948515 + 0.0274741i
\(298\) 2.70765 + 1.42108i 0.156850 + 0.0823211i
\(299\) −2.38509 8.55637i −0.137933 0.494828i
\(300\) −39.2389 + 20.5942i −2.26546 + 1.18901i
\(301\) −0.888916 + 0.181474i −0.0512363 + 0.0104600i
\(302\) 9.20867 + 6.91986i 0.529899 + 0.398193i
\(303\) 0.383844 + 9.52498i 0.0220512 + 0.547196i
\(304\) −13.2452 + 5.02324i −0.759664 + 0.288102i
\(305\) −7.48470 + 2.16797i −0.428573 + 0.124138i
\(306\) −13.9263 2.84308i −0.796116 0.162528i
\(307\) 13.7755 + 15.5494i 0.786211 + 0.887449i 0.995913 0.0903167i \(-0.0287879\pi\)
−0.209702 + 0.977765i \(0.567249\pi\)
\(308\) 1.44447 1.76915i 0.0823063 0.100807i
\(309\) 0.890280 22.0921i 0.0506462 1.25677i
\(310\) 0.476445 + 1.42713i 0.0270603 + 0.0810554i
\(311\) 6.61585 5.86114i 0.375151 0.332354i −0.454388 0.890804i \(-0.650142\pi\)
0.829539 + 0.558449i \(0.188604\pi\)
\(312\) −7.59610 18.3396i −0.430045 1.03828i
\(313\) 17.8929 + 15.8517i 1.01137 + 0.895994i 0.994591 0.103866i \(-0.0331212\pi\)
0.0167764 + 0.999859i \(0.494660\pi\)
\(314\) −2.45921 + 5.77197i −0.138781 + 0.325731i
\(315\) −5.57688 + 9.65943i −0.314221 + 0.544247i
\(316\) 4.43389 + 7.67972i 0.249426 + 0.432018i
\(317\) −15.9927 + 1.94187i −0.898242 + 0.109066i −0.556616 0.830770i \(-0.687901\pi\)
−0.341626 + 0.939836i \(0.610978\pi\)
\(318\) 1.66462 + 0.789872i 0.0933472 + 0.0442938i
\(319\) 12.0402 6.95141i 0.674122 0.389204i
\(320\) −2.16643 1.49538i −0.121107 0.0835942i
\(321\) 23.7310 10.1108i 1.32453 0.564332i
\(322\) 1.20368 + 0.195617i 0.0670786 + 0.0109013i
\(323\) −29.9700 + 39.8829i −1.66758 + 2.21914i
\(324\) 4.44946 + 11.7323i 0.247192 + 0.651793i
\(325\) −38.3366 + 2.70588i −2.12653 + 0.150095i
\(326\) −0.700533 + 1.84715i −0.0387989 + 0.102304i
\(327\) −4.36005 6.89486i −0.241111 0.381287i
\(328\) 7.03384 + 2.99684i 0.388379 + 0.165473i
\(329\) 1.37890 + 0.871964i 0.0760212 + 0.0480729i
\(330\) −9.95586 1.20886i −0.548052 0.0665455i
\(331\) 11.1221 + 26.1044i 0.611323 + 1.43483i 0.881577 + 0.472040i \(0.156482\pi\)
−0.270254 + 0.962789i \(0.587108\pi\)
\(332\) 4.01849 12.0368i 0.220543 0.660608i
\(333\) 13.7652 + 5.22045i 0.754328 + 0.286079i
\(334\) −4.56747 0.368724i −0.249921 0.0201757i
\(335\) 3.39445 11.7190i 0.185458 0.640277i
\(336\) −4.16234 0.167737i −0.227074 0.00915078i
\(337\) −5.53405 −0.301459 −0.150730 0.988575i \(-0.548162\pi\)
−0.150730 + 0.988575i \(0.548162\pi\)
\(338\) 0.156658 7.76318i 0.00852109 0.422261i
\(339\) −18.3039 −0.994131
\(340\) −45.4607 1.83201i −2.46545 0.0993544i
\(341\) 0.297021 1.02544i 0.0160846 0.0555304i
\(342\) 14.4373 + 1.16550i 0.780681 + 0.0630231i
\(343\) −10.3162 3.91244i −0.557025 0.211252i
\(344\) −0.754369 + 2.25961i −0.0406729 + 0.121830i
\(345\) 9.66778 + 22.6911i 0.520496 + 1.22165i
\(346\) −6.97294 0.846668i −0.374868 0.0455172i
\(347\) −7.21382 4.56174i −0.387258 0.244887i 0.326622 0.945155i \(-0.394090\pi\)
−0.713880 + 0.700268i \(0.753064\pi\)
\(348\) −31.7065 13.5089i −1.69965 0.724152i
\(349\) 4.08332 + 6.45726i 0.218575 + 0.345649i 0.936619 0.350348i \(-0.113937\pi\)
−0.718044 + 0.695998i \(0.754962\pi\)
\(350\) 1.87099 4.93339i 0.100009 0.263701i
\(351\) 0.184194 3.65406i 0.00983153 0.195039i
\(352\) −3.29399 8.68555i −0.175570 0.462941i
\(353\) 3.01731 4.01531i 0.160595 0.213713i −0.711972 0.702208i \(-0.752198\pi\)
0.872567 + 0.488495i \(0.162454\pi\)
\(354\) −16.9959 2.76211i −0.903324 0.146804i
\(355\) −11.8185 + 5.03540i −0.627262 + 0.267251i
