Properties

Label 169.2.k.a.127.11
Level $169$
Weight $2$
Character 169.127
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 127.11
Character \(\chi\) \(=\) 169.127
Dual form 169.2.k.a.4.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10078 - 0.0443599i) q^{2} +(-0.581947 - 2.00912i) q^{3} +(-0.783766 + 0.0632721i) q^{4} +(1.05138 - 0.398737i) q^{5} +(-0.729720 - 2.18578i) q^{6} +(1.23850 - 2.90687i) q^{7} +(-3.04723 + 0.370001i) q^{8} +(-1.16231 + 0.735002i) q^{9} +O(q^{10})\) \(q+(1.10078 - 0.0443599i) q^{2} +(-0.581947 - 2.00912i) q^{3} +(-0.783766 + 0.0632721i) q^{4} +(1.05138 - 0.398737i) q^{5} +(-0.729720 - 2.18578i) q^{6} +(1.23850 - 2.90687i) q^{7} +(-3.04723 + 0.370001i) q^{8} +(-1.16231 + 0.735002i) q^{9} +(1.13965 - 0.485561i) q^{10} +(-2.18262 + 3.45154i) q^{11} +(0.583231 + 1.53785i) q^{12} +(1.57196 - 3.24483i) q^{13} +(1.23437 - 3.25476i) q^{14} +(-1.41296 - 1.88031i) q^{15} +(-1.78565 + 0.290196i) q^{16} +(5.19062 + 2.21152i) q^{17} +(-1.24685 + 0.860636i) q^{18} +(6.10663 + 3.52566i) q^{19} +(-0.798810 + 0.379040i) q^{20} +(-6.56098 - 0.796647i) q^{21} +(-2.24947 + 3.89620i) q^{22} +(-2.04500 - 3.54205i) q^{23} +(2.51670 + 5.90691i) q^{24} +(-2.79614 + 2.47716i) q^{25} +(1.58644 - 3.64158i) q^{26} +(-2.54387 - 2.25367i) q^{27} +(-0.786771 + 2.35667i) q^{28} +(0.373616 + 9.27118i) q^{29} +(-1.63877 - 2.00713i) q^{30} +(-2.81240 + 3.17454i) q^{31} +(4.06241 - 0.829348i) q^{32} +(8.20470 + 2.37652i) q^{33} +(5.81184 + 2.20414i) q^{34} +(0.143063 - 3.55007i) q^{35} +(0.864476 - 0.649611i) q^{36} +(3.22361 + 0.658105i) q^{37} +(6.87845 + 3.61009i) q^{38} +(-7.43404 - 1.26992i) q^{39} +(-3.05627 + 1.60406i) q^{40} +(6.24401 - 1.80860i) q^{41} +(-7.25753 - 0.585889i) q^{42} +(-0.411297 - 2.01466i) q^{43} +(1.49228 - 2.84329i) q^{44} +(-0.928964 + 1.23623i) q^{45} +(-2.40822 - 3.80830i) q^{46} +(-8.30806 - 5.73464i) q^{47} +(1.62219 + 3.41870i) q^{48} +(-2.06693 - 2.15190i) q^{49} +(-2.96805 + 2.85085i) q^{50} +(1.42253 - 11.7155i) q^{51} +(-1.02674 + 2.64265i) q^{52} +(0.290857 + 2.39543i) q^{53} +(-2.90021 - 2.36795i) q^{54} +(-0.918514 + 4.49918i) q^{55} +(-2.69845 + 9.31614i) q^{56} +(3.52973 - 14.3207i) q^{57} +(0.822538 + 10.1890i) q^{58} +(-1.13988 + 7.01397i) q^{59} +(1.22640 + 1.38432i) q^{60} +(-7.11055 - 5.34323i) q^{61} +(-2.95501 + 3.61923i) q^{62} +(0.697029 + 4.28899i) q^{63} +(7.94805 - 1.95902i) q^{64} +(0.358894 - 4.03837i) q^{65} +(9.13700 + 2.25207i) q^{66} +(1.03676 - 12.8426i) q^{67} +(-4.20816 - 1.40489i) q^{68} +(-5.92630 + 6.16993i) q^{69} -3.91419i q^{70} +(-1.98407 - 1.90572i) q^{71} +(3.26988 - 2.66978i) q^{72} +(-2.71437 - 5.17180i) q^{73} +(3.57768 + 0.581429i) q^{74} +(6.60411 + 4.17619i) q^{75} +(-5.00924 - 2.37691i) q^{76} +(7.32998 + 10.6193i) q^{77} +(-8.23958 - 1.06813i) q^{78} +(0.0925711 - 0.134112i) q^{79} +(-1.76169 + 1.01711i) q^{80} +(-4.81612 + 10.1497i) q^{81} +(6.79305 - 2.26785i) q^{82} +(1.34744 + 5.46679i) q^{83} +(5.19267 + 0.209258i) q^{84} +(6.33915 + 0.255459i) q^{85} +(-0.542118 - 2.19946i) q^{86} +(18.4095 - 6.14598i) q^{87} +(5.37387 - 11.3252i) q^{88} +(0.105560 - 0.0609451i) q^{89} +(-0.967747 + 1.40202i) q^{90} +(-7.48544 - 8.58820i) q^{91} +(1.82691 + 2.64674i) q^{92} +(8.01470 + 3.80302i) q^{93} +(-9.39973 - 5.94403i) q^{94} +(7.82622 + 1.27189i) q^{95} +(-4.03037 - 7.67922i) q^{96} +(-7.83403 + 6.39629i) q^{97} +(-2.37069 - 2.27708i) q^{98} -5.61599i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{77}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10078 0.0443599i 0.778369 0.0313672i 0.352099 0.935963i \(-0.385468\pi\)
0.426271 + 0.904596i \(0.359827\pi\)
\(3\) −0.581947 2.00912i −0.335988 1.15996i −0.933641 0.358209i \(-0.883387\pi\)
0.597654 0.801754i \(-0.296100\pi\)
\(4\) −0.783766 + 0.0632721i −0.391883 + 0.0316360i
\(5\) 1.05138 0.398737i 0.470193 0.178321i −0.108116 0.994138i \(-0.534482\pi\)
0.578309 + 0.815817i \(0.303713\pi\)
\(6\) −0.729720 2.18578i −0.297907 0.892341i
\(7\) 1.23850 2.90687i 0.468109 1.09869i −0.503902 0.863761i \(-0.668103\pi\)
0.972012 0.234932i \(-0.0754868\pi\)
\(8\) −3.04723 + 0.370001i −1.07736 + 0.130815i
\(9\) −1.16231 + 0.735002i −0.387438 + 0.245001i
\(10\) 1.13965 0.485561i 0.360390 0.153548i
\(11\) −2.18262 + 3.45154i −0.658084 + 1.04068i 0.336986 + 0.941509i \(0.390592\pi\)
−0.995071 + 0.0991676i \(0.968382\pi\)
\(12\) 0.583231 + 1.53785i 0.168364 + 0.443940i
\(13\) 1.57196 3.24483i 0.435982 0.899955i
\(14\) 1.23437 3.25476i 0.329899 0.869872i
\(15\) −1.41296 1.88031i −0.364825 0.485493i
\(16\) −1.78565 + 0.290196i −0.446413 + 0.0725491i
\(17\) 5.19062 + 2.21152i 1.25891 + 0.536372i 0.915312 0.402745i \(-0.131944\pi\)
0.343599 + 0.939117i \(0.388354\pi\)
\(18\) −1.24685 + 0.860636i −0.293884 + 0.202854i
\(19\) 6.10663 + 3.52566i 1.40096 + 0.808843i 0.994491 0.104824i \(-0.0334278\pi\)
0.406466 + 0.913666i \(0.366761\pi\)
\(20\) −0.798810 + 0.379040i −0.178619 + 0.0847559i
\(21\) −6.56098 0.796647i −1.43172 0.173843i
\(22\) −2.24947 + 3.89620i −0.479589 + 0.830673i
\(23\) −2.04500 3.54205i −0.426412 0.738568i 0.570139 0.821548i \(-0.306889\pi\)
−0.996551 + 0.0829805i \(0.973556\pi\)
