Properties

Label 169.2.k.a.127.2
Level $169$
Weight $2$
Character 169.127
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 127.2
Character \(\chi\) \(=\) 169.127
Dual form 169.2.k.a.4.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.41817 + 0.0974488i) q^{2} +(-0.437408 - 1.51011i) q^{3} +(3.84452 - 0.310362i) q^{4} +(-2.71784 + 1.03074i) q^{5} +(1.20488 + 3.60907i) q^{6} +(-0.958962 + 2.25077i) q^{7} +(-4.46148 + 0.541722i) q^{8} +(0.446473 - 0.282332i) q^{9} +O(q^{10})\) \(q+(-2.41817 + 0.0974488i) q^{2} +(-0.437408 - 1.51011i) q^{3} +(3.84452 - 0.310362i) q^{4} +(-2.71784 + 1.03074i) q^{5} +(1.20488 + 3.60907i) q^{6} +(-0.958962 + 2.25077i) q^{7} +(-4.46148 + 0.541722i) q^{8} +(0.446473 - 0.282332i) q^{9} +(6.47174 - 2.75735i) q^{10} +(0.842314 - 1.33201i) q^{11} +(-2.15030 - 5.66988i) q^{12} +(2.05596 + 2.96193i) q^{13} +(2.09959 - 5.53618i) q^{14} +(2.74533 + 3.65337i) q^{15} +(3.12165 - 0.507318i) q^{16} +(1.77732 + 0.757244i) q^{17} +(-1.05213 + 0.726235i) q^{18} +(6.36630 + 3.67559i) q^{19} +(-10.1289 + 4.80621i) q^{20} +(3.81835 + 0.463632i) q^{21} +(-1.90705 + 3.30311i) q^{22} +(2.38841 + 4.13685i) q^{23} +(2.76954 + 6.50036i) q^{24} +(2.58167 - 2.28716i) q^{25} +(-5.26030 - 6.96208i) q^{26} +(-4.15202 - 3.67837i) q^{27} +(-2.98820 + 8.95074i) q^{28} +(0.291416 + 7.23142i) q^{29} +(-6.99469 - 8.56693i) q^{30} +(3.48709 - 3.93612i) q^{31} +(1.30761 - 0.266950i) q^{32} +(-2.37992 - 0.689352i) q^{33} +(-4.37164 - 1.65794i) q^{34} +(0.286348 - 7.10566i) q^{35} +(1.62885 - 1.22400i) q^{36} +(-9.28405 - 1.89535i) q^{37} +(-15.7530 - 8.26779i) q^{38} +(3.57353 - 4.40029i) q^{39} +(11.5672 - 6.07094i) q^{40} +(-1.54584 + 0.447759i) q^{41} +(-9.27860 - 0.749046i) q^{42} +(0.644074 + 3.15488i) q^{43} +(2.82489 - 5.38238i) q^{44} +(-0.922430 + 1.22753i) q^{45} +(-6.17871 - 9.77085i) q^{46} +(-0.644340 - 0.444756i) q^{47} +(-2.13154 - 4.49212i) q^{48} +(0.702733 + 0.731622i) q^{49} +(-6.02002 + 5.78230i) q^{50} +(0.366107 - 3.01516i) q^{51} +(8.82346 + 10.7491i) q^{52} +(1.39133 + 11.4586i) q^{53} +(10.3987 + 8.49031i) q^{54} +(-0.916314 + 4.48840i) q^{55} +(3.05910 - 10.5612i) q^{56} +(2.76586 - 11.2215i) q^{57} +(-1.40939 - 17.4584i) q^{58} +(-0.344613 + 2.12049i) q^{59} +(11.6883 + 13.1934i) q^{60} +(-7.39192 - 5.55467i) q^{61} +(-8.04881 + 9.85800i) q^{62} +(0.207314 + 1.27565i) q^{63} +(-9.27741 + 2.28668i) q^{64} +(-8.64075 - 5.93088i) q^{65} +(5.82221 + 1.43505i) q^{66} +(-0.146501 + 1.81474i) q^{67} +(7.06795 + 2.35963i) q^{68} +(5.20238 - 5.41625i) q^{69} +17.2106i q^{70} +(8.24282 + 7.91734i) q^{71} +(-1.83898 + 1.50148i) q^{72} +(-3.61262 - 6.88327i) q^{73} +(22.6351 + 3.67856i) q^{74} +(-4.58309 - 2.89817i) q^{75} +(25.6161 + 12.1550i) q^{76} +(2.19030 + 3.17320i) q^{77} +(-8.21259 + 10.9889i) q^{78} +(3.01380 - 4.36625i) q^{79} +(-7.96123 + 4.59642i) q^{80} +(-3.05923 + 6.44720i) q^{81} +(3.69448 - 1.23340i) q^{82} +(0.682568 + 2.76929i) q^{83} +(14.8236 + 0.597372i) q^{84} +(-5.61098 - 0.226115i) q^{85} +(-1.86492 - 7.56627i) q^{86} +(10.7928 - 3.60315i) q^{87} +(-3.03639 + 6.39905i) q^{88} +(10.7109 - 6.18392i) q^{89} +(2.11097 - 3.05827i) q^{90} +(-8.63819 + 1.78712i) q^{91} +(10.4662 + 15.1629i) q^{92} +(-7.46924 - 3.54420i) q^{93} +(1.60146 + 1.01270i) q^{94} +(-21.0912 - 3.42765i) q^{95} +(-0.975080 - 1.85786i) q^{96} +(-10.8183 + 8.83290i) q^{97} +(-1.77062 - 1.70070i) q^{98} -0.832521i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{77}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41817 + 0.0974488i −1.70990 + 0.0689067i −0.875791 0.482690i \(-0.839660\pi\)
−0.834111 + 0.551597i \(0.814019\pi\)
\(3\) −0.437408 1.51011i −0.252538 0.871861i −0.982166 0.188017i \(-0.939794\pi\)
0.729628 0.683844i \(-0.239693\pi\)
\(4\) 3.84452 0.310362i 1.92226 0.155181i
\(5\) −2.71784 + 1.03074i −1.21545 + 0.460961i −0.877214 0.480099i \(-0.840601\pi\)
−0.338240 + 0.941060i \(0.609832\pi\)
\(6\) 1.20488 + 3.60907i 0.491891 + 1.47339i
\(7\) −0.958962 + 2.25077i −0.362453 + 0.850709i 0.634516 + 0.772910i \(0.281200\pi\)
−0.996969 + 0.0777993i \(0.975211\pi\)
\(8\) −4.46148 + 0.541722i −1.57737 + 0.191528i
\(9\) 0.446473 0.282332i 0.148824 0.0941108i
\(10\) 6.47174 2.75735i 2.04654 0.871951i
\(11\) 0.842314 1.33201i 0.253967 0.401617i −0.694005 0.719970i \(-0.744155\pi\)
0.947972 + 0.318353i \(0.103130\pi\)
\(12\) −2.15030 5.66988i −0.620739 1.63675i
\(13\) 2.05596 + 2.96193i 0.570222 + 0.821491i
\(14\) 2.09959 5.53618i 0.561140 1.47961i
\(15\) 2.74533 + 3.65337i 0.708841 + 0.943297i
\(16\) 3.12165 0.507318i 0.780413 0.126829i
\(17\) 1.77732 + 0.757244i 0.431062 + 0.183659i 0.596589 0.802547i \(-0.296522\pi\)
−0.165527 + 0.986205i \(0.552932\pi\)
\(18\) −1.05213 + 0.726235i −0.247990 + 0.171175i
\(19\) 6.36630 + 3.67559i 1.46053 + 0.843237i 0.999036 0.0439059i \(-0.0139802\pi\)
0.461494 + 0.887143i \(0.347314\pi\)
\(20\) −10.1289 + 4.80621i −2.26489 + 1.07470i
\(21\) 3.81835 + 0.463632i 0.833233 + 0.101173i
\(22\) −1.90705 + 3.30311i −0.406585 + 0.704226i
\(23\) 2.38841 + 4.13685i 0.498018 + 0.862593i 0.999997 0.00228656i \(-0.000727835\pi\)
−0.501979 + 0.864880i \(0.667395\pi\)
\(24\) 2.76954 + 6.50036i 0.565331 + 1.32688i
\(25\) 2.58167 2.28716i 0.516333 0.457431i
\(26\) −5.26030 6.96208i −1.03163 1.36538i
\(27\) −4.15202 3.67837i −0.799057 0.707903i
\(28\) −2.98820 + 8.95074i −0.564716 + 1.69153i
\(29\) 0.291416 + 7.23142i 0.0541147 + 1.34284i 0.767039 + 0.641601i \(0.221729\pi\)
−0.712924 + 0.701241i \(0.752630\pi\)
\(30\) −6.99469 8.56693i −1.27705 1.56410i
\(31\) 3.48709 3.93612i 0.626301 0.706947i −0.346641 0.937998i \(-0.612678\pi\)
0.972942 + 0.231051i \(0.0742163\pi\)
\(32\) 1.30761 0.266950i 0.231154 0.0471905i
\(33\) −2.37992 0.689352i −0.414290 0.120001i
\(34\) −4.37164 1.65794i −0.749730 0.284335i
\(35\) 0.286348 7.10566i 0.0484017 1.20108i
\(36\) 1.62885 1.22400i 0.271475 0.204000i
\(37\) −9.28405 1.89535i −1.52629 0.311594i −0.637694 0.770290i \(-0.720112\pi\)
−0.888593 + 0.458696i \(0.848317\pi\)
\(38\) −15.7530 8.26779i −2.55547 1.34121i
\(39\) 3.57353 4.40029i 0.572223 0.704611i
\(40\) 11.5672 6.07094i 1.82894 0.959899i
\(41\) −1.54584 + 0.447759i −0.241420 + 0.0699283i −0.396722 0.917939i \(-0.629852\pi\)
