Properties

Label 169.2.k.a.17.9
Level $169$
Weight $2$
Character 169.17
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 169.17
Dual form 169.2.k.a.10.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.164865 - 0.0336574i) q^{2} +(-1.12499 - 0.182828i) q^{3} +(-1.81391 + 0.772835i) q^{4} +(-0.123522 - 0.501150i) q^{5} +(-0.191625 + 0.00772221i) q^{6} +(-2.88976 - 1.37121i) q^{7} +(-0.549998 + 0.379636i) q^{8} +(-1.61344 - 0.538644i) q^{9} +O(q^{10})\) \(q+(0.164865 - 0.0336574i) q^{2} +(-1.12499 - 0.182828i) q^{3} +(-1.81391 + 0.772835i) q^{4} +(-0.123522 - 0.501150i) q^{5} +(-0.191625 + 0.00772221i) q^{6} +(-2.88976 - 1.37121i) q^{7} +(-0.549998 + 0.379636i) q^{8} +(-1.61344 - 0.538644i) q^{9} +(-0.0372319 - 0.0784646i) q^{10} +(0.240066 + 0.719086i) q^{11} +(2.18193 - 0.537796i) q^{12} +(-3.58772 + 0.358137i) q^{13} +(-0.522571 - 0.128802i) q^{14} +(0.0473368 + 0.586372i) q^{15} +(2.65377 - 2.76287i) q^{16} +(0.268200 - 0.565219i) q^{17} +(-0.284128 - 0.0344994i) q^{18} +(-0.570671 + 0.329477i) q^{19} +(0.611365 + 0.813579i) q^{20} +(3.00025 + 2.07092i) q^{21} +(0.0637810 + 0.110472i) q^{22} +(-3.66236 + 6.34340i) q^{23} +(0.688150 - 0.326531i) q^{24} +(4.19139 - 2.19981i) q^{25} +(-0.579435 + 0.179797i) q^{26} +(4.74421 + 2.48995i) q^{27} +(6.30149 + 0.253941i) q^{28} +(-1.52540 - 7.47192i) q^{29} +(0.0275399 + 0.0950788i) q^{30} +(-0.765658 + 1.45884i) q^{31} +(1.05889 - 1.67450i) q^{32} +(-0.138602 - 0.852854i) q^{33} +(0.0251929 - 0.102212i) q^{34} +(-0.330231 + 1.61758i) q^{35} +(3.34291 - 0.269868i) q^{36} +(5.47277 + 8.65450i) q^{37} +(-0.0829942 + 0.0735264i) q^{38} +(4.10162 + 0.253038i) q^{39} +(0.258192 + 0.228738i) q^{40} +(1.31693 - 8.10338i) q^{41} +(0.564338 + 0.240442i) q^{42} +(-8.14224 - 5.14884i) q^{43} +(-0.991194 - 1.11883i) q^{44} +(-0.0706461 + 0.875108i) q^{45} +(-0.390293 + 1.16907i) q^{46} +(-10.3516 + 1.25691i) q^{47} +(-3.49060 + 2.62301i) q^{48} +(2.04338 + 2.50269i) q^{49} +(0.616972 - 0.503742i) q^{50} +(-0.405060 + 0.586831i) q^{51} +(6.23103 - 3.42235i) q^{52} +(-0.232039 - 0.336166i) q^{53} +(0.865958 + 0.250828i) q^{54} +(0.330716 - 0.209132i) q^{55} +(2.10992 - 0.342896i) q^{56} +(0.702236 - 0.266323i) q^{57} +(-0.502971 - 1.18052i) q^{58} +(-4.85877 + 4.66692i) q^{59} +(-0.539033 - 1.02704i) q^{60} +(1.41105 + 0.113912i) q^{61} +(-0.0771293 + 0.266281i) q^{62} +(3.92385 + 3.76891i) q^{63} +(-2.59871 + 6.85224i) q^{64} +(0.622644 + 1.75375i) q^{65} +(-0.0515555 - 0.135941i) q^{66} +(1.84174 - 4.32272i) q^{67} +(-0.0496693 + 1.23253i) q^{68} +(5.27987 - 6.46667i) q^{69} +0.277796i q^{70} +(-6.31464 - 5.15575i) q^{71} +(1.09188 - 0.316266i) q^{72} +(-1.09239 + 1.23306i) q^{73} +(1.19356 + 1.24262i) q^{74} +(-5.11745 + 1.70846i) q^{75} +(0.780515 - 1.03868i) q^{76} +(0.292283 - 2.40717i) q^{77} +(0.684730 - 0.0963329i) q^{78} +(0.740466 + 6.09829i) q^{79} +(-1.71241 - 0.988662i) q^{80} +(-0.802451 - 0.603003i) q^{81} +(-0.0556236 - 1.38029i) q^{82} +(-11.0597 - 4.19440i) q^{83} +(-7.04267 - 1.43777i) q^{84} +(-0.316388 - 0.0645912i) q^{85} +(-1.51567 - 0.574816i) q^{86} +(0.349982 + 8.68471i) q^{87} +(-0.405027 - 0.304358i) q^{88} +(-8.98305 - 5.18637i) q^{89} +(0.0178068 + 0.146652i) q^{90} +(10.8587 + 3.88458i) q^{91} +(1.74080 - 14.3368i) q^{92} +(1.12807 - 1.50119i) q^{93} +(-1.66430 + 0.555626i) q^{94} +(0.235608 + 0.245294i) q^{95} +(-1.49738 + 1.69019i) q^{96} +(-4.01046 + 1.16164i) q^{97} +(0.421116 + 0.343830i) q^{98} -1.28951i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{73}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.164865 0.0336574i 0.116577 0.0237994i −0.141383 0.989955i \(-0.545155\pi\)
0.257960 + 0.966156i \(0.416950\pi\)
\(3\) −1.12499 0.182828i −0.649512 0.105556i −0.173276 0.984873i \(-0.555435\pi\)
−0.476236 + 0.879317i \(0.657999\pi\)
\(4\) −1.81391 + 0.772835i −0.906956 + 0.386418i
\(5\) −0.123522 0.501150i −0.0552409 0.224121i 0.936833 0.349777i \(-0.113743\pi\)
−0.992074 + 0.125656i \(0.959896\pi\)
\(6\) −0.191625 + 0.00772221i −0.0782304 + 0.00315258i
\(7\) −2.88976 1.37121i −1.09223 0.518268i −0.204606 0.978844i \(-0.565591\pi\)
−0.887620 + 0.460576i \(0.847643\pi\)
\(8\) −0.549998 + 0.379636i −0.194454 + 0.134222i
\(9\) −1.61344 0.538644i −0.537812 0.179548i
\(10\) −0.0372319 0.0784646i −0.0117738 0.0248127i
\(11\) 0.240066 + 0.719086i 0.0723827 + 0.216813i 0.978513 0.206187i \(-0.0661055\pi\)
−0.906130 + 0.422999i \(0.860977\pi\)
\(12\) 2.18193 0.537796i 0.629868 0.155248i
\(13\) −3.58772 + 0.358137i −0.995055 + 0.0993293i
\(14\) −0.522571 0.128802i −0.139663 0.0344238i
\(15\) 0.0473368 + 0.586372i 0.0122223 + 0.151400i
\(16\) 2.65377 2.76287i 0.663443 0.690718i
\(17\) 0.268200 0.565219i 0.0650480 0.137086i −0.868323 0.496000i \(-0.834802\pi\)
0.933371 + 0.358914i \(0.116853\pi\)
\(18\) −0.284128 0.0344994i −0.0669697 0.00813159i
\(19\) −0.570671 + 0.329477i −0.130921 + 0.0755872i −0.564030 0.825754i \(-0.690750\pi\)
0.433109 + 0.901341i \(0.357416\pi\)
\(20\) 0.611365 + 0.813579i 0.136705 + 0.181922i
\(21\) 3.00025 + 2.07092i 0.654708 + 0.451913i
\(22\) 0.0637810 + 0.110472i 0.0135982 + 0.0235527i
\(23\) −3.66236 + 6.34340i −0.763656 + 1.32269i 0.177299 + 0.984157i \(0.443264\pi\)
−0.940954 + 0.338533i \(0.890069\pi\)
\(24\) 0.688150 0.326531i 0.140468 0.0666529i
\(25\) 4.19139 2.19981i 0.838277 0.439962i
\(26\) −0.579435 + 0.179797i −0.113637 + 0.0352612i
\(27\) 4.74421 + 2.48995i 0.913023 + 0.479192i
\(28\) 6.30149 + 0.253941i 1.19087 + 0.0479904i
\(29\) −1.52540 7.47192i −0.283260 1.38750i −0.833512 0.552502i \(-0.813673\pi\)
0.550252 0.834999i \(-0.314532\pi\)
\(30\) 0.0275399 + 0.0950788i 0.00502808 + 0.0173589i
\(31\) −0.765658 + 1.45884i −0.137516 + 0.262015i −0.944469 0.328601i \(-0.893423\pi\)
0.806953 + 0.590616i \(0.201115\pi\)
\(32\) 1.05889 1.67450i 0.187187 0.296012i
\(33\) −0.138602 0.852854i −0.0241276 0.148463i
\(34\) 0.0251929 0.102212i 0.00432055 0.0175292i
\(35\) −0.330231 + 1.61758i −0.0558192 + 0.273421i
\(36\) 3.34291 0.269868i 0.557152 0.0449780i
\(37\) 5.47277 + 8.65450i 0.899718 + 1.42279i 0.906218 + 0.422811i \(0.138957\pi\)
−0.00649954 + 0.999979i \(0.502069\pi\)
\(38\) −0.0829942 + 0.0735264i −0.0134634 + 0.0119276i
\(39\) 4.10162 + 0.253038i 0.656785 + 0.0405184i
\(40\) 0.258192 + 0.228738i 0.0408237 + 0.0361666i
\(41\) 1.31693 8.10338i 0.205669 1.26554i −0.654710 0.755881i \(-0.727209\pi\)