\(24\) 2.51670 + 5.90691i 0.513719 + 1.20574i
\(25\) −2.79614 + 2.47716i −0.559227 + 0.495432i
\(26\) 1.58644 3.64158i 0.311126 0.714173i
\(27\) −2.54387 2.25367i −0.489568 0.433719i
\(28\) −0.786771 + 2.35667i −0.148686 + 0.445368i
\(29\) 0.373616 + 9.27118i 0.0693787 + 1.72162i 0.542025 + 0.840363i \(0.317658\pi\)
−0.472646 + 0.881252i \(0.656701\pi\)
\(30\) −1.63877 2.00713i −0.299197 0.366450i
\(31\) −2.81240 + 3.17454i −0.505122 + 0.570165i −0.944657 0.328061i \(-0.893605\pi\)
0.439535 + 0.898226i \(0.355143\pi\)
\(32\) 4.06241 0.829348i 0.718140 0.146609i
\(33\) 8.20470 + 2.37652i 1.42826 + 0.413699i
\(34\) 5.81184 + 2.20414i 0.996722 + 0.378007i
\(35\) 0.143063 3.55007i 0.0241821 0.600072i
\(36\) 0.864476 0.649611i 0.144079 0.108269i
\(37\) 3.22361 + 0.658105i 0.529958 + 0.108192i 0.457551 0.889183i \(-0.348727\pi\)
0.0724072 + 0.997375i \(0.476932\pi\)
\(38\) 6.87845 + 3.61009i 1.11583 + 0.585634i
\(39\) −7.43404 1.26992i −1.19040 0.203350i
\(40\) −3.05627 + 1.60406i −0.483239 + 0.253624i
\(41\) 6.24401 1.80860i 0.975150 0.282456i 0.247868 0.968794i \(-0.420270\pi\)
0.727282 + 0.686338i \(0.240783\pi\)
\(42\) −7.25753 0.585889i −1.11986 0.0904046i
\(43\) −0.411297 2.01466i −0.0627222 0.307233i 0.936312 0.351169i \(-0.114216\pi\)
−0.999034 + 0.0439352i \(0.986010\pi\)
\(44\) 1.49228 2.84329i 0.224969 0.428643i
\(45\) −0.928964 + 1.23623i −0.138482 + 0.184286i
\(46\) −2.40822 3.80830i −0.355073 0.561503i
\(47\) −8.30806 5.73464i −1.21185 0.836483i −0.221516 0.975157i \(-0.571101\pi\)
−0.990338 + 0.138674i \(0.955716\pi\)
\(48\) 1.62219 + 3.41870i 0.234143 + 0.493447i
\(49\) −2.06693 2.15190i −0.295275 0.307414i
\(50\) −2.96805 + 2.85085i −0.419745 + 0.403171i
\(51\) 1.42253 11.7155i 0.199193 1.64050i
\(52\) −1.02674 + 2.64265i −0.142383 + 0.366470i
\(53\) 0.290857 + 2.39543i 0.0399523 + 0.329037i 0.998958 + 0.0456486i \(0.0145355\pi\)
−0.959005 + 0.283388i \(0.908541\pi\)
\(54\) −2.90021 2.36795i −0.394669 0.322237i
\(55\) −0.918514 + 4.49918i −0.123852 + 0.606669i
\(56\) −2.69845 + 9.31614i −0.360596 + 1.24492i
\(57\) 3.52973 14.3207i 0.467524 1.89682i
\(58\) 0.822538 + 10.1890i 0.108005 + 1.33788i
\(59\) −1.13988 + 7.01397i −0.148400 + 0.913141i 0.800907 + 0.598789i \(0.204351\pi\)
−0.949307 + 0.314352i \(0.898213\pi\)
\(60\) 1.22640 + 1.38432i 0.158328 + 0.178715i
\(61\) −7.11055 5.34323i −0.910412 0.684130i 0.0386388 0.999253i \(-0.487698\pi\)
−0.949051 + 0.315123i \(0.897954\pi\)
\(62\) −2.95501 + 3.61923i −0.375287 + 0.459643i
\(63\) 0.697029 + 4.28899i 0.0878174 + 0.540362i
\(64\) 7.94805 1.95902i 0.993507 0.244877i
\(65\) 0.358894 4.03837i 0.0445153 0.500898i
\(66\) 9.13700 + 2.25207i 1.12469 + 0.277210i
\(67\) 1.03676 12.8426i 0.126661 1.56897i −0.551572 0.834127i \(-0.685972\pi\)
0.678233 0.734847i \(-0.262746\pi\)
\(68\) −4.20816 1.40489i −0.510314 0.170368i
\(69\) −5.92630 + 6.16993i −0.713443 + 0.742772i
\(70\) 3.91419i 0.467836i
\(71\) −1.98407 1.90572i −0.235465 0.226168i 0.565699 0.824612i \(-0.308606\pi\)
−0.801165 + 0.598444i \(0.795786\pi\)
\(72\) 3.26988 2.66978i 0.385359 0.314636i
\(73\) −2.71437 5.17180i −0.317693 0.605314i 0.673278 0.739389i \(-0.264886\pi\)
−0.990971 + 0.134076i \(0.957193\pi\)
\(74\) 3.57768 + 0.581429i 0.415897 + 0.0675898i
\(75\) 6.60411 + 4.17619i 0.762577 + 0.482224i
\(76\) −5.00924 2.37691i −0.574599 0.272651i
\(77\) 7.32998 + 10.6193i 0.835329 + 1.21018i
\(78\) −8.23958 1.06813i −0.932949 0.120942i
\(79\) 0.0925711 0.134112i 0.0104151 0.0150888i −0.817742 0.575585i \(-0.804774\pi\)
0.828157 + 0.560496i \(0.189390\pi\)
\(80\) −1.76169 + 1.01711i −0.196963 + 0.113717i
\(81\) −4.81612 + 10.1497i −0.535124 + 1.12775i
\(82\) 6.79305 2.26785i 0.750167 0.250442i
\(83\) 1.34744 + 5.46679i 0.147901 + 0.600058i 0.997374 + 0.0724257i \(0.0230740\pi\)
−0.849473 + 0.527632i \(0.823080\pi\)
\(84\) 5.19267 + 0.209258i 0.566567 + 0.0228319i
\(85\) 6.33915 + 0.255459i 0.687578 + 0.0277084i
\(86\) −0.542118 2.19946i −0.0584580 0.237174i
\(87\) 18.4095 6.14598i 1.97370 0.658918i
\(88\) 5.37387 11.3252i 0.572856 1.20727i
\(89\) 0.105560 0.0609451i 0.0111893 0.00646017i −0.494395 0.869237i \(-0.664610\pi\)
0.505584 + 0.862777i \(0.331277\pi\)
\(90\) −0.967747 + 1.40202i −0.102009 + 0.147786i
\(91\) −7.48544 8.58820i −0.784687 0.900288i
\(92\) 1.82691 + 2.64674i 0.190469 + 0.275942i
\(93\) 8.01470 + 3.80302i 0.831085 + 0.394355i
\(94\) −9.39973 5.94403i −0.969508 0.613080i
\(95\) 7.82622 + 1.27189i 0.802954 + 0.130493i
\(96\) −4.03037 7.67922i −0.411348 0.783758i
\(97\) −7.83403 + 6.39629i −0.795425 + 0.649445i −0.940430 0.339986i \(-0.889578\pi\)
0.145005 + 0.989431i \(0.453680\pi\)
\(98\) −2.37069 2.27708i −0.239476 0.230020i
\(99\) 5.61599i 0.564429i
\(100\) 2.03478 2.11843i 0.203478 0.211843i
\(101\) −2.38825 0.797313i −0.237639 0.0793356i 0.195354 0.980733i \(-0.437414\pi\)
−0.432993 + 0.901397i \(0.642543\pi\)
\(102\) 1.04619 12.9593i 0.103588 1.28317i
\(103\) −9.61166 2.36906i −0.947065 0.233431i −0.264608 0.964356i \(-0.585243\pi\)
−0.682457 + 0.730925i \(0.739089\pi\)
\(104\) −3.58952 + 10.4694i −0.351982 + 1.02661i
\(105\) −7.21576 + 1.77852i −0.704186 + 0.173566i