\(356\) 22.8319 + 15.7597i 1.21009 + 0.835262i
\(357\) −12.7052 + 7.33534i −0.672429 + 0.388227i
\(358\) 2.89633 + 1.37433i 0.153076 + 0.0726355i
\(359\) −18.7273 + 2.27391i −0.988392 + 0.120012i −0.598734 0.800948i \(-0.704330\pi\)
−0.389657 + 0.920960i \(0.627406\pi\)
\(360\) 14.6434 + 25.3632i 0.771777 + 1.33676i
\(361\) 15.9192 27.5729i 0.837854 1.45121i
\(362\) 6.10827 14.3366i 0.321043 0.753516i
\(363\) −15.5048 13.7360i −0.813789 0.720954i
\(364\) −4.41462 2.14959i −0.231389 0.112669i
\(365\) 25.8233 22.8774i 1.35165 1.19746i
\(366\) 0.942325 + 2.82261i 0.0492561 + 0.147540i
\(367\) 0.357589 8.87348i 0.0186660 0.463192i −0.962645 0.270765i \(-0.912723\pi\)
0.981311 0.192427i \(-0.0616357\pi\)
\(368\) −3.09552 + 3.79132i −0.161365 + 0.197636i
\(369\) 7.92413 + 8.94449i 0.412514 + 0.465632i
\(370\) −10.0242 2.04645i −0.521131 0.106390i
\(371\) 0.970568 0.281128i 0.0503894 0.0145955i
\(372\) −2.47451 + 0.938457i −0.128297 + 0.0486567i
\(373\) −0.235174 5.83579i −0.0121769 0.302166i −0.993789 0.111280i \(-0.964505\pi\)
0.981612 0.190886i \(-0.0611361\pi\)
\(374\) −5.60321 4.21054i −0.289735 0.217722i
\(375\) 55.5126 11.3330i 2.86666 0.585233i
\(376\) 3.79313 1.99079i 0.195616 0.102667i
\(377\) −20.4864 21.7639i −1.05510 1.12090i
\(378\) 0.444762 + 0.233429i 0.0228761 + 0.0120063i
\(379\) −27.5302 7.97422i −1.41413 0.409608i −0.518757 0.854922i \(-0.673605\pi\)
−0.895375 + 0.445313i \(0.853092\pi\)
\(380\) 46.2138 3.73076i 2.37072 0.191384i
\(381\) −7.68380 + 37.6377i −0.393653 + 1.92824i
\(382\) 4.80611 + 9.15728i 0.245902 + 0.468527i
\(383\) 9.78915 + 13.0270i 0.500202 + 0.665648i 0.976969 0.213382i \(-0.0684477\pi\)
−0.476767 + 0.879030i \(0.658191\pi\)
\(384\) −15.5166 + 24.5376i −0.791829 + 1.25218i
\(385\) −4.52645 + 3.12438i −0.230689 + 0.159233i
\(386\) −4.39486 + 9.26198i −0.223693 + 0.471422i
\(387\) −2.57919 + 2.68522i −0.131108 + 0.136498i
\(388\) 0.0353059 + 0.0339118i 0.00179239 + 0.00172161i
\(389\) −0.443898 3.65583i −0.0225065 0.185358i 0.977120 0.212689i \(-0.0682222\pi\)
−0.999626 + 0.0273313i \(0.991299\pi\)
\(390\) 2.38282 + 21.4288i 0.120659 + 1.08509i
\(391\) −2.07773 + 17.1117i −0.105075 + 0.865374i
\(392\) −10.6415 + 8.68849i −0.537475 + 0.438835i
\(393\) −4.96884 24.3390i −0.250645 1.22774i
\(394\) 0.111836 + 0.386102i 0.00563420 + 0.0194515i
\(395\) −5.11054 20.7343i −0.257139 1.04325i
\(396\) 0.754217 9.34266i 0.0379008 0.469486i
\(397\) 2.15430 + 13.2559i 0.108121 + 0.665296i 0.983369 + 0.181621i \(0.0581343\pi\)
−0.875248 + 0.483675i \(0.839302\pi\)
\(398\) 0.233959 0.264085i 0.0117273 0.0132374i
\(399\) 11.9517 8.98115i 0.598335 0.449620i
\(400\) 13.3933 + 16.4038i 0.669664 + 0.820189i
\(401\) 4.07738 25.0891i 0.203615 1.25289i −0.660973 0.750410i \(-0.729856\pi\)
0.864588 0.502482i \(-0.167580\pi\)
\(402\) −4.52382 1.11502i −0.225628 0.0556122i
\(403\) −2.29225 0.115547i −0.114185 0.00575583i
\(404\) 6.01154 1.48171i 0.299085 0.0737179i
\(405\) −2.43142 30.1185i −0.120818 1.49660i
\(406\) 3.89225 1.29942i 0.193169 0.0644893i
\(407\) 5.02885 + 5.23559i 0.249271 + 0.259519i
\(408\) 38.5214i 1.90710i
\(409\) −11.6503 + 11.1902i −0.576069 + 0.553322i −0.923114 0.384527i \(-0.874365\pi\)
0.347045 + 0.937849i \(0.387185\pi\)
\(410\) −6.43265 5.25209i −0.317686 0.259382i
\(411\) 3.04233 5.79668i 0.150067 0.285929i
\(412\) −14.1744 + 2.30356i −0.698321 + 0.113488i
\(413\) −7.98123 + 5.04702i −0.392731 + 0.248348i
\(414\) 4.52140 2.14543i 0.222215 0.105442i