0.155302 + 0.987867i \(0.450365\pi\)
\(42\) −9.27860 0.749046i −1.43172 0.115580i
\(43\) 0.644074 + 3.15488i 0.0982204 + 0.481115i 0.998911 + 0.0466544i \(0.0148560\pi\)
−0.900691 + 0.434461i \(0.856939\pi\)
\(44\) 2.82489 5.38238i 0.425868 0.811424i
\(45\) −0.922430 + 1.22753i −0.137508 + 0.182990i
\(46\) −6.17871 9.77085i −0.911001 1.44063i
\(47\) −0.644340 0.444756i −0.0939867 0.0648743i 0.520145 0.854078i \(-0.325878\pi\)
−0.614131 + 0.789204i \(0.710493\pi\)
\(48\) −2.13154 4.49212i −0.307661 0.648382i
\(49\) 0.702733 + 0.731622i 0.100390 + 0.104517i
\(50\) −6.02002 + 5.78230i −0.851359 + 0.817741i
\(51\) 0.366107 3.01516i 0.0512652 0.422207i
\(52\) 8.82346 + 10.7491i 1.22359 + 1.49063i
\(53\) 1.39133 + 11.4586i 0.191114 + 1.57397i 0.700643 + 0.713512i \(0.252897\pi\)
−0.509529 + 0.860454i \(0.670180\pi\)
\(54\) 10.3987 + 8.49031i 1.41509 + 1.15538i
\(55\) −0.916314 + 4.48840i −0.123556 + 0.605216i
\(56\) 3.05910 10.5612i 0.408789 1.41130i
\(57\) 2.76586 11.2215i 0.366347 1.48633i
\(58\) −1.40939 17.4584i −0.185062 2.29240i
\(59\) −0.344613 + 2.12049i −0.0448647 + 0.276064i −0.999784 0.0208031i \(-0.993378\pi\)
0.954919 + 0.296867i \(0.0959418\pi\)
\(60\) 11.6883 + 13.1934i 1.50896 + 1.70326i
\(61\) −7.39192 5.55467i −0.946439 0.711202i 0.0109697 0.999940i \(-0.496508\pi\)
−0.957408 + 0.288737i \(0.906765\pi\)
\(62\) −8.04881 + 9.85800i −1.02220 + 1.25197i
\(63\) 0.207314 + 1.27565i 0.0261191 + 0.160717i
\(64\) −9.27741 + 2.28668i −1.15968 + 0.285835i
\(65\) −8.64075 5.93088i −1.07175 0.735635i
\(66\) 5.82221 + 1.43505i 0.716665 + 0.176642i
\(67\) −0.146501 + 1.81474i −0.0178980 + 0.221706i 0.981625 + 0.190821i \(0.0611149\pi\)
−0.999523 + 0.0308858i \(0.990167\pi\)
\(68\) 7.06795 + 2.35963i 0.857115 + 0.286147i
\(69\) 5.20238 5.41625i 0.626293 0.652040i
\(70\) 17.2106i 2.05706i
\(71\) 8.24282 + 7.91734i 0.978243 + 0.939615i 0.998187 0.0601862i \(-0.0191695\pi\)
−0.0199445 + 0.999801i \(0.506349\pi\)
\(72\) −1.83898 + 1.50148i −0.216726 + 0.176952i
\(73\) −3.61262 6.88327i −0.422825 0.805626i 0.577114 0.816663i \(-0.304179\pi\)
−0.999939 + 0.0110379i \(0.996486\pi\)
\(74\) 22.6351 + 3.67856i 2.63127 + 0.427624i
\(75\) −4.58309 2.89817i −0.529210 0.334652i
\(76\) 25.6161 + 12.1550i 2.93837 + 1.39428i
\(77\) 2.19030 + 3.17320i 0.249608 + 0.361620i
\(78\) −8.21259 + 10.9889i −0.929893 + 1.24425i
\(79\) 3.01380 4.36625i 0.339080 0.491242i −0.615936 0.787796i \(-0.711222\pi\)
0.955016 + 0.296554i \(0.0958376\pi\)
\(80\) −7.96123 + 4.59642i −0.890093 + 0.513895i
\(81\) −3.05923 + 6.44720i −0.339915 + 0.716355i
\(82\) 3.69448 1.23340i 0.407987 0.136206i
\(83\) 0.682568 + 2.76929i 0.0749215 + 0.303969i 0.996434 0.0843812i \(-0.0268914\pi\)
−0.921512 + 0.388350i \(0.873045\pi\)
\(84\) 14.8236 + 0.597372i 1.61739 + 0.0651786i
\(85\) −5.61098 0.226115i −0.608596 0.0245256i
\(86\) −1.86492 7.56627i −0.201099 0.815892i
\(87\) 10.7928 3.60315i 1.15710 0.386298i
\(88\) −3.03639 + 6.39905i −0.323680 + 0.682141i
\(89\) 10.7109 6.18392i 1.13535 0.655494i 0.190075 0.981770i \(-0.439127\pi\)
0.945275 + 0.326275i \(0.105794\pi\)
\(90\) 2.11097 3.05827i 0.222516 0.322370i
\(91\) −8.63819 + 1.78712i −0.905529 + 0.187341i
\(92\) 10.4662 + 15.1629i 1.09118 + 1.58085i
\(93\) −7.46924 3.54420i −0.774524 0.367516i
\(94\) 1.60146 + 1.01270i 0.165178 + 0.104452i
\(95\) −21.0912 3.42765i −2.16391 0.351669i
\(96\) −0.975080 1.85786i −0.0995187 0.189617i
\(97\) −10.8183 + 8.83290i −1.09844 + 0.896845i −0.995205 0.0978123i \(-0.968816\pi\)
−0.103231 + 0.994657i \(0.532918\pi\)
\(98\) −1.77062 1.70070i −0.178860 0.171797i
\(99\) 0.832521i 0.0836715i
\(100\) 9.21542 9.59427i 0.921542 0.959427i
\(101\) −10.8268 3.61451i −1.07731 0.359658i −0.277999 0.960581i \(-0.589671\pi\)
−0.799306 + 0.600924i \(0.794800\pi\)
\(102\) −0.591484 + 7.32684i −0.0585656 + 0.725465i
\(103\) 13.2430 + 3.26412i 1.30488 + 0.321623i 0.829671 0.558252i \(-0.188528\pi\)
0.475205 + 0.879875i \(0.342374\pi\)
\(104\) −10.7772 12.1008i −1.05679 1.18658i
\(105\) −10.8556 + 2.67565i −1.05939 + 0.261117i
\(106\) −4.48110 27.5733i −0.435243 2.67816i
\(107\) 9.62499 11.7885i 0.930483 1.13963i −0.0594690 0.998230i \(-0.518941\pi\)
0.989952 0.141404i \(-0.0451618\pi\)
\(108\) −17.1042 12.8529i −1.64585 1.23678i
\(109\) 5.56485 + 6.28142i 0.533016 + 0.601651i 0.951907 0.306386i \(-0.0991197\pi\)
−0.418891 + 0.908036i \(0.637581\pi\)
\(110\) 1.77841 10.9430i 0.169565 1.04337i
\(111\) 1.19873 + 14.8489i 0.113778 + 1.40940i
\(112\) −1.85169 + 7.51260i −0.174968 + 0.709874i
\(113\) 4.69921 16.2236i 0.442065 1.52619i −0.362307 0.932059i \(-0.618011\pi\)
0.804372 0.594126i \(-0.202502\pi\)
\(114\) −5.59478 + 27.4051i −0.523999 + 2.56672i
\(115\) −10.7553 8.78146i −1.00294 0.818876i
\(116\) 3.36471 + 27.7109i 0.312406 + 2.57289i
\(117\) 1.75418 + 0.741956i 0.162174 + 0.0685938i
\(118\) 0.626692 5.16127i 0.0576917 0.475134i
\(119\) −3.40876 + 3.27415i −0.312480 + 0.300141i
\(120\) −14.2273 14.8122i −1.29877 1.35217i
\(121\) 3.65085 + 7.69401i 0.331896 + 0.699455i
\(122\) 18.4162 + 12.7118i 1.66732 + 1.15087i
\(123\) 1.35233 + 2.13854i 0.121935 + 0.192825i
\(124\) 12.1846 16.2147i 1.09421 1.45613i
\(125\) 2.09503 3.99175i 0.187386 0.357033i
\(126\) −0.625630 3.06454i −0.0557355 0.273011i
\(127\) 15.0180 + 1.21238i 1.33263 + 0.107581i 0.726161 0.687524i \(-0.241302\pi\)
0.606471 + 0.795105i \(0.292585\pi\)
\(128\) 19.6477 5.69103i 1.73663 0.503021i
\(129\) 4.48249 2.35259i 0.394661 0.207134i
\(130\) 21.4727 + 13.4998i 1.88328 + 1.18401i
\(131\) −10.0477 5.27342i −0.877868 0.460740i −0.0353286 0.999376i \(-0.511248\pi\)
−0.842539 + 0.538635i \(0.818940\pi\)
\(132\) −9.36359 1.91159i −0.814996 0.166383i
\(133\) −14.3779 + 10.8043i −1.24672 + 0.936852i
\(134\) 0.177420 4.40263i 0.0153268 0.380329i
\(135\) 15.0760 + 5.71756i 1.29753 + 0.492089i
\(136\) −8.33967 2.41562i −0.715121 0.207137i
\(137\) −0.339690 + 0.0693483i −0.0290217 + 0.00592482i −0.214515 0.976721i \(-0.568817\pi\)
0.185493 + 0.982646i \(0.440612\pi\)
\(138\) −12.0524 + 13.6044i −1.02597 + 1.15808i
\(139\) 6.27836 + 7.68959i 0.532524 + 0.652223i 0.968874 0.247554i \(-0.0796267\pi\)