\(106\) 0.426431 + 2.62393i 0.0414186 + 0.254859i
\(107\) −1.44079 + 1.76465i −0.139286 + 0.170595i −0.839537 0.543302i \(-0.817174\pi\)
0.700251 + 0.713897i \(0.253071\pi\)
\(108\) 2.13639 + 1.60539i 0.205574 + 0.154479i
\(109\) −0.378270 0.426978i −0.0362317 0.0408971i 0.730116 0.683324i \(-0.239466\pi\)
−0.766347 + 0.642427i \(0.777928\pi\)
\(110\) −0.811499 + 4.99335i −0.0773734 + 0.476098i
\(111\) −0.553763 6.85959i −0.0525609 0.651083i
\(112\) −1.36797 + 5.55006i −0.129261 + 0.524431i
\(113\) −3.72797 + 12.8704i −0.350698 + 1.21075i 0.570383 + 0.821379i \(0.306795\pi\)
−0.921081 + 0.389371i \(0.872692\pi\)
\(114\) 3.25019 15.9205i 0.304408 1.49109i
\(115\) −3.56243 2.90863i −0.332198 0.271231i
\(116\) −0.879434 7.24279i −0.0816534 0.672476i
\(117\) 0.557854 + 4.92690i 0.0515737 + 0.455492i
\(118\) −0.943619 + 7.77140i −0.0868672 + 0.715416i
\(119\) 12.8572 12.3495i 1.17862 1.13208i
\(120\) 5.00133 + 5.20693i 0.456557 + 0.475326i
\(121\) −2.43365 5.12882i −0.221241 0.466256i
\(122\) −8.06417 5.56630i −0.730096 0.503949i
\(123\) −7.26737 11.4924i −0.655276 1.03624i
\(124\) 2.00340 2.66604i 0.179911 0.239418i
\(125\) −4.56488 + 8.69765i −0.408295 + 0.777942i
\(126\) 0.957535 + 4.69032i 0.0853040 + 0.417847i
\(127\) 4.08739 + 0.329968i 0.362697 + 0.0292799i 0.260472 0.965481i \(-0.416122\pi\)
0.102225 + 0.994761i \(0.467404\pi\)
\(128\) 0.697144 0.201930i 0.0616194 0.0178483i
\(129\) −3.80834 + 1.99877i −0.335306 + 0.175982i
\(130\) 0.215921 4.46127i 0.0189376 0.391279i
\(131\) 16.6305 + 8.72838i 1.45302 + 0.762602i 0.992172 0.124879i \(-0.0398543\pi\)
0.460844 + 0.887481i \(0.347547\pi\)
\(132\) −6.58093 1.34351i −0.572797 0.116937i
\(133\) 17.8117 13.3846i 1.54447 1.16059i
\(134\) 0.571550 14.1829i 0.0493744 1.22521i
\(135\) −3.57321 1.35514i −0.307533 0.116632i
\(136\) −16.6353 4.81847i −1.42646 0.413180i
\(137\) −2.36521 + 0.482861i −0.202073 + 0.0412536i −0.299996 0.953940i \(-0.596985\pi\)
0.0979227 + 0.995194i \(0.468780\pi\)
\(138\) −6.24986 + 7.05463i −0.532023 + 0.600530i
\(139\) 12.6389 + 15.4799i 1.07202 + 1.31299i 0.947142 + 0.320814i \(0.103956\pi\)
0.124878 + 0.992172i \(0.460146\pi\)
\(140\) 0.112493 + 2.79148i 0.00950736 + 0.235923i
\(141\) −6.68670 + 20.0291i −0.563121 + 1.68675i
\(142\) −2.26856 2.00977i −0.190373 0.168656i
\(143\) 7.76868 + 12.5079i 0.649650 + 1.04596i
\(144\) 1.86219 1.64976i 0.155182 0.137480i
\(145\) 4.08958 + 9.59860i 0.339621 + 0.797120i
\(146\) −3.21735 5.57261i −0.266269 0.461192i
\(147\) −3.12057 + 5.40499i −0.257380 + 0.445796i
\(148\) −2.56819 0.311835i −0.211104 0.0256327i
\(149\) 6.52264 3.09503i 0.534356 0.253555i −0.142340 0.989818i \(-0.545463\pi\)
0.676696 + 0.736263i \(0.263411\pi\)
\(150\) 7.45493 + 4.30410i 0.608692 + 0.351429i
\(151\) −12.6196 + 8.71070i −1.02697 + 0.708866i −0.957416 0.288712i \(-0.906773\pi\)
−0.0695542 + 0.997578i \(0.522158\pi\)
\(152\) −19.9128 8.48405i −1.61514 0.688147i
\(153\) −7.65860 + 1.24464i −0.619161 + 0.100623i
\(154\) 8.53977 + 11.3644i 0.688154 + 0.915767i
\(155\) −1.69110 + 4.45907i −0.135833 + 0.358161i
\(156\) 5.90690 + 0.524952i 0.472930 + 0.0420298i
\(157\) 1.97306 + 5.20253i 0.157467 + 0.415207i 0.990411 0.138150i \(-0.0441156\pi\)
−0.832944 + 0.553357i \(0.813346\pi\)
\(158\) 0.0959512 0.151735i 0.00763347 0.0120714i
\(159\) 4.64342 1.97838i 0.368247 0.156896i
\(160\) 3.94047 2.49180i 0.311521 0.196994i
\(161\) −12.8290 + 1.55772i −1.01107 + 0.122766i
\(162\) −4.85124 + 11.3863i −0.381150 + 0.894591i
\(163\) −0.629153 1.88454i −0.0492791 0.147609i 0.921021 0.389512i \(-0.127356\pi\)
−0.970300 + 0.241904i \(0.922228\pi\)
\(164\) −4.77940 + 1.81259i −0.373209 + 0.141539i
\(165\) 9.57390 0.772885i 0.745327 0.0601690i
\(166\) 1.72574 + 5.95796i 0.133944 + 0.462427i
\(167\) −4.15733 + 0.167535i −0.321704 + 0.0129642i −0.200593 0.979675i \(-0.564287\pi\)
−0.121111 + 0.992639i \(0.538646\pi\)
\(168\) 20.2876 1.56522
\(169\) −8.05790 10.2015i −0.619839 0.784729i
\(170\) 6.98935 0.536058
\(171\) −9.68918 + 0.390461i −0.740950 + 0.0298593i
\(172\) 0.449832 + 1.55300i 0.0342994 + 0.118415i
\(173\) 14.8594 1.19958i 1.12974 0.0912020i 0.498572 0.866848i \(-0.333858\pi\)
0.631168 + 0.775646i \(0.282576\pi\)
\(174\) 19.9921 7.58201i 1.51560 0.574791i
\(175\) 3.73776 + 11.1960i 0.282548 + 0.846336i
\(176\) 2.89577 6.79662i 0.218277 0.512315i
\(177\) 14.7552 1.79161i 1.10907 0.134666i
\(178\) 0.113495 0.0717698i 0.00850680 0.00537937i
\(179\) −7.79198 + 3.31985i −0.582400 + 0.248137i −0.663013 0.748608i \(-0.730722\pi\)
0.0806130 + 0.996745i \(0.474312\pi\)
\(180\) 0.649872 1.02769i 0.0484386 0.0765995i
\(181\) −0.755880 1.99309i −0.0561841 0.148145i 0.903986 0.427563i \(-0.140628\pi\)
−0.960170 + 0.279418i \(0.909859\pi\)
\(182\) −8.62079 9.12167i −0.639016 0.676143i
\(183\) −6.59720 + 17.3954i −0.487679 + 1.28590i
\(184\) 7.54215 + 10.0368i 0.556015 + 0.739921i
\(185\) 3.65166 0.593453i 0.268476 0.0436315i
\(186\) 8.99112 + 3.83076i 0.659261 + 0.280885i
\(187\) −18.9623 + 13.0887i −1.38666 + 0.957142i
\(188\) 6.87441 + 3.96894i 0.501368 + 0.289465i
\(189\) −9.70171 + 4.60352i −0.705696 + 0.334857i
\(190\) 8.67137 + 1.05290i 0.629087 + 0.0763850i
