Properties

Label 169.2.k.a.17.3
Level $169$
Weight $2$
Character 169.17
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 169.17
Dual form 169.2.k.a.10.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99584 + 0.407454i) q^{2} +(1.34046 + 0.217845i) q^{3} +(1.97740 - 0.842491i) q^{4} +(-0.647035 - 2.62512i) q^{5} +(-2.76410 + 0.111389i) q^{6} +(-3.12689 - 1.48373i) q^{7} +(-0.250449 + 0.172873i) q^{8} +(-1.09624 - 0.365979i) q^{9} +O(q^{10})\) \(q+(-1.99584 + 0.407454i) q^{2} +(1.34046 + 0.217845i) q^{3} +(1.97740 - 0.842491i) q^{4} +(-0.647035 - 2.62512i) q^{5} +(-2.76410 + 0.111389i) q^{6} +(-3.12689 - 1.48373i) q^{7} +(-0.250449 + 0.172873i) q^{8} +(-1.09624 - 0.365979i) q^{9} +(2.36099 + 4.97569i) q^{10} +(-0.457073 - 1.36910i) q^{11} +(2.83415 - 0.698555i) q^{12} +(-2.59114 + 2.50718i) q^{13} +(6.84532 + 1.68722i) q^{14} +(-0.295451 - 3.65982i) q^{15} +(-2.54846 + 2.65323i) q^{16} +(3.18715 - 6.71677i) q^{17} +(2.33704 + 0.283768i) q^{18} +(1.35625 - 0.783031i) q^{19} +(-3.49109 - 4.64579i) q^{20} +(-3.86824 - 2.67005i) q^{21} +(1.47009 + 2.54627i) q^{22} +(2.33811 - 4.04973i) q^{23} +(-0.373376 + 0.177169i) q^{24} +(-2.04534 + 1.07347i) q^{25} +(4.14995 - 6.05971i) q^{26} +(-4.99720 - 2.62273i) q^{27} +(-7.43313 - 0.299545i) q^{28} +(1.83251 + 8.97622i) q^{29} +(2.08088 + 7.18403i) q^{30} +(2.10123 - 4.00356i) q^{31} +(4.33054 - 6.84820i) q^{32} +(-0.314435 - 1.93479i) q^{33} +(-3.62426 + 14.7042i) q^{34} +(-1.87176 + 9.16849i) q^{35} +(-2.47604 + 0.199887i) q^{36} +(2.23182 + 3.52934i) q^{37} +(-2.38781 + 2.11541i) q^{38} +(-4.01949 + 2.79630i) q^{39} +(0.615861 + 0.545605i) q^{40} +(-0.705434 + 4.34071i) q^{41} +(8.80830 + 3.75287i) q^{42} +(6.97646 + 4.41165i) q^{43} +(-2.05727 - 2.32218i) q^{44} +(-0.251434 + 3.11457i) q^{45} +(-3.01642 + 9.03528i) q^{46} +(-4.62870 + 0.562026i) q^{47} +(-3.99409 + 3.00136i) q^{48} +(3.14887 + 3.85667i) q^{49} +(3.64477 - 2.97586i) q^{50} +(5.73545 - 8.30923i) q^{51} +(-3.01144 + 7.14072i) q^{52} +(-6.04755 - 8.76139i) q^{53} +(11.0423 + 3.19843i) q^{54} +(-3.29832 + 2.08573i) q^{55} +(1.03962 - 0.168955i) q^{56} +(1.98857 - 0.754166i) q^{57} +(-7.31479 - 17.1684i) q^{58} +(2.94149 - 2.82534i) q^{59} +(-3.66759 - 6.98800i) q^{60} +(-1.14441 - 0.0923863i) q^{61} +(-2.56246 + 8.84663i) q^{62} +(2.88481 + 2.77090i) q^{63} +(-3.24364 + 8.55277i) q^{64} +(8.25823 + 5.17984i) q^{65} +(1.41590 + 3.73342i) q^{66} +(2.26143 - 5.30777i) q^{67} +(0.643443 - 15.9669i) q^{68} +(4.01635 - 4.91914i) q^{69} -19.0615i q^{70} +(-5.41606 - 4.42208i) q^{71} +(0.337820 - 0.0978509i) q^{72} +(0.379675 - 0.428564i) q^{73} +(-5.89239 - 6.13463i) q^{74} +(-2.97554 + 0.993380i) q^{75} +(2.02215 - 2.69099i) q^{76} +(-0.602156 + 4.95920i) q^{77} +(6.88290 - 7.21873i) q^{78} +(0.816417 + 6.72380i) q^{79} +(8.61398 + 4.97329i) q^{80} +(-3.35539 - 2.52141i) q^{81} +(-0.360705 - 8.95080i) q^{82} +(-1.28793 - 0.488449i) q^{83} +(-9.89854 - 2.02080i) q^{84} +(-19.6945 - 4.02067i) q^{85} +(-15.7214 - 5.96236i) q^{86} +(0.500970 + 12.4314i) q^{87} +(0.351154 + 0.263875i) q^{88} +(13.8701 + 8.00792i) q^{89} +(-0.767221 - 6.31863i) q^{90} +(11.8222 - 3.99514i) q^{91} +(1.21152 - 9.97777i) q^{92} +(3.68877 - 4.90886i) q^{93} +(9.00915 - 3.00770i) q^{94} +(-2.93309 - 3.05367i) q^{95} +(7.29676 - 8.23633i) q^{96} +(-1.48629 + 0.430509i) q^{97} +(-7.85605 - 6.41427i) q^{98} +1.66815i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{73}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99584 + 0.407454i −1.41127 + 0.288113i −0.844409 0.535699i \(-0.820048\pi\)
−0.566863 + 0.823812i \(0.691843\pi\)
\(3\) 1.34046 + 0.217845i 0.773913 + 0.125773i 0.534527 0.845151i \(-0.320490\pi\)
0.239386 + 0.970924i \(0.423054\pi\)
\(4\) 1.97740 0.842491i 0.988700 0.421246i
\(5\) −0.647035 2.62512i −0.289363 1.17399i −0.918092 0.396367i \(-0.870271\pi\)
0.628730 0.777624i \(-0.283575\pi\)
\(6\) −2.76410 + 0.111389i −1.12844 + 0.0454745i
\(7\) −3.12689 1.48373i −1.18185 0.560796i −0.266652 0.963793i \(-0.585917\pi\)
−0.915201 + 0.402997i \(0.867969\pi\)
\(8\) −0.250449 + 0.172873i −0.0885471 + 0.0611197i
\(9\) −1.09624 0.365979i −0.365414 0.121993i
\(10\) 2.36099 + 4.97569i 0.746612 + 1.57345i
\(11\) −0.457073 1.36910i −0.137813 0.412800i 0.856902 0.515480i \(-0.172386\pi\)
−0.994714 + 0.102680i \(0.967258\pi\)
\(12\) 2.83415 0.698555i 0.818149 0.201656i
\(13\) −2.59114 + 2.50718i −0.718654 + 0.695368i
\(14\) 6.84532 + 1.68722i 1.82949 + 0.450928i
\(15\) −0.295451 3.65982i −0.0762851 0.944961i
\(16\) −2.54846 + 2.65323i −0.637114 + 0.663306i
\(17\) 3.18715 6.71677i 0.772997 1.62906i −0.00435589 0.999991i \(-0.501387\pi\)
0.777352 0.629065i \(-0.216562\pi\)
\(18\) 2.33704 + 0.283768i 0.550846 + 0.0668848i
\(19\) 1.35625 0.783031i 0.311145 0.179640i −0.336294 0.941757i \(-0.609174\pi\)
0.647439 + 0.762118i \(0.275840\pi\)
\(20\) −3.49109 4.64579i −0.780631 1.03883i
\(21\) −3.86824 2.67005i −0.844118 0.582653i
\(22\) 1.47009 + 2.54627i 0.313424 + 0.542867i
\(23\) 2.33811 4.04973i 0.487530 0.844427i −0.512367 0.858767i \(-0.671231\pi\)
0.999897 + 0.0143395i \(0.00456458\pi\)
\(24\) −0.373376 + 0.177169i −0.0762150 + 0.0361645i
\(25\) −2.04534 + 1.07347i −0.409067 + 0.214695i
\(26\) 4.14995 6.05971i 0.813871 1.18841i
\(27\) −4.99720 2.62273i −0.961712 0.504745i
\(28\) −7.43313 0.299545i −1.40473 0.0566087i
\(29\) 1.83251 + 8.97622i 0.340288 + 1.66684i 0.685313 + 0.728249i \(0.259666\pi\)
−0.345024 + 0.938594i \(0.612129\pi\)
\(30\) 2.08088 + 7.18403i 0.379915 + 1.31162i
\(31\) 2.10123 4.00356i 0.377393 0.719061i −0.620482 0.784220i \(-0.713063\pi\)
0.997875 + 0.0651589i \(0.0207554\pi\)
\(32\) 4.33054 6.84820i 0.765539 1.21060i
\(33\) −0.314435 1.93479i −0.0547360 0.336804i
\(34\) −3.62426 + 14.7042i −0.621556 + 2.52175i
\(35\) −1.87176 + 9.16849i −0.316385 + 1.54976i
\(36\) −2.47604 + 0.199887i −0.412674 + 0.0333145i
\(37\) 2.23182 + 3.52934i 0.366909 + 0.580220i 0.977295 0.211884i \(-0.0679601\pi\)
−0.610386 + 0.792104i \(0.708986\pi\)
\(38\) −2.38781 + 2.11541i −0.387353 + 0.343165i
\(39\) −4.01949 + 2.79630i −0.643634 + 0.447767i
\(40\) 0.615861 + 0.545605i 0.0973762 + 0.0862677i
\(41\) −0.705434 + 4.34071i −0.110170 + 0.677905i 0.871942 + 0.489609i \(0.162861\pi\)