\(415\) −17.3595 + 25.1496i −0.852145 + 1.23454i
\(416\) −16.5490 + 11.1781i −0.811380 + 0.548053i
\(417\) 9.84170 + 14.2582i 0.481950 + 0.698225i
\(418\) 6.18548 + 3.57119i 0.302542 + 0.174673i
\(419\) 9.36613 + 19.7387i 0.457565 + 0.964299i 0.992821 + 0.119609i \(0.0381640\pi\)
−0.535256 + 0.844690i \(0.679785\pi\)
\(420\) 12.9326 + 4.31755i 0.631049 + 0.210675i
\(421\) −1.70880 + 6.93287i −0.0832818 + 0.337887i −0.997772 0.0667214i \(-0.978746\pi\)
0.914490 + 0.404609i \(0.132592\pi\)
\(422\) 11.3133 0.455912i 0.550724 0.0221934i
\(423\) 6.68994 0.269595i 0.325276 0.0131082i
\(424\) 0.634956 2.57612i 0.0308362 0.125107i
\(425\) 70.7421 + 23.6172i 3.43150 + 1.14560i
\(426\) 2.10309 + 4.43217i 0.101895 + 0.214739i
\(427\) 1.41331 + 0.815973i 0.0683947 + 0.0394877i
\(428\) −9.51725 13.7881i −0.460034 0.666474i
\(429\) 7.24605 13.4741i 0.349843 0.650535i
\(430\) 1.46985 2.12944i 0.0708824 0.102691i
\(431\) −26.3769 + 12.5160i −1.27053 + 0.602875i −0.940082 0.340948i \(-0.889252\pi\)
−0.330451 + 0.943823i \(0.607201\pi\)
\(432\) −1.70393 + 1.07750i −0.0819805 + 0.0518413i
\(433\) −13.2259 + 2.14942i −0.635595 + 0.103294i −0.469667 0.882844i \(-0.655626\pi\)
−0.165928 + 0.986138i \(0.553062\pi\)
\(434\) 0.146434 0.279006i 0.00702903 0.0133927i
\(435\) 64.2882 + 52.4897i 3.08239 + 2.51669i
\(436\) −3.82124 + 3.67035i −0.183004 + 0.175778i
\(437\) 17.5656i 0.840278i
\(438\) −9.12644 9.50163i −0.436078 0.454005i
\(439\) 26.3794 8.80673i 1.25902 0.420323i 0.392633 0.919695i \(-0.371564\pi\)
0.866387 + 0.499373i \(0.166436\pi\)
\(440\) 1.16207 + 14.3949i 0.0553997 + 0.686249i
\(441\) −20.8477 + 5.13850i −0.992747 + 0.244690i
\(442\) −6.04575 + 13.8021i −0.287567 + 0.656498i
\(443\) −16.0778 3.96281i −0.763877 0.188279i −0.161916 0.986804i \(-0.551768\pi\)
−0.601961 + 0.798526i \(0.705614\pi\)
\(444\) 2.88676 17.7629i 0.136999 0.842992i
\(445\) −42.2527 51.7501i −2.00297 2.45319i
\(446\) 4.92670 3.70218i 0.233286 0.175303i
\(447\) 8.58936 9.69538i 0.406263 0.458576i
\(448\) 0.0884353 + 0.544164i 0.00417817 + 0.0257093i
\(449\) 2.44403 30.2748i 0.115341 1.42876i −0.637448 0.770493i \(-0.720010\pi\)
0.752789 0.658262i \(-0.228708\pi\)
\(450\) −5.18195 21.0240i −0.244280 0.991081i
\(451\) 1.63941 + 5.65990i 0.0771968 + 0.266514i
\(452\) 2.37796 + 11.6480i 0.111850 + 0.547878i
\(453\) 37.7948 30.8585i 1.77575 1.44986i
\(454\) 1.50767 12.4168i 0.0707587 0.582750i
\(455\) 8.77108 + 7.92986i 0.411194 + 0.371758i
\(456\) −4.73168 38.9689i −0.221581 1.82488i
\(457\) −2.62498 2.52133i −0.122792 0.117943i 0.628814 0.777556i \(-0.283541\pi\)
−0.751605 + 0.659613i \(0.770720\pi\)
\(458\) −2.37653 + 2.47423i −0.111048 + 0.115613i
\(459\) −3.04371 + 6.41449i −0.142068 + 0.299403i
\(460\) 13.1839 9.10021i 0.614704 0.424299i
\(461\) 5.45872 8.63227i 0.254238 0.402045i −0.693817 0.720151i \(-0.744072\pi\)
0.948055 + 0.318106i \(0.103047\pi\)
\(462\) 1.26178 + 1.67912i 0.0587031 + 0.0781196i
\(463\) −14.8084 28.2151i −0.688206 1.31127i −0.939231 0.343286i \(-0.888460\pi\)
0.251025 0.967981i \(-0.419232\pi\)
\(464\) −3.29435 + 16.1368i −0.152936 + 0.749132i
\(465\) 6.35244 0.512822i 0.294587 0.0237815i
\(466\) −7.90525 2.28978i −0.366203 0.106072i
\(467\) −35.8485 18.8147i −1.65887 0.870643i −0.992110 0.125371i \(-0.959988\pi\)
−0.666761 0.745271i \(-0.732320\pi\)
\(468\) −19.9214 + 3.03159i −0.920866 + 0.140135i
\(469\) −2.26250 + 1.18745i −0.104473 + 0.0548314i
\(470\) −4.55889 + 0.930704i −0.210286 + 0.0429302i