−0.436351 + 0.899777i \(0.643729\pi\)
\(140\) −1.10445 27.4067i −0.0933433 2.31629i
\(141\) −0.389790 + 1.16756i −0.0328262 + 0.0983265i
\(142\) −20.7040 18.3422i −1.73745 1.53924i
\(143\) 5.67709 0.243697i 0.474743 0.0203790i
\(144\) 1.25050 1.10785i 0.104208 0.0923206i
\(145\) −8.24574 19.3535i −0.684772 1.60722i
\(146\) 9.40668 + 16.2928i 0.778502 + 1.34841i
\(147\) 0.797447 1.38122i 0.0657723 0.113921i
\(148\) −36.2809 4.40530i −2.98228 0.362114i
\(149\) −7.46452 + 3.54196i −0.611518 + 0.290169i −0.709154 0.705053i \(-0.750923\pi\)
0.0976366 + 0.995222i \(0.468872\pi\)
\(150\) 11.3651 + 6.56164i 0.927957 + 0.535756i
\(151\) −7.03976 + 4.85919i −0.572887 + 0.395436i −0.818990 0.573808i \(-0.805465\pi\)
0.246102 + 0.969244i \(0.420850\pi\)
\(152\) −30.3943 12.9498i −2.46530 1.05037i
\(153\) 1.00732 0.163705i 0.0814369 0.0132348i
\(154\) −5.60574 7.45989i −0.451724 0.601135i
\(155\) −5.42025 + 14.2920i −0.435365 + 1.14796i
\(156\) 12.3728 18.0261i 0.990620 1.44324i
\(157\) −7.76500 20.4746i −0.619715 1.63405i −0.764525 0.644594i \(-0.777026\pi\)
0.144810 0.989459i \(-0.453743\pi\)
\(158\) −6.86240 + 10.8520i −0.545943 + 0.863340i
\(159\) 16.6952 7.11316i 1.32402 0.564110i
\(160\) −3.27871 + 2.07333i −0.259205 + 0.163911i
\(161\) −11.6015 + 1.40867i −0.914325 + 0.111019i
\(162\) 6.76947 15.8885i 0.531860 1.24832i
\(163\) −0.109202 0.327101i −0.00855338 0.0256205i 0.944173 0.329449i \(-0.106863\pi\)
−0.952727 + 0.303829i \(0.901735\pi\)
\(164\) −5.80406 + 2.20119i −0.453221 + 0.171884i
\(165\) 7.17877 0.579530i 0.558867 0.0451164i
\(166\) −1.92043 6.63008i −0.149054 0.514594i
\(167\) 16.0495 0.646773i 1.24195 0.0500488i 0.589428 0.807821i \(-0.299353\pi\)
0.652520 + 0.757772i \(0.273712\pi\)
\(168\) −17.2867 −1.33370
\(169\) −4.54603 + 12.1792i −0.349694 + 0.936864i
\(170\) 13.5903 1.04233
\(171\) 3.88012 0.156363i 0.296720 0.0119574i
\(172\) 3.45531 + 11.9291i 0.263465 + 0.909587i
\(173\) −6.69049 + 0.540112i −0.508668 + 0.0410640i −0.332137 0.943231i \(-0.607770\pi\)
−0.176531 + 0.984295i \(0.556488\pi\)
\(174\) −25.7476 + 9.76476i −1.95192 + 0.740265i
\(175\) 2.67213 + 8.00402i 0.201994 + 0.605047i
\(176\) 1.95366 4.58540i 0.147262 0.345638i
\(177\) 3.35290 0.407116i 0.252019 0.0306007i
\(178\) −25.2980 + 15.9975i −1.89617 + 1.19906i
\(179\) −18.5741 + 7.91367i −1.38829 + 0.591495i −0.951383 0.308011i \(-0.900337\pi\)
−0.436907 + 0.899506i \(0.643926\pi\)
\(180\) −3.16532 + 5.00556i −0.235929 + 0.373092i
\(181\) −2.55442 6.73546i −0.189869 0.500643i 0.805951 0.591982i \(-0.201654\pi\)
−0.995820 + 0.0913394i \(0.970885\pi\)
\(182\) 20.7144 5.16333i 1.53546 0.382731i
\(183\) −5.15486 + 13.5922i −0.381058 + 1.00477i
\(184\) −12.8969 17.1626i −0.950770 1.26525i
\(185\) 27.1861 4.41818i 1.99877 0.324831i
\(186\) 18.4072 + 7.84259i 1.34968 + 0.575047i
\(187\) 2.50572 1.72957i 0.183236 0.126479i
\(188\) −2.61521 1.50989i −0.190734 0.110120i
\(189\) 12.2608 5.81781i 0.891841 0.423184i
\(190\) 51.3359 + 6.23331i 3.72430 + 0.452212i
\(191\) −10.4066 + 18.0247i −0.752993 + 1.30422i 0.193373 + 0.981125i \(0.438057\pi\)
−0.946366 + 0.323096i \(0.895276\pi\)
\(192\) 7.51114 + 13.0097i 0.542070 + 0.938892i
\(193\) −3.24871 7.62501i −0.233847 0.548860i 0.761171 0.648551i \(-0.224625\pi\)
−0.995018 + 0.0996912i \(0.968215\pi\)
\(194\) 25.2998 22.4137i 1.81642 1.60921i
\(195\) −5.17672 + 15.6427i −0.370713 + 1.12020i
\(196\) 2.92874 + 2.59464i 0.209196 + 0.185331i
\(197\) −0.393664 + 1.17917i −0.0280474 + 0.0840122i −0.961630 0.274351i \(-0.911537\pi\)
0.933582 + 0.358363i \(0.116665\pi\)
\(198\) 0.0811282 + 2.01317i 0.00576553 + 0.143070i
\(199\) −9.72543 11.9115i −0.689418 0.844383i 0.304727 0.952440i \(-0.401435\pi\)
−0.994145 + 0.108056i \(0.965537\pi\)
\(200\) −10.2790 + 11.6026i −0.726838 + 0.820431i
\(201\) 2.80454 0.572551i 0.197817 0.0403846i
\(202\) 26.5332 + 7.68544i 1.86687 + 0.540746i
\(203\) −16.5557 6.27875i −1.16198 0.440682i
\(204\) 0.471715 11.7055i 0.0330266 0.819547i
\(205\) 3.73983 2.81030i 0.261201 0.196280i
\(206\) −32.3420 6.60266i −2.25337 0.460029i
\(207\) 2.23433 + 1.17267i 0.155297 + 0.0815060i
\(208\) 7.92064 + 8.20308i 0.549198 + 0.568781i
\(209\) 10.2584 5.38400i 0.709585 0.372419i
\(210\) 25.9898 7.52804i 1.79347 0.519484i
\(211\) 11.8864 + 0.959571i 0.818295 + 0.0660596i 0.482522 0.875884i \(-0.339721\pi\)
0.335772 + 0.941943i \(0.391003\pi\)
\(212\) 8.90533 + 43.6212i 0.611620 + 2.99591i
\(213\) 8.35055 15.9106i 0.572170 1.09018i
\(214\) −22.1261 + 29.4444i −1.51251 + 2.01278i
\(215\) −5.00236 7.91059i −0.341158 0.539498i
\(216\) 20.5168 + 14.1617i 1.39599 + 0.963584i
\(217\) 5.51528 + 11.6232i 0.374402 + 0.789035i
\(218\) −14.0689 14.6472i −0.952863 0.992035i
\(219\) −8.81428 + 8.46623i −0.595614 + 0.572095i
\(220\) −2.12976 + 17.5402i −0.143588 + 1.18256i
\(221\) 1.41120 + 6.82115i 0.0949273 + 0.458840i
\(222\) −4.34574 35.7904i −0.291667 2.40209i
\(223\) 2.46102 + 2.00936i 0.164802 + 0.134557i 0.711258 0.702931i \(-0.248126\pi\)
−0.546456 + 0.837488i \(0.684023\pi\)
\(224\) −0.653103 + 3.19911i −0.0436373 + 0.213750i
\(225\) 0.506906 1.75004i 0.0337937 0.116669i
\(226\) −9.78252 + 39.6892i −0.650723 + 2.64009i
\(227\) −1.48276 18.3673i −0.0984143 1.21908i −0.837868 0.545873i \(-0.816198\pi\)
0.739454 0.673207i \(-0.235084\pi\)
\(228\) 7.15066 43.9998i 0.473564 2.91396i
\(229\) −6.06220 6.84281i −0.400602 0.452186i 0.513247 0.858241i \(-0.328442\pi\)
−0.913848 + 0.406055i \(0.866904\pi\)
\(230\) 26.8639 + 20.1869i 1.77136 + 1.33109i
\(231\) 3.83382 4.69557i 0.252247 0.308946i
\(232\) −5.21757 32.1050i −0.342550 2.10780i
\(233\) 27.9086 6.87884i 1.82835 0.450648i 0.833546 0.552449i \(-0.186307\pi\)
0.994805 + 0.101801i \(0.0324606\pi\)
\(234\) −4.31420 1.62323i −0.282028 0.106114i
\(235\) 2.20964 + 0.544627i 0.144141 + 0.0355276i
\(236\) −0.666752 + 8.25921i −0.0434019 + 0.537629i
\(237\) −7.91177 2.64134i −0.513924 0.171573i
\(238\) 7.92388 8.24963i 0.513629 0.534744i
\(239\) 17.5823i 1.13730i −0.822579 0.568651i \(-0.807466\pi\)
0.822579 0.568651i \(-0.192534\pi\)
\(240\) 10.4234 + 10.0118i 0.672827 + 0.646259i
\(241\) −7.47584 + 6.10384i −0.481561 + 0.393183i −0.841896 0.539641i \(-0.818560\pi\)