−0.982112 + 0.188296i \(0.939704\pi\)
\(42\) 8.80830 + 3.75287i 1.35915 + 0.579080i
\(43\) 6.97646 + 4.41165i 1.06390 + 0.672770i 0.947280 0.320407i \(-0.103820\pi\)
0.116620 + 0.993177i \(0.462794\pi\)
\(44\) −2.05727 2.32218i −0.310146 0.350082i
\(45\) −0.251434 + 3.11457i −0.0374816 + 0.464293i
\(46\) −3.01642 + 9.03528i −0.444747 + 1.33218i
\(47\) −4.62870 + 0.562026i −0.675166 + 0.0819799i −0.450936 0.892556i \(-0.648910\pi\)
−0.224230 + 0.974536i \(0.571987\pi\)
\(48\) −3.99409 + 3.00136i −0.576497 + 0.433210i
\(49\) 3.14887 + 3.85667i 0.449839 + 0.550952i
\(50\) 3.64477 2.97586i 0.515448 0.420851i
\(51\) 5.73545 8.30923i 0.803124 1.16353i
\(52\) −3.01144 + 7.14072i −0.417612 + 0.990240i
\(53\) −6.04755 8.76139i −0.830695 1.20347i −0.976790 0.214199i \(-0.931286\pi\)
0.146095 0.989271i \(-0.453330\pi\)
\(54\) 11.0423 + 3.19843i 1.50266 + 0.435251i
\(55\) −3.29832 + 2.08573i −0.444745 + 0.281240i
\(56\) 1.03962 0.168955i 0.138925 0.0225776i
\(57\) 1.98857 0.754166i 0.263393 0.0998917i
\(58\) −7.31479 17.1684i −0.960479 2.25433i
\(59\) 2.94149 2.82534i 0.382949 0.367827i −0.476390 0.879234i \(-0.658055\pi\)
0.859339 + 0.511407i \(0.170875\pi\)
\(60\) −3.66759 6.98800i −0.473484 0.902147i
\(61\) −1.14441 0.0923863i −0.146527 0.0118289i 0.00698561 0.999976i \(-0.497776\pi\)
−0.153512 + 0.988147i \(0.549058\pi\)
\(62\) −2.56246 + 8.84663i −0.325432 + 1.12352i
\(63\) 2.88481 + 2.77090i 0.363452 + 0.349101i
\(64\) −3.24364 + 8.55277i −0.405455 + 1.06910i
\(65\) 8.25823 + 5.17984i 1.02431 + 0.642479i
\(66\) 1.41590 + 3.73342i 0.174285 + 0.459552i
\(67\) 2.26143 5.30777i 0.276277 0.648447i −0.722815 0.691042i \(-0.757152\pi\)
0.999092 + 0.0425946i \(0.0135624\pi\)
\(68\) 0.643443 15.9669i 0.0780289 1.93627i
\(69\) 4.01635 4.91914i 0.483512 0.592195i
\(70\) 19.0615i 2.27828i
\(71\) −5.41606 4.42208i −0.642768 0.524804i 0.254057 0.967189i \(-0.418235\pi\)
−0.896825 + 0.442385i \(0.854132\pi\)
\(72\) 0.337820 0.0978509i 0.0398125 0.0115318i
\(73\) 0.379675 0.428564i 0.0444375 0.0501596i −0.725872 0.687830i \(-0.758563\pi\)
0.770309 + 0.637671i \(0.220102\pi\)
\(74\) −5.89239 6.13463i −0.684977 0.713136i
\(75\) −2.97554 + 0.993380i −0.343585 + 0.114706i
\(76\) 2.02215 2.69099i 0.231956 0.308678i
\(77\) −0.602156 + 4.95920i −0.0686221 + 0.565154i
\(78\) 6.88290 7.21873i 0.779335 0.817360i
\(79\) 0.816417 + 6.72380i 0.0918541 + 0.756486i 0.963752 + 0.266799i \(0.0859660\pi\)
−0.871898 + 0.489687i \(0.837111\pi\)
\(80\) 8.61398 + 4.97329i 0.963073 + 0.556030i
\(81\) −3.35539 2.52141i −0.372821 0.280157i
\(82\) −0.360705 8.95080i −0.0398332 0.988450i
\(83\) −1.28793 0.488449i −0.141369 0.0536143i 0.282906 0.959148i \(-0.408702\pi\)
−0.424275 + 0.905533i \(0.639471\pi\)
\(84\) −9.89854 2.02080i −1.08002 0.220488i
\(85\) −19.6945 4.02067i −2.13617 0.436103i
\(86\) −15.7214 5.96236i −1.69529 0.642937i
\(87\) 0.500970 + 12.4314i 0.0537096 + 1.33279i
\(88\) 0.351154 + 0.263875i 0.0374331 + 0.0281292i
\(89\) 13.8701 + 8.00792i 1.47023 + 0.848837i 0.999442 0.0334089i \(-0.0106364\pi\)
0.470788 + 0.882246i \(0.343970\pi\)
\(90\) −0.767221 6.31863i −0.0808722 0.666042i
\(91\) 11.8222 3.99514i 1.23930 0.418804i
\(92\) 1.21152 9.97777i 0.126310 1.04025i
\(93\) 3.68877 4.90886i 0.382508 0.509025i
\(94\) 9.00915 3.00770i 0.929223 0.310220i
\(95\) −2.93309 3.05367i −0.300929 0.313300i
\(96\) 7.29676 8.23633i 0.744722 0.840617i
\(97\) −1.48629 + 0.430509i −0.150910 + 0.0437116i −0.352813 0.935694i \(-0.614775\pi\)
0.201903 + 0.979406i \(0.435288\pi\)
\(98\) −7.85605 6.41427i −0.793581 0.647939i
\(99\) 1.66815i 0.167655i
\(100\) −3.14005 + 3.84586i −0.314005 + 0.384586i
\(101\) 0.245955 6.10331i 0.0244734 0.607302i −0.939695 0.342012i \(-0.888891\pi\)
0.964169 0.265289i \(-0.0854675\pi\)
\(102\) −8.06141 + 18.9208i −0.798199 + 1.87344i
\(103\) −4.19702 11.0666i −0.413545 1.09043i −0.966376 0.257134i \(-0.917222\pi\)
0.552831 0.833293i \(-0.313547\pi\)
\(104\) 0.215526 1.07586i 0.0211341 0.105497i
\(105\) −4.50633 + 11.8822i −0.439773 + 1.15958i
\(106\) 15.6398 + 15.0222i 1.51907 + 1.45909i
\(107\) 4.36722 15.0774i 0.422195 1.45759i −0.414566 0.910019i \(-0.636067\pi\)
0.836761 0.547568i \(-0.184446\pi\)
\(108\) −12.0911 0.976093i −1.16347 0.0939246i
\(109\) 8.34150 + 15.8934i 0.798971 + 1.52231i 0.851894 + 0.523714i \(0.175454\pi\)
−0.0529231 + 0.998599i \(0.516854\pi\)
\(110\) 5.73308 5.50670i 0.546627 0.525043i
\(111\) 2.22281 + 5.21712i 0.210979 + 0.495187i
\(112\) 11.9054 4.51513i 1.12496 0.426639i
\(113\) 16.6925 2.71280i 1.57030 0.255199i 0.687939 0.725768i \(-0.258516\pi\)
0.882363 + 0.470569i \(0.155951\pi\)
\(114\) −3.66158 + 2.31545i −0.342939 + 0.216861i
\(115\) −12.1439 3.51752i −1.13242 0.328010i
\(116\) 11.1860 + 16.2057i 1.03859 + 1.50466i
\(117\) 3.75810 1.80018i 0.347436 0.166426i
\(118\) −4.71954 + 6.83744i −0.434469 + 0.629437i
\(119\) −19.9317 + 16.2737i −1.82714 + 1.49181i
\(120\) 0.706677 + 0.865523i 0.0645105 + 0.0790110i
\(121\) 7.12835 5.35660i 0.648031 0.486964i
\(122\) 2.32170 0.281906i 0.210197 0.0255225i
\(123\) −1.89121 + 5.66486i −0.170525 + 0.510783i
\(124\) 0.782009 9.68692i 0.0702265 0.869911i
\(125\) −4.82297 5.44401i −0.431380 0.486927i
\(126\) −6.88664 4.35485i −0.613510 0.387960i
\(127\) −5.02428 2.14065i −0.445833 0.189952i 0.157369 0.987540i \(-0.449699\pi\)
−0.603203 + 0.797588i \(0.706109\pi\)
\(128\) 0.389439 2.39632i 0.0344219 0.211806i
\(129\) 8.39059 + 7.43341i 0.738750 + 0.654475i
\(130\) −18.5926 6.97328i −1.63068 0.611597i
\(131\) −8.32220 + 7.37283i −0.727114 + 0.644167i −0.943207 0.332206i \(-0.892207\pi\)
0.216093 + 0.976373i \(0.430669\pi\)
\(132\) −2.25181 3.56095i −0.195995 0.309941i
\(133\) −5.40264 + 0.436146i −0.468469 + 0.0378187i
\(134\) −2.35078 + 11.5149i −0.203076 + 0.994734i
\(135\) −3.65163 + 14.8153i −0.314283 + 1.27509i
\(136\) 0.362927 + 2.23318i 0.0311207 + 0.191494i
\(137\) −0.432359 + 0.683721i −0.0369389 + 0.0584142i −0.863155 0.504940i \(-0.831515\pi\)
0.826216 + 0.563354i \(0.190489\pi\)
\(138\) −6.01168 + 11.4543i −0.511748 + 0.975054i
\(139\) −1.53574 5.30200i −0.130260 0.449710i 0.868698 0.495342i \(-0.164957\pi\)
−0.998958 + 0.0456318i \(0.985470\pi\)