0.860379 0.509655i \(-0.170227\pi\)
\(42\) 0.564338 + 0.240442i 0.0870792 + 0.0371010i
\(43\) −8.14224 5.14884i −1.24168 0.785191i −0.258179 0.966097i \(-0.583123\pi\)
−0.983500 + 0.180906i \(0.942097\pi\)
\(44\) −0.991194 1.11883i −0.149428 0.168669i
\(45\) −0.0706461 + 0.875108i −0.0105313 + 0.130453i
\(46\) −0.390293 + 1.16907i −0.0575455 + 0.172370i
\(47\) −10.3516 + 1.25691i −1.50993 + 0.183339i −0.833232 0.552923i \(-0.813512\pi\)
−0.676697 + 0.736262i \(0.736589\pi\)
\(48\) −3.49060 + 2.62301i −0.503824 + 0.378599i
\(49\) 2.04338 + 2.50269i 0.291912 + 0.357527i
\(50\) 0.616972 0.503742i 0.0872531 0.0712399i
\(51\) −0.405060 + 0.586831i −0.0567197 + 0.0821727i
\(52\) 6.23103 3.42235i 0.864088 0.474594i
\(53\) −0.232039 0.336166i −0.0318730 0.0461759i 0.806723 0.590929i \(-0.201239\pi\)
−0.838596 + 0.544753i \(0.816623\pi\)
\(54\) 0.865958 + 0.250828i 0.117842 + 0.0341334i
\(55\) 0.330716 0.209132i 0.0445938 0.0281994i
\(56\) 2.10992 0.342896i 0.281950 0.0458214i
\(57\) 0.702236 0.266323i 0.0930134 0.0352753i
\(58\) −0.502971 1.18052i −0.0660433 0.155009i
\(59\) −4.85877 + 4.66692i −0.632558 + 0.607581i −0.938837 0.344361i \(-0.888096\pi\)
0.306279 + 0.951942i \(0.400916\pi\)
\(60\) −0.539033 1.02704i −0.0695889 0.132591i
\(61\) 1.41105 + 0.113912i 0.180667 + 0.0145849i 0.170469 0.985363i \(-0.445472\pi\)
0.0101980 + 0.999948i \(0.496754\pi\)
\(62\) −0.0771293 + 0.266281i −0.00979543 + 0.0338177i
\(63\) 3.92385 + 3.76891i 0.494359 + 0.474838i
\(64\) −2.59871 + 6.85224i −0.324839 + 0.856531i
\(65\) 0.622644 + 1.75375i 0.0772295 + 0.217526i
\(66\) −0.0515555 0.135941i −0.00634604 0.0167331i
\(67\) 1.84174 4.32272i 0.225004 0.528104i −0.768769 0.639527i \(-0.779130\pi\)
0.993773 + 0.111422i \(0.0355406\pi\)
\(68\) −0.0496693 + 1.23253i −0.00602329 + 0.149466i
\(69\) 5.27987 6.46667i 0.635622 0.778496i
\(70\) 0.277796i 0.0332030i
\(71\) −6.31464 5.15575i −0.749410 0.611874i 0.178820 0.983882i \(-0.442772\pi\)
−0.928230 + 0.372007i \(0.878670\pi\)
\(72\) 1.09188 0.316266i 0.128679 0.0372723i
\(73\) −1.09239 + 1.23306i −0.127855 + 0.144318i −0.808952 0.587875i \(-0.799965\pi\)
0.681097 + 0.732193i \(0.261503\pi\)
\(74\) 1.19356 + 1.24262i 0.138748 + 0.144452i
\(75\) −5.11745 + 1.70846i −0.590912 + 0.197275i
\(76\) 0.780515 1.03868i 0.0895312 0.119144i
\(77\) 0.292283 2.40717i 0.0333087 0.274322i
\(78\) 0.684730 0.0963329i 0.0775304 0.0109076i
\(79\) 0.740466 + 6.09829i 0.0833089 + 0.686111i 0.973204 + 0.229945i \(0.0738546\pi\)
−0.889895 + 0.456166i \(0.849222\pi\)
\(80\) −1.71241 0.988662i −0.191454 0.110536i
\(81\) −0.802451 0.603003i −0.0891612 0.0670003i
\(82\) −0.0556236 1.38029i −0.00614260 0.152427i
\(83\) −11.0597 4.19440i −1.21396 0.460395i −0.337252 0.941415i \(-0.609497\pi\)
−0.876710 + 0.481020i \(0.840267\pi\)
\(84\) −7.04267 1.43777i −0.768419 0.156874i
\(85\) −0.316388 0.0645912i −0.0343171 0.00700590i
\(86\) −1.51567 0.574816i −0.163438 0.0619840i
\(87\) 0.349982 + 8.68471i 0.0375220 + 0.931099i
\(88\) −0.405027 0.304358i −0.0431760 0.0324447i
\(89\) −8.98305 5.18637i −0.952202 0.549754i −0.0584374 0.998291i \(-0.518612\pi\)
−0.893764 + 0.448537i \(0.851945\pi\)
\(90\) 0.0178068 + 0.146652i 0.00187700 + 0.0154585i
\(91\) 10.8587 + 3.88458i 1.13830 + 0.407215i
\(92\) 1.74080 14.3368i 0.181491 1.49471i
\(93\) 1.12807 1.50119i 0.116976 0.155666i
\(94\) −1.66430 + 0.555626i −0.171660 + 0.0573084i
\(95\) 0.235608 + 0.245294i 0.0241729 + 0.0251666i
\(96\) −1.49738 + 1.69019i −0.152826 + 0.172505i
\(97\) −4.01046 + 1.16164i −0.407200 + 0.117947i −0.475495 0.879718i \(-0.657731\pi\)
0.0682953 + 0.997665i \(0.478244\pi\)
\(98\) 0.421116 + 0.343830i 0.0425391 + 0.0347321i
\(99\) 1.28951i 0.129601i
\(100\) −5.90271 + 7.22951i −0.590271 + 0.722951i
\(101\) −0.162933 + 4.04314i −0.0162124 + 0.402307i 0.970626 + 0.240595i \(0.0773426\pi\)
−0.986838 + 0.161712i \(0.948298\pi\)
\(102\) −0.0470290 + 0.110381i −0.00465656 + 0.0109293i
\(103\) 0.122022 + 0.321746i 0.0120232 + 0.0317026i 0.940893 0.338703i \(-0.109988\pi\)
−0.928870 + 0.370405i \(0.879219\pi\)
\(104\) 1.83728 1.55900i 0.180160 0.152873i
\(105\) 0.667245 1.75938i 0.0651165 0.171698i
\(106\) −0.0495695 0.0476121i −0.00481461 0.00462450i
\(107\) 1.33334 4.60321i 0.128898 0.445009i −0.869942 0.493154i \(-0.835844\pi\)
0.998840 + 0.0481451i \(0.0153310\pi\)
\(108\) −10.5299 0.850061i −1.01324 0.0817972i
\(109\) −2.63917 5.02852i −0.252787 0.481645i 0.725685 0.688028i \(-0.241523\pi\)
−0.978471 + 0.206383i \(0.933831\pi\)
\(110\) 0.0474846 0.0456096i 0.00452748 0.00434871i
\(111\) −4.57452 10.7368i −0.434194 1.01909i
\(112\) −11.4572 + 4.34516i −1.08261 + 0.410579i
\(113\) −1.71560 + 0.278812i −0.161390 + 0.0262285i −0.240569 0.970632i \(-0.577334\pi\)
0.0791792 + 0.996860i \(0.474770\pi\)
\(114\) 0.106810 0.0675427i 0.0100037 0.00632595i
\(115\) 3.63138 + 1.05184i 0.338628 + 0.0980848i
\(116\) 8.54151 + 12.3745i 0.793059 + 1.14894i
\(117\) 5.98147 + 1.35467i 0.552987 + 0.125240i
\(118\) −0.643965 + 0.932944i −0.0592818 + 0.0858844i
\(119\) −1.55007 + 1.26559i −0.142094 + 0.116016i
\(120\) −0.248643 0.304532i −0.0226979 0.0277999i
\(121\) 8.33442 6.26291i 0.757674 0.569355i
\(122\) 0.236467 0.0287123i 0.0214087 0.00259949i
\(123\) −2.96306 + 8.87544i −0.267170 + 0.800271i
\(124\) 0.261393 3.23793i 0.0234738 0.290775i
\(125\) −3.33151 3.76050i −0.297980 0.336349i
\(126\) 0.773756 + 0.489294i 0.0689317 + 0.0435898i
\(127\) 13.1646 + 5.60891i 1.16817 + 0.497711i 0.886920 0.461924i \(-0.152841\pi\)
0.281250 + 0.959635i \(0.409251\pi\)
\(128\) −0.833423 + 5.12826i −0.0736649 + 0.453278i
\(129\) 8.21857 + 7.28102i 0.723605 + 0.641058i
\(130\) 0.161679 + 0.268175i 0.0141802 + 0.0235205i
\(131\) 16.4329 14.5583i 1.43575 1.27196i 0.530094 0.847939i \(-0.322157\pi\)
0.905652 0.424021i \(-0.139382\pi\)
\(132\) 0.910528 + 1.43989i 0.0792513 + 0.125326i
\(133\) 2.10088 0.169601i 0.182170 0.0147063i
\(134\) 0.158146 0.774653i 0.0136618 0.0669198i
\(135\) 0.661824 2.68513i 0.0569607 0.231099i
\(136\) 0.0670683 + 0.412688i 0.00575106 + 0.0353877i
\(137\) −11.1517 + 17.6350i −0.952756 + 1.50666i −0.0931841 + 0.995649i \(0.529705\pi\)
−0.859572 + 0.511014i \(0.829270\pi\)
\(138\) 0.652814 1.24383i 0.0555712 0.105882i
\(139\) −0.632316 2.18301i −0.0536324 0.185160i 0.929230 0.369502i \(-0.120472\pi\)