\(191\) 7.56804 13.1082i 0.547604 0.948478i −0.450834 0.892608i \(-0.648873\pi\)
0.998438 0.0558700i \(-0.0177932\pi\)
\(192\) −8.56125 14.8285i −0.617855 1.07016i
\(193\) −6.43564 15.1050i −0.463248 1.08728i −0.973794 0.227432i \(-0.926967\pi\)
0.510546 0.859850i \(-0.329443\pi\)
\(194\) −8.33980 + 7.38842i −0.598763 + 0.530458i
\(195\) −8.32240 + 1.62906i −0.595979 + 0.116659i
\(196\) 1.75614 + 1.55581i 0.125439 + 0.111129i
\(197\) −2.43805 + 7.30286i −0.173704 + 0.520307i −0.999015 0.0443712i \(-0.985872\pi\)
0.825311 + 0.564678i \(0.191000\pi\)
\(198\) −0.249125 6.18197i −0.0177045 0.439334i
\(199\) −3.11261 3.81225i −0.220647 0.270243i 0.652405 0.757870i \(-0.273760\pi\)
−0.873052 + 0.487627i \(0.837863\pi\)
\(200\) 7.60392 8.58305i 0.537678 0.606913i
\(201\) −26.4056 + 5.39075i −1.86251 + 0.380234i
\(202\) −2.66430 0.771724i −0.187460 0.0542983i
\(203\) 27.4128 + 10.3963i 1.92400 + 0.729678i
\(204\) −0.373659 + 9.27225i −0.0261614 + 0.649187i
\(205\) 5.84369 4.39125i 0.408141 0.306698i
\(206\) −10.6854 2.18144i −0.744488 0.151988i
\(207\) 4.98034 + 2.61389i 0.346158 + 0.181678i
\(208\) −1.86533 + 6.25032i −0.129337 + 0.433382i
\(209\) −25.4974 + 13.3821i −1.76369 + 0.925657i
\(210\) −7.86407 + 2.27786i −0.542672 + 0.157187i
\(211\) 5.40996 + 0.436737i 0.372437 + 0.0300662i 0.265268 0.964175i \(-0.414539\pi\)
0.107169 + 0.994241i \(0.465822\pi\)
\(212\) −0.379528 1.85905i −0.0260661 0.127680i
\(213\) −2.67419 + 5.09525i −0.183233 + 0.349121i
\(214\) −1.50771 + 2.00640i −0.103065 + 0.137155i
\(215\) −1.23575 1.95419i −0.0842776 0.133274i
\(216\) 8.58562 + 5.92622i 0.584177 + 0.403228i
\(217\) 5.74482 + 12.1070i 0.389984 + 0.821873i
\(218\) −0.435332 0.453229i −0.0294844 0.0306965i
\(219\) −8.81113 + 8.46320i −0.595401 + 0.571890i
\(220\) 0.435227 3.58442i 0.0293430 0.241661i
\(221\) 15.3354 13.3663i 1.03157 0.899115i
\(222\) −0.913862 7.52633i −0.0613344 0.505134i
\(223\) −19.2073 15.6823i −1.28621 1.05016i −0.995637 0.0933106i \(-0.970255\pi\)
−0.290578 0.956851i \(-0.593848\pi\)
\(224\) 2.62050 12.8361i 0.175089 0.857645i
\(225\) 1.42927 4.93440i 0.0952845 0.328960i
\(226\) −3.53274 + 14.3329i −0.234995 + 0.953411i
\(227\) −0.189861 2.35185i −0.0126015 0.156098i 0.987396 0.158268i \(-0.0505911\pi\)
−0.999998 + 0.00217070i \(0.999309\pi\)
\(228\) −1.86038 + 11.4474i −0.123207 + 0.758121i
\(229\) −17.7848 20.0749i −1.17525 1.32659i −0.934484 0.356006i \(-0.884138\pi\)
−0.240771 0.970582i \(-0.577400\pi\)
\(230\) −4.05048 3.04374i −0.267081 0.200698i
\(231\) 17.0698 20.9067i 1.12311 1.37556i
\(232\) −4.56884 28.1132i −0.299959 1.84572i
\(233\) −0.154252 + 0.0380196i −0.0101054 + 0.00249075i −0.244365 0.969683i \(-0.578580\pi\)
0.234260 + 0.972174i \(0.424733\pi\)
\(234\) 0.832632 + 5.39869i 0.0544309 + 0.352924i
\(235\) −11.0216 2.71657i −0.718968 0.177210i
\(236\) 0.449611 5.56943i 0.0292672 0.362539i
\(237\) −0.323319 0.107940i −0.0210018 0.00701143i
\(238\) 13.6051 14.1644i 0.881888 0.918143i
\(239\) 0.752656i 0.0486853i 0.999704 + 0.0243426i \(0.00774927\pi\)
−0.999704 + 0.0243426i \(0.992251\pi\)
\(240\) 3.06871 + 2.94754i 0.198084 + 0.190263i
\(241\) 14.3328 11.7024i 0.923258 0.753817i −0.0462360 0.998931i \(-0.514723\pi\)
0.969494 + 0.245113i \(0.0788252\pi\)
\(242\) −2.90643 5.53774i −0.186832 0.355980i
\(243\) 13.1310 + 2.13400i 0.842357 + 0.136896i
\(244\) 5.91108 + 3.73794i 0.378418 + 0.239297i
\(245\) −3.03118 1.43831i −0.193655 0.0918903i
\(246\) −8.50958 12.3282i −0.542551 0.786020i
\(247\) 21.0395 14.2728i 1.33871 0.908157i
\(248\) 7.39545 10.7142i 0.469611 0.680349i
\(249\) 10.1993 5.88855i 0.646353 0.373172i
\(250\) −4.63910 + 9.77670i −0.293403 + 0.618333i
\(251\) −6.33247 + 2.11409i −0.399702 + 0.133440i −0.509411 0.860524i \(-0.670137\pi\)
0.109708 + 0.993964i \(0.465008\pi\)
\(252\) −0.817681 3.31746i −0.0515090 0.208980i
\(253\) 16.6890 + 0.672542i 1.04923 + 0.0422824i
\(254\) 4.51395 + 0.181906i 0.283231 + 0.0114138i
\(255\) −3.17581 12.8848i −0.198877 0.806875i
\(256\) −14.7708 + 4.93123i −0.923178 + 0.308202i
\(257\) −7.87968 + 16.6061i −0.491521 + 1.03586i 0.494491 + 0.869183i \(0.335355\pi\)
−0.986012 + 0.166676i \(0.946697\pi\)
\(258\) −4.10348 + 2.36915i −0.255472 + 0.147497i
\(259\) 5.90547 8.55554i 0.366948 0.531616i
\(260\) −0.0257727 + 3.18784i −0.00159835 + 0.197701i
\(261\) −7.24860 10.5014i −0.448677 0.650021i
\(262\) 18.6938 + 8.87029i 1.15490 + 0.548009i
\(263\) −14.2101 8.98595i −0.876235 0.554098i 0.0189355 0.999821i \(-0.493972\pi\)
−0.895171 + 0.445723i \(0.852947\pi\)
\(264\) −25.8809 4.20606i −1.59286 0.258865i
\(265\) 1.26095 + 2.40254i 0.0774594 + 0.147587i
\(266\) 19.0130 15.5237i 1.16576 0.951816i
\(267\) −0.183876 0.176615i −0.0112530 0.0108087i
\(268\) 10.1312i 0.618861i
\(269\) 12.2248 12.7274i 0.745362 0.776004i −0.235256 0.971933i \(-0.575593\pi\)
0.980618 + 0.195929i \(0.0627723\pi\)
\(270\) −3.99343 1.33320i −0.243032 0.0811361i
\(271\) 2.35539 29.1767i 0.143080 1.77236i −0.384762 0.923016i \(-0.625716\pi\)
0.527842 0.849343i \(-0.323001\pi\)
\(272\) −9.91041 2.44270i −0.600907 0.148110i
\(273\) −12.8986 + 20.0370i −0.780656 + 1.21269i
\(274\) −2.58215 + 0.636444i −0.155994 + 0.0384490i