0.360334 + 0.932823i \(0.382663\pi\)
\(242\) −9.57814 18.2496i −0.615706 1.17313i
\(243\) −5.35154 0.869711i −0.343302 0.0557920i
\(244\) −30.1424 19.0609i −1.92967 1.22025i
\(245\) −2.66403 1.26410i −0.170198 0.0807602i
\(246\) −3.47855 5.03956i −0.221785 0.321310i
\(247\) 2.20206 + 26.4134i 0.140114 + 1.68064i
\(248\) −13.4253 + 19.4499i −0.852509 + 1.23507i
\(249\) 3.88336 2.24206i 0.246098 0.142085i
\(250\) −4.67715 + 9.85689i −0.295809 + 0.623404i
\(251\) 9.80427 3.27315i 0.618840 0.206599i 0.0100743 0.999949i \(-0.496793\pi\)
0.608766 + 0.793350i \(0.291665\pi\)
\(252\) 1.19294 + 4.83993i 0.0751478 + 0.304887i
\(253\) 7.52214 + 0.303132i 0.472913 + 0.0190577i
\(254\) −36.4342 1.46825i −2.28608 0.0921261i
\(255\) 2.11283 + 8.57208i 0.132310 + 0.536805i
\(256\) −28.8302 + 9.62495i −1.80189 + 0.601559i
\(257\) −9.38761 + 19.7840i −0.585583 + 1.23409i 0.367116 + 0.930175i \(0.380345\pi\)
−0.952699 + 0.303915i \(0.901706\pi\)
\(258\) −10.6102 + 6.12577i −0.660559 + 0.381374i
\(259\) 13.1690 19.0786i 0.818284 1.18549i
\(260\) −35.0603 20.1196i −2.17435 1.24777i
\(261\) 2.17178 + 3.14636i 0.134430 + 0.194755i
\(262\) 24.8108 + 11.7729i 1.53282 + 0.727330i
\(263\) −11.1092 7.02506i −0.685026 0.433184i 0.146099 0.989270i \(-0.453328\pi\)
−0.831125 + 0.556086i \(0.812303\pi\)
\(264\) 10.9914 + 1.78627i 0.676473 + 0.109938i
\(265\) −15.5923 29.7086i −0.957827 1.82499i
\(266\) 33.7153 27.5277i 2.06722 1.68783i
\(267\) −14.0234 13.4697i −0.858218 0.824329i
\(268\) 7.02229i 0.428955i
\(269\) −9.61280 + 10.0080i −0.586103 + 0.610198i −0.946540 0.322586i \(-0.895448\pi\)
0.360437 + 0.932783i \(0.382627\pi\)
\(270\) −37.0134 12.3569i −2.25256 0.752016i
\(271\) 0.759241 9.40489i 0.0461206 0.571306i −0.931889 0.362745i \(-0.881840\pi\)
0.978009 0.208562i \(-0.0668782\pi\)
\(272\) 5.93232 + 1.46219i 0.359700 + 0.0886581i
\(273\) 6.47715 + 12.2629i 0.392015 + 0.742184i
\(274\) 0.814670 0.200798i 0.0492160 0.0121307i
\(275\) −0.871949 5.36532i −0.0525805 0.323541i
\(276\) 18.3197 22.4375i 1.10271 1.35058i
\(277\) 14.4172 + 10.8338i 0.866247 + 0.650943i 0.938059 0.346475i \(-0.112622\pi\)
−0.0718116 + 0.997418i \(0.522878\pi\)
\(278\) −15.9315 17.9829i −0.955506 1.07854i
\(279\) 0.445600 2.74189i 0.0266774 0.164153i
\(280\) 2.57175 + 31.8569i 0.153692 + 1.90381i
\(281\) 1.03053 4.18104i 0.0614764 0.249420i −0.932161 0.362043i \(-0.882079\pi\)
0.993638 + 0.112624i \(0.0359254\pi\)
\(282\) 0.828799 2.86134i 0.0493542 0.170391i
\(283\) 1.11476 5.46047i 0.0662658 0.324591i −0.933123 0.359558i \(-0.882927\pi\)
0.999388 + 0.0349668i \(0.0111325\pi\)
\(284\) 34.1469 + 27.8801i 2.02625 + 1.65438i
\(285\) 4.04932 + 33.3492i 0.239861 + 1.97543i
\(286\) −13.7044 + 1.14253i −0.810359 + 0.0675590i
\(287\) 0.474604 3.90872i 0.0280150 0.230724i
\(288\) 0.508443 0.488366i 0.0299603 0.0287772i
\(289\) −9.19088 9.56872i −0.540640 0.562866i
\(290\) 21.8255 + 45.9964i 1.28164 + 2.70100i
\(291\) 18.0706 + 12.4733i 1.05932 + 0.731196i
\(292\) −16.0251 25.3416i −0.937797 1.48301i
\(293\) −7.15857 + 9.52632i −0.418208 + 0.556534i −0.958555 0.284909i \(-0.908037\pi\)
0.540347 + 0.841442i \(0.318293\pi\)
\(294\) −1.79376 + 3.41773i −0.104614 + 0.199326i
\(295\) −1.24907 6.11835i −0.0727236 0.356224i
\(296\) 42.4473 + 3.42670i 2.46720 + 0.199173i
\(297\) −8.39695 + 2.43221i −0.487240 + 0.141131i
\(298\) 17.7053 9.29246i 1.02564 0.538298i
\(299\) −7.34257 + 15.5795i −0.424632 + 0.900987i
\(300\) −18.5193 9.71966i −1.06921 0.561165i
\(301\) −7.71855 1.57575i −0.444890 0.0908249i
\(302\) 16.5498 12.4364i 0.952333 0.715632i
\(303\) −0.722579 + 17.9306i −0.0415111 + 1.03009i
\(304\) 21.7381 + 8.24416i 1.24676 + 0.472835i
\(305\) 25.8155 + 7.47754i 1.47819 + 0.428163i
\(306\) −2.41991 + 0.494028i −0.138337 + 0.0282417i
\(307\) −6.28170 + 7.09058i −0.358516 + 0.404681i −0.899901 0.436094i \(-0.856362\pi\)
0.541385 + 0.840775i \(0.317900\pi\)
\(308\) 9.40550 + 11.5197i 0.535928 + 0.656393i
\(309\) −0.863445 21.4262i −0.0491197 1.21889i
\(310\) 11.7143 35.0887i 0.665329 1.99290i
\(311\) 0.713301 + 0.631929i 0.0404476 + 0.0358334i 0.683104 0.730321i \(-0.260629\pi\)
−0.642657 + 0.766154i \(0.722168\pi\)
\(312\) −13.5595 + 21.5677i −0.767656 + 1.22103i
\(313\) −12.8396 + 11.3749i −0.725740 + 0.642949i −0.942858 0.333196i \(-0.891873\pi\)
0.217118 + 0.976145i \(0.430334\pi\)
\(314\) 20.7723 + 48.7544i 1.17225 + 2.75137i
\(315\) −1.87831 3.25333i −0.105831 0.183304i
\(316\) 10.2315 17.7215i 0.575568 0.996913i
\(317\) 13.4036 + 1.62749i 0.752819 + 0.0914088i 0.487945 0.872874i \(-0.337747\pi\)
0.264874 + 0.964283i \(0.414670\pi\)
\(318\) −39.6786 + 18.8277i −2.22507 + 1.05581i
\(319\) 9.87782 + 5.70296i 0.553052 + 0.319305i
\(320\) 22.8575 15.7774i 1.27777 0.881984i
\(321\) −22.0119 9.37839i −1.22858 0.523451i
\(322\) 27.9170 4.53696i 1.55576 0.252835i
\(323\) 8.53162 + 11.3535i 0.474712 + 0.631727i
\(324\) −9.76032 + 25.7359i −0.542240 + 1.42977i
\(325\) 12.0822 + 2.94440i 0.670200 + 0.163326i
\(326\) 0.295945 + 0.780342i 0.0163909 + 0.0432192i
\(327\) 7.05150 11.1511i 0.389949 0.616655i
\(328\) 6.65419 2.83509i 0.367416 0.156541i
\(329\) 1.61894 1.02375i 0.0892550 0.0564414i
\(330\) −17.3030 + 2.10096i −0.952499 + 0.115654i
\(331\) −0.266451 + 0.625385i −0.0146455 + 0.0343742i −0.927142 0.374711i \(-0.877742\pi\)
0.912496 + 0.409085i \(0.134152\pi\)
\(332\) 3.48363 + 10.4347i 0.191189 + 0.572680i
\(333\) −4.68020 + 1.77496i −0.256473 + 0.0972674i
\(334\) −38.7474 + 3.12801i −2.12016 + 0.171157i
\(335\) −1.47236 5.08319i −0.0804438 0.277724i
\(336\) 12.1548 0.489821i 0.663097 0.0267219i
\(337\) −3.40754 −0.185620 −0.0928102 0.995684i \(-0.529585\pi\)
−0.0928102 + 0.995684i \(0.529585\pi\)
\(338\) 9.80620 29.8944i 0.533387 1.62604i
\(339\) −26.5548 −1.44226
\(340\) −21.6417 + 0.872131i −1.17369 + 0.0472979i
\(341\) −2.30573 7.96030i −0.124862 0.431075i
\(342\) −9.36754 + 0.756226i −0.506539 + 0.0408920i
\(343\) −18.3335 + 6.95297i −0.989915 + 0.375425i
\(344\) −4.58259 13.7265i −0.247077 0.740086i
\(345\) −8.55648 + 20.0828i −0.460665 + 1.08122i
\(346\) 16.1261 1.95806i 0.866944 0.105266i
\(347\) 1.05958 0.670041i 0.0568815 0.0359697i −0.505722 0.862696i \(-0.668774\pi\)