−0.982862 + 0.184342i \(0.940985\pi\)
\(140\) −0.651112 3.18936i −0.0550290 0.269550i
\(141\) 11.8752 + 0.478553i 1.00007 + 0.0403015i
\(142\) −1.21459 0.637467i −0.101926 0.0534950i
\(143\) −1.11882 2.49390i −0.0935605 0.208551i
\(144\) −5.76990 + 3.02828i −0.480825 + 0.252356i
\(145\) −3.55613 + 1.68741i −0.295321 + 0.140131i
\(146\) −0.138596 + 0.240055i −0.0114703 + 0.0198671i
\(147\) −1.84122 3.18908i −0.151861 0.263031i
\(148\) −16.6156 11.4689i −1.36580 0.942741i
\(149\) 3.65425 + 4.86293i 0.299368 + 0.398386i 0.923913 0.382602i \(-0.124972\pi\)
−0.624545 + 0.780989i \(0.714716\pi\)
\(150\) −0.786185 + 0.453904i −0.0641918 + 0.0370611i
\(151\) 12.5317 + 1.52162i 1.01982 + 0.123828i 0.613328 0.789828i \(-0.289830\pi\)
0.406488 + 0.913656i \(0.366753\pi\)
\(152\) 0.188786 0.397859i 0.0153126 0.0322706i
\(153\) −0.737176 + 0.767481i −0.0595971 + 0.0620472i
\(154\) −0.0328318 0.406694i −0.00264566 0.0327724i
\(155\) 0.825673 + 0.203510i 0.0663197 + 0.0163463i
\(156\) −7.63554 + 2.71089i −0.611332 + 0.217045i
\(157\) 11.5306 2.84205i 0.920245 0.226820i 0.249385 0.968404i \(-0.419771\pi\)
0.670860 + 0.741584i \(0.265925\pi\)
\(158\) 0.327329 + 0.980471i 0.0260409 + 0.0780021i
\(159\) 0.199580 + 0.420606i 0.0158277 + 0.0333562i
\(160\) −0.969970 0.323824i −0.0766829 0.0256005i
\(161\) 19.2815 13.3090i 1.51959 1.04890i
\(162\) −0.152591 0.0724055i −0.0119887 0.00568872i
\(163\) 7.88152 0.317614i 0.617328 0.0248775i 0.270367 0.962757i \(-0.412855\pi\)
0.346960 + 0.937880i \(0.387214\pi\)
\(164\) 3.87379 + 15.7166i 0.302492 + 1.22726i
\(165\) −0.410287 + 0.174807i −0.0319408 + 0.0136087i
\(166\) −1.96453 0.319267i −0.152477 0.0247799i
\(167\) −21.0044 + 4.28809i −1.62537 + 0.331822i −0.924417 0.381383i \(-0.875448\pi\)
−0.700955 + 0.713205i \(0.747243\pi\)
\(168\) −2.43633 −0.187967
\(169\) 12.7435 2.56979i 0.980267 0.197676i
\(170\) −0.0543353 −0.00416733
\(171\) 1.09821 0.224202i 0.0839823 0.0171451i
\(172\) 18.7485 + 3.04693i 1.42956 + 0.232326i
\(173\) 13.8225 5.88920i 1.05090 0.447747i 0.203708 0.979032i \(-0.434701\pi\)
0.847194 + 0.531284i \(0.178290\pi\)
\(174\) 0.350004 + 1.42002i 0.0265338 + 0.107652i
\(175\) −15.1285 + 0.609658i −1.14361 + 0.0460858i
\(176\) 2.62382 + 1.24502i 0.197778 + 0.0938468i
\(177\) 6.31931 4.36190i 0.474988 0.327861i
\(178\) −1.65555 0.552703i −0.124089 0.0414269i
\(179\) 3.72197 + 7.84388i 0.278193 + 0.586279i 0.993668 0.112360i \(-0.0358409\pi\)
−0.715475 + 0.698639i \(0.753790\pi\)
\(180\) −0.548169 1.64197i −0.0408581 0.122385i
\(181\) 0.541691 0.133515i 0.0402635 0.00992407i −0.219132 0.975695i \(-0.570323\pi\)
0.259396 + 0.965771i \(0.416477\pi\)
\(182\) 1.92097 + 0.274954i 0.142392 + 0.0203810i
\(183\) −1.56659 0.386130i −0.115806 0.0285436i
\(184\) −0.393892 4.87922i −0.0290381 0.359701i
\(185\) 3.66119 3.81170i 0.269176 0.280242i
\(186\) 0.135453 0.285462i 0.00993192 0.0209311i
\(187\) 0.470827 + 0.0571687i 0.0344303 + 0.00418059i
\(188\) 17.8054 10.2800i 1.29859 0.749743i
\(189\) −10.2954 13.7007i −0.748879 0.996576i
\(190\) 0.0470994 + 0.0325104i 0.00341695 + 0.00235855i
\(191\) 6.41345 + 11.1084i 0.464061 + 0.803777i 0.999159 0.0410130i \(-0.0130585\pi\)
−0.535098 + 0.844790i \(0.679725\pi\)
\(192\) 4.17631 7.23358i 0.301399 0.522039i
\(193\) −1.44459 + 0.685465i −0.103984 + 0.0493408i −0.479974 0.877283i \(-0.659354\pi\)
0.375990 + 0.926624i \(0.377303\pi\)
\(194\) −0.622085 + 0.326495i −0.0446631 + 0.0234410i
\(195\) −0.379832 2.08678i −0.0272004 0.149438i
\(196\) −5.64068 2.96046i −0.402906 0.211461i
\(197\) −13.5181 0.544762i −0.963127 0.0388127i −0.446282 0.894892i \(-0.647252\pi\)
−0.516844 + 0.856079i \(0.672893\pi\)
\(198\) −0.0434015 0.212595i −0.00308441 0.0151084i
\(199\) 5.31838 + 18.3612i 0.377010 + 1.30159i 0.894947 + 0.446172i \(0.147213\pi\)
−0.517937 + 0.855419i \(0.673300\pi\)
\(200\) −1.47013 + 2.80109i −0.103954 + 0.198067i
\(201\) −2.86225 + 4.52629i −0.201888 + 0.319260i
\(202\) 0.109220 + 0.672055i 0.00768466 + 0.0472856i
\(203\) −5.83751 + 23.6837i −0.409713 + 1.66227i
\(204\) 0.281219 1.37750i 0.0196893 0.0964445i
\(205\) −4.22368 + 0.340971i −0.294995 + 0.0238144i
\(206\) 0.0309463 + 0.0489377i 0.00215613 + 0.00340965i
\(207\) 9.32583 8.26196i 0.648190 0.574246i
\(208\) −8.53151 + 10.8628i −0.591554 + 0.753201i
\(209\) −0.373921 0.331265i −0.0258646 0.0229141i
\(210\) 0.0507891 0.312518i 0.00350478 0.0215658i
\(211\) −18.7356 7.98247i −1.28981 0.549536i −0.365369 0.930863i \(-0.619057\pi\)
−0.924440 + 0.381327i \(0.875467\pi\)
\(212\) 0.680698 + 0.430448i 0.0467506 + 0.0295633i
\(213\) 6.16128 + 6.95465i 0.422164 + 0.476525i
\(214\) 0.0648882 0.803784i 0.00443566 0.0549455i
\(215\) −1.57459 + 4.71648i −0.107386 + 0.321661i
\(216\) −3.55458 + 0.431604i −0.241859 + 0.0293669i
\(217\) 4.21294 3.16582i 0.285993 0.214910i
\(218\) −0.604354 0.740199i −0.0409320 0.0501326i
\(219\) 1.45437 1.18745i 0.0982770 0.0802407i
\(220\) −0.438265 + 0.634937i −0.0295478 + 0.0428074i
\(221\) −0.759800 + 2.12390i −0.0511097 + 0.142869i
\(222\) −1.11555 1.61615i −0.0748708 0.108469i
\(223\) −6.86142 1.98744i −0.459475 0.133089i 0.0404047 0.999183i \(-0.487135\pi\)
−0.499880 + 0.866095i \(0.666622\pi\)
\(224\) −5.35601 + 3.38694i −0.357864 + 0.226299i
\(225\) −7.94745 + 1.29159i −0.529830 + 0.0861057i
\(226\) −0.273458 + 0.103709i −0.0181902 + 0.00689862i
\(227\) −7.92494 18.6005i −0.525997 1.23456i −0.945148 0.326643i \(-0.894082\pi\)
0.419151 0.907917i \(-0.362328\pi\)
\(228\) −1.06797 + 1.02580i −0.0707280 + 0.0679352i
\(229\) −10.5959 20.1888i −0.700196 1.33411i −0.932394 0.361444i \(-0.882284\pi\)
0.232198 0.972669i \(-0.425408\pi\)
\(230\) 0.634089 + 0.0511890i 0.0418106 + 0.00337530i
\(231\) −0.768913 + 2.65460i −0.0505908 + 0.174660i
\(232\) 3.67558 + 3.53044i 0.241314 + 0.231785i
\(233\) −5.67537 + 14.9647i −0.371806 + 0.980371i 0.610322 + 0.792154i \(0.291040\pi\)
−0.982127 + 0.188217i \(0.939729\pi\)
\(234\) 1.03173 + 0.0220175i 0.0674462 + 0.00143933i
\(235\) 1.90855 + 5.03243i 0.124500 + 0.328279i
\(236\) 5.20663 12.2204i 0.338923 0.795481i
\(237\) 0.281924 6.99588i 0.0183130 0.454431i
\(238\) −0.212955 + 0.260823i −0.0138038 + 0.0169066i
\(239\) 13.2090i 0.854421i 0.904152 + 0.427210i \(0.140504\pi\)
−0.904152 + 0.427210i \(0.859496\pi\)
\(240\) 1.74569 + 1.42531i 0.112684 + 0.0920035i