\(275\) −2.44711 15.0577i −0.147566 0.908011i
\(276\) 4.25444 5.21075i 0.256087 0.313650i
\(277\) 22.6162 + 16.9950i 1.35888 + 1.02113i 0.996006 + 0.0892893i \(0.0284596\pi\)
0.362870 + 0.931840i \(0.381797\pi\)
\(278\) 14.5994 + 16.4793i 0.875612 + 0.988362i
\(279\) 0.935593 5.75693i 0.0560125 0.344659i
\(280\) 0.877583 + 10.8708i 0.0524456 + 0.649655i
\(281\) 5.14904 20.8905i 0.307166 1.24622i −0.591038 0.806644i \(-0.701282\pi\)
0.898204 0.439578i \(-0.144872\pi\)
\(282\) −6.47209 + 22.3443i −0.385408 + 1.33058i
\(283\) −4.35232 + 21.3191i −0.258719 + 1.26729i 0.617959 + 0.786210i \(0.287960\pi\)
−0.876678 + 0.481078i \(0.840246\pi\)
\(284\) 1.67562 + 1.36810i 0.0994299 + 0.0811820i
\(285\) −1.99909 16.4640i −0.118416 0.975241i
\(286\) 9.10646 + 13.4238i 0.538476 + 0.793768i
\(287\) 2.47585 20.3905i 0.146145 1.20361i
\(288\) −4.11222 + 3.94985i −0.242315 + 0.232747i
\(289\) 10.2754 + 10.6979i 0.604438 + 0.629286i
\(290\) 4.92752 + 10.3845i 0.289354 + 0.609801i
\(291\) 17.4099 + 12.0172i 1.02058 + 0.704459i
\(292\) 2.45466 + 3.88174i 0.143648 + 0.227161i
\(293\) 0.216822 0.288538i 0.0126669 0.0168565i −0.793065 0.609137i \(-0.791516\pi\)
0.805732 + 0.592281i \(0.201772\pi\)
\(294\) −3.19530 + 6.08813i −0.186354 + 0.355067i
\(295\) 1.59828 + 7.82889i 0.0930554 + 0.455815i
\(296\) −10.0666 0.812658i −0.585108 0.0472348i
\(297\) 13.3309 3.86135i 0.773539 0.224058i
\(298\) 7.04270 3.69629i 0.407973 0.214121i
\(299\) −14.7080 + 1.06775i −0.850586 + 0.0617494i
\(300\) −5.44031 2.85529i −0.314096 0.164850i
\(301\) −6.36575 1.29958i −0.366916 0.0749064i
\(302\) −13.5050 + 10.1484i −0.777127 + 0.583973i
\(303\) −0.212062 + 5.26226i −0.0121826 + 0.302309i
\(304\) −11.9274 4.52348i −0.684085 0.259439i
\(305\) −9.60646 2.78254i −0.550064 0.159328i
\(306\) −8.37522 + 1.70981i −0.478779 + 0.0977435i
\(307\) 0.288491 0.325639i 0.0164650 0.0185852i −0.740221 0.672364i \(-0.765279\pi\)
0.756686 + 0.653779i \(0.226817\pi\)
\(308\) −6.41689 7.85927i −0.365636 0.447823i
\(309\) 0.833763 + 20.6896i 0.0474311 + 1.17699i
\(310\) −1.66373 + 4.98348i −0.0944935 + 0.283042i
\(311\) 10.5956 + 9.38686i 0.600820 + 0.532280i 0.907782 0.419441i \(-0.137774\pi\)
−0.306962 + 0.951722i \(0.599313\pi\)
\(312\) 23.1231 + 1.11914i 1.30909 + 0.0633587i
\(313\) 0.0489166 0.0433363i 0.00276493 0.00244951i −0.661739 0.749734i \(-0.730181\pi\)
0.664504 + 0.747285i \(0.268643\pi\)
\(314\) 2.40269 + 5.63932i 0.135592 + 0.318245i
\(315\) 2.44303 + 4.23144i 0.137649 + 0.238415i
\(316\) −0.0640685 + 0.110970i −0.00360413 + 0.00624254i
\(317\) −1.24934 0.151698i −0.0701700 0.00852018i 0.0853764 0.996349i \(-0.472791\pi\)
−0.155546 + 0.987829i \(0.549714\pi\)
\(318\) 5.02363 2.38374i 0.281711 0.133674i
\(319\) −32.8153 18.9459i −1.83730 1.06077i
\(320\) 7.57532 5.22887i 0.423473 0.292303i
\(321\) 4.38384 + 1.86778i 0.244682 + 0.104249i
\(322\) −14.0528 + 2.28380i −0.783132 + 0.127271i
\(323\) 23.9001 + 31.8053i 1.32984 + 1.76969i
\(324\) 3.13251 8.25975i 0.174028 0.458875i
\(325\) 3.64257 + 12.9670i 0.202053 + 0.719279i
\(326\) −0.776157 2.04656i −0.0429874 0.113348i
\(327\) −0.637715 + 1.00847i −0.0352657 + 0.0557683i
\(328\) −18.3577 + 7.82150i −1.01364 + 0.431870i
\(329\) −26.9594 + 17.0481i −1.48632 + 0.939890i
\(330\) 10.5045 1.27547i 0.578252 0.0702125i
\(331\) 9.87205 23.1706i 0.542617 1.27357i −0.392670 0.919679i \(-0.628449\pi\)
0.935287 0.353890i \(-0.115141\pi\)
\(332\) −1.40197 4.19943i −0.0769433 0.230473i
\(333\) −4.23055 + 1.60444i −0.231833 + 0.0879226i
\(334\) −4.56888 + 0.368838i −0.249998 + 0.0201819i
\(335\) −4.03079 13.9159i −0.220226 0.760307i
\(336\) 11.9468 0.481439i 0.651751 0.0262647i
\(337\) −17.9808 −0.979477 −0.489738 0.871869i \(-0.662908\pi\)
−0.489738 + 0.871869i \(0.662908\pi\)
\(338\) −9.32252 10.8721i −0.507078 0.591366i
\(339\) 28.0277 1.52226
\(340\) −4.98457 + 0.200871i −0.270326 + 0.0108938i
\(341\) −4.81865 16.6359i −0.260945 0.900885i
\(342\) −10.6483 + 0.859623i −0.575796 + 0.0464831i
\(343\) 11.8655 4.49998i 0.640676 0.242976i
\(344\) 1.99874 + 5.98696i 0.107765 + 0.322795i
\(345\) −3.77063 + 8.85000i −0.203004 + 0.476468i
\(346\) 16.3037 1.97963i 0.876494 0.106426i
\(347\) −10.6099 + 6.70931i −0.569571 + 0.360175i −0.787997 0.615679i \(-0.788882\pi\)
0.218427 + 0.975853i \(0.429908\pi\)
\(348\) −14.0398 + 5.98181i −0.752614 + 0.320659i
\(349\) −8.09141 + 12.7955i −0.433123 + 0.684930i −0.989261 0.146161i \(-0.953308\pi\)
0.556138 + 0.831090i \(0.312283\pi\)
\(350\) 4.61111 + 12.1585i 0.246474 + 0.649899i
\(351\) −11.3116 + 4.71176i −0.603771 + 0.251495i
\(352\) −6.00418 + 15.8317i −0.320024 + 0.843833i
\(353\) −21.1152 28.0993i −1.12385 1.49557i −0.844633 0.535346i \(-0.820181\pi\)
−0.279218 0.960228i \(-0.590075\pi\)
\(354\) 16.1628 2.62671i 0.859042 0.139608i
\(355\) −2.84590 1.21252i −0.151045 0.0643541i
\(356\) −0.0788782 + 0.0544457i −0.00418054 + 0.00288562i
\(357\) −32.2938 18.6448i −1.70917 0.986788i
\(358\) −8.42998 + 4.00008i −0.445539 + 0.211411i
\(359\) 12.6427 + 1.53510i 0.667255 + 0.0810194i 0.447153 0.894458i \(-0.352438\pi\)
0.220102 + 0.975477i \(0.429361\pi\)
\(360\) 2.37336 4.11078i 0.125087 0.216657i