0.562604 + 0.826727i \(0.309800\pi\)
\(348\) 40.3747 17.2020i 2.16431 0.922126i
\(349\) 0.566237 0.895433i 0.0303100 0.0479314i −0.829695 0.558217i \(-0.811486\pi\)
0.860005 + 0.510285i \(0.170460\pi\)
\(350\) −7.24165 19.0947i −0.387082 1.02065i
\(351\) 2.35866 19.8606i 0.125896 1.06008i
\(352\) 0.745835 1.96661i 0.0397531 0.104820i
\(353\) −0.905614 1.20515i −0.0482010 0.0641438i 0.774699 0.632331i \(-0.217902\pi\)
−0.822900 + 0.568187i \(0.807645\pi\)
\(354\) −8.06819 + 1.31121i −0.428820 + 0.0696900i
\(355\) −30.5634 13.0218i −1.62213 0.691127i
\(356\) 39.2589 27.0984i 2.08072 1.43621i
\(357\) 6.43534 + 3.71544i 0.340594 + 0.196642i
\(358\) 44.1440 20.9466i 2.33308 1.10706i
\(359\) 14.8919 + 1.80820i 0.785962 + 0.0954331i 0.503671 0.863896i \(-0.331982\pi\)
0.282291 + 0.959329i \(0.408906\pi\)
\(360\) 3.45042 5.97631i 0.181853 0.314979i
\(361\) 17.5199 + 30.3453i 0.922098 + 1.59712i
\(362\) 6.83338 + 16.0385i 0.359155 + 0.842967i
\(363\) 10.0219 8.87859i 0.526011 0.466005i
\(364\) −32.6551 + 9.55157i −1.71159 + 0.500638i
\(365\) 16.9134 + 14.9839i 0.885286 + 0.784295i
\(366\) 11.1408 33.3707i 0.582337 1.74431i
\(367\) −1.05021 26.0608i −0.0548207 1.36036i −0.759348 0.650684i \(-0.774482\pi\)
0.704528 0.709676i \(-0.251159\pi\)
\(368\) 9.55449 + 11.7021i 0.498062 + 0.610015i
\(369\) −0.563761 + 0.636354i −0.0293482 + 0.0331273i
\(370\) −65.3101 + 13.3332i −3.39531 + 0.693158i
\(371\) −27.1249 7.85684i −1.40826 0.407907i
\(372\) −29.8156 11.3076i −1.54587 0.586270i
\(373\) 0.235906 5.85396i 0.0122148 0.303106i −0.981521 0.191353i \(-0.938712\pi\)
0.993736 0.111753i \(-0.0356466\pi\)
\(374\) −5.89070 + 4.42657i −0.304601 + 0.228893i
\(375\) −6.94436 1.41770i −0.358605 0.0732098i
\(376\) 3.11564 + 1.63522i 0.160677 + 0.0843298i
\(377\) −20.8198 + 15.7307i −1.07227 + 0.810172i
\(378\) −29.0817 + 15.2632i −1.49580 + 0.785056i
\(379\) 13.7528 3.98354i 0.706433 0.204621i 0.0944934 0.995525i \(-0.469877\pi\)
0.611939 + 0.790905i \(0.290390\pi\)
\(380\) −82.1492 6.63177i −4.21416 0.340202i
\(381\) −4.73817 23.2091i −0.242744 1.18904i
\(382\) 23.4083 44.6008i 1.19767 2.28198i
\(383\) 14.2416 18.9521i 0.727712 0.968409i −0.272268 0.962221i \(-0.587774\pi\)
0.999981 0.00618801i \(-0.00196972\pi\)
\(384\) −17.1881 27.1809i −0.877128 1.38707i
\(385\) −9.22363 6.36662i −0.470080 0.324473i
\(386\) 8.59898 + 18.1220i 0.437676 + 0.922383i
\(387\) 1.17829 + 1.22673i 0.0598957 + 0.0623581i
\(388\) −38.8499 + 37.3159i −1.97231 + 1.89443i
\(389\) 0.570424 4.69787i 0.0289217 0.238191i −0.971078 0.238762i \(-0.923258\pi\)
1.00000 0.000570414i \(0.000181568\pi\)
\(390\) 10.9938 38.3311i 0.556694 1.94097i
\(391\) 1.11236 + 9.16110i 0.0562544 + 0.463297i
\(392\) −3.53156 2.88343i −0.178371 0.145635i
\(393\) −3.56850 + 17.4797i −0.180007 + 0.881732i
\(394\) 0.837037 2.88979i 0.0421693 0.145585i
\(395\) −3.69056 + 14.9732i −0.185692 + 0.753384i
\(396\) −0.258383 3.20064i −0.0129842 0.160838i
\(397\) −1.63753 + 10.0761i −0.0821852 + 0.505706i 0.913021 + 0.407912i \(0.133743\pi\)
−0.995207 + 0.0977943i \(0.968821\pi\)
\(398\) 24.6785 + 27.8562i 1.23702 + 1.39631i
\(399\) 22.6047 + 16.9863i 1.13165 + 0.850379i
\(400\) 6.89874 8.44943i 0.344937 0.422471i
\(401\) −1.80270 11.0925i −0.0900228 0.553932i −0.992407 0.122999i \(-0.960749\pi\)
0.902384 0.430933i \(-0.141815\pi\)
\(402\) −6.72605 + 1.65782i −0.335465 + 0.0826846i
\(403\) 18.8278 + 2.23601i 0.937881 + 0.111384i
\(404\) −42.7456 10.5358i −2.12667 0.524178i
\(405\) 1.66912 20.6757i 0.0829391 1.02738i
\(406\) 40.6463 + 13.5697i 2.01724 + 0.673454i
\(407\) −10.3447 + 10.7700i −0.512769 + 0.533849i
\(408\) 13.6504i 0.675796i
\(409\) 20.6204 + 19.8062i 1.01961 + 0.979352i 0.999791 0.0204511i \(-0.00651023\pi\)
0.0198231 + 0.999804i \(0.493690\pi\)
\(410\) −8.76968 + 7.16022i −0.433103 + 0.353618i
\(411\) 0.253307 + 0.482635i 0.0124947 + 0.0238066i
\(412\) 51.9262 + 8.43883i 2.55822 + 0.415752i
\(413\) −4.44225 2.80911i −0.218589 0.138227i
\(414\) −5.51726 2.61797i −0.271158 0.128666i
\(415\) −4.70952 6.82292i −0.231181 0.334924i
\(416\) 3.47908 + 3.32420i 0.170576 + 0.162982i
\(417\) 8.86591 12.8445i 0.434165 0.628997i
\(418\) −24.2818 + 14.0191i −1.18766 + 0.685696i
\(419\) 9.41980 19.8518i 0.460187 0.969824i −0.532194 0.846622i \(-0.678632\pi\)
0.992382 0.123202i \(-0.0393163\pi\)
\(420\) −40.9040 + 13.6558i −1.99591 + 0.666332i
\(421\) −0.0574544 0.233101i −0.00280015 0.0113607i 0.969525 0.244992i \(-0.0787853\pi\)
−0.972325 + 0.233631i \(0.924939\pi\)
\(422\) −28.8368 1.16209i −1.40376 0.0565694i
\(423\) −0.413250 0.0166534i −0.0200929 0.000809715i
\(424\) −12.4148 50.3688i −0.602915 2.44612i
\(425\) 6.32037 2.11005i 0.306583 0.102352i
\(426\) −18.6425 + 39.2883i −0.903234 + 1.90353i
\(427\) 19.5908 11.3108i 0.948066 0.547366i
\(428\) 33.3448 48.3083i 1.61178 2.33507i
\(429\) −2.85121 8.46643i −0.137658 0.408763i
\(430\) 12.8674 + 18.6417i 0.620522 + 0.898981i
\(431\) −17.4885 8.29840i −0.842392 0.399720i −0.0419424 0.999120i \(-0.513355\pi\)
−0.800450 + 0.599400i \(0.795406\pi\)
\(432\) −14.8273 9.37620i −0.713377 0.451113i
\(433\) 12.6799 + 2.06069i 0.609359 + 0.0990305i 0.457258 0.889334i \(-0.348832\pi\)
0.152102 + 0.988365i \(0.451396\pi\)
\(434\) −14.4695 27.5694i −0.694560 1.32337i
\(435\) −25.6190 + 20.9173i −1.22834 + 1.00291i
\(436\) 23.3437 + 22.4219i 1.11796 + 1.07382i
\(437\) 35.1153i 1.67979i
\(438\) 20.4894 21.3317i 0.979021 1.01927i
\(439\) 0.859716 + 0.287015i 0.0410320 + 0.0136985i 0.337110 0.941465i \(-0.390551\pi\)
−0.296078 + 0.955164i \(0.595679\pi\)
\(440\) 1.65665 20.5213i 0.0789778 0.978315i
\(441\) 0.520312 + 0.128245i 0.0247768 + 0.00610692i
\(442\) −4.07722 16.3572i −0.193934 0.778030i
\(443\) 2.28809 0.563964i 0.108711 0.0267948i −0.184585 0.982817i \(-0.559094\pi\)
0.293296 + 0.956022i \(0.405248\pi\)
\(444\) 9.21709 + 56.7150i 0.437424 + 2.69158i
\(445\) −22.7364 + 27.8470i −1.07781 + 1.32007i
\(446\) −6.14696 4.61914i −0.291067 0.218723i
\(447\) 8.61378 + 9.72295i 0.407418 + 0.459880i
\(448\) 3.74991 23.0741i 0.177166 1.09015i
\(449\) 1.88654 + 23.3690i 0.0890315 + 1.10285i 0.874849 + 0.484395i \(0.160960\pi\)
−0.785818 + 0.618458i \(0.787758\pi\)