\(241\) −14.3996 + 4.17090i −0.927562 + 0.268672i −0.707418 0.706796i \(-0.750140\pi\)
−0.220144 + 0.975467i \(0.570653\pi\)
\(242\) 1.16326 1.31305i 0.0747771 0.0844059i
\(243\) −10.3422 10.7674i −0.663452 0.690727i
\(244\) −2.64756 + 0.883885i −0.169493 + 0.0565850i
\(245\) 1.00182 1.33318i 0.0640039 0.0851737i
\(246\) −0.189780 + 1.56298i −0.0120999 + 0.0996517i
\(247\) 1.92941 1.38645i 0.122765 0.0882177i
\(248\) −0.132718 1.09303i −0.00842759 0.0694074i
\(249\) 11.6752 + 6.74068i 0.739886 + 0.427173i
\(250\) −0.675818 0.507844i −0.0427425 0.0321189i
\(251\) 0.0121479 + 0.301448i 0.000766770 + 0.0190272i 0.999527 0.0307505i \(-0.00978974\pi\)
−0.998760 + 0.0497777i \(0.984149\pi\)
\(252\) −10.0303 3.80398i −0.631847 0.239628i
\(253\) −5.44066 1.11072i −0.342051 0.0698303i
\(254\) 2.35916 + 0.481626i 0.148027 + 0.0302199i
\(255\) 0.344124 + 0.130509i 0.0215499 + 0.00817280i
\(256\) −0.554974 13.7715i −0.0346859 0.860722i
\(257\) −13.0581 9.81249i −0.814539 0.612086i 0.109672 0.993968i \(-0.465020\pi\)
−0.924211 + 0.381881i \(0.875276\pi\)
\(258\) 1.60001 + 0.923768i 0.0996125 + 0.0575113i
\(259\) −3.94788 32.5137i −0.245309 2.02030i
\(260\) −2.48478 2.69994i −0.154100 0.167443i
\(261\) −1.56356 + 12.8771i −0.0967822 + 0.797073i
\(262\) 2.21921 2.95323i 0.137103 0.182451i
\(263\) −7.25061 + 2.42061i −0.447092 + 0.149261i −0.531294 0.847187i \(-0.678294\pi\)
0.0842021 + 0.996449i \(0.473166\pi\)
\(264\) 0.400005 + 0.416450i 0.0246186 + 0.0256307i
\(265\) −0.139808 + 0.157810i −0.00858831 + 0.00969420i
\(266\) 0.340653 0.0986714i 0.0208868 0.00604993i
\(267\) 9.15761 + 7.47696i 0.560437 + 0.457583i
\(268\) 9.26439i 0.565913i
\(269\) 8.83887 10.8256i 0.538915 0.660051i −0.431325 0.902197i \(-0.641954\pi\)
0.970240 + 0.242145i \(0.0778511\pi\)
\(270\) 0.0187372 0.464958i 0.00114031 0.0282964i
\(271\) −0.928803 + 2.17998i −0.0564208 + 0.132424i −0.945804 0.324738i \(-0.894724\pi\)
0.889383 + 0.457162i \(0.151134\pi\)
\(272\) −0.849886 2.24097i −0.0515319 0.135878i
\(273\) −11.5057 6.35540i −0.696359 0.384646i
\(274\) −1.24498 + 3.28274i −0.0752118 + 0.198317i
\(275\) 2.58806 + 2.48587i 0.156066 + 0.149903i
\(276\) −4.57955 + 15.8104i −0.275656 + 0.951676i
\(277\) −27.4915 2.21934i −1.65180 0.133347i −0.780851 0.624718i \(-0.785214\pi\)
−0.870951 + 0.491371i \(0.836496\pi\)
\(278\) −0.177721 0.338619i −0.0106590 0.0203090i
\(279\) 2.02113 1.94133i 0.121002 0.116224i
\(280\) −0.432465 1.01503i −0.0258447 0.0606598i
\(281\) 11.4512 4.34286i 0.683120 0.259073i 0.0114620 0.999934i \(-0.496351\pi\)
0.671659 + 0.740861i \(0.265582\pi\)
\(282\) 1.97391 0.320791i 0.117544 0.0191028i
\(283\) 0.664368 0.420121i 0.0394926 0.0249736i −0.514574 0.857446i \(-0.672050\pi\)
0.554066 + 0.832473i \(0.313075\pi\)
\(284\) 15.4387 + 4.47189i 0.916121 + 0.265358i
\(285\) −0.220210 0.319029i −0.0130441 0.0188976i
\(286\) −0.268393 0.373500i −0.0158704 0.0220855i
\(287\) −14.9170 + 21.6110i −0.880524 + 1.27566i
\(288\) −2.61040 + 2.13133i −0.153820 + 0.125590i
\(289\) 10.5040 + 12.8651i 0.617884 + 0.756771i
\(290\) −0.529487 + 0.397884i −0.0310926 + 0.0233645i
\(291\) 4.72410 0.573609i 0.276932 0.0336256i
\(292\) 1.02855 3.08089i 0.0601915 0.180296i
\(293\) −0.0457505 + 0.566721i −0.00267277 + 0.0331082i −0.997956 0.0639014i \(-0.979646\pi\)
0.995283 + 0.0970096i \(0.0309277\pi\)
\(294\) −0.410889 0.463797i −0.0239635 0.0270492i
\(295\) 2.93899 + 1.85851i 0.171115 + 0.108206i
\(296\) −6.29557 2.68229i −0.365923 0.155905i
\(297\) −0.651566 + 4.00925i −0.0378077 + 0.232640i
\(298\) 0.766131 + 0.678733i 0.0443808 + 0.0393179i
\(299\) 10.8677 24.0700i 0.628497 1.39200i
\(300\) 7.96224 7.05393i 0.459700 0.407259i
\(301\) 16.4690 + 26.0436i 0.949256 + 1.50113i
\(302\) 2.11725 0.170922i 0.121834 0.00983547i
\(303\) 0.922498 4.51870i 0.0529961 0.259592i
\(304\) −0.604129 + 2.45105i −0.0346492 + 0.140577i
\(305\) −0.117210 0.721220i −0.00671140 0.0412969i
\(306\) −0.0957029 + 0.151342i −0.00547097 + 0.00865165i
\(307\) 6.08213 11.5885i 0.347125 0.661392i −0.647822 0.761792i \(-0.724320\pi\)
0.994947 + 0.100400i \(0.0320122\pi\)
\(308\) 1.33017 + 4.59227i 0.0757933 + 0.261669i
\(309\) −0.0784493 0.384270i −0.00446283 0.0218604i
\(310\) 0.142974 + 0.00576166i 0.00812038 + 0.000327240i
\(311\) −22.6960 11.9118i −1.28697 0.675454i −0.324255 0.945970i \(-0.605114\pi\)
−0.962716 + 0.270515i \(0.912806\pi\)
\(312\) −2.35195 + 1.41795i −0.133153 + 0.0802758i
\(313\) −28.2752 + 14.8400i −1.59821 + 0.838805i −0.598931 + 0.800801i \(0.704408\pi\)
−0.999278 + 0.0380040i \(0.987900\pi\)
\(314\) 1.80534 0.856645i 0.101881 0.0483433i
\(315\) 1.40411 2.43198i 0.0791124 0.137027i
\(316\) −6.05611 10.4895i −0.340683 0.590080i
\(317\) 14.9257 + 10.3025i 0.838312 + 0.578645i 0.908022 0.418922i \(-0.137592\pi\)
−0.0697098 + 0.997567i \(0.522207\pi\)
\(318\) 0.0470602 + 0.0626258i 0.00263901 + 0.00351188i
\(319\) 5.00675 2.89065i 0.280324 0.161845i
\(320\) 3.75500 + 0.455940i 0.209911 + 0.0254878i
\(321\) −2.34159 + 4.93479i −0.130695 + 0.275433i
\(322\) 2.73089 2.84316i 0.152187 0.158443i
\(323\) 0.0331729 + 0.410920i 0.00184579 + 0.0228642i
\(324\) 1.92160 + 0.473631i 0.106755 + 0.0263128i
\(325\) −14.2497 + 9.39339i −0.790431 + 0.521052i
\(326\) 1.28869 0.317635i 0.0713742 0.0175922i
\(327\) 2.04968 + 6.13955i 0.113348 + 0.339518i
\(328\) 2.35203 + 4.95679i 0.129869 + 0.273693i
\(329\) 31.6370 + 10.5620i 1.74420 + 0.582301i
\(330\) −0.0617584 + 0.0426288i −0.00339969 + 0.00234664i
\(331\) 19.2319 + 9.12565i 1.05708 + 0.501591i 0.876217 0.481917i \(-0.160059\pi\)
0.180864 + 0.983508i \(0.442111\pi\)
\(332\) 23.3029 0.939075i 1.27891 0.0515385i
\(333\) −4.16827 16.9114i −0.228420 0.926736i
\(334\) −3.31857 + 1.41391i −0.181584 + 0.0773657i
\(335\) −2.39383 0.389035i −0.130789 0.0212552i
\(336\) 13.6837 2.79354i 0.746506 0.152400i
\(337\) 9.15446 0.498675 0.249338 0.968417i \(-0.419787\pi\)
0.249338 + 0.968417i \(0.419787\pi\)
\(338\) 2.01446 0.852580i 0.109572 0.0463742i
\(339\) 1.98101 0.107594
\(340\) 0.623819 0.127354i 0.0338313 0.00690672i
\(341\) −1.23284 0.200356i −0.0667619 0.0108499i
\(342\) 0.173510 0.0739259i 0.00938237 0.00399745i
\(343\) 2.88512 + 11.7054i 0.155782 + 0.632031i
\(344\) 6.43290 0.259237i 0.346839 0.0139771i
\(345\) −3.89295 1.84723i −0.209590 0.0994515i
\(346\) 2.08062 1.43615i 0.111855 0.0772078i
\(347\) 14.1582 + 4.72670i 0.760051 + 0.253742i 0.670168 0.742210i \(-0.266222\pi\)