\(471\) 21.2459 + 15.9653i 0.978959 + 0.735640i
\(472\) 0.998402 + 24.7751i 0.0459552 + 1.14037i
\(473\) −1.71667 + 0.651048i −0.0789327 + 0.0299352i
\(474\) −7.83301 + 2.26886i −0.359782 + 0.104212i
\(475\) −74.4647 15.2021i −3.41668 0.697519i
\(476\) 6.31859 + 7.13221i 0.289612 + 0.326904i
\(477\) 2.62264 3.21215i 0.120083 0.147074i
\(478\) 0.290244 7.20233i 0.0132754 0.329427i
\(479\) −6.11407 18.3139i −0.279359 0.836782i −0.990955 0.134193i \(-0.957156\pi\)
0.711596 0.702588i \(-0.247972\pi\)
\(480\) 41.5073 36.7722i 1.89454 1.67842i
\(481\) 8.47403 13.1060i 0.386383 0.597583i
\(482\) −0.398348 0.352905i −0.0181442 0.0160744i
\(483\) 2.02471 4.75218i 0.0921277 0.216232i
\(484\) −6.72687 + 11.6513i −0.305767 + 0.529604i
\(485\) −0.0589442 0.102094i −0.00267652 0.00463587i
\(486\) −13.2600 + 1.61005i −0.601485 + 0.0730335i
\(487\) 2.59942 + 1.23344i 0.117791 + 0.0558925i 0.486676 0.873582i \(-0.338209\pi\)
−0.368885 + 0.929475i \(0.620260\pi\)
\(488\) 3.71098 2.14254i 0.167988 0.0969881i
\(489\) 6.88679 + 4.75361i 0.311432 + 0.214966i
\(490\) 13.7276 5.84878i 0.620150 0.264221i
\(491\) −36.3663 5.91010i −1.64119 0.266719i −0.731449 0.681896i \(-0.761155\pi\)
−0.909741 + 0.415177i \(0.863720\pi\)
\(492\) 8.77523 11.6777i 0.395618 0.526472i
\(493\) 20.5678 + 54.2329i 0.926329 + 2.44253i
\(494\) 4.42063 14.7050i 0.198894 0.661609i
\(495\) −8.00399 + 21.1048i −0.359753 + 0.948590i
\(496\) 0.675933 + 1.06890i 0.0303503 + 0.0479951i
\(497\) 2.47514 + 1.05456i 0.111025 + 0.0473034i
\(498\) 9.86329 + 6.23716i 0.441984 + 0.279494i
\(499\) 21.9894 + 2.66999i 0.984380 + 0.119525i 0.596868 0.802339i \(-0.296412\pi\)
0.387512 + 0.921865i \(0.373335\pi\)
\(500\) −14.4239 33.8542i −0.645058 1.51401i
\(501\) −6.14656 + 18.4112i −0.274608 + 0.822552i
\(502\) 7.59272 + 2.87954i 0.338879 + 0.128520i
\(503\) −15.8695 1.28112i −0.707585 0.0571222i −0.278565 0.960417i \(-0.589859\pi\)
−0.429020 + 0.903295i \(0.641141\pi\)
\(504\) 1.70645 5.89137i 0.0760115 0.262422i
\(505\) −14.8978 0.600359i −0.662942 0.0267156i
\(506\) 2.46782 0.109708
\(507\) −31.7694 8.51390i −1.41093 0.378116i
\(508\) 24.9498 1.10697
\(509\) 34.8656 + 1.40504i 1.54539 + 0.0622772i 0.798225 0.602359i \(-0.205772\pi\)
0.747167 + 0.664636i \(0.231413\pi\)
\(510\) 11.6408 40.1886i 0.515462 1.77958i
\(511\) −7.20178 0.581388i −0.318588 0.0257191i
\(512\) 18.3738 + 6.96828i 0.812016 + 0.307957i
\(513\) 2.29116 6.86286i 0.101157 0.303003i
\(514\) 6.63755 + 15.5789i 0.292770 + 0.687156i
\(515\) 34.3295 + 4.16836i 1.51274 + 0.183680i
\(516\) 3.84672 + 2.43252i 0.169342 + 0.107086i
\(517\) 3.03737 + 1.29410i 0.133583 + 0.0569146i
\(518\) 1.14517 + 1.81095i 0.0503161 + 0.0795685i
\(519\) −10.5507 + 27.8199i −0.463124 + 1.22116i
\(520\) 29.5475 9.53419i 1.29574 0.418102i
\(521\) −4.33967 11.4428i −0.190125 0.501317i 0.805729 0.592284i \(-0.201774\pi\)
−0.995854 + 0.0909666i \(0.971004\pi\)
\(522\) 10.1165 13.4626i 0.442787 0.589243i
\(523\) −18.2775 2.97038i −0.799219 0.129886i −0.252932 0.967484i \(-0.581395\pi\)
−0.546287 + 0.837598i \(0.683959\pi\)
\(524\) −14.8431 + 6.32404i −0.648422 + 0.276267i
\(525\) −18.3933 12.6960i −0.802750 0.554098i
\(526\) 4.90734 2.83326i 0.213970 0.123536i
\(527\) 4.02391 + 1.90937i 0.175284 + 0.0831734i
\(528\) −8.36860 + 1.01613i −0.364197 + 0.0442215i
\(529\) 8.46538 + 14.6625i 0.368060 + 0.637498i
\(530\) −1.44091 + 2.49573i −0.0625893 + 0.108408i
\(531\) −15.1901 + 35.6524i −0.659194 + 1.54718i