\(450\) −1.05524 + 4.28129i −0.0497446 + 0.201822i
\(451\) −0.705665 + 2.43624i −0.0332285 + 0.114718i
\(452\) 13.0310 63.8303i 0.612929 3.00232i
\(453\) 10.4171 + 8.50534i 0.489440 + 0.399616i
\(454\) 5.37543 + 44.2707i 0.252282 + 2.07773i
\(455\) 21.6352 13.7608i 1.01427 0.645118i
\(456\) −6.26087 + 51.5629i −0.293192 + 2.41466i
\(457\) 24.5000 23.5326i 1.14606 1.10081i 0.152409 0.988317i \(-0.451297\pi\)
0.993653 0.112490i \(-0.0358827\pi\)
\(458\) 15.3262 + 15.9563i 0.716148 + 0.745589i
\(459\) −4.59403 9.68172i −0.214431 0.451904i
\(460\) −44.0745 30.4225i −2.05499 1.41845i
\(461\) −2.02997 3.21013i −0.0945450 0.149511i 0.794605 0.607127i \(-0.207678\pi\)
−0.889150 + 0.457616i \(0.848704\pi\)
\(462\) −8.81323 + 11.7283i −0.410029 + 0.545649i
\(463\) 9.33044 17.7777i 0.433622 0.826198i −0.566376 0.824147i \(-0.691655\pi\)
0.999998 0.00205110i \(-0.000652885\pi\)
\(464\) 4.57833 + 22.4261i 0.212544 + 1.04111i
\(465\) 23.9533 + 1.93371i 1.11081 + 0.0896738i
\(466\) −66.8172 + 19.3539i −3.09525 + 0.896550i
\(467\) −29.0687 + 15.2565i −1.34514 + 0.705984i −0.974835 0.222926i \(-0.928439\pi\)
−0.370305 + 0.928910i \(0.620747\pi\)
\(468\) 6.97426 + 2.30803i 0.322385 + 0.106689i
\(469\) −3.94407 2.07001i −0.182120 0.0955842i
\(470\) −5.39635 1.10167i −0.248915 0.0508164i
\(471\) −27.5224 + 20.6817i −1.26817 + 0.952965i
\(472\) 0.388769 9.64719i 0.0178945 0.444048i
\(473\) 4.74486 + 1.79949i 0.218169 + 0.0827406i
\(474\) 19.3894 + 5.61620i 0.890583 + 0.257961i
\(475\) 24.8423 5.07159i 1.13984 0.232701i
\(476\) −12.0889 + 13.6455i −0.554092 + 0.625440i
\(477\) 3.85634 + 4.72316i 0.176570 + 0.216259i
\(478\) 1.71337 + 42.5168i 0.0783677 + 1.94467i
\(479\) 10.6365 31.8602i 0.485994 1.45573i −0.365224 0.930920i \(-0.619008\pi\)
0.851219 0.524811i \(-0.175864\pi\)
\(480\) 4.56508 + 4.04431i 0.208366 + 0.184597i
\(481\) −13.4738 31.3954i −0.614351 1.43151i
\(482\) 17.4830 15.4886i 0.796330 0.705487i
\(483\) 7.20183 + 16.9033i 0.327694 + 0.769127i
\(484\) 16.4237 + 28.4467i 0.746532 + 1.29303i
\(485\) 20.2981 35.1573i 0.921688 1.59641i
\(486\) 13.0257 + 1.58160i 0.590857 + 0.0717430i
\(487\) −2.95358 + 1.40149i −0.133839 + 0.0635075i −0.494435 0.869215i \(-0.664625\pi\)
0.360595 + 0.932722i \(0.382574\pi\)
\(488\) 35.9880 + 20.7777i 1.62910 + 0.940561i
\(489\) −0.446191 + 0.307983i −0.0201775 + 0.0139275i
\(490\) 6.56525 + 2.79719i 0.296588 + 0.126364i
\(491\) 7.99463 1.29925i 0.360793 0.0586345i 0.0226868 0.999743i \(-0.492778\pi\)
0.338106 + 0.941108i \(0.390214\pi\)
\(492\) 5.86278 + 7.80194i 0.264314 + 0.351738i
\(493\) −4.95801 + 13.0732i −0.223298 + 0.588787i
\(494\) −7.89891 63.6574i −0.355389 2.86408i
\(495\) 0.858113 + 2.26266i 0.0385693 + 0.101699i
\(496\) 8.88863 14.0562i 0.399111 0.631144i
\(497\) −25.7246 + 10.9602i −1.15391 + 0.491634i
\(498\) −9.17212 + 5.80010i −0.411013 + 0.259909i
\(499\) 31.3692 3.80890i 1.40428 0.170510i 0.616928 0.787019i \(-0.288377\pi\)
0.787348 + 0.616509i \(0.211454\pi\)
\(500\) 6.81551 15.9966i 0.304799 0.715390i
\(501\) −7.99688 23.9536i −0.357274 1.07017i
\(502\) −23.3894 + 8.87043i −1.04392 + 0.395907i
\(503\) 4.40746 0.355807i 0.196519 0.0158646i 0.0181848 0.999835i \(-0.494211\pi\)
0.178334 + 0.983970i \(0.442929\pi\)
\(504\) −1.61597 5.57899i −0.0719812 0.248508i
\(505\) 33.1511 1.33594i 1.47520 0.0594487i
\(506\) −18.2193 −0.809948
\(507\) 20.3804 + 1.53770i 0.905126 + 0.0682916i
\(508\) 58.1133 2.57836
\(509\) 4.94398 0.199235i 0.219138 0.00883096i 0.0695458 0.997579i \(-0.477845\pi\)
0.149592 + 0.988748i \(0.452204\pi\)
\(510\) −5.94451 20.5228i −0.263227 0.908766i
\(511\) 18.9570 1.53037i 0.838607 0.0676994i
\(512\) 30.5262 11.5771i 1.34908 0.511639i
\(513\) −12.9129 38.6787i −0.570117 1.70771i
\(514\) 20.7729 48.7558i 0.916253 2.15052i
\(515\) −39.3569 + 4.77880i −1.73427 + 0.210579i
\(516\) 16.5029 10.4358i 0.726498 0.459410i
\(517\) −1.13516 + 0.483646i −0.0499242 + 0.0212707i
\(518\) −29.9857 + 47.4186i −1.31750 + 2.08346i
\(519\) 3.74210 + 9.86710i 0.164260 + 0.433118i
\(520\) 41.7634 + 21.7796i 1.83145 + 0.955098i
\(521\) −9.64305 + 25.4266i −0.422470 + 1.11396i 0.539783 + 0.841804i \(0.318506\pi\)
−0.962253 + 0.272157i \(0.912263\pi\)
\(522\) −5.55832 7.39679i −0.243281 0.323749i
\(523\) 25.2140 4.09768i 1.10253 0.179179i 0.418205 0.908353i \(-0.362659\pi\)
0.684329 + 0.729174i \(0.260095\pi\)
\(524\) −40.2651 17.1553i −1.75899 0.749435i
\(525\) 10.9181 7.53623i 0.476505 0.328908i
\(526\) 27.5486 + 15.9052i 1.20118 + 0.693499i
\(527\) 9.17827 4.35514i 0.399812 0.189713i
\(528\) −7.77899 0.944541i −0.338537 0.0411059i
\(529\) 0.0909695 0.157564i 0.00395520 0.00685060i
\(530\) 40.5998 + 70.3210i 1.76354 + 3.05455i
\(531\) 0.444822 + 1.04404i 0.0193036 + 0.0453073i
\(532\) −51.9230 + 45.9997i −2.25115 + 1.99434i
\(533\) −4.50443 3.65810i −0.195109 0.158450i
\(534\) 35.2235 + 31.2053i 1.52427 + 1.35039i
\(535\) −14.0083 + 41.9600i −0.605632 + 1.81409i
\(536\) −0.329474 8.17581i −0.0142311 0.353141i
\(537\) 20.0749 + 24.5873i 0.866297 + 1.06102i
\(538\) 22.2701 25.1377i 0.960132 1.08376i
\(539\) 1.56645 0.319794i 0.0674719 0.0137745i
\(540\) 59.7344 + 17.3023i 2.57056 + 0.744571i
\(541\) −8.66868 3.28759i −0.372695 0.141345i 0.161143 0.986931i \(-0.448482\pi\)
−0.533839 + 0.845586i \(0.679251\pi\)
\(542\) −0.919477 + 22.8166i −0.0394949 + 0.980056i
\(543\) −9.05394 + 6.80359i −0.388542 + 0.291970i
\(544\) 2.52618 + 0.515723i 0.108309 + 0.0221114i
\(545\) −21.5989 11.3360i −0.925194 0.485579i
\(546\) −16.8578 29.0225i −0.721449 1.24205i
\(547\) −8.54373 + 4.48410i −0.365304 + 0.191726i −0.637380 0.770550i \(-0.719982\pi\)
0.272077 + 0.962276i \(0.412290\pi\)
\(548\) −1.28442 + 0.372038i −0.0548678 + 0.0158927i
\(549\) −4.86856 0.393031i −0.207785 0.0167741i
\(550\) 2.63136 + 12.8893i 0.112202 + 0.549600i
\(551\) −24.7245 + 47.1086i −1.05330 + 2.00689i
\(552\) −20.2762 + 26.9827i −0.863013 + 1.14846i
\(553\) 6.93728 + 10.9704i 0.295003 + 0.466510i
\(554\) −35.9190 24.7931i −1.52605 1.05336i
\(555\) −18.5634 39.1214i −0.787971 1.66061i
\(556\) 26.5238 + 27.6142i 1.12486 + 1.17110i
\(557\) −1.78315 + 1.71274i −0.0755546 + 0.0725712i −0.729551 0.683927i \(-0.760271\pi\)