0.0898839 + 0.995952i \(0.471350\pi\)
\(348\) −7.34669 15.4828i −0.393824 0.829966i
\(349\) −8.23672 24.6720i −0.440901 1.32066i −0.901395 0.432998i \(-0.857456\pi\)
0.460493 0.887663i \(-0.347672\pi\)
\(350\) −2.47364 + 0.609697i −0.132221 + 0.0325897i
\(351\) −17.9126 7.23418i −0.956106 0.386132i
\(352\) 1.45831 + 0.359441i 0.0777281 + 0.0191583i
\(353\) −1.60144 19.8375i −0.0852363 1.05584i −0.888091 0.459667i \(-0.847969\pi\)
0.802855 0.596174i \(-0.203313\pi\)
\(354\) 0.895022 0.931816i 0.0475699 0.0495255i
\(355\) −1.80380 + 3.80143i −0.0957359 + 0.201759i
\(356\) 20.3027 + 2.46519i 1.07604 + 0.130655i
\(357\) 1.97519 1.14038i 0.104538 0.0603552i
\(358\) 0.877626 + 1.16791i 0.0463840 + 0.0617258i
\(359\) 9.19339 + 6.34574i 0.485208 + 0.334915i 0.785426 0.618956i \(-0.212444\pi\)
−0.300218 + 0.953871i \(0.597059\pi\)
\(360\) −0.293368 0.508128i −0.0154618 0.0267807i
\(361\) −9.28289 + 16.0784i −0.488573 + 0.846234i
\(362\) 0.0848120 0.0402438i 0.00445762 0.00211517i
\(363\) −10.5212 + 5.52193i −0.552218 + 0.289826i
\(364\) −22.6989 + 1.34572i −1.18975 + 0.0705351i
\(365\) 0.752881 + 0.395142i 0.0394076 + 0.0206827i
\(366\) −0.271272 0.0109319i −0.0141796 0.000571419i
\(367\) −6.02521 29.5134i −0.314513 1.54059i −0.762762 0.646679i \(-0.776157\pi\)
0.448249 0.893909i \(-0.352048\pi\)
\(368\) 7.80691 + 26.9526i 0.406963 + 1.40500i
\(369\) −6.48962 + 12.3649i −0.337836 + 0.643693i
\(370\) 0.475310 0.751642i 0.0247102 0.0390760i
\(371\) 0.209582 + 1.28961i 0.0108810 + 0.0669533i
\(372\) −0.886050 + 3.59485i −0.0459395 + 0.186384i
\(373\) 1.01741 4.98360i 0.0526795 0.258041i −0.944919 0.327304i \(-0.893860\pi\)
0.997598 + 0.0692633i \(0.0220649\pi\)
\(374\) 0.0795469 0.00642169i 0.00411327 0.000332058i
\(375\) 3.06039 + 4.83962i 0.158038 + 0.249917i
\(376\) 5.21616 4.62112i 0.269003 0.238316i
\(377\) 8.14869 + 26.2609i 0.419679 + 1.35250i
\(378\) −2.15847 1.91224i −0.111020 0.0983551i
\(379\) 1.75708 10.8117i 0.0902549 0.555361i −0.902059 0.431613i \(-0.857945\pi\)
0.992314 0.123748i \(-0.0394913\pi\)
\(380\) −0.616944 0.262855i −0.0316486 0.0134842i
\(381\) −13.7846 8.71683i −0.706204 0.446577i
\(382\) 1.43123 + 1.61553i 0.0732282 + 0.0826576i
\(383\) −0.202704 + 2.51094i −0.0103577 + 0.128303i −0.999870 0.0161481i \(-0.994860\pi\)
0.989512 + 0.144451i \(0.0461417\pi\)
\(384\) 1.87518 5.61686i 0.0956926 0.286634i
\(385\) −1.24245 + 0.150861i −0.0633214 + 0.00768861i
\(386\) −0.215091 + 0.161630i −0.0109478 + 0.00822675i
\(387\) 10.3636 + 12.6931i 0.526811 + 0.645226i
\(388\) 6.37685 5.20654i 0.323736 0.264322i
\(389\) 2.95763 4.28486i 0.149958 0.217251i −0.740805 0.671720i \(-0.765556\pi\)
0.890762 + 0.454469i \(0.150171\pi\)
\(390\) −0.132857 0.331253i −0.00672746 0.0167737i
\(391\) 2.60317 + 3.77134i 0.131648 + 0.190725i
\(392\) −2.07397 0.600732i −0.104751 0.0303415i
\(393\) −21.1485 + 13.3735i −1.06680 + 0.674602i
\(394\) −2.24700 + 0.365173i −0.113202 + 0.0183971i
\(395\) 2.96469 1.12436i 0.149170 0.0565727i
\(396\) 0.996578 + 2.33906i 0.0500799 + 0.117542i
\(397\) 13.1630 12.6432i 0.660631 0.634545i −0.285481 0.958384i \(-0.592153\pi\)
0.946112 + 0.323839i \(0.104974\pi\)
\(398\) 1.49480 + 2.84811i 0.0749278 + 0.142763i
\(399\) −2.39448 0.193302i −0.119874 0.00967721i
\(400\) 5.04520 17.4181i 0.252260 0.870903i
\(401\) −22.4686 21.5813i −1.12203 1.07772i −0.996325 0.0856530i \(-0.972702\pi\)
−0.125701 0.992068i \(-0.540118\pi\)
\(402\) −0.319542 + 0.842562i −0.0159373 + 0.0420232i
\(403\) 2.22450 5.50812i 0.110810 0.274379i
\(404\) −2.82913 7.45981i −0.140755 0.371140i
\(405\) −0.203074 + 0.476633i −0.0100908 + 0.0236841i
\(406\) −0.165268 + 4.10108i −0.00820211 + 0.203533i
\(407\) −4.90950 + 6.01304i −0.243355 + 0.298055i
\(408\) 0.476531i 0.0235918i
\(409\) 24.2269 + 19.7806i 1.19794 + 0.978089i 0.999998 0.00212387i \(-0.000676050\pi\)
0.197944 + 0.980213i \(0.436573\pi\)
\(410\) −0.684860 + 0.198372i −0.0338228 + 0.00979690i
\(411\) 15.7698 17.8004i 0.777864 0.878027i
\(412\) −0.469995 0.489316i −0.0231550 0.0241069i
\(413\) 20.4400 6.82388i 1.00579 0.335781i
\(414\) 1.25942 1.67599i 0.0618973 0.0823704i
\(415\) −0.735900 + 6.06068i −0.0361239 + 0.297507i
\(416\) −3.19929 + 6.38685i −0.156858 + 0.313141i
\(417\) 0.312233 + 2.57147i 0.0152901 + 0.125925i
\(418\) −0.0727959 0.0420287i −0.00356056 0.00205569i
\(419\) 12.1019 + 9.09401i 0.591218 + 0.444271i 0.853773 0.520646i \(-0.174309\pi\)
−0.262555 + 0.964917i \(0.584565\pi\)
\(420\) 0.149388 + 3.70703i 0.00728940 + 0.180885i
\(421\) 4.05583 + 1.53817i 0.197669 + 0.0749660i 0.451453 0.892295i \(-0.350906\pi\)
−0.253784 + 0.967261i \(0.581675\pi\)
\(422\) −3.35750 0.685439i −0.163441 0.0333667i
\(423\) 17.3786 + 3.54787i 0.844976 + 0.172503i
\(424\) 0.255241 + 0.0968003i 0.0123956 + 0.00470104i
\(425\) −0.119245 2.95904i −0.00578425 0.143535i
\(426\) 1.24985 + 0.939205i 0.0605556 + 0.0455046i
\(427\) −3.92141 2.26402i −0.189770 0.109564i
\(428\) 1.13897 + 9.38026i 0.0550542 + 0.453412i
\(429\) 0.802705 + 3.01016i 0.0387550 + 0.145332i
\(430\) −0.100850 + 0.830579i −0.00486344 + 0.0400541i
\(431\) −20.8991 + 27.8116i −1.00667 + 1.33964i −0.0669303 + 0.997758i \(0.521321\pi\)
−0.939743 + 0.341881i \(0.888936\pi\)
\(432\) 19.4695 6.49986i 0.936725 0.312725i
\(433\) 12.2806 + 12.7855i 0.590170 + 0.614432i 0.947581 0.319515i \(-0.103520\pi\)
−0.357411 + 0.933947i \(0.616341\pi\)
\(434\) 0.588012 0.663728i 0.0282255 0.0318600i
\(435\) 4.30911 1.24815i 0.206606 0.0598442i
\(436\) 8.67344 + 7.08165i 0.415383 + 0.339149i
\(437\) 4.82666i 0.230890i
\(438\) 0.199807 0.244720i 0.00954716 0.0116932i
\(439\) 0.0471222 1.16932i 0.00224902 0.0558088i −0.997675 0.0681546i \(-0.978289\pi\)
0.999924 + 0.0123458i \(0.00392990\pi\)
\(440\) −0.102499 + 0.240574i −0.00488645 + 0.0114689i
\(441\) −1.94881 5.13858i −0.0928004 0.244695i
\(442\) −0.0537794 + 0.375730i −0.00255802 + 0.0178716i
\(443\) 7.02958 18.5355i 0.333985 0.880647i −0.657853 0.753146i \(-0.728535\pi\)
0.991838 0.127501i \(-0.0406955\pi\)
\(444\) 16.5955 + 15.9402i 0.787589 + 0.756490i
\(445\) −1.48954 + 5.14249i −0.0706110 + 0.243777i
\(446\) −1.19810 0.0967206i −0.0567317 0.00457985i
\(447\) −3.22191 6.13884i −0.152391 0.290357i
\(448\) 16.9055 16.2380i 0.798710 0.767172i
\(449\) −10.8690 25.5104i −0.512939 1.20391i −0.952178 0.305542i \(-0.901162\pi\)