\(361\) 15.3606 + 26.6053i 0.808452 + 1.40028i
\(362\) −0.920471 2.16043i −0.0483789 0.113549i
\(363\) −8.88813 + 7.87419i −0.466506 + 0.413288i
\(364\) 6.41022 + 6.25752i 0.335987 + 0.327983i
\(365\) −4.91604 4.35523i −0.257317 0.227963i
\(366\) −6.49041 + 19.4411i −0.339259 + 1.01621i
\(367\) 1.09184 + 27.0938i 0.0569938 + 1.41429i 0.734420 + 0.678695i \(0.237454\pi\)
−0.677426 + 0.735590i \(0.736905\pi\)
\(368\) 4.67955 + 5.73141i 0.243938 + 0.298770i
\(369\) −5.92816 + 6.69151i −0.308608 + 0.348346i
\(370\) 3.99335 0.815249i 0.207604 0.0423828i
\(371\) 7.32341 + 2.12125i 0.380213 + 0.110130i
\(372\) −6.52227 2.47357i −0.338164 0.128249i
\(373\) 1.52877 37.9361i 0.0791569 1.96426i −0.144272 0.989538i \(-0.546084\pi\)
0.223429 0.974720i \(-0.428275\pi\)
\(374\) −20.2927 + 15.2490i −1.04931 + 0.788505i
\(375\) 20.1311 + 4.10979i 1.03957 + 0.212229i
\(376\) 27.4384 + 14.4008i 1.41503 + 0.742663i
\(377\) 30.6708 + 13.3616i 1.57962 + 0.688156i
\(378\) −10.4752 + 5.49783i −0.538788 + 0.282778i
\(379\) 12.1981 3.53322i 0.626574 0.181490i 0.0502847 0.998735i \(-0.483987\pi\)
0.576290 + 0.817245i \(0.304500\pi\)
\(380\) −6.21440 0.501678i −0.318792 0.0257355i
\(381\) −1.71570 8.40406i −0.0878981 0.430553i
\(382\) 7.74926 14.7650i 0.396487 0.755443i
\(383\) −8.16470 + 10.8652i −0.417197 + 0.555188i −0.958298 0.285769i \(-0.907751\pi\)
0.541102 + 0.840957i \(0.318007\pi\)
\(384\) −0.811403 1.28313i −0.0414067 0.0654795i
\(385\) 11.9409 + 8.24224i 0.608567 + 0.420063i
\(386\) −7.75428 16.3418i −0.394683 0.831776i
\(387\) 1.95884 + 2.03937i 0.0995733 + 0.103667i
\(388\) 5.73534 5.50886i 0.291168 0.279670i
\(389\) 0.720535 5.93414i 0.0365326 0.300873i −0.962978 0.269581i \(-0.913115\pi\)
0.999510 0.0312917i \(-0.00996209\pi\)
\(390\) −9.08887 + 2.16241i −0.460233 + 0.109498i
\(391\) −2.78153 22.9080i −0.140668 1.15851i
\(392\) 7.09460 + 5.79256i 0.358332 + 0.292569i
\(393\) 7.85822 38.4921i 0.396395 1.94167i
\(394\) −2.35981 + 8.14699i −0.118885 + 0.410440i
\(395\) 0.0438521 0.177915i 0.00220644 0.00895188i
\(396\) 0.355336 + 4.40162i 0.0178563 + 0.221190i
\(397\) −3.31681 + 20.4091i −0.166466 + 1.02431i 0.760549 + 0.649281i \(0.224930\pi\)
−0.927015 + 0.375025i \(0.877634\pi\)
\(398\) −3.59541 4.05838i −0.180222 0.203428i
\(399\) −37.2567 27.9966i −1.86517 1.40158i
\(400\) 4.27406 5.23477i 0.213703 0.261739i
\(401\) −1.36220 8.38197i −0.0680252 0.418576i −0.998620 0.0525239i \(-0.983273\pi\)
0.930595 0.366052i \(-0.119291\pi\)
\(402\) −28.8277 + 7.10538i −1.43779 + 0.354384i
\(403\) 5.87990 + 14.1160i 0.292899 + 0.703169i
\(404\) 1.92227 + 0.473797i 0.0956366 + 0.0235723i
\(405\) −1.01650 + 12.5916i −0.0505104 + 0.625684i
\(406\) 30.6367 + 10.2280i 1.52047 + 0.507608i
\(407\) −9.30738 + 9.69001i −0.461350 + 0.480316i
\(408\) 36.2263i 1.79347i
\(409\) 10.8980 + 10.4677i 0.538872 + 0.517594i 0.912002 0.410185i \(-0.134536\pi\)
−0.373130 + 0.927779i \(0.621715\pi\)
\(410\) 6.23782 5.09303i 0.308064 0.251527i
\(411\) 2.34655 + 4.47098i 0.115747 + 0.220537i
\(412\) 7.68319 + 1.24864i 0.378523 + 0.0615160i
\(413\) 18.9769 + 12.0003i 0.933794 + 0.590496i
\(414\) 5.59822 + 2.65639i 0.275137 + 0.130554i
\(415\) 3.59649 + 5.21042i 0.176545 + 0.255769i
\(416\) 3.69484 14.4856i 0.181155 0.710213i
\(417\) 23.7457 34.4016i 1.16283 1.68465i
\(418\) −27.4734 + 15.8618i −1.34377 + 0.775825i
\(419\) −5.68021 + 11.9708i −0.277496 + 0.584811i −0.993571 0.113213i \(-0.963886\pi\)
0.716075 + 0.698024i \(0.245937\pi\)
\(420\) 5.54293 1.85050i 0.270467 0.0902953i
\(421\) −2.49604 10.1268i −0.121650 0.493551i −0.999883 0.0153187i \(-0.995124\pi\)
0.878233 0.478233i \(-0.158722\pi\)
\(422\) 5.97455 + 0.240766i 0.290836 + 0.0117203i
\(423\) 13.8715 + 0.559004i 0.674457 + 0.0271797i
\(424\) −1.77262 7.19179i −0.0860859 0.349264i
\(425\) −19.9920 + 6.67430i −0.969753 + 0.323751i
\(426\) −2.71767 + 5.72738i −0.131672 + 0.277492i
\(427\) −24.3385 + 14.0518i −1.17782 + 0.680016i
\(428\) 1.01759 1.47423i 0.0491870 0.0712597i
\(429\) 20.6089 22.8871i 0.995005 1.10500i
\(430\) −1.44698 2.09631i −0.0697795 0.101093i
\(431\) 3.44001 + 1.63231i 0.165700 + 0.0786254i 0.509736 0.860331i \(-0.329743\pi\)
−0.344036 + 0.938956i \(0.611794\pi\)
\(432\) 5.19647 + 3.28605i 0.250015 + 0.158100i
\(433\) 9.80514 + 1.59349i 0.471205 + 0.0765783i 0.391377 0.920230i \(-0.371999\pi\)
0.0798279 + 0.996809i \(0.474563\pi\)
\(434\) 6.86085 + 13.0723i 0.329331 + 0.627488i
\(435\) 16.9048 13.8023i 0.810522 0.661771i
\(436\) 0.323490 + 0.310717i 0.0154924 + 0.0148806i
\(437\) 28.8400i 1.37960i
\(438\) −9.32369 + 9.70698i −0.445503 + 0.463818i
\(439\) 13.9169 + 4.64616i 0.664219 + 0.221749i 0.628733 0.777621i \(-0.283574\pi\)
0.0354862 + 0.999370i \(0.488702\pi\)
\(440\) 1.13422 14.0499i 0.0540720 0.669802i
\(441\) 3.98407 + 0.981984i 0.189717 + 0.0467611i
\(442\) 16.2880 15.3936i 0.774742 0.732201i
\(443\) 12.6929 3.12851i 0.603056 0.148640i 0.0740447 0.997255i \(-0.476409\pi\)
0.529011 + 0.848615i \(0.322563\pi\)
\(444\) 0.868041 + 5.34127i 0.0411954 + 0.253485i
\(445\) 0.0866830 0.106167i 0.00410917 0.00503282i
\(446\) −21.8387 16.4107i −1.03409 0.777069i