\(532\) −7.26804 6.43892i −0.315110 0.279163i
\(533\) 11.0343 6.22307i 0.477947 0.269551i
\(534\) −19.0966 + 16.9181i −0.826392 + 0.732120i
\(535\) 12.7761 + 38.2692i 0.552360 + 1.65452i
\(536\) −0.270154 + 6.70381i −0.0116689 + 0.289560i
\(537\) 8.58834 10.5188i 0.370614 0.453920i
\(538\) −6.45537 7.28661i −0.278311 0.314148i
\(539\) −10.3739 2.11785i −0.446837 0.0912224i
\(540\) 6.33792 1.83580i 0.272741 0.0790003i
\(541\) −35.0371 + 13.2878i −1.50636 + 0.571288i −0.963305 0.268407i \(-0.913503\pi\)
−0.543057 + 0.839696i \(0.682733\pi\)
\(542\) 0.443615 + 11.0082i 0.0190549 + 0.472842i
\(543\) −52.7713 39.6551i −2.26464 1.70176i
\(544\) 37.9710 7.75184i 1.62799 0.332357i
\(545\) 11.2978 5.92956i 0.483946 0.253994i
\(546\) 2.89093 3.46872i 0.123721 0.148448i
\(547\) −9.21786 4.83791i −0.394127 0.206854i 0.256004 0.966676i \(-0.417594\pi\)
−0.650131 + 0.759822i \(0.725286\pi\)
\(548\) −4.08408 1.18297i −0.174463 0.0505339i
\(549\) 6.67561 0.538911i 0.284908 0.0230002i
\(550\) 2.13576 10.4617i 0.0910693 0.446087i
\(551\) −27.4683 52.3365i −1.17019 2.22961i
\(552\) −8.14808 10.8431i −0.346805 0.461514i
\(553\) −2.39030 + 3.77996i −0.101646 + 0.160740i
\(554\) 11.6008 8.00747i 0.492872 0.340205i
\(555\) −18.5782 + 39.1526i −0.788599 + 1.66194i
\(556\) 7.79487 8.11532i 0.330576 0.344166i
\(557\) 10.0923 + 9.69375i 0.427623 + 0.410737i 0.875393 0.483411i \(-0.160602\pi\)
−0.447771 + 0.894148i \(0.647782\pi\)
\(558\) −0.155870 1.28370i −0.00659848 0.0543434i
\(559\) 2.20932 + 3.27086i 0.0934445 + 0.138342i
\(560\) 0.785356 6.46798i 0.0331873 0.273322i
\(561\) −22.9970 + 18.7765i −0.970935 + 0.792744i
\(562\) 1.73497 + 8.49843i 0.0731851 + 0.358485i
\(563\) 10.4076 + 35.9312i 0.438628 + 1.51432i 0.810334 + 0.585969i \(0.199286\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(564\) −1.95865 7.94657i −0.0824742 0.334611i
\(565\) 2.30365 28.5358i 0.0969152 1.20051i
\(566\) 1.72824 + 10.6343i 0.0726434 + 0.446993i
\(567\) −4.19638 + 4.73674i −0.176232 + 0.198924i
\(568\) 5.64757 4.24387i 0.236967 0.178069i
\(569\) 9.15370 + 11.2112i 0.383743 + 0.470000i 0.929969 0.367638i \(-0.119833\pi\)
−0.546226 + 0.837638i \(0.683936\pi\)
\(570\) −6.83952 + 42.0853i −0.286476 + 1.76276i
\(571\) 2.71476 + 0.669129i 0.113609 + 0.0280022i 0.295710 0.955278i \(-0.404444\pi\)
−0.182101 + 0.983280i \(0.558290\pi\)
\(572\) −9.51587 2.86067i −0.397879 0.119611i
\(573\) 42.5338 10.4836i 1.77688 0.437961i
\(574\) 0.139946 + 1.73355i 0.00584125 + 0.0723569i
\(575\) −24.9082 + 8.31558i −1.03874 + 0.346784i
\(576\) 1.56728 + 1.63171i 0.0653034 + 0.0679880i
\(577\) 17.4959i 0.728363i −0.931328 0.364181i \(-0.881349\pi\)
0.931328 0.364181i \(-0.118651\pi\)
\(578\) 13.7656 13.2220i 0.572572 0.549962i
\(579\) 33.6373 + 27.4640i 1.39792 + 1.14137i
\(580\) 25.0508 47.7303i 1.04018 1.98189i
\(581\) 6.31708 1.02662i 0.262076 0.0425916i
\(582\) −0.0380499 + 0.0240613i −0.00157722 + 0.000997373i
\(583\) 1.84742 0.876612i 0.0765123 0.0363056i
\(584\) −10.7771 + 15.6133i −0.445958 + 0.646082i
\(585\) 48.1104 + 6.33480i 1.98912 + 0.261912i
\(586\) 2.84547 + 4.12237i 0.117545 + 0.170293i
\(587\) 23.6521 + 13.6555i 0.976225 + 0.563624i 0.901128 0.433553i \(-0.142740\pi\)
0.0750967 + 0.997176i \(0.476073\pi\)
\(588\) 11.2518 + 23.7127i 0.464018 + 0.977897i
\(589\) −4.30518 1.43728i −0.177392 0.0592221i
\(590\) 6.44516 26.1491i 0.265343 1.07654i
\(591\) 1.70132 0.0685608i 0.0699829 0.00282021i