0.439239 0.898370i \(-0.355248\pi\)
\(450\) −1.26678 + 0.480428i −0.0597167 + 0.0226476i
\(451\) 6.14317 0.998363i 0.289271 0.0470111i
\(452\) 2.89647 1.83162i 0.136239 0.0861521i
\(453\) −13.8198 4.00296i −0.649312 0.188076i
\(454\) −1.93259 2.79984i −0.0907009 0.131403i
\(455\) 0.605462 5.92169i 0.0283845 0.277613i
\(456\) −0.285122 + 0.413071i −0.0133521 + 0.0193438i
\(457\) −24.8072 + 20.2545i −1.16043 + 0.947464i −0.999221 0.0394559i \(-0.987438\pi\)
−0.161211 + 0.986920i \(0.551540\pi\)
\(458\) −2.42639 2.97179i −0.113378 0.138863i
\(459\) 2.67977 2.01371i 0.125081 0.0939921i
\(460\) −7.39990 + 0.898511i −0.345022 + 0.0418933i
\(461\) −11.1580 + 33.4222i −0.519679 + 1.55663i 0.282331 + 0.959317i \(0.408892\pi\)
−0.802010 + 0.597311i \(0.796236\pi\)
\(462\) −0.0374199 + 0.463529i −0.00174093 + 0.0215653i
\(463\) −4.72320 5.33139i −0.219505 0.247770i 0.628435 0.777862i \(-0.283696\pi\)
−0.847940 + 0.530092i \(0.822157\pi\)
\(464\) −24.6920 15.6143i −1.14630 0.724875i
\(465\) −0.891665 0.379903i −0.0413500 0.0176176i
\(466\) −0.431995 + 2.65817i −0.0200118 + 0.123137i
\(467\) −21.9782 19.4710i −1.01703 0.901011i −0.0219185 0.999760i \(-0.506977\pi\)
−0.995112 + 0.0987491i \(0.968516\pi\)
\(468\) −11.8968 + 2.16543i −0.549929 + 0.100097i
\(469\) −11.2495 + 9.96622i −0.519455 + 0.460197i
\(470\) 0.484031 + 0.765433i 0.0223267 + 0.0353068i
\(471\) −13.4914 + 1.08914i −0.621653 + 0.0501850i
\(472\) 0.900586 4.41136i 0.0414528 0.203049i
\(473\) 1.74778 7.09103i 0.0803631 0.326046i
\(474\) −0.188984 1.16286i −0.00868031 0.0534121i
\(475\) −1.66712 + 2.63633i −0.0764925 + 0.120963i
\(476\) 1.83359 3.49361i 0.0840425 0.160130i
\(477\) 0.193306 + 0.667368i 0.00885086 + 0.0305567i
\(478\) 0.444581 + 2.17770i 0.0203347 + 0.0996059i
\(479\) −21.1343 0.851683i −0.965651 0.0389144i −0.447572 0.894248i \(-0.647711\pi\)
−0.518078 + 0.855333i \(0.673352\pi\)
\(480\) 1.03200 + 0.541636i 0.0471042 + 0.0247222i
\(481\) −22.7343 29.0899i −1.03659 1.32639i
\(482\) −2.23361 + 1.17229i −0.101738 + 0.0533963i
\(483\) −24.1247 + 11.4473i −1.09771 + 0.520871i
\(484\) −10.2777 + 17.8015i −0.467168 + 0.809159i
\(485\) 1.07754 + 1.86635i 0.0489285 + 0.0847466i
\(486\) −2.06747 1.42707i −0.0937822 0.0647331i
\(487\) 9.62455 + 12.8080i 0.436130 + 0.580384i 0.962979 0.269575i \(-0.0868832\pi\)
−0.526849 + 0.849959i \(0.676627\pi\)
\(488\) −0.819321 + 0.473035i −0.0370889 + 0.0214133i
\(489\) −8.92468 1.08365i −0.403588 0.0490045i
\(490\) 0.120293 0.253513i 0.00543430 0.0114526i
\(491\) 18.0422 18.7839i 0.814234 0.847707i −0.176391 0.984320i \(-0.556442\pi\)
0.990624 + 0.136613i \(0.0436217\pi\)
\(492\) −1.48453 18.3892i −0.0669278 0.829050i
\(493\) −4.63239 1.14178i −0.208632 0.0514232i
\(494\) 0.271427 0.293516i 0.0122121 0.0132059i
\(495\) −0.646238 + 0.159283i −0.0290462 + 0.00715925i
\(496\) 1.99870 + 5.98684i 0.0897443 + 0.268817i
\(497\) 11.1782 + 23.5576i 0.501411 + 1.05670i
\(498\) 2.15170 + 0.718344i 0.0964201 + 0.0321898i
\(499\) −11.3831 + 7.85719i −0.509578 + 0.351736i −0.794944 0.606682i \(-0.792500\pi\)
0.285367 + 0.958418i \(0.407885\pi\)
\(500\) 8.94932 + 4.24650i 0.400226 + 0.189909i
\(501\) 24.4137 0.983840i 1.09073 0.0439547i
\(502\) 0.0121487 + 0.0492892i 0.000542223 + 0.00219989i
\(503\) 16.8929 7.19741i 0.753219 0.320917i 0.0189912 0.999820i \(-0.493955\pi\)
0.734228 + 0.678903i \(0.237544\pi\)
\(504\) −3.58892 0.583257i −0.159863 0.0259803i
\(505\) 2.04635 0.417764i 0.0910612 0.0185903i
\(506\) −0.934357 −0.0415372
\(507\) −14.8061 + 0.561114i −0.657562 + 0.0249199i
\(508\) −28.2142 −1.25180
\(509\) −17.6882 + 3.61107i −0.784016 + 0.160058i −0.575326 0.817924i \(-0.695125\pi\)
−0.208689 + 0.977982i \(0.566920\pi\)
\(510\) 0.0611266 + 0.00993404i 0.00270673 + 0.000439887i
\(511\) 4.84753 2.06534i 0.214442 0.0913652i
\(512\) −3.04176 12.3409i −0.134428 0.545396i
\(513\) −3.52776 + 0.142164i −0.155755 + 0.00627669i
\(514\) −2.48308 1.17823i −0.109524 0.0519697i
\(515\) 0.146171 0.100894i 0.00644106 0.00444594i
\(516\) −20.5348 6.85552i −0.903994 0.301797i
\(517\) −3.38888 7.14191i −0.149043 0.314101i
\(518\) −1.74519 5.22749i −0.0766794 0.229683i
\(519\) −16.6268 + 4.09814i −0.729836 + 0.179888i
\(520\) −1.00824 0.728180i −0.0442142 0.0319328i
\(521\) −5.96955 1.47136i −0.261531 0.0644615i 0.106370 0.994327i \(-0.466077\pi\)
−0.367901 + 0.929865i \(0.619923\pi\)
\(522\) 0.175633 + 2.17561i 0.00768726 + 0.0952238i
\(523\) 24.6005 25.6118i 1.07571 1.11993i 0.0833494 0.996520i \(-0.473438\pi\)
0.992356 0.123408i \(-0.0393823\pi\)
\(524\) −18.5566 + 39.1073i −0.810650 + 1.70841i
\(525\) 17.1308 + 2.08006i 0.747652 + 0.0907813i
\(526\) −1.11390 + 0.643110i −0.0485683 + 0.0280409i
\(527\) 0.619215 + 0.824025i 0.0269734 + 0.0358951i
\(528\) −2.72414 1.88034i −0.118553 0.0818314i
\(529\) −15.3258 26.5451i −0.666340 1.15414i
\(530\) −0.0177379 + 0.0307229i −0.000770484 + 0.00133452i
\(531\) 10.3531 4.91262i 0.449288 0.213190i
\(532\) −3.67974 + 1.93128i −0.159537 + 0.0837315i
\(533\) −1.82265 + 29.5443i −0.0789477 + 1.27971i
\(534\) 1.76142 + 0.924466i 0.0762243 + 0.0400056i
\(535\) −2.47160 0.0996019i −0.106856 0.00430617i
\(536\) 0.628108 + 3.07668i 0.0271301 + 0.132892i
\(537\) −2.75309 9.50475i −0.118804 0.410160i
\(538\) 1.09286 2.08226i 0.0471163 0.0897727i
\(539\) −1.30910 + 2.07018i −0.0563870 + 0.0891689i
\(540\) 0.874670 + 5.38206i 0.0376398 + 0.231607i
\(541\) 7.00032 28.4014i 0.300967 1.22107i −0.604482 0.796619i \(-0.706620\pi\)
0.905449 0.424454i \(-0.139534\pi\)
\(542\) −0.0797545 + 0.390663i −0.00342575 + 0.0167804i
\(543\) −0.633806 + 0.0511661i −0.0271992 + 0.00219575i
\(544\) −0.662464 1.04760i −0.0284029 0.0449156i
\(545\) −2.19405 + 1.94376i −0.0939827 + 0.0832614i
\(546\) −2.11080 0.660528i −0.0903338 0.0282680i
\(547\) 11.3755 + 10.0778i 0.486380 + 0.430895i 0.870338 0.492456i \(-0.163901\pi\)
−0.383957 + 0.923351i \(0.625439\pi\)
\(548\) 6.59926 40.6069i 0.281906 1.73464i
\(549\) −2.21529 0.943845i −0.0945461 0.0402823i
\(550\) 0.510348 + 0.322725i 0.0217613 + 0.0137610i
\(551\) 3.33233 + 3.76142i 0.141962 + 0.160242i
\(552\) −0.448937 + 5.56108i −0.0191080 + 0.236695i
\(553\) 6.22225 18.6379i 0.264597 0.792565i
\(554\) −4.60707 + 0.559400i −0.195736 + 0.0237666i
\(555\) −4.81569 + 3.61875i −0.204415 + 0.153608i
\(556\) 2.83407 + 3.47111i 0.120191 + 0.147208i