\(447\) −10.0141 11.3036i −0.473651 0.534642i
\(448\) 4.14906 25.5302i 0.196025 1.20619i
\(449\) −2.59648 32.1632i −0.122536 1.51788i −0.707440 0.706773i \(-0.750150\pi\)
0.584904 0.811102i \(-0.301132\pi\)
\(450\) 1.35442 5.49509i 0.0638479 0.259041i
\(451\) −7.38584 + 25.4989i −0.347786 + 1.20070i
\(452\) 2.10751 10.3233i 0.0991292 0.485567i
\(453\) 24.8448 + 20.2851i 1.16731 + 0.953078i
\(454\) −0.313323 2.58044i −0.0147050 0.121106i
\(455\) −11.2945 6.04477i −0.529495 0.283383i
\(456\) −5.45723 + 44.9444i −0.255558 + 2.10471i
\(457\) −19.9100 + 19.1239i −0.931353 + 0.894576i −0.994638 0.103419i \(-0.967022\pi\)
0.0632853 + 0.997995i \(0.479842\pi\)
\(458\) −20.4677 21.3091i −0.956393 0.995711i
\(459\) −8.22024 17.3238i −0.383688 0.808605i
\(460\) 2.97614 + 2.05428i 0.138763 + 0.0957815i
\(461\) 2.38145 + 3.76597i 0.110915 + 0.175399i 0.896086 0.443881i \(-0.146399\pi\)
−0.785170 + 0.619280i \(0.787425\pi\)
\(462\) 17.8626 23.7709i 0.831045 1.10592i
\(463\) −8.95065 + 17.0540i −0.415972 + 0.792568i −0.999814 0.0192993i \(-0.993856\pi\)
0.583842 + 0.811867i \(0.301549\pi\)
\(464\) −3.35761 16.4467i −0.155873 0.763517i
\(465\) 9.94293 + 0.802676i 0.461092 + 0.0372232i
\(466\) −0.168111 + 0.0486938i −0.00778758 + 0.00225570i
\(467\) −3.12465 + 1.63994i −0.144592 + 0.0758875i −0.535467 0.844556i \(-0.679865\pi\)
0.390876 + 0.920443i \(0.372172\pi\)
\(468\) −0.748963 3.82624i −0.0346208 0.176868i
\(469\) −36.0477 18.9193i −1.66453 0.873613i
\(470\) −12.2528 2.50143i −0.565181 0.115383i
\(471\) 9.30427 6.99171i 0.428718 0.322161i
\(472\) 0.878306 21.7949i 0.0404273 1.00319i
\(473\) 7.85139 + 2.97764i 0.361007 + 0.136912i
\(474\) −0.360691 0.104475i −0.0165671 0.00479872i
\(475\) −25.8086 + 5.26886i −1.18418 + 0.241752i
\(476\) −9.29564 + 10.4926i −0.426065 + 0.480928i
\(477\) −2.09871 2.57045i −0.0960933 0.117693i
\(478\) 0.0333878 + 0.828509i 0.00152712 + 0.0378951i
\(479\) 6.28232 18.8178i 0.287046 0.859809i −0.701997 0.712180i \(-0.747708\pi\)
0.989043 0.147628i \(-0.0471640\pi\)
\(480\) −7.29946 6.46676i −0.333173 0.295166i
\(481\) 7.20282 9.42557i 0.328420 0.429769i
\(482\) 15.2582 13.5176i 0.694991 0.615708i
\(483\) 10.5954 + 24.8684i 0.482110 + 1.13155i
\(484\) 2.23192 + 3.86581i 0.101451 + 0.175719i
\(485\) −5.68613 + 9.84867i −0.258194 + 0.447205i
\(486\) 14.5491 + 1.76658i 0.659959 + 0.0801335i
\(487\) −5.62287 + 2.66808i −0.254797 + 0.120902i −0.551807 0.833972i \(-0.686062\pi\)
0.297011 + 0.954874i \(0.404010\pi\)
\(488\) 23.6445 + 13.6511i 1.07033 + 0.617958i
\(489\) −3.42013 + 2.36075i −0.154664 + 0.106757i
\(490\) −3.40046 1.44880i −0.153617 0.0654502i
\(491\) −30.6672 + 4.98391i −1.38399 + 0.224921i −0.806384 0.591393i \(-0.798578\pi\)
−0.577609 + 0.816313i \(0.696014\pi\)
\(492\) 6.42306 + 8.54754i 0.289574 + 0.385353i
\(493\) −18.5641 + 48.9495i −0.836084 + 2.20457i
\(494\) 22.5268 16.6445i 1.01353 0.748873i
\(495\) −2.23931 5.90457i −0.100649 0.265390i
\(496\) 4.10072 6.48477i 0.184128 0.291175i
\(497\) −7.99695 + 3.40718i −0.358712 + 0.152833i
\(498\) 10.9659 6.93444i 0.491396 0.310740i
\(499\) −8.43207 + 1.02384i −0.377471 + 0.0458333i −0.307074 0.951686i \(-0.599350\pi\)
−0.0703976 + 0.997519i \(0.522427\pi\)
\(500\) 3.02748 7.10575i 0.135393 0.317779i
\(501\) 2.75595 + 8.25507i 0.123127 + 0.368809i
\(502\) −6.87688 + 2.60806i −0.306930 + 0.116403i
\(503\) −7.27333 + 0.587164i −0.324302 + 0.0261803i −0.241546 0.970389i \(-0.577654\pi\)
−0.0827562 + 0.996570i \(0.526372\pi\)
\(504\) −3.71094 12.8116i −0.165298 0.570676i
\(505\) −2.82888 + 0.114000i −0.125884 + 0.00507293i
\(506\) 18.4007 0.818011
\(507\) −15.8067 + 22.1260i −0.701999 + 0.982649i
\(508\) −3.22443 −0.143061
\(509\) 20.2344 0.815417i 0.896872 0.0361427i 0.412453 0.910979i \(-0.364672\pi\)
0.484419 + 0.874836i \(0.339031\pi\)
\(510\) −4.06743 14.0424i −0.180109 0.621808i
\(511\) −18.3955 + 1.48504i −0.813769 + 0.0656942i
\(512\) −17.3980 + 6.59818i −0.768889 + 0.291601i
\(513\) −7.58878 22.7312i −0.335053 1.00361i
\(514\) −7.93715 + 18.6292i −0.350093 + 0.821698i
\(515\) −11.0502 + 1.34174i −0.486929 + 0.0591239i
\(516\) 2.85838 1.80753i 0.125833 0.0795721i
\(517\) 37.9266 16.1590i 1.66801 0.710673i
\(518\) 6.12110 9.67974i 0.268945 0.425303i
\(519\) −11.0575 29.1562i −0.485369 1.27981i
\(520\) 0.400566 + 12.4386i 0.0175660 + 0.545469i
\(521\) 11.5275 30.3954i 0.505027 1.33165i −0.403942 0.914784i \(-0.632360\pi\)
0.908969 0.416863i \(-0.136870\pi\)
\(522\) −8.44495 11.2382i −0.369626 0.491882i
\(523\) 17.0715 2.77438i 0.746483 0.121315i 0.224741 0.974419i \(-0.427847\pi\)
0.521742 + 0.853103i \(0.325282\pi\)
\(524\) −13.5867 5.78875i −0.593538 0.252883i
\(525\) 20.3188 14.0251i 0.886786 0.612104i
\(526\) −16.0409 9.26120i −0.699415 0.403807i
\(527\) −21.6187 + 10.2582i −0.941724 + 0.446854i
\(528\) −15.3404 1.86266i −0.667605 0.0810619i
\(529\) 3.13593 5.43160i 0.136345 0.236156i
\(530\) 1.49460 + 2.58873i 0.0649214 + 0.112447i
\(531\) −3.83038 8.99024i −0.166225 0.390143i
\(532\) −13.1133 + 11.6174i −0.568535 + 0.503678i
\(533\) 3.94671 23.1038i 0.170951 1.00074i
\(534\) −0.210242 0.186258i −0.00909806 0.00806017i
\(535\) −0.811193 + 2.42982i −0.0350709 + 0.105050i