\(140\) 4.02315 + 19.7067i 0.340018 + 1.66552i
\(141\) −6.32701 0.254970i −0.532830 0.0214723i
\(142\) 12.6114 + 6.61897i 1.05832 + 0.555451i
\(143\) 4.61693 + 2.40157i 0.386087 + 0.200830i
\(144\) 3.76475 1.97589i 0.313729 0.164658i
\(145\) 22.3780 10.6185i 1.85839 0.881817i
\(146\) −0.583150 + 1.01004i −0.0482618 + 0.0835919i
\(147\) 3.38077 + 5.85566i 0.278841 + 0.482967i
\(148\) 7.38663 + 5.09862i 0.607177 + 0.419104i
\(149\) 6.01119 + 7.99944i 0.492456 + 0.655340i 0.975434 0.220293i \(-0.0707012\pi\)
−0.482978 + 0.875633i \(0.660445\pi\)
\(150\) 5.53394 3.19502i 0.451844 0.260872i
\(151\) 7.83377 + 0.951191i 0.637503 + 0.0774068i 0.432905 0.901439i \(-0.357488\pi\)
0.204597 + 0.978846i \(0.434411\pi\)
\(152\) −0.204307 + 0.430567i −0.0165715 + 0.0349236i
\(153\) −5.95208 + 6.19677i −0.481197 + 0.500979i
\(154\) −0.818838 10.1431i −0.0659838 0.817356i
\(155\) −11.8694 2.92555i −0.953375 0.234986i
\(156\) −5.59228 + 8.91580i −0.447741 + 0.713835i
\(157\) 6.30630 1.55436i 0.503298 0.124052i 0.0205108 0.999790i \(-0.493471\pi\)
0.482787 + 0.875738i \(0.339625\pi\)
\(158\) −4.36907 13.0870i −0.347585 1.04114i
\(159\) −6.19785 13.0617i −0.491522 1.03586i
\(160\) −20.7794 6.93718i −1.64275 0.548432i
\(161\) −13.3197 + 9.19393i −1.04974 + 0.724584i
\(162\) 7.72417 + 3.66516i 0.606868 + 0.287963i
\(163\) 3.43491 0.138422i 0.269043 0.0108421i 0.0946223 0.995513i \(-0.469836\pi\)
0.174421 + 0.984671i \(0.444195\pi\)
\(164\) 2.26209 + 9.17764i 0.176639 + 0.716653i
\(165\) −4.87562 + 2.07731i −0.379567 + 0.161718i
\(166\) 2.76953 + 0.450093i 0.214957 + 0.0349340i
\(167\) −10.0033 + 2.04219i −0.774079 + 0.158029i −0.570797 0.821091i \(-0.693366\pi\)
−0.203282 + 0.979120i \(0.565161\pi\)
\(168\) 1.43037 0.110356
\(169\) 0.428052 12.9930i 0.0329271 0.999458i
\(170\) 40.9454 3.14037
\(171\) −1.77335 + 0.362032i −0.135611 + 0.0276853i
\(172\) 17.5120 + 2.84598i 1.33528 + 0.217004i
\(173\) 7.96615 3.39406i 0.605655 0.258046i −0.0672953 0.997733i \(-0.521437\pi\)
0.672950 + 0.739688i \(0.265027\pi\)
\(174\) −6.06509 24.6070i −0.459793 1.86546i
\(175\) 7.98828 0.321917i 0.603857 0.0243346i
\(176\) 4.79737 + 2.27638i 0.361615 + 0.171589i
\(177\) 4.55842 3.14645i 0.342632 0.236502i
\(178\) −30.9454 10.3311i −2.31946 0.774348i
\(179\) −6.42291 13.5360i −0.480071 1.01173i −0.988584 0.150673i \(-0.951856\pi\)
0.508513 0.861054i \(-0.330195\pi\)
\(180\) 2.12681 + 6.37058i 0.158523 + 0.474835i
\(181\) 6.10303 1.50426i 0.453634 0.111811i −0.00587692 0.999983i \(-0.501871\pi\)
0.459511 + 0.888172i \(0.348025\pi\)
\(182\) −21.9674 + 12.7906i −1.62833 + 0.948106i
\(183\) −1.51391 0.373144i −0.111911 0.0275836i
\(184\) 0.114509 + 1.41845i 0.00844170 + 0.104569i
\(185\) 7.82088 8.14240i 0.575003 0.598641i
\(186\) −5.36206 + 11.3003i −0.393165 + 0.828579i
\(187\) −10.6527 1.29347i −0.779003 0.0945881i
\(188\) −8.67929 + 5.01099i −0.633002 + 0.365464i
\(189\) 11.7343 + 15.6155i 0.853542 + 1.13586i
\(190\) 7.09821 + 4.89954i 0.514958 + 0.355450i
\(191\) −2.27209 3.93538i −0.164403 0.284754i 0.772040 0.635574i \(-0.219236\pi\)
−0.936443 + 0.350820i \(0.885903\pi\)
\(192\) −6.21114 + 10.7580i −0.448250 + 0.776392i
\(193\) −3.69510 + 1.75335i −0.265979 + 0.126209i −0.557012 0.830504i \(-0.688052\pi\)
0.291033 + 0.956713i \(0.406001\pi\)
\(194\) 2.79099 1.46482i 0.200381 0.105168i
\(195\) 9.94139 + 8.74236i 0.711918 + 0.626054i
\(196\) 9.47578 + 4.97327i 0.676841 + 0.355234i
\(197\) −8.32247 0.335384i −0.592951 0.0238951i −0.258023 0.966139i \(-0.583071\pi\)
−0.334928 + 0.942244i \(0.608712\pi\)
\(198\) −0.679692 3.32935i −0.0483036 0.236607i
\(199\) −6.04448 20.8680i −0.428482 1.47929i −0.827038 0.562146i \(-0.809976\pi\)
0.398556 0.917144i \(-0.369511\pi\)
\(200\) 0.326678 0.622433i 0.0230996 0.0440127i
\(201\) 4.18762 6.62219i 0.295372 0.467093i
\(202\) 1.99593 + 12.2814i 0.140433 + 0.864119i
\(203\) 7.58821 30.7866i 0.532588 2.16080i
\(204\) 4.34082 21.2627i 0.303918 1.48869i
\(205\) 11.8513 0.956739i 0.827734 0.0668216i
\(206\) 12.8857 + 20.3771i 0.897790 + 1.41974i
\(207\) −4.04525 + 3.58378i −0.281165 + 0.249090i
\(208\) −0.0487057 13.2643i −0.00337713 0.919717i
\(209\) −1.69195 1.49894i −0.117035 0.103684i
\(210\) 4.15246 25.5511i 0.286547 1.76319i
\(211\) 22.1462 + 9.43563i 1.52461 + 0.649576i 0.981738 0.190240i \(-0.0609265\pi\)
0.542872 + 0.839815i \(0.317337\pi\)
\(212\) −19.3398 12.2298i −1.32826 0.839944i
\(213\) −6.29667 7.10747i −0.431441 0.486996i
\(214\) −2.57293 + 31.8715i −0.175882 + 2.17869i
\(215\) 7.06710 21.1686i 0.481972 1.44368i
\(216\) 1.70494 0.207018i 0.116007 0.0140858i
\(217\) −12.5105 + 9.40105i −0.849269 + 0.638185i
\(218\) −23.1241 28.3219i −1.56616 1.91820i
\(219\) 0.602298 0.491761i 0.0406995 0.0332301i
\(220\) −4.76488 + 6.90312i −0.321248 + 0.465409i
\(221\) 8.58182 + 25.3949i 0.577276 + 1.70824i
\(222\) −6.56210 9.50684i −0.440419 0.638057i
\(223\) 9.11836 + 2.64117i 0.610611 + 0.176865i 0.569094 0.822272i \(-0.307294\pi\)
0.0415163 + 0.999138i \(0.486781\pi\)
\(224\) −23.7020 + 14.9882i −1.58366 + 1.00144i
\(225\) 2.63505 0.428237i 0.175670 0.0285492i
\(226\) −32.2103 + 12.2158i −2.14260 + 0.812580i
\(227\) −8.61999 20.2319i −0.572129 1.34284i −0.915000 0.403453i \(-0.867810\pi\)
0.342871 0.939382i \(-0.388600\pi\)
\(228\) 3.29682 3.16664i 0.218337 0.209716i
\(229\) 9.84511 + 18.7583i 0.650583 + 1.23958i 0.957661 + 0.287898i \(0.0929566\pi\)
−0.307078 + 0.951684i \(0.599351\pi\)
\(230\) 25.6705 + 2.07233i 1.69266 + 0.136646i
\(231\) −1.88750 + 6.51642i −0.124189 + 0.428749i
\(232\) −2.01069 1.93130i −0.132008 0.126796i
\(233\) −7.20397 + 18.9953i −0.471948 + 1.24442i 0.461957 + 0.886902i \(0.347147\pi\)
−0.933905 + 0.357522i \(0.883622\pi\)
\(234\) −6.76707 + 5.12411i −0.442377 + 0.334974i
\(235\) 4.47032 + 11.7873i 0.291611 + 0.768916i
\(236\) 3.43617 8.06499i 0.223676 0.524986i
\(237\) −0.370377 + 9.19081i −0.0240586 + 0.597007i
\(238\) 33.1497 40.6010i 2.14878 2.63177i
\(239\) 11.8144i 0.764210i −0.924119 0.382105i \(-0.875199\pi\)
0.924119 0.382105i \(-0.124801\pi\)
\(240\) 10.4633 + 8.54299i 0.675401 + 0.551448i
\(241\) −21.9046 + 6.34476i −1.41100 + 0.408702i −0.894302 0.447465i \(-0.852327\pi\)