\(557\) −22.4553 + 18.3342i −0.951461 + 0.776844i −0.974845 0.222883i \(-0.928453\pi\)
0.0233845 + 0.999727i \(0.492556\pi\)
\(558\) 0.267874 0.388082i 0.0113400 0.0164288i
\(559\) 31.0561 + 15.5566i 1.31353 + 0.657973i
\(560\) 3.59280 + 5.20507i 0.151824 + 0.219954i
\(561\) −0.519223 0.150395i −0.0219216 0.00634967i
\(562\) 1.74173 1.10140i 0.0734704 0.0464599i
\(563\) 10.2551 1.66662i 0.432203 0.0702398i 0.0595817 0.998223i \(-0.481023\pi\)
0.372621 + 0.927984i \(0.378459\pi\)
\(564\) −21.9104 + 8.30950i −0.922593 + 0.349893i
\(565\) 0.351642 + 0.825334i 0.0147937 + 0.0347221i
\(566\) 0.0953907 0.0916240i 0.00400957 0.00385125i
\(567\) 1.49205 + 2.84286i 0.0626601 + 0.119389i
\(568\) 5.43035 + 0.438383i 0.227852 + 0.0183941i
\(569\) 7.81019 26.9639i 0.327420 1.13039i −0.612918 0.790146i \(-0.710005\pi\)
0.940339 0.340240i \(-0.110508\pi\)
\(570\) −0.0470425 0.0451849i −0.00197039 0.00189259i
\(571\) −0.627067 + 1.65344i −0.0262419 + 0.0691943i −0.947497 0.319765i \(-0.896396\pi\)
0.921255 + 0.388959i \(0.127165\pi\)
\(572\) 3.95682 + 3.65905i 0.165443 + 0.152993i
\(573\) −5.18412 13.6694i −0.216570 0.571048i
\(574\) −1.73192 + 4.06497i −0.0722890 + 0.169668i
\(575\) −1.39611 + 34.6441i −0.0582219 + 1.44476i
\(576\) 7.88378 9.65588i 0.328491 0.402328i
\(577\) 30.0602i 1.25142i 0.780055 + 0.625711i \(0.215191\pi\)
−0.780055 + 0.625711i \(0.784809\pi\)
\(578\) 2.16475 + 1.76746i 0.0900418 + 0.0735168i
\(579\) 1.75047 0.507029i 0.0727469 0.0210714i
\(580\) 5.14642 5.80911i 0.213693 0.241210i
\(581\) 26.2085 + 27.2860i 1.08731 + 1.13201i
\(582\) 0.759531 0.253569i 0.0314836 0.0105108i
\(583\) 0.186028 0.247558i 0.00770447 0.0102528i
\(584\) 0.132701 1.09289i 0.00549120 0.0452241i
\(585\) −0.0599502 3.16495i −0.00247864 0.130854i
\(586\) 0.0115317 + 0.0949722i 0.000476371 + 0.00392327i
\(587\) −23.1437 13.3620i −0.955243 0.551510i −0.0605376 0.998166i \(-0.519281\pi\)
−0.894706 + 0.446656i \(0.852615\pi\)
\(588\) 5.80445 + 4.36176i 0.239371 + 0.179876i
\(589\) −0.0437153 1.08478i −0.00180126 0.0446977i
\(590\) 0.547089 + 0.207483i 0.0225233 + 0.00854196i
\(591\) 15.1081 + 3.08435i 0.621466 + 0.126873i
\(592\) 38.4347 + 7.84651i 1.57966 + 0.322490i
\(593\) 44.3024 + 16.8017i 1.81928 + 0.689963i 0.991693 + 0.128629i \(0.0410576\pi\)
0.827589 + 0.561334i \(0.189712\pi\)
\(594\) 0.0275205 + 0.682914i 0.00112918 + 0.0280203i
\(595\) 0.825719 + 0.620487i 0.0338512 + 0.0254375i
\(596\) −10.3867 5.99678i −0.425457 0.245638i
\(597\) −2.62617 21.6285i −0.107482 0.885195i
\(598\) 0.981574 4.33407i 0.0401396 0.177233i
\(599\) −0.303388 + 2.49862i −0.0123961 + 0.102091i −0.997594 0.0693317i \(-0.977913\pi\)
0.985198 + 0.171423i \(0.0548364\pi\)
\(600\) 2.16599 2.88242i 0.0884264 0.117674i
\(601\) −19.7290 + 6.58652i −0.804764 + 0.268670i −0.689145 0.724624i \(-0.742014\pi\)
−0.115619 + 0.993294i \(0.536885\pi\)
\(602\) 3.59172 + 3.73937i 0.146387 + 0.152405i
\(603\) −5.29994 + 5.98239i −0.215830 + 0.243622i
\(604\) −23.9074 + 6.92485i −0.972777 + 0.281768i
\(605\) −4.16814 3.40318i −0.169459 0.138359i
\(606\) 0.776023i 0.0315238i
\(607\) 0.569862 0.697954i 0.0231300 0.0283291i −0.762910 0.646504i \(-0.776230\pi\)
0.786040 + 0.618175i \(0.212128\pi\)
\(608\) −0.0525681 + 1.30446i −0.00213192 + 0.0529030i
\(609\) 10.8972 25.5766i 0.441576 1.03642i
\(610\) −0.0435981 0.114959i −0.00176524 0.00465455i
\(611\) 36.6883 8.21670i 1.48425 0.332412i
\(612\) 0.744035 1.96186i 0.0300758 0.0793034i
\(613\) 19.8576 + 19.0735i 0.802043 + 0.770372i 0.976780 0.214243i \(-0.0687283\pi\)
−0.174738 + 0.984615i \(0.555908\pi\)
\(614\) 0.612689 2.11525i 0.0247261 0.0853645i
\(615\) 4.81393 + 0.388621i 0.194116 + 0.0156707i
\(616\) 0.753092 + 1.43490i 0.0303429 + 0.0578137i
\(617\) 21.7129 20.8555i 0.874128 0.839611i −0.113963 0.993485i \(-0.536354\pi\)
0.988090 + 0.153874i \(0.0491750\pi\)
\(618\) −0.0258671 0.0607123i −0.00104053 0.00244220i
\(619\) −26.9693 + 10.2281i −1.08399 + 0.411103i −0.830946 0.556352i \(-0.812200\pi\)
−0.253042 + 0.967455i \(0.581431\pi\)
\(620\) −1.65498 + 0.268960i −0.0664655 + 0.0108017i
\(621\) −33.1698 + 20.9753i −1.33106 + 0.841710i
\(622\) −4.14269 1.19994i −0.166107 0.0481134i
\(623\) 18.8473 + 27.3050i 0.755100 + 1.09395i
\(624\) 11.5839 10.6607i 0.463727 0.426771i
\(625\) 11.9719 17.3442i 0.478875 0.693770i
\(626\) −4.16211 + 3.39826i −0.166351 + 0.135822i
\(627\) 0.360092 + 0.441033i 0.0143807 + 0.0176131i
\(628\) −18.7191 + 14.0665i −0.746974 + 0.561315i
\(629\) 6.35949 0.772181i 0.253569 0.0307889i
\(630\) 0.149633 0.448207i 0.00596154 0.0178570i
\(631\) 1.86026 23.0435i 0.0740558 0.917345i −0.847927 0.530114i \(-0.822149\pi\)
0.921982 0.387232i \(-0.126569\pi\)
\(632\) −2.72238 3.07294i −0.108291 0.122235i
\(633\) 19.6179 + 12.4056i 0.779740 + 0.493078i
\(634\) 2.80748 + 1.19616i 0.111499 + 0.0475054i
\(635\) 1.18478 7.29027i 0.0470167 0.289305i
\(636\) −0.687080 0.608700i −0.0272445 0.0241365i
\(637\) −8.22739 8.24714i −0.325981 0.326764i
\(638\) 0.728146 0.645081i 0.0288276 0.0255390i
\(639\) 7.41116 + 11.7198i 0.293181 + 0.463629i
\(640\) 2.67297 0.215785i 0.105659 0.00852964i
\(641\) 7.31299 35.8214i 0.288846 1.41486i −0.533465 0.845822i \(-0.679110\pi\)
0.822311 0.569038i \(-0.192684\pi\)
\(642\) −0.219953 + 0.892384i −0.00868085 + 0.0352196i
\(643\) −3.59617 22.1281i −0.141819 0.872647i −0.956285 0.292436i \(-0.905534\pi\)
0.814466 0.580211i \(-0.197030\pi\)
\(644\) −24.6892 + 39.0428i −0.972890 + 1.53850i
\(645\) 2.63371 5.01811i 0.103702 0.197588i
\(646\) 0.0192995 + 0.0666297i 0.000759330 + 0.00262151i
\(647\) −3.72816 18.2617i −0.146569 0.717943i −0.984947 0.172854i \(-0.944701\pi\)
0.838378 0.545089i \(-0.183504\pi\)
\(648\) 0.670268 + 0.0270109i 0.0263306 + 0.00106109i
\(649\) −4.52234 2.37351i −0.177517 0.0931683i
\(650\) −2.03312 + 2.02825i −0.0797454 + 0.0795544i
\(651\) −5.31831 + 2.79126i −0.208441 + 0.109398i
\(652\) −14.0509 + 6.66724i −0.550276 + 0.261109i
\(653\) −14.7469 + 25.5424i −0.577091 + 0.999551i 0.418720 + 0.908116i \(0.362479\pi\)
−0.995811 + 0.0914358i \(0.970854\pi\)
\(654\) 0.544561 + 0.943208i 0.0212940 + 0.0368824i
\(655\) −9.32570 6.43706i −0.364385 0.251517i
\(656\) −18.8938 25.1430i −0.737677 0.981670i
\(657\) 2.42668 1.40105i 0.0946740 0.0546600i
\(658\) 5.57131 + 0.676480i 0.217192 + 0.0263719i
\(659\) 17.1245 36.0891i 0.667075 1.40583i −0.234030 0.972229i \(-0.575192\pi\)