\(592\) −8.59284 + 0.346280i −0.353164 + 0.0142320i
\(593\) −2.38260 + 9.66657i −0.0978415 + 0.396959i −0.999360 0.0357828i \(-0.988608\pi\)
0.901518 + 0.432741i \(0.142454\pi\)
\(594\) 0.964175 + 0.321889i 0.0395606 + 0.0132073i
\(595\) −9.83678 20.7306i −0.403269 0.849871i
\(596\) −7.28574 4.20642i −0.298435 0.172302i
\(597\) −0.848956 1.22993i −0.0347455 0.0503375i
\(598\) −1.21765 5.16385i −0.0497934 0.211165i
\(599\) 0.542710 0.786250i 0.0221745 0.0321253i −0.811740 0.584019i \(-0.801479\pi\)
0.833914 + 0.551894i \(0.186095\pi\)
\(600\) −53.0182 + 25.1575i −2.16446 + 1.02705i
\(601\) 14.8450 9.38738i 0.605538 0.382919i −0.196227 0.980559i \(-0.562869\pi\)
0.801765 + 0.597639i \(0.203895\pi\)
\(602\) −0.534874 + 0.0869255i −0.0217998 + 0.00354282i
\(603\) −4.87317 + 9.28505i −0.198451 + 0.378117i
\(604\) −24.5475 20.0424i −0.998824 0.815515i
\(605\) 23.3658 22.4432i 0.949956 0.912445i
\(606\) 5.69378i 0.231294i
\(607\) 11.0908 + 11.5468i 0.450162 + 0.468669i 0.907152 0.420803i \(-0.138252\pi\)
−0.456989 + 0.889472i \(0.651072\pi\)
\(608\) −37.4599 + 12.5059i −1.51920 + 0.507183i
\(609\) −1.39863 17.3252i −0.0566755 0.702052i
\(610\) −4.51905 + 1.11384i −0.182971 + 0.0450983i
\(611\) 1.20920 6.99413i 0.0489191 0.282952i
\(612\) 37.9678 + 9.35821i 1.53476 + 0.378283i
\(613\) 1.75125 10.7759i 0.0707322 0.435233i −0.927396 0.374080i \(-0.877958\pi\)
0.998128 0.0611522i \(-0.0194775\pi\)
\(614\) 7.84733 + 9.61124i 0.316693 + 0.387878i
\(615\) −28.1215 + 21.1319i −1.13397 + 0.852122i
\(616\) 2.00562 2.26388i 0.0808089 0.0912144i
\(617\) 6.32854 + 38.9411i 0.254778 + 1.56771i 0.727256 + 0.686367i \(0.240796\pi\)
−0.472478 + 0.881342i \(0.656640\pi\)
\(618\) 1.06265 13.1632i 0.0427459 0.529503i
\(619\) 4.55502 + 18.4804i 0.183082 + 0.742791i 0.988644 + 0.150280i \(0.0480174\pi\)
−0.805562 + 0.592512i \(0.798136\pi\)
\(620\) −1.15163 3.97587i −0.0462504 0.159675i
\(621\) −0.500044 2.44938i −0.0200661 0.0982901i
\(622\) 4.08934 3.33884i 0.163967 0.133875i
\(623\) −1.68651 + 13.8896i −0.0675684 + 0.556476i
\(624\) 6.25538 + 17.0097i 0.250416 + 0.680933i
\(625\) 4.25749 + 35.0636i 0.170300 + 1.40254i
\(626\) 10.2973 + 9.89073i 0.411564 + 0.395313i
\(627\) 20.9578 21.8194i 0.836973 0.871381i
\(628\) 7.39962 15.5944i 0.295277 0.622283i
\(629\) −24.9253 + 17.2047i −0.993837 + 0.685996i
\(630\) −3.56062 + 5.63067i −0.141858 + 0.224331i
\(631\) −14.3061 19.0380i −0.569517 0.757889i 0.419166 0.907910i \(-0.362322\pi\)
−0.988683 + 0.150020i \(0.952066\pi\)
\(632\) 5.45732 + 10.3981i 0.217081 + 0.413613i
\(633\) 9.59336 46.9914i 0.381302 1.86774i
\(634\) −9.59125 + 0.774286i −0.380917 + 0.0307508i
\(635\) −57.7102 16.7160i −2.29016 0.663353i
\(636\) −4.48844 2.35572i −0.177978 0.0934102i
\(637\) 0.687058 + 22.7521i 0.0272222 + 0.901472i
\(638\) 7.35283 3.85906i 0.291101 0.152782i
\(639\) 10.8181 2.20853i 0.427957 0.0873681i
\(640\) −36.3012 27.2786i −1.43493 1.07828i
\(641\) −1.59713 39.6324i −0.0630829 1.56539i −0.652646 0.757663i \(-0.726341\pi\)
0.589563 0.807722i \(-0.299300\pi\)
\(642\) 14.4059 5.46345i 0.568557 0.215625i
\(643\) 28.3238 8.20409i 1.11698 0.323538i 0.332138 0.943231i \(-0.392230\pi\)
0.784844 + 0.619693i \(0.212743\pi\)
\(644\) −3.28718 0.671083i −0.129533 0.0264444i
\(645\) −7.26793 8.20380i −0.286174 0.323024i
\(646\) −18.8455 + 23.0815i −0.741465 + 0.908129i
\(647\) 0.532911 13.2241i 0.0209509 0.519891i −0.954308 0.298825i \(-0.903405\pi\)
0.975259 0.221066i \(-0.0709537\pi\)