−0.516700 + 0.856166i \(0.672840\pi\)
\(242\) −12.0445 + 13.5954i −0.774248 + 0.873945i
\(243\) 7.78000 + 8.09984i 0.499087 + 0.519605i
\(244\) −2.34079 + 0.781470i −0.149854 + 0.0500285i
\(245\) 8.08679 10.7616i 0.516646 0.687531i
\(246\) 1.46638 12.0767i 0.0934930 0.769984i
\(247\) −1.55103 + 5.42931i −0.0986899 + 0.345459i
\(248\) 0.165855 + 1.36593i 0.0105318 + 0.0867369i
\(249\) −1.62001 0.935316i −0.102664 0.0592732i
\(250\) 11.8441 + 8.90024i 0.749085 + 0.562901i
\(251\) 0.811317 + 20.1326i 0.0512099 + 1.27076i 0.796754 + 0.604304i \(0.206549\pi\)
−0.745544 + 0.666457i \(0.767810\pi\)
\(252\) 8.03888 + 3.04875i 0.506402 + 0.192053i
\(253\) −6.61318 1.35009i −0.415767 0.0848795i
\(254\) 10.8999 + 2.22523i 0.683919 + 0.139623i
\(255\) −25.5238 9.67990i −1.59836 0.606179i
\(256\) −0.537511 13.3382i −0.0335944 0.833637i
\(257\) 15.9028 + 11.9502i 0.991991 + 0.745433i 0.967136 0.254258i \(-0.0818312\pi\)
0.0248549 + 0.999691i \(0.492088\pi\)
\(258\) −19.7750 11.4171i −1.23114 0.710799i
\(259\) −1.74207 14.3473i −0.108247 0.891495i
\(260\) 20.6938 + 3.28512i 1.28337 + 0.203734i
\(261\) 1.27624 10.5108i 0.0789972 0.650600i
\(262\) 13.6057 18.1059i 0.840563 1.11859i
\(263\) −26.1751 + 8.73854i −1.61403 + 0.538842i −0.973420 0.229027i \(-0.926446\pi\)
−0.640608 + 0.767868i \(0.721317\pi\)
\(264\) 0.413222 + 0.430210i 0.0254321 + 0.0264776i
\(265\) −19.0868 + 21.5445i −1.17249 + 1.32347i
\(266\) 10.6051 3.07180i 0.650240 0.188344i
\(267\) 16.8478 + 13.7558i 1.03107 + 0.841842i
\(268\) 12.4008i 0.757500i
\(269\) −4.38696 + 5.37305i −0.267478 + 0.327601i −0.890827 0.454343i \(-0.849874\pi\)
0.623349 + 0.781944i \(0.285772\pi\)
\(270\) 1.25154 31.0568i 0.0761666 1.89005i
\(271\) −5.84265 + 13.7132i −0.354916 + 0.833018i 0.642836 + 0.766004i \(0.277758\pi\)
−0.997752 + 0.0670145i \(0.978653\pi\)
\(272\) 9.69879 + 25.5736i 0.588076 + 1.55063i
\(273\) 16.7175 2.77990i 1.01179 0.168247i
\(274\) 0.584334 1.54076i 0.0353009 0.0930809i
\(275\) 2.40456 + 2.30962i 0.145001 + 0.139275i
\(276\) 3.79760 13.1108i 0.228589 0.789180i
\(277\) 8.19712 + 0.661740i 0.492517 + 0.0397601i 0.324231 0.945978i \(-0.394895\pi\)
0.168286 + 0.985738i \(0.446177\pi\)
\(278\) 5.22542 + 9.95620i 0.313400 + 0.597133i
\(279\) −3.76868 + 3.61987i −0.225625 + 0.216716i
\(280\) −1.11620 2.61982i −0.0667057 0.156564i
\(281\) 23.1226 8.76924i 1.37938 0.523129i 0.450255 0.892900i \(-0.351333\pi\)
0.929123 + 0.369771i \(0.120564\pi\)
\(282\) 12.7316 2.06908i 0.758155 0.123212i
\(283\) −14.0566 + 8.88886i −0.835578 + 0.528388i −0.882392 0.470516i \(-0.844068\pi\)
0.0468131 + 0.998904i \(0.485093\pi\)
\(284\) −14.4353 4.18123i −0.856576 0.248110i
\(285\) −3.26645 4.73227i −0.193488 0.280316i
\(286\) −10.1932 2.91197i −0.602736 0.172188i
\(287\) 8.64625 12.5263i 0.510372 0.739401i
\(288\) −7.25362 + 5.92240i −0.427424 + 0.348981i
\(289\) −24.2055 29.6464i −1.42385 1.74390i
\(290\) −40.3363 + 30.3108i −2.36863 + 1.77991i
\(291\) −2.08609 + 0.253298i −0.122289 + 0.0148486i
\(292\) 0.389707 1.16731i 0.0228059 0.0683119i
\(293\) 0.140226 1.73702i 0.00819212 0.101478i −0.991369 0.131101i \(-0.958149\pi\)
0.999561 + 0.0296235i \(0.00943082\pi\)
\(294\) −9.13338 10.3095i −0.532670 0.601260i
\(295\) −9.32010 5.89367i −0.542637 0.343143i
\(296\) −1.16908 0.498099i −0.0679515 0.0289514i
\(297\) −1.30670 + 8.04046i −0.0758225 + 0.466555i
\(298\) −15.2568 13.5163i −0.883801 0.782980i
\(299\) 4.09503 + 16.3555i 0.236822 + 0.945864i
\(300\) −5.04691 + 4.47117i −0.291383 + 0.258143i
\(301\) −15.2689 24.1459i −0.880087 1.39175i
\(302\) −16.0225 + 1.29347i −0.921992 + 0.0744309i
\(303\) 1.65927 8.12764i 0.0953225 0.466921i
\(304\) −1.37879 + 5.59395i −0.0790788 + 0.320835i
\(305\) 0.497947 + 3.06399i 0.0285124 + 0.175444i
\(306\) 9.35450 14.7930i 0.534761 0.845657i
\(307\) 9.06808 17.2778i 0.517543 0.986095i −0.476712 0.879059i \(-0.658172\pi\)
0.994255 0.107036i \(-0.0341360\pi\)
\(308\) 2.98738 + 10.3136i 0.170222 + 0.587674i
\(309\) −3.21511 15.7486i −0.182901 0.895909i
\(310\) 24.8815 + 1.00269i 1.41317 + 0.0569489i
\(311\) −17.5336 9.20232i −0.994237 0.521816i −0.112548 0.993646i \(-0.535901\pi\)
−0.881689 + 0.471831i \(0.843593\pi\)
\(312\) 0.523275 1.39519i 0.0296246 0.0789872i
\(313\) 1.14134 0.599021i 0.0645123 0.0338586i −0.432159 0.901798i \(-0.642248\pi\)
0.496671 + 0.867939i \(0.334556\pi\)
\(314\) −11.9530 + 5.67178i −0.674549 + 0.320077i
\(315\) 5.40738 9.36585i 0.304671 0.527706i
\(316\) 7.27912 + 12.6078i 0.409483 + 0.709245i
\(317\) 4.60209 + 3.17659i 0.258479 + 0.178415i 0.690256 0.723565i \(-0.257498\pi\)
−0.431777 + 0.901980i \(0.642113\pi\)
\(318\) 17.6920 + 23.5437i 0.992116 + 1.32027i
\(319\) 11.4518 6.61168i 0.641176 0.370183i
\(320\) 24.5508 + 2.98101i 1.37243 + 0.166643i
\(321\) 9.13862 19.2592i 0.510068 1.07495i
\(322\) 22.8379 23.7768i 1.27271 1.32503i
\(323\) −0.936872 11.6052i −0.0521290 0.645733i
\(324\) −8.75920 2.15895i −0.486622 0.119942i
\(325\) 2.60836 7.90956i 0.144686 0.438743i
\(326\) −6.79914 + 1.67584i −0.376569 + 0.0928160i
\(327\) 7.71912 + 23.1216i 0.426868 + 1.27863i
\(328\) −0.573714 1.20908i −0.0316781 0.0667601i
\(329\) 15.3073 + 5.11034i 0.843920 + 0.281742i
\(330\) 8.88455 6.13256i 0.489078 0.337586i
\(331\) 8.12738 + 3.85649i 0.446721 + 0.211972i 0.638745 0.769418i \(-0.279454\pi\)
−0.192024 + 0.981390i \(0.561505\pi\)
\(332\) −2.95828 + 0.119214i −0.162356 + 0.00654274i
\(333\) −1.15495 4.68581i −0.0632907 0.256781i
\(334\) 19.1329 8.15177i 1.04691 0.446045i
\(335\) −15.3968 2.50222i −0.841215 0.136711i
\(336\) 16.9423 3.45879i 0.924277 0.188693i
\(337\) −13.4769 −0.734135 −0.367067 0.930194i \(-0.619638\pi\)
−0.367067 + 0.930194i \(0.619638\pi\)
\(338\) 4.43970 + 26.1063i 0.241488 + 1.41999i
\(339\) 22.9666 1.24737
\(340\) −42.3313 + 8.64200i −2.29574 + 0.468679i
\(341\) −6.44171 1.04688i −0.348838 0.0566917i
\(342\) 3.39181 1.44511i 0.183408 0.0781429i
\(343\) 1.67406 + 6.79193i 0.0903908 + 0.366730i
\(344\) −2.50990 + 0.101146i −0.135325 + 0.00545340i
\(345\) −15.5121 7.36057i −0.835142 0.396280i
\(346\) −14.5162 + 10.0198i −0.780398 + 0.538670i
\(347\) 29.6704 + 9.90544i 1.59279 + 0.531752i 0.968409 0.249367i \(-0.0802226\pi\)