0.653996 + 0.756498i \(0.273091\pi\)
\(558\) −0.810342 + 6.67377i −0.0343045 + 0.282523i
\(559\) −8.02035 + 8.39403i −0.339224 + 0.355030i
\(560\) −2.71095 22.3267i −0.114558 0.943473i
\(561\) −3.70786 3.02737i −0.156546 0.127816i
\(562\) −2.08456 + 10.2109i −0.0879320 + 0.430719i
\(563\) −2.11109 + 7.28833i −0.0889718 + 0.307166i −0.992646 0.121055i \(-0.961372\pi\)
0.903674 + 0.428221i \(0.140860\pi\)
\(564\) −1.13619 + 4.60969i −0.0478421 + 0.194103i
\(565\) 3.95058 + 48.9367i 0.166202 + 2.05878i
\(566\) −2.16357 + 13.3130i −0.0909415 + 0.559586i
\(567\) −11.5774 13.0682i −0.486207 0.548814i
\(568\) −41.0642 30.8577i −1.72301 1.29476i
\(569\) −4.12408 + 5.05108i −0.172890 + 0.211752i −0.853780 0.520633i \(-0.825696\pi\)
0.680890 + 0.732386i \(0.261593\pi\)
\(570\) −13.0418 80.2493i −0.546260 3.36127i
\(571\) 0.636898 0.156981i 0.0266533 0.00656946i −0.225966 0.974135i \(-0.572554\pi\)
0.252620 + 0.967566i \(0.418708\pi\)
\(572\) 21.7501 2.69885i 0.909416 0.112845i
\(573\) 31.7711 + 7.83088i 1.32726 + 0.327140i
\(574\) −0.766772 + 9.49818i −0.0320045 + 0.396446i
\(575\) 15.6277 + 5.21730i 0.651720 + 0.217576i
\(576\) −3.49651 + 3.64025i −0.145688 + 0.151677i
\(577\) 12.4648i 0.518916i −0.965754 0.259458i \(-0.916456\pi\)
0.965754 0.259458i \(-0.0835440\pi\)
\(578\) 23.1575 + 22.2431i 0.963227 + 0.925192i
\(579\) −10.0936 + 8.24114i −0.419474 + 0.342490i
\(580\) −37.7075 71.8456i −1.56572 2.98323i
\(581\) −6.88757 1.11934i −0.285745 0.0464380i
\(582\) −44.9133 28.4015i −1.86172 1.17728i
\(583\) 16.4350 + 7.79851i 0.680668 + 0.322981i
\(584\) 19.8464 + 28.7525i 0.821251 + 1.18979i
\(585\) −5.53234 0.208411i −0.228734 0.00861674i
\(586\) 16.3823 23.7338i 0.676746 0.980436i
\(587\) −27.3535 + 15.7925i −1.12900 + 0.651828i −0.943683 0.330851i \(-0.892664\pi\)
−0.185316 + 0.982679i \(0.559331\pi\)
\(588\) 2.63712 5.55762i 0.108753 0.229192i
\(589\) 36.6674 12.2414i 1.51086 0.504398i
\(590\) 3.61668 + 14.6735i 0.148897 + 0.604097i
\(591\) 1.95286 + 0.0786976i 0.0803299 + 0.00323719i
\(592\) −29.9431 1.20667i −1.23065 0.0495937i
\(593\) −4.47834 18.1694i −0.183904 0.746126i −0.988362 0.152118i \(-0.951391\pi\)
0.804459 0.594008i \(-0.202455\pi\)
\(594\) 20.0682 6.69975i 0.823409 0.274894i
\(595\) 5.88964 12.4122i 0.241452 0.508849i
\(596\) −27.5982 + 15.9338i −1.13047 + 0.652675i
\(597\) −13.7336 + 19.8966i −0.562081 + 0.814315i
\(598\) 16.2373 38.3894i 0.663994 1.56986i
\(599\) −12.7312 18.4443i −0.520182 0.753614i 0.471564 0.881832i \(-0.343690\pi\)
−0.991746 + 0.128218i \(0.959074\pi\)
\(600\) 22.0174 + 10.4474i 0.898855 + 0.426512i
\(601\) 11.1889 + 7.07545i 0.456406 + 0.288614i 0.742819 0.669493i \(-0.233488\pi\)
−0.286413 + 0.958106i \(0.592463\pi\)
\(602\) 18.8183 + 3.05827i 0.766976 + 0.124646i
\(603\) 0.446952 + 0.851596i 0.0182013 + 0.0346797i
\(604\) −25.5564 + 20.8661i −1.03987 + 0.849031i
\(605\) −17.8529 17.1480i −0.725825 0.697165i
\(606\) 43.4297i 1.76421i
\(607\) 9.51994 9.91131i 0.386402 0.402288i −0.499384 0.866381i \(-0.666440\pi\)
0.885786 + 0.464093i \(0.153620\pi\)
\(608\) 9.30582 + 3.10674i 0.377401 + 0.125995i
\(609\) −2.23999 + 27.7472i −0.0907689 + 1.12438i
\(610\) −63.1548 15.5663i −2.55706 0.630259i
\(611\) −0.00740514 2.82289i −0.000299580 0.114202i
\(612\) 3.82185 0.942001i 0.154489 0.0380781i
\(613\) 1.20002 + 7.38403i 0.0484684 + 0.298238i 0.999955 0.00945109i \(-0.00300842\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(614\) 14.4992 17.7583i 0.585142 0.716668i
\(615\) −5.87969 4.41830i −0.237092 0.178163i
\(616\) −11.4910 12.9706i −0.462985 0.522602i
\(617\) −0.326394 + 2.00839i −0.0131401 + 0.0808546i −0.992792 0.119849i \(-0.961759\pi\)
0.979652 + 0.200704i \(0.0643229\pi\)
\(618\) 4.17591 + 51.7279i 0.167980 + 2.08080i
\(619\) 8.56309 34.7418i 0.344179 1.39639i −0.502633 0.864500i \(-0.667635\pi\)
0.846813 0.531891i \(-0.178518\pi\)
\(620\) −16.4026 + 56.6282i −0.658742 + 2.27424i
\(621\) 5.30013 25.9618i 0.212687 1.04181i
\(622\) −1.78646 1.45860i −0.0716305 0.0584845i
\(623\) 3.64725 + 30.0378i 0.146124 + 1.20344i
\(624\) 8.92298 15.5491i 0.357205 0.622462i
\(625\) −3.65820 + 30.1280i −0.146328 + 1.20512i
\(626\) 29.9399 28.7577i 1.19664 1.14939i
\(627\) −12.6175 13.1362i −0.503895 0.524610i
\(628\) −36.2073 76.3052i −1.44483 3.04491i
\(629\) −15.0654 10.3989i −0.600698 0.414632i
\(630\) 4.85910 + 7.68405i 0.193591 + 0.306140i
\(631\) −19.9924 + 26.6051i −0.795885 + 1.05913i 0.200947 + 0.979602i \(0.435598\pi\)
−0.996833 + 0.0795290i \(0.974658\pi\)
\(632\) −11.0807 + 21.1126i −0.440768 + 0.839813i
\(633\) −3.75016 18.3695i −0.149055 0.730121i
\(634\) −32.5706 2.62937i −1.29355 0.104426i
\(635\) −42.0662 + 12.1846i −1.66934 + 0.483532i
\(636\) 61.9774 32.5282i 2.45756 1.28983i
\(637\) −0.722219 + 3.58563i −0.0286154 + 0.142068i
\(638\) −24.4420 12.8281i −0.967667 0.507871i
\(639\) 5.91552 + 1.20766i 0.234014 + 0.0477744i
\(640\) −47.5334 + 35.7190i −1.87892 + 1.41192i
\(641\) 0.523719 12.9959i 0.0206856 0.513309i −0.955321 0.295569i \(-0.904491\pi\)
0.976007 0.217740i \(-0.0698684\pi\)
\(642\) 54.1424 + 20.5335i 2.13683 + 0.810392i
\(643\) −1.19493 0.346117i −0.0471236 0.0136495i 0.254572 0.967054i \(-0.418065\pi\)
−0.301696 + 0.953404i \(0.597553\pi\)
\(644\) −44.1649 + 9.01633i −1.74034 + 0.355293i
\(645\) −9.75777 + 11.0142i −0.384212 + 0.433686i
\(646\) −21.7373 26.6233i −0.855241 1.04748i
\(647\) −1.58493 39.3297i −0.0623102 1.54621i −0.664153 0.747596i \(-0.731208\pi\)
0.601843 0.798614i \(-0.294433\pi\)
\(648\) 10.1561 30.4213i 0.398970 1.19506i
\(649\) 2.53425 + 2.24515i 0.0994778 + 0.0881297i
\(650\) −29.5037 5.94265i −1.15723 0.233090i
\(651\) 15.1399 13.4128i 0.593378 0.525687i
\(652\) −0.521350 1.22365i −0.0204176 0.0479219i
\(653\) −10.7782 18.6684i −0.421784 0.730552i 0.574330 0.818624i \(-0.305263\pi\)
−0.996114 + 0.0880721i \(0.971929\pi\)
\(654\) −15.9651 + 27.6523i −0.624283 + 1.08129i
\(655\) 32.7434 + 3.97577i 1.27939 + 0.155346i
\(656\) −4.59843 + 2.18198i −0.179539 + 0.0851921i
\(657\) −3.55631 2.05323i −0.138745 0.0801043i
\(658\) −3.81510 + 2.63337i −0.148728 + 0.102660i
\(659\) −17.0426 7.26119i −0.663887 0.282856i 0.0336190 0.999435i \(-0.489297\pi\)