\(648\) 5.26184 + 15.7611i 0.206705 + 0.619156i
\(649\) −14.3039 + 12.6722i −0.561477 + 0.497425i
\(650\) −22.9445 + 0.692869i −0.899959 + 0.0271766i
\(651\) −0.999048 0.885079i −0.0391558 0.0346890i
\(652\) 2.13035 5.00011i 0.0834309 0.195820i
\(653\) −7.60819 + 13.1778i −0.297731 + 0.515686i −0.975617 0.219482i \(-0.929563\pi\)
0.677885 + 0.735168i \(0.262897\pi\)
\(654\) −2.43627 4.21975i −0.0952658 0.165005i
\(655\) 38.5699 4.68323i 1.50705 0.182989i
\(656\) −6.30650 2.99247i −0.246227 0.116836i
\(657\) −25.6789 + 14.8257i −1.00183 + 0.578407i
\(658\) 0.801963 + 0.553555i 0.0312638 + 0.0215798i
\(659\) −40.0454 + 17.0617i −1.55995 + 0.664631i −0.987830 0.155540i \(-0.950288\pi\)
−0.572118 + 0.820172i \(0.693878\pi\)
\(660\) 27.2341 + 4.42598i 1.06009 + 0.172281i
\(661\) 19.0799 25.3908i 0.742123 0.987586i −0.257649 0.966239i \(-0.582948\pi\)
0.999772 0.0213477i \(-0.00679570\pi\)
\(662\) 6.00987 + 15.8467i 0.233580 + 0.615901i
\(663\) 50.6362 + 38.8561i 1.96655 + 1.50905i
\(664\) 5.95901 15.7126i 0.231254 0.609767i
\(665\) 12.4974 + 19.7631i 0.484629 + 0.766380i
\(666\) 8.08958 + 3.44665i 0.313465 + 0.133555i
\(667\) −17.2609 10.9151i −0.668344 0.422635i
\(668\) 12.5149 + 1.51958i 0.484214 + 0.0587943i
\(669\) −10.2320 24.0154i −0.395591 0.928487i
\(670\) 2.30767 6.91231i 0.0891530 0.267046i
\(671\) 3.08792 + 1.17109i 0.119208 + 0.0452096i
\(672\) −11.5758 0.934499i −0.446548 0.0360491i
\(673\) −10.2312 + 35.3221i −0.394383 + 1.36157i 0.480399 + 0.877050i \(0.340492\pi\)
−0.874782 + 0.484517i \(0.838995\pi\)
\(674\) −3.30275 0.133096i −0.127217 0.00512668i
\(675\) −10.8162 −0.416317
\(676\) −1.29064 + 21.3232i −0.0496399 + 0.820122i
\(677\) 28.2190 1.08454 0.542272 0.840203i \(-0.317564\pi\)
0.542272 + 0.840203i \(0.317564\pi\)
\(678\) −10.9239 0.440216i −0.419528 0.0169064i
\(679\) −0.00686899 + 0.0237145i −0.000263608 + 0.000910079i
\(680\) −60.0550 4.84814i −2.30300 0.185918i
\(681\) −49.5392 18.7878i −1.89835 0.719948i
\(682\) 0.201926 0.604841i 0.00773213 0.0231606i
\(683\) 5.08466 + 11.9341i 0.194559 + 0.456647i 0.988476 0.151380i \(-0.0483716\pi\)
−0.793917 + 0.608027i \(0.791961\pi\)
\(684\) −39.5583 4.80324i −1.51255 0.183657i
\(685\) 8.65414 + 5.47255i 0.330658 + 0.209095i
\(686\) −6.06269 2.58307i −0.231475 0.0986221i
\(687\) 7.76684 + 12.2823i 0.296323 + 0.468598i
\(688\) 0.771248 2.03361i 0.0294036 0.0775308i
\(689\) −2.74582 3.43314i −0.104607 0.130792i
\(690\) 5.22404 + 13.7747i 0.198876 + 0.524393i
\(691\) 4.18825 5.57354i 0.159328 0.212028i −0.712718 0.701450i \(-0.752536\pi\)
0.872047 + 0.489423i \(0.162793\pi\)
\(692\) 19.0744 + 3.09989i 0.725100 + 0.117840i
\(693\) 4.34888 1.85288i 0.165200 0.0703853i
\(694\) −4.19553 2.89597i −0.159260 0.109929i
\(695\) −23.4671 + 13.5488i −0.890159 + 0.513934i
\(696\) −41.2330 19.5653i −1.56293 0.741621i
\(697\) −24.4043 + 2.96321i −0.924378 + 0.112240i
\(698\) 2.28165 + 3.95193i 0.0863616 + 0.149583i
\(699\) −17.4310 + 30.1913i −0.659300 + 1.14194i
\(700\) −5.68975 + 13.3543i −0.215052 + 0.504747i
\(701\) −4.88998 4.33214i −0.184692 0.163623i 0.565711 0.824604i \(-0.308602\pi\)
−0.750403 + 0.660981i \(0.770140\pi\)
\(702\) 0.197809 2.17633i 0.00746583 0.0821403i
\(703\) 23.1015 20.4662i 0.871291 0.771896i
\(704\) 0.353294 + 1.05824i 0.0133153 + 0.0398841i
\(705\) −0.793607 + 19.6932i −0.0298890 + 0.741687i
\(706\) 1.89731 2.32379i 0.0714063 0.0874569i
\(707\) 2.07064 + 2.33727i 0.0778744 + 0.0879020i