0.624382 + 0.781119i \(0.285351\pi\)
\(348\) 11.4640 + 24.1599i 0.614535 + 1.29510i
\(349\) −8.30961 24.8903i −0.444803 1.33235i −0.897630 0.440750i \(-0.854713\pi\)
0.452827 0.891599i \(-0.350416\pi\)
\(350\) −15.8122 + 3.89735i −0.845196 + 0.208322i
\(351\) 19.5241 5.73302i 1.04212 0.306006i
\(352\) −11.3553 2.79882i −0.605238 0.149178i
\(353\) 0.745481 + 9.23443i 0.0396779 + 0.491499i 0.985827 + 0.167767i \(0.0536557\pi\)
−0.946149 + 0.323732i \(0.895062\pi\)
\(354\) −7.81585 + 8.13716i −0.415408 + 0.432485i
\(355\) −8.10412 + 17.0791i −0.430122 + 0.906463i
\(356\) 34.1734 + 4.14940i 1.81118 + 0.219918i
\(357\) −30.2628 + 17.4722i −1.60167 + 0.924727i
\(358\) 18.3344 + 24.3986i 0.969002 + 1.28951i
\(359\) 1.96186 + 1.35418i 0.103543 + 0.0714706i 0.618711 0.785619i \(-0.287655\pi\)
−0.515168 + 0.857089i \(0.672271\pi\)
\(360\) −0.475452 0.823507i −0.0250585 0.0434026i
\(361\) −8.27373 + 14.3305i −0.435459 + 0.754238i
\(362\) −11.5677 + 5.48897i −0.607987 + 0.288494i
\(363\) 10.7222 5.62742i 0.562767 0.295363i
\(364\) 20.0113 17.8601i 1.04888 0.936122i
\(365\) −1.37070 0.719397i −0.0717455 0.0376549i
\(366\) 3.17355 + 0.127890i 0.165884 + 0.00668491i
\(367\) 2.87149 + 14.0655i 0.149891 + 0.734214i 0.983363 + 0.181652i \(0.0581444\pi\)
−0.833472 + 0.552562i \(0.813650\pi\)
\(368\) 4.78627 + 16.5241i 0.249501 + 0.861379i
\(369\) 2.36194 4.50029i 0.122958 0.234276i
\(370\) −12.2916 + 19.4376i −0.639009 + 1.01051i
\(371\) 5.91051 + 36.3688i 0.306858 + 1.88818i
\(372\) 3.15850 12.8145i 0.163761 0.664403i
\(373\) −4.82209 + 23.6202i −0.249678 + 1.22301i 0.640703 + 0.767789i \(0.278643\pi\)
−0.890381 + 0.455216i \(0.849562\pi\)
\(374\) 21.7881 1.75892i 1.12664 0.0909515i
\(375\) −5.27904 8.34813i −0.272608 0.431095i
\(376\) 1.06210 0.940934i 0.0547734 0.0485250i
\(377\) −27.2533 18.6642i −1.40362 0.961258i
\(378\) −29.7823 26.3848i −1.53184 1.35709i
\(379\) −3.48094 + 21.4191i −0.178804 + 1.10023i 0.730137 + 0.683301i \(0.239456\pi\)
−0.908941 + 0.416925i \(0.863108\pi\)
\(380\) −8.37258 3.56722i −0.429504 0.182995i
\(381\) −6.26851 3.96396i −0.321145 0.203080i
\(382\) 6.13822 + 6.92862i 0.314059 + 0.354499i
\(383\) 1.46898 18.1966i 0.0750614 0.929802i −0.844168 0.536079i \(-0.819905\pi\)
0.919229 0.393723i \(-0.128813\pi\)
\(384\) 1.04405 3.12732i 0.0532791 0.159590i
\(385\) 13.4081 1.62804i 0.683342 0.0829727i
\(386\) 6.66043 5.00499i 0.339007 0.254747i
\(387\) −6.03332 7.38947i −0.306691 0.375628i
\(388\) −2.57629 + 2.10348i −0.130791 + 0.106788i
\(389\) 2.54967 3.69384i 0.129274 0.187285i −0.753002 0.658018i \(-0.771395\pi\)
0.882276 + 0.470733i \(0.156010\pi\)
\(390\) −23.4035 13.3977i −1.18508 0.678419i
\(391\) −19.7492 28.6116i −0.998760 1.44695i
\(392\) −1.45534 0.421545i −0.0735059 0.0212913i
\(393\) −12.7617 + 8.07001i −0.643742 + 0.407078i
\(394\) 16.7470 2.72165i 0.843700 0.137115i
\(395\) 17.1225 6.49372i 0.861529 0.326735i
\(396\) 1.40540 + 3.29859i 0.0706239 + 0.165760i
\(397\) 1.36751 1.31351i 0.0686335 0.0659234i −0.657623 0.753347i \(-0.728438\pi\)
0.726256 + 0.687424i \(0.241258\pi\)
\(398\) 20.5665 + 39.1862i 1.03091 + 1.96423i
\(399\) −7.33702 0.592306i −0.367310 0.0296524i
\(400\) 2.36428 8.16244i 0.118214 0.408122i
\(401\) −15.5436 14.9298i −0.776211 0.745561i 0.195762 0.980651i \(-0.437282\pi\)
−0.971974 + 0.235090i \(0.924461\pi\)
\(402\) −5.65958 + 14.9231i −0.282274 + 0.744296i
\(403\) 4.59308 + 15.6420i 0.228798 + 0.779183i
\(404\) −4.65563 12.2759i −0.231626 0.610748i
\(405\) −4.44796 + 10.4397i −0.221021 + 0.518755i
\(406\) −2.60075 + 64.5370i −0.129073 + 3.20292i
\(407\) 3.81192 4.66875i 0.188950 0.231421i
\(408\) 3.07254i 0.152113i
\(409\) 10.0783 + 8.22867i 0.498340 + 0.406882i 0.848001 0.529994i \(-0.177806\pi\)
−0.349662 + 0.936876i \(0.613703\pi\)
\(410\) −23.2636 + 6.73837i −1.14890 + 0.332784i
\(411\) −0.728504 + 0.822310i −0.0359344 + 0.0405616i
\(412\) −17.6227 18.3472i −0.868209 0.903901i
\(413\) −13.3897 + 4.47015i −0.658865 + 0.219962i
\(414\) 6.61345 8.80091i 0.325033 0.432541i
\(415\) −0.448901 + 3.69703i −0.0220357 + 0.181480i
\(416\) 5.94866 + 28.6022i 0.291657 + 1.40234i
\(417\) −0.903581 7.44166i −0.0442485 0.364419i
\(418\) 3.98762 + 2.30225i 0.195041 + 0.112607i
\(419\) 4.65288 + 3.49641i 0.227308 + 0.170811i 0.708294 0.705917i \(-0.249465\pi\)
−0.480986 + 0.876728i \(0.659721\pi\)
\(420\) 1.09985 + 27.2924i 0.0536670 + 1.33173i
\(421\) −2.10953 0.800040i −0.102812 0.0389916i 0.302662 0.953098i \(-0.402125\pi\)
−0.405475 + 0.914106i \(0.632894\pi\)
\(422\) −48.0449 9.80844i −2.33879 0.477467i
\(423\) 5.27987 + 1.07789i 0.256716 + 0.0524089i
\(424\) 3.02921 + 1.14883i 0.147111 + 0.0557920i
\(425\) 0.691499 + 17.1594i 0.0335426 + 0.832352i
\(426\) 15.4631 + 11.6198i 0.749190 + 0.562980i
\(427\) 3.44137 + 1.98687i 0.166539 + 0.0961515i
\(428\) −4.06683 33.4934i −0.196578 1.61896i
\(429\) 5.66563 + 4.22498i 0.273539 + 0.203984i
\(430\) −5.47960 + 45.1286i −0.264250 + 2.17629i
\(431\) 14.8592 19.7740i 0.715743 0.952480i −0.284238 0.958754i \(-0.591740\pi\)
0.999980 + 0.00627342i \(0.00199690\pi\)
\(432\) 19.6939 6.57477i 0.947521 0.316329i
\(433\) 0.0650389 + 0.0677127i 0.00312557 + 0.00325406i 0.722763 0.691096i \(-0.242872\pi\)
−0.719638 + 0.694350i \(0.755692\pi\)
\(434\) 21.1385 23.8604i 1.01468 1.14534i
\(435\) 32.3099 9.35868i 1.54914 0.448714i
\(436\) 29.8845 + 24.4000i 1.43121 + 1.16855i
\(437\) 7.32325i 0.350319i
\(438\) −1.00172 + 1.22688i −0.0478641 + 0.0586228i
\(439\) 0.454911 11.2885i 0.0217117 0.538771i −0.951334 0.308161i \(-0.900287\pi\)
0.973046 0.230611i \(-0.0740724\pi\)
\(440\) 0.465495 1.09256i 0.0221916 0.0520857i
\(441\) −2.04046 5.38026i −0.0971649 0.256203i
\(442\) −27.4752 47.1874i −1.30686 2.24448i
\(443\) −13.8305 + 36.4679i −0.657105 + 1.73264i 0.0232177 + 0.999730i \(0.492609\pi\)
−0.680323 + 0.732913i \(0.738160\pi\)
\(444\) 8.79075 + 8.44363i 0.417190 + 0.400717i
\(445\) 12.0473 41.5922i 0.571098 1.97166i
\(446\) −19.2749 1.55603i −0.912695 0.0736803i
\(447\) 6.31510 + 12.0324i 0.298694 + 0.569114i
\(448\) 22.8325 21.9309i 1.07873 1.03614i
\(449\) −9.96239 23.3826i −0.470154 1.10349i −0.971242 0.238096i \(-0.923477\pi\)
0.501087 0.865397i \(-0.332934\pi\)