−0.697506 + 0.716579i \(0.745707\pi\)
\(660\) 27.4191 4.45603i 1.06729 0.173451i
\(661\) −23.7847 31.6518i −0.925119 1.23111i −0.972658 0.232241i \(-0.925394\pi\)
0.0475388 0.998869i \(-0.484862\pi\)
\(662\) 0.583381 1.53825i 0.0226738 0.0597858i
\(663\) 9.68339 5.11468i 0.376072 0.198638i
\(664\) −4.54544 11.9854i −0.176397 0.465122i
\(665\) 27.9404 44.1843i 1.08348 1.71339i
\(666\) 11.1445 4.74824i 0.431842 0.183991i
\(667\) −29.2193 + 18.4772i −1.13138 + 0.715439i
\(668\) 61.5019 7.46769i 2.37958 0.288933i
\(669\) 1.95788 4.59531i 0.0756959 0.177665i
\(670\) 4.05577 + 12.1485i 0.156688 + 0.469338i
\(671\) −13.6252 + 5.16736i −0.525996 + 0.199484i
\(672\) 5.11667 0.413060i 0.197380 0.0159341i
\(673\) −6.04021 20.8532i −0.232833 0.803833i −0.988803 0.149227i \(-0.952322\pi\)
0.755970 0.654606i \(-0.227166\pi\)
\(674\) 8.24000 0.332061i 0.317393 0.0127905i
\(675\) −19.1321 −0.736396
\(676\) −13.6973 + 48.2342i −0.526820 + 1.85516i
\(677\) −5.76839 −0.221697 −0.110849 0.993837i \(-0.535357\pi\)
−0.110849 + 0.993837i \(0.535357\pi\)
\(678\) 64.2139 2.58773i 2.46612 0.0993813i
\(679\) −9.50641 32.8200i −0.364823 1.25951i
\(680\) 25.1558 2.03078i 0.964679 0.0778770i
\(681\) −27.0880 + 10.2731i −1.03801 + 0.393667i
\(682\) 6.35136 + 19.0247i 0.243206 + 0.728492i
\(683\) 12.9634 30.4262i 0.496031 1.16423i −0.464379 0.885637i \(-0.653722\pi\)
0.960410 0.278591i \(-0.0898675\pi\)
\(684\) 14.8687 1.80538i 0.568518 0.0690306i
\(685\) 0.851743 0.538610i 0.0325434 0.0205792i
\(686\) 43.6559 18.6000i 1.66679 0.710152i
\(687\) −7.68172 + 12.1477i −0.293076 + 0.463463i
\(688\) 3.61110 + 9.52170i 0.137672 + 0.363011i
\(689\) −31.0791 + 27.6796i −1.18402 + 1.05451i
\(690\) 18.7339 49.3974i 0.713189 1.88053i
\(691\) 10.3260 + 13.7415i 0.392821 + 0.522750i 0.951918 0.306352i \(-0.0991086\pi\)
−0.559097 + 0.829102i \(0.688852\pi\)
\(692\) −25.5541 + 4.15294i −0.971421 + 0.157871i
\(693\) 1.87381 + 0.798355i 0.0711801 + 0.0303270i
\(694\) −2.49696 + 1.72353i −0.0947832 + 0.0654242i
\(695\) −24.9895 14.4277i −0.947907 0.547274i
\(696\) −46.1997 + 21.9221i −1.75120 + 0.830953i
\(697\) −3.08652 0.374771i −0.116910 0.0141955i
\(698\) −1.28200 + 2.22049i −0.0485243 + 0.0840466i
\(699\) −22.5952 39.1361i −0.854630 1.48026i
\(700\) 12.7572 + 29.9423i 0.482177 + 1.13171i
\(701\) 22.3455 19.7964i 0.843979 0.747700i −0.125704 0.992068i \(-0.540119\pi\)
0.969683 + 0.244368i \(0.0785805\pi\)
\(702\) −3.76825 + 48.2561i −0.142223 + 1.82131i
\(703\) −52.1385 46.1907i −1.96644 1.74211i
\(704\) −4.76861 + 14.2837i −0.179724 + 0.538339i
\(705\) −0.144068 3.57502i −0.00542592 0.134643i
\(706\) 2.30737 + 2.82601i 0.0868389 + 0.106358i
\(707\) 18.5179 20.9024i 0.696437 0.786115i
\(708\) 12.7639 2.60578i 0.479698 0.0979310i
\(709\) 31.1644 + 9.02688i 1.17040 + 0.339011i 0.805821 0.592160i \(-0.201725\pi\)
0.364583 + 0.931171i \(0.381212\pi\)
\(710\) 75.1763 + 28.5106i 2.82132 + 1.06998i
\(711\) 0.112849 2.80031i 0.00423215 0.105020i
\(712\) −44.4363 + 33.3917i −1.66532 + 1.25141i
\(713\) 24.6118 + 5.02453i 0.921717 + 0.188170i
\(714\) −15.9238 8.35745i −0.595933 0.312770i
\(715\) −15.1782 + 6.51394i −0.567634 + 0.243608i
\(716\) −68.9522 + 36.1889i −2.57687 + 1.35244i
\(717\) −26.5511 + 7.69062i −0.991568 + 0.287211i
\(718\) −36.1872 2.92133i −1.35049 0.109023i
\(719\) −4.42395 21.6699i −0.164985 0.808152i −0.975080 0.221853i \(-0.928789\pi\)
0.810095 0.586299i \(-0.199416\pi\)
\(720\) −2.25676 + 4.29989i −0.0841044 + 0.160247i
\(721\) −20.0463 + 26.6768i −0.746565 + 0.993497i
\(722\) −45.3231 71.6727i −1.68675 2.66738i
\(723\) 12.4874 + 8.61946i 0.464413 + 0.320561i
\(724\) −11.9110 25.1018i −0.442667 0.932902i
\(725\) 17.2917 + 18.0026i 0.642199 + 0.668600i
\(726\) −23.3693 + 22.4465i −0.867317 + 0.833069i
\(727\) 4.36909 35.9827i 0.162041 1.33452i −0.653985 0.756508i \(-0.726904\pi\)
0.816025 0.578016i \(-0.196173\pi\)
\(728\) 37.5710 12.6527i 1.39247 0.468940i
\(729\) 3.60797 + 29.7143i 0.133629 + 1.10053i
\(730\) −42.3595 34.5855i −1.56780 1.28007i
\(731\) −1.24429 + 6.09495i −0.0460218 + 0.225430i
\(732\) −15.5994 + 53.8555i −0.576572 + 1.99056i
\(733\) −12.3287 + 50.0196i −0.455372 + 1.84752i 0.0713116 + 0.997454i \(0.477282\pi\)
−0.526683 + 0.850062i \(0.676565\pi\)
\(734\) 5.07918 + 62.9169i 0.187476 + 2.32231i
\(735\) −0.743655 + 4.57589i −0.0274301 + 0.168784i
\(736\) 4.22744 + 4.77179i 0.155825 + 0.175890i
\(737\) 2.29386 + 1.72373i 0.0844956 + 0.0634943i
\(738\) 1.30126 1.59375i 0.0478999 0.0586667i
\(739\) 3.50535 + 21.5693i 0.128946 + 0.793438i 0.968288 + 0.249835i \(0.0803763\pi\)
−0.839342 + 0.543603i \(0.817060\pi\)
\(740\) 103.146 25.4233i 3.79174 0.934580i
\(741\) 38.9239 14.8788i 1.42990 0.546586i
\(742\) 66.3583 + 16.3559i 2.43609 + 0.600442i
\(743\) −2.13270 + 26.4183i −0.0782414 + 0.969193i 0.831908 + 0.554913i \(0.187249\pi\)
−0.910150 + 0.414280i \(0.864033\pi\)
\(744\) 35.2438 + 11.7661i 1.29210 + 0.431367i
\(745\) 16.6365 17.3205i 0.609515 0.634572i
\(746\) 14.1788i 0.519124i
\(747\) 1.08661 + 1.04370i 0.0397569 + 0.0381870i
\(748\) 9.09649 7.42705i 0.332601 0.271560i
\(749\) 17.3031 + 32.9683i 0.632241 + 1.20463i
\(750\) 16.9308 + 2.75152i 0.618225 + 0.100471i
\(751\) 2.63246 + 1.66466i 0.0960597 + 0.0607445i 0.581632 0.813452i \(-0.302414\pi\)
−0.485572 + 0.874197i \(0.661389\pi\)
\(752\) −2.23704 1.06149i −0.0815764 0.0387085i
\(753\) −9.23126 13.3738i −0.336406 0.487368i
\(754\) 48.8128 40.0683i 1.77766 1.45920i
\(755\) 14.1244 20.4627i 0.514038 0.744713i
\(756\) 45.3312 26.1720i 1.64868 0.951866i
\(757\) −2.22050 + 4.67961i −0.0807056 + 0.170083i −0.939792 0.341747i \(-0.888981\pi\)
0.859086 + 0.511831i \(0.171033\pi\)
\(758\) −32.8683 + 10.9731i −1.19383 + 0.398559i
\(759\) −2.83248 11.4918i −0.102813 0.417127i
\(760\) 95.9546 + 3.86684i 3.48064 + 0.140265i
\(761\) 1.54541 + 0.0622780i 0.0560211 + 0.00225757i 0.0682607 0.997668i \(-0.478255\pi\)
−0.0122396 + 0.999925i \(0.503896\pi\)
\(762\) 13.7194 + 55.6618i 0.497001 + 2.01641i
\(763\) −19.4745 + 6.50153i −0.705023 + 0.235371i
\(764\) −34.4141 + 72.5261i −1.24506 + 2.62390i
\(765\) −2.56899 + 1.48321i −0.0928820 + 0.0536255i
\(766\) −32.5917 + 47.2173i −1.17759 + 1.70603i