0.901105 0.433601i \(-0.142757\pi\)
\(660\) 0.609128 0.634169i 0.0237103 0.0246850i
\(661\) 1.86020 + 23.0427i 0.0723532 + 0.896255i 0.926517 + 0.376252i \(0.122787\pi\)
−0.854164 + 0.520003i \(0.825931\pi\)
\(662\) 3.47781 + 0.857203i 0.135169 + 0.0333161i
\(663\) 1.24308 2.25045i 0.0482771 0.0874003i
\(664\) 7.67516 1.89176i 0.297854 0.0734144i
\(665\) −0.344502 1.03191i −0.0133592 0.0400157i
\(666\) −1.25639 2.64779i −0.0486843 0.102600i
\(667\) 52.9840 + 17.6886i 2.05155 + 0.684907i
\(668\) 34.7862 24.0112i 1.34592 0.929021i
\(669\) 7.35566 + 3.49031i 0.284386 + 0.134943i
\(670\) −0.407752 + 0.0164318i −0.0157528 + 0.000634817i
\(671\) 0.256833 + 1.04201i 0.00991495 + 0.0402265i
\(672\) 6.64468 2.83103i 0.256324 0.109209i
\(673\) −5.37189 0.873018i −0.207071 0.0336524i 0.0559907 0.998431i \(-0.482168\pi\)
−0.263062 + 0.964779i \(0.584732\pi\)
\(674\) 1.50925 0.308115i 0.0581341 0.0118682i
\(675\) 25.3622 0.976193
\(676\) −21.1295 + 14.5100i −0.812673 + 0.558076i
\(677\) −16.6072 −0.638265 −0.319133 0.947710i \(-0.603392\pi\)
−0.319133 + 0.947710i \(0.603392\pi\)
\(678\) 0.326598 0.0666755i 0.0125429 0.00256066i
\(679\) 13.1821 + 2.14230i 0.505883 + 0.0822140i
\(680\) 0.198534 0.0845875i 0.00761344 0.00324378i
\(681\) 5.51476 + 22.3743i 0.211326 + 0.857384i
\(682\) −0.209995 + 0.00846252i −0.00804113 + 0.000324046i
\(683\) −7.35850 3.49165i −0.281565 0.133604i 0.282673 0.959216i \(-0.408779\pi\)
−0.564238 + 0.825612i \(0.690830\pi\)
\(684\) −1.81879 + 1.25542i −0.0695431 + 0.0480021i
\(685\) 10.2153 + 3.41037i 0.390306 + 0.130303i
\(686\) 0.869627 + 1.83270i 0.0332025 + 0.0699728i
\(687\) 8.22917 + 24.6494i 0.313963 + 0.940433i
\(688\) −35.8332 + 8.83210i −1.36613 + 0.336721i
\(689\) 0.952883 + 1.12297i 0.0363019 + 0.0427817i
\(690\) −0.703984 0.173517i −0.0268002 0.00660566i
\(691\) −0.327175 4.05279i −0.0124463 0.154175i 0.987549 0.157313i \(-0.0502832\pi\)
−0.999995 + 0.00313792i \(0.999001\pi\)
\(692\) −20.5213 + 21.3650i −0.780104 + 0.812174i
\(693\) −1.76819 + 3.72637i −0.0671678 + 0.141553i
\(694\) 2.49328 + 0.302739i 0.0946435 + 0.0114918i
\(695\) −1.01591 + 0.586536i −0.0385357 + 0.0222486i
\(696\) −3.48952 4.64371i −0.132270 0.176019i
\(697\) −4.22699 2.91768i −0.160109 0.110515i
\(698\) −2.18834 3.79032i −0.0828299 0.143466i
\(699\) 9.12070 15.7975i 0.344976 0.597517i
\(700\) 26.9706 12.7977i 1.01939 0.483708i
\(701\) −30.1354 + 15.8163i −1.13820 + 0.597373i −0.925125 0.379663i \(-0.876040\pi\)
−0.213075 + 0.977036i \(0.568348\pi\)
\(702\) −3.19665 0.589769i −0.120650 0.0222594i
\(703\) −5.97461 3.13572i −0.225337 0.118266i
\(704\) −5.55121 0.223706i −0.209219 0.00843125i
\(705\) −1.22702 6.01036i −0.0462124 0.226363i
\(706\) −0.931699 3.21660i −0.0350649 0.121058i
\(707\) 6.01482 11.4603i 0.226211 0.431008i
\(708\) −8.09163 + 12.7959i −0.304102 + 0.480899i
\(709\) 8.33958 + 51.3155i 0.313199 + 1.92719i 0.370490 + 0.928836i \(0.379190\pi\)
−0.0572908 + 0.998358i \(0.518246\pi\)
\(710\) −0.169437 + 0.687434i −0.00635887 + 0.0257989i
\(711\) 2.09011 10.2380i 0.0783853 0.383957i
\(712\) 6.90959 0.557800i 0.258948 0.0209044i
\(713\) −6.44988 10.1997i −0.241550 0.381981i
\(714\) 0.287258 0.254488i 0.0107503 0.00952398i
\(715\) −1.11162 + 0.868750i −0.0415722 + 0.0324894i
\(716\) −12.8133 11.3516i −0.478857 0.424230i
\(717\) 2.41499 14.8600i 0.0901893 0.554957i
\(718\) 1.72925 + 0.736763i 0.0645349 + 0.0274958i
\(719\) −26.0299 16.4603i −0.970751 0.613866i −0.0478300 0.998855i \(-0.515231\pi\)
−0.922921 + 0.384990i \(0.874205\pi\)
\(720\) 2.23033 + 2.51753i 0.0831196 + 0.0938226i
\(721\) 0.0885661 1.09709i 0.00329837 0.0408577i
\(722\) −0.989264 + 2.96321i −0.0368166 + 0.110279i
\(723\) 16.9620 2.05956i 0.630823 0.0765958i
\(724\) −0.879394 + 0.660822i −0.0326824 + 0.0245592i
\(725\) −22.8304 27.9621i −0.847898 1.03849i
\(726\) −1.54872 + 1.26449i −0.0574782 + 0.0469295i
\(727\) 13.0536 18.9113i 0.484129 0.701383i −0.502461 0.864600i \(-0.667572\pi\)
0.986590 + 0.163218i \(0.0521872\pi\)
\(728\) −7.44701 + 1.98585i −0.276004 + 0.0736007i
\(729\) 11.3769 + 16.4823i 0.421366 + 0.610454i
\(730\) 0.137423 + 0.0398051i 0.00508626 + 0.00147325i
\(731\) −5.09397 + 3.22123i −0.188407 + 0.119142i
\(732\) 3.14007 0.510312i 0.116060 0.0188617i
\(733\) 32.1092 12.1774i 1.18598 0.449783i 0.318821 0.947815i \(-0.396713\pi\)
0.867159 + 0.498032i \(0.165944\pi\)
\(734\) −1.98669 4.66293i −0.0733300 0.172112i
\(735\) −1.37078 + 1.31665i −0.0505619 + 0.0485654i
\(736\) 6.74397 + 12.8496i 0.248586 + 0.473641i
\(737\) 3.55055 + 0.286630i 0.130786 + 0.0105581i
\(738\) −0.653738 + 2.25697i −0.0240644 + 0.0830801i
\(739\) 8.63416 + 8.29322i 0.317613 + 0.305071i 0.834528 0.550965i \(-0.185740\pi\)
−0.516915 + 0.856036i \(0.672920\pi\)
\(740\) −3.69526 + 9.74359i −0.135840 + 0.358182i
\(741\) −2.42405 + 1.20699i −0.0890496 + 0.0443398i
\(742\) 0.0779577 + 0.205558i 0.00286192 + 0.00754626i
\(743\) 13.6420 32.0189i 0.500476 1.17466i −0.457862 0.889023i \(-0.651385\pi\)
0.958338 0.285636i \(-0.0922050\pi\)
\(744\) −0.0505309 + 1.25391i −0.00185255 + 0.0459706i
\(745\) 1.98567 2.43201i 0.0727495 0.0891019i
\(746\) 0.855864i 0.0313354i
\(747\) 15.5849 + 12.7246i 0.570220 + 0.465570i
\(748\) −0.898220 + 0.260173i −0.0328422 + 0.00951286i
\(749\) −10.1650 + 11.4739i −0.371420 + 0.419247i
\(750\) 0.667439 + 0.694878i 0.0243714 + 0.0253734i
\(751\) −5.55809 + 1.85556i −0.202818 + 0.0677105i −0.416262 0.909245i \(-0.636660\pi\)
0.213444 + 0.976955i \(0.431532\pi\)
\(752\) −23.9980 + 31.9355i −0.875117 + 1.16457i
\(753\) 0.0414469 0.341346i 0.00151041 0.0124393i
\(754\) 2.22730 + 4.05523i 0.0811136 + 0.147683i
\(755\) −0.785384 6.46822i −0.0285831 0.235403i
\(756\) 29.2633 + 16.8952i 1.06429 + 0.614471i
\(757\) 3.63069 + 2.72829i 0.131960 + 0.0991613i 0.664673 0.747135i \(-0.268571\pi\)
−0.532713 + 0.846296i \(0.678827\pi\)
\(758\) −0.0742144 1.84161i −0.00269559 0.0668903i
\(759\) 5.91761 + 2.24425i 0.214796 + 0.0814612i
\(760\) −0.222706 0.0454658i −0.00807841 0.00164922i
\(761\) −31.9603 6.52475i −1.15856 0.236522i −0.417959 0.908466i \(-0.637255\pi\)
−0.740602 + 0.671944i \(0.765460\pi\)
\(762\) −2.56597 0.973146i −0.0929555 0.0352534i
\(763\) 0.731423 + 18.1501i 0.0264793 + 0.657077i
\(764\) −20.2184 15.1932i −0.731476 0.549669i
\(765\) 0.475681 + 0.274635i 0.0171983