\(450\) −5.08465 + 1.92835i −0.239693 + 0.0909035i
\(451\) 6.26531 1.01821i 0.295022 0.0479457i
\(452\) 30.7223 19.4276i 1.44506 0.913798i
\(453\) 10.2936 + 2.98158i 0.483636 + 0.140087i
\(454\) 25.4477 + 36.8673i 1.19432 + 1.73027i
\(455\) −18.1371 28.4497i −0.850280 1.33374i
\(456\) −0.367662 + 0.532650i −0.0172173 + 0.0249436i
\(457\) 17.2405 14.0764i 0.806475 0.658467i −0.136755 0.990605i \(-0.543667\pi\)
0.943231 + 0.332138i \(0.107770\pi\)
\(458\) −27.2924 33.4271i −1.27529 1.56195i
\(459\) −33.5431 + 25.2060i −1.56566 + 1.17652i
\(460\) −26.9768 + 3.27557i −1.25780 + 0.152724i
\(461\) 2.94728 8.82819i 0.137269 0.411170i −0.857355 0.514726i \(-0.827894\pi\)
0.994624 + 0.103556i \(0.0330220\pi\)
\(462\) 1.11202 13.7748i 0.0517357 0.640862i
\(463\) 21.8475 + 24.6607i 1.01534 + 1.14608i 0.989222 + 0.146420i \(0.0467752\pi\)
0.0261151 + 0.999659i \(0.491686\pi\)
\(464\) −28.4860 18.0135i −1.32243 0.836254i
\(465\) −15.2731 6.50727i −0.708274 0.301767i
\(466\) 6.63826 40.8469i 0.307512 1.89219i
\(467\) −9.81858 8.69850i −0.454350 0.402519i 0.404669 0.914463i \(-0.367387\pi\)
−0.859018 + 0.511945i \(0.828925\pi\)
\(468\) 5.91463 6.72583i 0.273404 0.310901i
\(469\) −14.9465 + 13.2415i −0.690166 + 0.611434i
\(470\) −13.7248 21.7040i −0.633078 1.00113i
\(471\) 8.79193 0.709758i 0.405111 0.0327039i
\(472\) −0.248270 + 1.21610i −0.0114275 + 0.0559758i
\(473\) 2.85124 11.5679i 0.131100 0.531894i
\(474\) −3.00562 18.4943i −0.138053 0.849471i
\(475\) −1.93342 + 3.05746i −0.0887114 + 0.140286i
\(476\) −25.7025 + 48.9720i −1.17807 + 2.24463i
\(477\) 3.42309 + 11.8179i 0.156733 + 0.541104i
\(478\) 4.81382 + 23.5796i 0.220179 + 1.07851i
\(479\) 17.7174 + 0.713987i 0.809529 + 0.0326229i 0.441579 0.897223i \(-0.354419\pi\)
0.367950 + 0.929846i \(0.380060\pi\)
\(480\) −26.3426 13.8257i −1.20237 0.631053i
\(481\) −14.6317 3.54944i −0.667146 0.161841i
\(482\) 41.1330 21.5882i 1.87355 0.983317i
\(483\) −19.8574 + 9.42243i −0.903541 + 0.428736i
\(484\) 9.58269 16.5977i 0.435577 0.754442i
\(485\) 2.09182 + 3.62314i 0.0949847 + 0.164518i
\(486\) −18.8279 12.9960i −0.854053 0.589510i
\(487\) 0.220056 + 0.292841i 0.00997169 + 0.0132699i 0.804401 0.594087i \(-0.202486\pi\)
−0.794429 + 0.607357i \(0.792230\pi\)
\(488\) 0.302587 0.174699i 0.0136975 0.00790825i
\(489\) 4.63451 + 0.562731i 0.209580 + 0.0254476i
\(490\) −11.7551 + 24.7734i −0.531041 + 1.11915i
\(491\) 12.8909 13.4209i 0.581759 0.605675i −0.363660 0.931532i \(-0.618473\pi\)
0.945419 + 0.325856i \(0.105653\pi\)
\(492\) 1.03292 + 12.7950i 0.0465677 + 0.576844i
\(493\) 66.1317 + 16.3000i 2.97842 + 0.734115i
\(494\) 0.883422 11.4680i 0.0397470 0.515970i
\(495\) 4.37909 1.07935i 0.196825 0.0485131i
\(496\) 5.26746 + 15.7780i 0.236516 + 0.708451i
\(497\) 10.3743 + 21.8633i 0.465350 + 0.980703i
\(498\) 3.61439 + 1.20666i 0.161965 + 0.0540717i
\(499\) 3.01408 2.08047i 0.134929 0.0931344i −0.498689 0.866781i \(-0.666185\pi\)
0.633617 + 0.773647i \(0.281569\pi\)
\(500\) −14.1235 6.70167i −0.631621 0.299708i
\(501\) −13.8539 + 0.558292i −0.618946 + 0.0249427i
\(502\) −9.82237 39.8509i −0.438394 1.77863i
\(503\) 28.0334 11.9439i 1.24995 0.532552i 0.337336 0.941384i \(-0.390474\pi\)
0.912610 + 0.408832i \(0.134064\pi\)
\(504\) −1.20151 0.195265i −0.0535196 0.00869778i
\(505\) −16.1811 + 3.30339i −0.720048 + 0.146999i
\(506\) 13.7490 0.611215
\(507\) 3.40424 17.3232i 0.151188 0.769352i
\(508\) −11.7385 −0.520811
\(509\) −0.0254264 + 0.00519084i −0.00112701 + 0.000230080i −0.200589 0.979675i \(-0.564286\pi\)
0.199462 + 0.979906i \(0.436081\pi\)
\(510\) 54.8855 + 8.91976i 2.43037 + 0.394974i
\(511\) −1.82307 + 0.776738i −0.0806480 + 0.0343609i
\(512\) 7.66948 + 31.1163i 0.338946 + 1.37516i
\(513\) −8.83113 + 0.355882i −0.389904 + 0.0157126i
\(514\) −36.6087 17.3710i −1.61474 0.766203i
\(515\) −26.3356 + 18.1782i −1.16049 + 0.801027i
\(516\) 22.8541 + 7.62983i 1.00610 + 0.335884i
\(517\) 2.88513 + 6.08028i 0.126888 + 0.267410i
\(518\) 9.32274 + 27.9250i 0.409618 + 1.22695i
\(519\) 11.4177 2.81420i 0.501180 0.123530i
\(520\) −2.96372 + 0.130336i −0.129968 + 0.00571559i
\(521\) −24.1345 5.94861i −1.05735 0.260613i −0.327946 0.944697i \(-0.606356\pi\)
−0.729404 + 0.684083i \(0.760203\pi\)
\(522\) 1.73548 + 21.4978i 0.0759600 + 0.940934i
\(523\) −19.6729 + 20.4816i −0.860235 + 0.895599i −0.995457 0.0952159i \(-0.969646\pi\)
0.135222 + 0.990815i \(0.456825\pi\)
\(524\) −10.2448 + 21.5904i −0.447545 + 0.943181i
\(525\) 10.7781 + 1.30869i 0.470394 + 0.0571161i
\(526\) 48.6808 28.1059i 2.12258 1.22547i
\(527\) −20.1941 26.8734i −0.879668 1.17063i
\(528\) 5.93477 + 4.09647i 0.258278 + 0.178276i
\(529\) 0.566459 + 0.981136i 0.0246286 + 0.0426581i
\(530\) 29.3157 50.7763i 1.27339 2.20558i
\(531\) −4.25859 + 2.02073i −0.184807 + 0.0876921i
\(532\) −10.3157 + 5.41411i −0.447244 + 0.234732i
\(533\) −9.05508 13.0161i −0.392219 0.563788i
\(534\) −39.2304 20.5897i −1.69766 0.891003i
\(535\) −42.4058 1.70889i −1.83336 0.0738819i
\(536\) 0.351195 + 1.72026i 0.0151693 + 0.0743041i
\(537\) −5.66087 19.5436i −0.244285 0.843369i
\(538\) 6.56640 12.5112i 0.283098 0.539398i
\(539\) 3.84090 6.07390i 0.165439 0.261622i
\(540\) 5.26099 + 32.3722i 0.226397 + 1.39308i
\(541\) −0.594343 + 2.41134i −0.0255528 + 0.103672i −0.982334 0.187138i \(-0.940079\pi\)
0.956781 + 0.290810i \(0.0939248\pi\)
\(542\) 6.07350 29.7500i 0.260879 1.27787i
\(543\) 8.50854 0.686880i 0.365136 0.0294769i
\(544\) −32.1957 50.9135i −1.38038 2.18290i
\(545\) 36.3249 32.1811i 1.55599 1.37848i
\(546\) −32.2327 + 12.3598i −1.37943 + 0.528951i
\(547\) 10.2667 + 9.09547i 0.438971 + 0.388894i 0.853459 0.521161i \(-0.174501\pi\)
−0.414488 + 0.910055i \(0.636039\pi\)
\(548\) −0.278917 + 1.71625i −0.0119148 + 0.0733144i
\(549\) 1.22074 + 0.520108i 0.0520998 + 0.0221977i
\(550\) −5.74019 3.62987i −0.244762 0.154778i
\(551\) 9.51399 + 10.7391i 0.405310 + 0.457500i
\(552\) −0.155508 + 1.92631i −0.00661886 + 0.0819893i
\(553\) 7.42344 22.2359i 0.315677 0.945567i
\(554\) −16.6298 + 2.01922i −0.706531 + 0.0857884i
\(555\) 12.2573 9.21079i 0.520295 0.390976i
\(556\) −7.50366 9.19032i −0.318226 0.389756i
\(557\) 11.9942 9.79294i 0.508209 0.414940i −0.343343 0.939210i \(-0.611559\pi\)