\(708\) 46.4148 + 9.47566i 1.74438 + 0.356117i
\(709\) 39.0057 11.2981i 1.46489 0.424310i 0.552458 0.833541i \(-0.313690\pi\)
0.912431 + 0.409231i \(0.134203\pi\)
\(710\) −7.17445 + 2.72091i −0.269252 + 0.102114i
\(711\) 0.739038 + 18.3390i 0.0277161 + 0.687767i
\(712\) 29.3703 + 22.0703i 1.10070 + 0.827121i
\(713\) −1.53653 + 0.313685i −0.0575436 + 0.0117476i
\(714\) −7.75893 + 4.07220i −0.290371 + 0.152398i
\(715\) 20.0942 + 12.9924i 0.751479 + 0.485888i
\(716\) −7.80961 4.09880i −0.291859 0.153179i
\(717\) −29.3273 8.49477i −1.09525 0.317243i
\(718\) −11.2313 + 0.906681i −0.419147 + 0.0338370i
\(719\) −1.01967 + 4.99465i −0.0380271 + 0.186269i −0.994368 0.105985i \(-0.966200\pi\)
0.956341 + 0.292255i \(0.0944054\pi\)
\(720\) −12.4262 23.6761i −0.463096 0.882356i
\(721\) −4.35082 5.78989i −0.162033 0.215627i
\(722\) 10.1638 16.0728i 0.378258 0.598167i
\(723\) −1.85523 + 1.28057i −0.0689967 + 0.0476250i
\(724\) −18.3795 + 38.7339i −0.683067 + 1.43953i
\(725\) −61.2100 + 63.7264i −2.27328 + 2.36674i
\(726\) −8.92296 8.57062i −0.331162 0.318086i
\(727\) −3.28409 27.0469i −0.121800 1.00312i −0.917586 0.397537i \(-0.869865\pi\)
0.795786 0.605578i \(-0.207058\pi\)
\(728\) −5.72670 3.07969i −0.212246 0.114141i
\(729\) −4.05875 + 33.4268i −0.150324 + 1.23803i
\(730\) 15.9617 13.0323i 0.590768 0.482347i
\(731\) −1.53213 7.50486i −0.0566678 0.277577i
\(732\) −2.27771 7.86357i −0.0841866 0.290646i
\(733\) 9.92446 + 40.2651i 0.366568 + 1.48723i 0.807598 + 0.589733i \(0.200767\pi\)
−0.441030 + 0.897492i \(0.645387\pi\)
\(734\) 0.426822 5.28713i 0.0157543 0.195152i
\(735\) −10.1390 62.3875i −0.373981 2.30120i
\(736\) −9.04851 + 10.2137i −0.333533 + 0.376481i
\(737\) −4.13381 + 3.10635i −0.152271 + 0.114424i
\(738\) 4.51404 + 5.52869i 0.166164 + 0.203514i
\(739\) 3.54166 21.7927i 0.130282 0.801657i −0.836859 0.547418i \(-0.815611\pi\)
0.967141 0.254239i \(-0.0818251\pi\)
\(740\) 27.3291 + 6.73602i 1.00464 + 0.247621i
\(741\) −55.9971 33.0876i −2.05711 1.21550i
\(742\) 0.586001 0.144436i 0.0215128 0.00530242i
\(743\) −3.09791 38.3745i −0.113651 1.40782i −0.762540 0.646941i \(-0.776048\pi\)
0.648889 0.760883i \(-0.275234\pi\)
\(744\) −3.32426 + 1.10980i −0.121873 + 0.0406872i
\(745\) 14.0341 + 14.6110i 0.514169 + 0.535307i
\(746\) 3.48849i 0.127723i
\(747\) 18.9422 18.1942i 0.693058 0.665691i
\(748\) 14.9365 + 12.1952i 0.546131 + 0.445902i
\(749\) 3.92669 7.48168i 0.143478 0.273375i
\(750\) 33.4028 5.42848i 1.21970 0.198220i
\(751\) 42.3783 26.7984i 1.54641 0.977889i 0.557363 0.830269i \(-0.311813\pi\)
0.989044 0.147620i \(-0.0471613\pi\)
\(752\) −3.53350 + 1.67667i −0.128853 + 0.0611417i
\(753\) 19.5397 28.3081i 0.712066 1.03161i
\(754\) −11.7029 13.4815i −0.426196 0.490967i
\(755\) 43.3517 + 62.8058i 1.57773 + 2.28574i
\(756\) −1.19677 0.690953i −0.0435259 0.0251297i
\(757\) 15.5053 + 32.6768i 0.563551 + 1.18766i 0.962650 + 0.270751i \(0.0872719\pi\)
−0.399099 + 0.916908i \(0.630677\pi\)
\(758\) −16.2384 5.42117i −0.589804 0.196906i
\(759\) 2.50165 10.1496i 0.0908042 0.368407i
\(760\) 61.3480 2.47224i 2.22533 0.0896776i
\(761\) −14.2485 + 0.574196i −0.516509 + 0.0208146i −0.297152 0.954830i \(-0.596037\pi\)
−0.219357 + 0.975645i \(0.570396\pi\)
\(762\) −5.49093 + 22.2776i −0.198915 + 0.807032i
\(763\) −2.53466 0.846193i −0.0917608 0.0306343i
\(764\) −12.1973 25.7052i −0.441282 0.929983i
\(765\) −81.5518 47.0840i −2.94851 1.70232i
\(766\) 5.52891 + 8.01001i 0.199768 + 0.289413i