0.851552 + 0.524270i \(0.175662\pi\)
\(558\) 6.04675 8.76024i 0.255980 0.370850i
\(559\) −29.1378 + 6.06006i −1.23240 + 0.256313i
\(560\) −19.5560 28.3317i −0.826391 1.19723i
\(561\) −13.9977 4.05449i −0.590984 0.171181i
\(562\) −42.5759 + 26.9234i −1.79596 + 1.13569i
\(563\) 12.0409 1.95684i 0.507464 0.0824709i 0.0987111 0.995116i \(-0.468528\pi\)
0.408753 + 0.912645i \(0.365964\pi\)
\(564\) −12.7258 + 4.82627i −0.535854 + 0.203223i
\(565\) −17.9221 42.0647i −0.753988 1.76967i
\(566\) 24.4329 23.4681i 1.02699 0.986440i
\(567\) 6.75084 + 12.8626i 0.283509 + 0.540180i
\(568\) 2.12090 + 0.171217i 0.0889912 + 0.00718411i
\(569\) −10.7535 + 37.1254i −0.450810 + 1.55638i 0.337638 + 0.941276i \(0.390372\pi\)
−0.788448 + 0.615101i \(0.789115\pi\)
\(570\) 8.44750 + 8.11393i 0.353827 + 0.339855i
\(571\) 6.05784 15.9732i 0.253513 0.668458i −0.746483 0.665405i \(-0.768259\pi\)
0.999995 0.00305317i \(-0.000971854\pi\)
\(572\) 11.1528 + 0.859142i 0.466323 + 0.0359225i
\(573\) −2.18834 5.77017i −0.0914191 0.241052i
\(574\) −12.1527 + 28.5233i −0.507242 + 1.19054i
\(575\) −0.434941 + 10.7930i −0.0181383 + 0.450098i
\(576\) 6.68595 8.18880i 0.278581 0.341200i
\(577\) 13.4756i 0.560998i 0.959854 + 0.280499i \(0.0904999\pi\)
−0.959854 + 0.280499i \(0.909500\pi\)
\(578\) 60.3898 + 49.3068i 2.51189 + 2.05089i
\(579\) −5.33509 + 1.54533i −0.221719 + 0.0642216i
\(580\) 35.3042 39.8502i 1.46593 1.65469i
\(581\) 3.30250 + 3.43827i 0.137011 + 0.142644i
\(582\) 4.06030 1.35553i 0.168305 0.0561884i
\(583\) −9.23107 + 12.2843i −0.382312 + 0.508764i
\(584\) −0.0210022 + 0.172969i −0.000869078 + 0.00715750i
\(585\) −7.15730 8.70069i −0.295918 0.359729i
\(586\) 0.427884 + 3.52394i 0.0176757 + 0.145573i
\(587\) −21.5551 12.4449i −0.889675 0.513654i −0.0158390 0.999875i \(-0.505042\pi\)
−0.873836 + 0.486220i \(0.838375\pi\)
\(588\) 11.6185 + 8.73071i 0.479138 + 0.360049i
\(589\) −0.285119 7.07516i −0.0117481 0.291527i
\(590\) 21.0028 + 7.96532i 0.864672 + 0.327927i
\(591\) −11.0828 2.26258i −0.455887 0.0930701i
\(592\) −15.0518 3.07285i −0.618626 0.126293i
\(593\) 4.21478 + 1.59846i 0.173080 + 0.0656407i 0.439623 0.898182i \(-0.355112\pi\)
−0.266543 + 0.963823i \(0.585881\pi\)
\(594\) −0.668147 16.5799i −0.0274144 0.680281i
\(595\) 55.6171 + 41.7935i 2.28008 + 1.71337i
\(596\) 18.6260 + 10.7537i 0.762950 + 0.440489i
\(597\) −3.55637 29.2894i −0.145553 1.19873i
\(598\) −14.8371 30.9744i −0.606736 1.26664i
\(599\) −4.66539 + 38.4229i −0.190623 + 1.56992i 0.512397 + 0.858748i \(0.328757\pi\)
−0.703020 + 0.711170i \(0.748166\pi\)
\(600\) 0.573492 0.763179i 0.0234127 0.0311567i
\(601\) −30.0712 + 10.0392i −1.22663 + 0.409509i −0.854881 0.518824i \(-0.826370\pi\)
−0.371749 + 0.928333i \(0.621242\pi\)
\(602\) 40.3127 + 41.9700i 1.64302 + 1.71057i
\(603\) −4.42160 + 4.99096i −0.180062 + 0.203248i
\(604\) 16.2919 4.71899i 0.662906 0.192013i
\(605\) −18.6740 15.2469i −0.759207 0.619874i
\(606\) 16.8975i 0.686416i
\(607\) 2.21518 2.71310i 0.0899113 0.110121i −0.727690 0.685906i \(-0.759406\pi\)
0.817601 + 0.575785i \(0.195303\pi\)
\(608\) 0.510939 12.6788i 0.0207213 0.514194i
\(609\) 16.8784 39.6150i 0.683947 1.60528i
\(610\) −2.24226 5.91235i −0.0907864 0.239384i
\(611\) 10.5845 13.0613i 0.428204 0.528404i
\(612\) −6.54891 + 17.2681i −0.264724 + 0.698020i
\(613\) 25.6194 + 24.6078i 1.03476 + 0.993900i 0.999985 0.00549524i \(-0.00174920\pi\)
0.0347745 + 0.999395i \(0.488929\pi\)
\(614\) −11.0585 + 38.1785i −0.446286 + 1.54076i
\(615\) 16.0946 + 1.29929i 0.648998 + 0.0523925i
\(616\) −0.706500 1.34612i −0.0284657 0.0542369i
\(617\) −32.6896 + 31.3988i −1.31603 + 1.26407i −0.374468 + 0.927240i \(0.622175\pi\)
−0.941566 + 0.336828i \(0.890646\pi\)
\(618\) 12.8337 + 30.1218i 0.516246 + 1.21167i
\(619\) 11.1348 4.22288i 0.447546 0.169732i −0.120527 0.992710i \(-0.538458\pi\)
0.568073 + 0.822978i \(0.307689\pi\)
\(620\) −25.9353 + 4.21490i −1.04159 + 0.169275i
\(621\) −22.3054 + 14.1051i −0.895084 + 0.566017i
\(622\) 38.7437 + 11.2222i 1.55348 + 0.449971i
\(623\) −31.4888 45.6193i −1.26157 1.82770i
\(624\) 2.82429 17.7909i 0.113062 0.712205i
\(625\) −17.7315 + 25.6885i −0.709260 + 1.02754i
\(626\) −2.03386 + 1.66059i −0.0812892 + 0.0663706i
\(627\) −1.94145 2.37785i −0.0775342 0.0949621i
\(628\) 11.1605 8.38660i 0.445354 0.334662i
\(629\) 30.8189 3.74209i 1.22883 0.149207i
\(630\) −6.97611 + 20.8960i −0.277935 + 0.832517i
\(631\) −2.35467 + 29.1678i −0.0937377 + 1.16115i 0.763352 + 0.645983i \(0.223552\pi\)
−0.857090 + 0.515167i \(0.827730\pi\)
\(632\) −1.36683 1.54283i −0.0543696 0.0613706i
\(633\) 27.6306 + 17.4725i 1.09822 + 0.694470i
\(634\) −10.4793 4.46483i −0.416188 0.177321i
\(635\) −2.36858 + 14.5744i −0.0939941 + 0.578369i
\(636\) −23.2600 20.6066i −0.922319 0.817103i
\(637\) −17.8285 2.09838i −0.706393 0.0831407i
\(638\) −20.1620 + 17.8619i −0.798219 + 0.707161i
\(639\) 4.31892 + 6.82983i 0.170854 + 0.270184i
\(640\) −6.54260 + 0.528174i −0.258619 + 0.0208779i
\(641\) 0.990553 4.85205i 0.0391245 0.191644i −0.955532 0.294889i \(-0.904717\pi\)
0.994656 + 0.103245i \(0.0329225\pi\)
\(642\) −10.3920 + 42.1619i −0.410138 + 1.66400i
\(643\) 3.72884 + 22.9445i 0.147051 + 0.904841i 0.950785 + 0.309852i \(0.100280\pi\)
−0.803734 + 0.594989i \(0.797156\pi\)
\(644\) −18.5926 + 29.4018i −0.732650 + 1.15859i
\(645\) 14.0846 26.8360i 0.554581 1.05667i
\(646\) 6.59844 + 22.7805i 0.259612 + 0.896286i
\(647\) 0.265425 + 1.30014i 0.0104349 + 0.0511136i 0.984675 0.174401i \(-0.0557988\pi\)
−0.974240 + 0.225514i \(0.927594\pi\)
\(648\) 1.27624 + 0.0514306i 0.0501353 + 0.00202038i
\(649\) −5.21265 2.73581i −0.204614 0.107390i
\(650\) −1.98309 + 16.8490i −0.0777831 + 0.660872i
\(651\) −18.8178 + 9.87634i −0.737527 + 0.387084i
\(652\) 6.67558 3.16760i 0.261436 0.124053i
\(653\) −1.69876 + 2.94233i −0.0664774 + 0.115142i −0.897348 0.441323i \(-0.854509\pi\)
0.830871 + 0.556465i \(0.187843\pi\)
\(654\) −24.8271 43.0018i −0.970816 1.68150i
\(655\) 24.7393 + 17.0763i 0.966646 + 0.667227i
\(656\) −9.71912 12.9338i −0.379468 0.504980i
\(657\) −0.573061 + 0.330857i −0.0223572 + 0.0129079i
\(658\) −32.6332 3.96239i −1.27217 0.154470i
\(659\) −7.24058 + 15.2592i −0.282053 + 0.594414i −0.994192 0.107625i \(-0.965675\pi\)
0.712139 + 0.702039i \(0.247727\pi\)
\(660\) −7.89093 + 8.21533i −0.307154 + 0.319781i
\(661\) 3.50810 + 43.4557i 0.136449 + 1.69023i 0.596719 + 0.802451i \(0.296471\pi\)
−0.460269 + 0.887779i \(0.652247\pi\)
\(662\) −17.7923 4.38541i −0.691517 0.170444i
\(663\) 5.97141 + 35.9102i 0.231910 + 1.39464i
\(664\) 0.407002 0.100317i 0.0157947 0.00389305i
\(665\) 4.64063 + 13.9004i 0.179956 + 0.539034i
\(666\) 4.21434 + 8.88153i 0.163302 + 0.344152i
\(667\) 40.6359 + 13.5663i 1.57343 + 0.525287i
\(668\) −18.0600 + 12.4659i −0.698762 + 0.482321i
\(669\) 11.6474 + 5.52676i 0.450315 + 0.213677i
\(670\) 31.7490 1.27944i 1.22657 0.0494291i
\(671\) 0.396593 + 1.60904i 0.0153103 + 0.0621163i
\(672\) −35.0366 + 14.9277i −1.35157 + 0.575849i
\(673\) −17.8765 2.90521i −0.689087 0.111988i −0.194222 0.980958i \(-0.562218\pi\)
−0.494865 + 0.868970i \(0.664782\pi\)
\(674\) 26.8978 5.49122i 1.03606 0.211514i
\(675\) 13.0364 0.501771
\(676\) −10.1000 26.0529i −0.388462 1.00203i
\(677\) 39.7823 1.52896 0.764478 0.644650i \(-0.222997\pi\)
0.764478 + 0.644650i \(0.222997\pi\)
\(678\) −45.8377 + 9.35782i −1.76038 + 0.359385i
\(679\) 5.28622 + 0.859095i 0.202867 + 0.0329690i
\(680\) 5.62754 2.39767i 0.215806 0.0919465i
\(681\) −7.14731 28.9978i −0.273885 1.11120i
\(682\) 13.2832 0.535293i 0.508639 0.0204974i
\(683\) 17.5182 + 8.31251i 0.670317 + 0.318069i 0.733261 0.679948i \(-0.237998\pi\)
−0.0629437 + 0.998017i \(0.520049\pi\)
\(684\) −3.20161 + 2.20991i −0.122417 + 0.0844981i
\(685\) 2.07460 + 0.692604i 0.0792664 + 0.0264630i
\(686\) −6.10855 12.8735i −0.233226 0.491513i
\(687\) 9.11054 + 27.2894i 0.347589 + 1.04116i
\(688\) −29.4843 + 7.26723i −1.12408 + 0.277061i
\(689\) 37.6365 + 7.53970i 1.43384 + 0.287240i
\(690\) 33.9587 + 8.37007i 1.29279 + 0.318643i
\(691\) −3.87669 48.0214i −0.147476 1.82682i −0.472746 0.881199i \(-0.656737\pi\)
0.325270 0.945621i \(-0.394545\pi\)
\(692\) 12.8928 13.4228i 0.490110 0.510259i
\(693\) 2.47507 5.21611i 0.0940203 0.198144i
\(694\) −63.2534 7.68035i −2.40107 0.291542i
\(695\) −12.9247 + 7.46209i −0.490263 + 0.283053i
\(696\) −2.27452 3.02684i −0.0862156 0.114732i
\(697\) 26.9072 + 18.5727i 1.01918 + 0.703492i
\(698\) 26.7263 + 46.2913i 1.01161 + 1.75215i
\(699\) −13.7946 + 23.8930i −0.521762 + 0.903717i
\(700\) 15.5248 7.36661i 0.586783 0.278432i
\(701\) −39.9471 + 20.9659i −1.50878 + 0.791869i −0.997708 0.0676680i \(-0.978444\pi\)
−0.511073 + 0.859537i \(0.670752\pi\)
\(702\) −36.6311 + 19.3974i −1.38255 + 0.732107i
\(703\) 5.79048 + 3.03908i 0.218392 + 0.114621i
\(704\) 13.1922 + 0.531627i 0.497199 + 0.0200365i
\(705\) 3.42447 + 16.7741i 0.128973 + 0.631751i
\(706\) −5.25046 18.1267i −0.197604 0.682207i
\(707\) −9.82472 + 18.7194i −0.369497 + 0.704017i
\(708\) 6.36296 10.0622i 0.239135 0.378161i
\(709\) −3.79625 23.3593i −0.142571 0.877276i −0.955517 0.294936i \(-0.904702\pi\)
0.812946 0.582339i \(-0.197863\pi\)
\(710\) 9.21559 37.3891i 0.345855 1.40319i
\(711\) 1.56578 7.66970i 0.0587213 0.287636i
\(712\) −4.85811 + 0.392187i −0.182065 + 0.0146978i
\(713\) −11.3004 17.8702i −0.423205 0.669245i
\(714\) 53.2805 47.2024i 1.99397 1.76651i
\(715\) 3.31711 13.6739i 0.124053 0.511376i
\(716\) −24.1046 21.3548i −0.900831 0.798067i
\(717\) 2.57371 15.8367i 0.0961171 0.591432i
\(718\) −4.46733 1.90335i −0.166719 0.0710324i
\(719\) 4.50633 + 2.84963i 0.168058 + 0.106273i 0.615847 0.787866i \(-0.288814\pi\)
−0.447789 + 0.894139i \(0.647788\pi\)
\(720\) −7.62289 8.60446i −0.284088 0.320669i
\(721\) −3.29625 + 40.8314i −0.122759 + 1.52064i
\(722\) 10.6740 31.9726i 0.397246 1.18990i
\(723\) −30.7444 + 3.73305i −1.14340 + 0.138833i
\(724\) 10.8008 8.11627i 0.401408 0.301639i
\(725\) −13.3838 16.3922i −0.497064 0.608792i
\(726\) −19.1068 + 15.6002i −0.709119 + 0.578978i
\(727\) 5.28256 7.65311i 0.195919 0.283838i −0.712695 0.701474i \(-0.752526\pi\)
0.908615 + 0.417636i \(0.137141\pi\)
\(728\) −2.27021 + 3.04431i −0.0841395 + 0.112830i
\(729\) 15.8170 + 22.9149i 0.585815 + 0.848700i
\(730\) 3.02881 + 0.877305i 0.112101 + 0.0324705i
\(731\) 51.8670 32.7987i 1.91837 1.21310i
\(732\) −3.30797 + 0.537597i −0.122266 + 0.0198701i
\(733\) 11.3559 4.30672i 0.419439 0.159072i −0.135850 0.990729i \(-0.543377\pi\)
0.555290 + 0.831657i \(0.312607\pi\)
\(734\) −11.4621 26.9025i −0.423073 0.992989i
\(735\) 13.1844 12.6637i 0.486312 0.467109i
\(736\) −17.6081 33.5494i −0.649043 1.23665i
\(737\) −8.30051 0.670087i −0.305753 0.0246830i
\(738\) −2.88039 + 9.94425i −0.106028 + 0.366053i
\(739\) −5.82810 5.59797i −0.214390 0.205925i 0.577835 0.816154i \(-0.303898\pi\)
−0.792225 + 0.610229i \(0.791077\pi\)
\(740\) 8.60510 22.6898i 0.316330 0.834093i
\(741\) −3.26184 + 6.93987i −0.119827 + 0.254942i
\(742\) −26.6150 70.1781i −0.977069 2.57632i
\(743\) 3.49446 8.20179i 0.128199 0.300895i −0.843495 0.537137i \(-0.819506\pi\)
0.971694 + 0.236243i \(0.0759160\pi\)
\(744\) −0.0752418 + 1.86711i −0.00275850 + 0.0684515i
\(745\) 17.1101 20.9560i 0.626865 0.767770i
\(746\) 49.1068i 1.79793i
\(747\) 1.23313 + 1.00682i 0.0451177 + 0.0368375i
\(748\) −22.1544 + 6.41710i −0.810044 + 0.234632i
\(749\) −36.0266 + 40.6656i −1.31638 + 1.48589i
\(750\) 13.9376 + 14.5106i 0.508929 + 0.529851i
\(751\) 18.5847 6.20450i 0.678167 0.226405i 0.0433407 0.999060i \(-0.486200\pi\)
0.634826 + 0.772655i \(0.281072\pi\)
\(752\) 10.3049 13.7133i 0.375780 0.500072i
\(753\) −3.29827 + 27.1637i −0.120196 + 0.989899i
\(754\) 61.9981 + 26.1464i 2.25784 + 0.952195i
\(755\) −2.57172 21.1800i −0.0935946 0.770821i
\(756\) 36.3592 + 20.9920i 1.32237 + 0.763472i
\(757\) 4.88221 + 3.66875i 0.177447 + 0.133343i 0.685755 0.727833i \(-0.259472\pi\)
−0.508308 + 0.861176i \(0.669729\pi\)
\(758\) −1.77989 44.1674i −0.0646484 1.60423i
\(759\) −8.57057 3.25039i −0.311092 0.117982i
\(760\) 1.26249 + 0.257738i 0.0457952 + 0.00934915i
\(761\) 2.29304 + 0.468127i 0.0831226 + 0.0169696i 0.241407 0.970424i \(-0.422391\pi\)
−0.158284 + 0.987394i \(0.550596\pi\)
\(762\) 14.1261 + 5.35731i 0.511733 + 0.194075i
\(763\) −2.50147 62.0734i −0.0905594 2.24721i
\(764\) −7.80836 5.86760i −0.282496 0.212282i
\(765\) 20.1185 + 11.6154i 0.727386 + 0.419956i
\(766\) 4.48242 + 36.9160i 0.161956 + 1.33383i