\(536\) 1.59252 + 39.5180i 0.0687864 + 1.70692i
\(537\) 11.2045 + 13.7230i 0.483509 + 0.592191i
\(538\) 12.8923 14.5524i 0.555826 0.627398i
\(539\) 11.9387 2.43730i 0.514235 0.104982i
\(540\) 2.88630 + 0.836027i 0.124207 + 0.0359769i
\(541\) 18.3785 + 6.97006i 0.790156 + 0.299666i 0.716473 0.697615i \(-0.245755\pi\)
0.0736830 + 0.997282i \(0.476525\pi\)
\(542\) 1.29849 32.2216i 0.0557748 1.38404i
\(543\) −3.56447 + 2.67853i −0.152966 + 0.114947i
\(544\) 22.9206 + 4.67927i 0.982712 + 0.200622i
\(545\) −0.567959 0.298088i −0.0243287 0.0127687i
\(546\) −13.3096 + 22.6285i −0.569600 + 0.968410i
\(547\) 12.4517 6.53517i 0.532397 0.279424i −0.177026 0.984206i \(-0.556648\pi\)
0.709423 + 0.704783i \(0.248955\pi\)
\(548\) 1.82322 0.528101i 0.0778839 0.0225594i
\(549\) 12.1920 + 0.984237i 0.520340 + 0.0420062i
\(550\) −3.36169 16.4666i −0.143343 0.702139i
\(551\) −30.4055 + 57.9329i −1.29532 + 2.46802i
\(552\) 15.7759 20.9939i 0.671467 0.893561i
\(553\) −0.275198 0.435190i −0.0117026 0.0185062i
\(554\) 25.6494 + 17.7045i 1.08974 + 0.752191i
\(555\) −3.31739 6.99125i −0.140815 0.296762i
\(556\) −10.8854 11.3329i −0.461644 0.480622i
\(557\) −18.1383 + 17.4221i −0.768545 + 0.738197i −0.970475 0.241203i \(-0.922458\pi\)
0.201930 + 0.979400i \(0.435279\pi\)
\(558\) 0.774505 6.37862i 0.0327874 0.270029i
\(559\) −7.18379 1.83238i −0.303842 0.0775013i
\(560\) 0.774758 + 6.38070i 0.0327395 + 0.269634i
\(561\) 37.3318 + 30.4805i 1.57615 + 1.28689i
\(562\) 4.74126 23.2242i 0.199998 0.979655i
\(563\) 3.73577 12.8974i 0.157444 0.543559i −0.842544 0.538628i \(-0.818943\pi\)
0.999988 0.00493174i \(-0.00156983\pi\)
\(564\) 3.97352 16.1212i 0.167315 0.678825i
\(565\) 1.21240 + 15.0183i 0.0510060 + 0.631823i
\(566\) −3.84524 + 23.6607i −0.161627 + 0.994533i
\(567\) 23.5392 + 26.5703i 0.988554 + 1.11585i
\(568\) 6.75103 + 5.07307i 0.283267 + 0.212861i
\(569\) 6.73725 8.25163i 0.282440 0.345926i −0.613827 0.789440i \(-0.710371\pi\)
0.896268 + 0.443514i \(0.146268\pi\)
\(570\) −2.93089 18.0345i −0.122762 0.755383i
\(571\) −37.7826 + 9.31256i −1.58115 + 0.389719i −0.929506 0.368806i \(-0.879767\pi\)
−0.651644 + 0.758525i \(0.725920\pi\)
\(572\) −6.88022 9.31172i −0.287677 0.389343i
\(573\) −30.7401 7.57676i −1.28419 0.316524i
\(574\) 1.82085 22.5552i 0.0760007 0.941437i
\(575\) 14.4923 + 4.83825i 0.604372 + 0.201769i
\(576\) −7.79824 + 8.11883i −0.324927 + 0.338285i
\(577\) 19.9882i 0.832121i −0.909337 0.416061i \(-0.863410\pi\)
0.909337 0.416061i \(-0.136590\pi\)
\(578\) 11.7856 + 11.3202i 0.490215 + 0.470857i
\(579\) −26.6025 + 21.7203i −1.10556 + 0.902664i
\(580\) −3.81260 7.26429i −0.158309 0.301633i
\(581\) 17.5600 + 2.85379i 0.728513 + 0.118395i
\(582\) 19.6975 + 12.4560i 0.816489 + 0.516316i
\(583\) −8.90273 4.22440i −0.368713 0.174957i
\(584\) 10.1849 + 14.7553i 0.421453 + 0.610580i
\(585\) 2.55106 + 4.95763i 0.105473 + 0.204973i
\(586\) 0.225874 0.327235i 0.00933076 0.0135179i
\(587\) −19.5306 + 11.2760i −0.806115 + 0.465411i −0.845605 0.533809i \(-0.820760\pi\)
0.0394896 + 0.999220i \(0.487427\pi\)
\(588\) 2.10381 4.43369i 0.0867597 0.182842i
\(589\) −28.3667 + 9.47018i −1.16883 + 0.390212i
\(590\) 2.10664 + 8.54698i 0.0867291 + 0.351874i
\(591\) 16.0911 + 0.648449i 0.661900 + 0.0266736i
\(592\) −5.94722 0.239665i −0.244429 0.00985016i
\(593\) −0.545441 2.21294i −0.0223986 0.0908746i 0.958679 0.284491i \(-0.0918245\pi\)
−0.981077 + 0.193616i \(0.937978\pi\)
\(594\) 14.5031 4.84186i 0.595071 0.198664i
\(595\) 8.59363 18.1107i 0.352305 0.742466i
\(596\) −4.91639 + 2.83848i −0.201383 + 0.116269i
\(597\) −5.84788 + 8.47212i −0.239338 + 0.346741i
\(598\) −16.1429 + 1.82780i −0.660133 + 0.0747443i
\(599\) 24.0024 + 34.7735i 0.980711 + 1.42081i 0.905844 + 0.423612i \(0.139238\pi\)
0.0748678 + 0.997193i \(0.476147\pi\)
\(600\) −21.6694 10.2823i −0.884650 0.419772i
\(601\) −5.95993 3.76883i −0.243110 0.153734i 0.407354 0.913270i \(-0.366451\pi\)
−0.650465 + 0.759537i \(0.725426\pi\)
\(602\) −7.06495 1.14817i −0.287946 0.0467957i
\(603\) 8.23430 + 15.6892i 0.335327 + 0.638912i
\(604\) 9.33968 7.62561i 0.380026 0.310282i
\(605\) −4.60376 4.42197i −0.187169 0.179779i
\(606\) 5.80199i 0.235690i
\(607\) 21.4240 22.3048i 0.869574 0.905323i −0.126667 0.991945i \(-0.540428\pi\)
0.996241 + 0.0866225i \(0.0276074\pi\)
\(608\) 27.7317 + 9.25819i 1.12467 + 0.375469i
\(609\) 4.93457 61.1256i 0.199959 2.47694i
\(610\) −10.6980 2.63683i −0.433151 0.106762i
\(611\) −31.6679 + 17.9437i −1.28114 + 0.725923i
\(612\) 5.92379 1.46008i 0.239455 0.0590204i
\(613\) 2.09999 + 12.9217i 0.0848177 + 0.521904i 0.994340 + 0.106248i \(0.0338839\pi\)
−0.909522 + 0.415656i \(0.863552\pi\)
\(614\) 0.303120 0.371254i 0.0122329 0.0149826i
\(615\) −12.2233 9.18518i −0.492889 0.370382i
\(616\) −26.2653 29.6474i −1.05826 1.19453i
\(617\) 0.115470 0.710516i 0.00464865 0.0286043i −0.984622 0.174697i \(-0.944106\pi\)
0.989271 + 0.146092i \(0.0466696\pi\)
\(618\) 1.83558 + 22.7377i 0.0738378 + 0.914646i
\(619\) −4.02308 + 16.3223i −0.161701 + 0.656047i 0.833003 + 0.553268i \(0.186620\pi\)
−0.994704 + 0.102779i \(0.967227\pi\)
\(620\) 1.04329 3.60187i 0.0418997 0.144654i
\(621\) −2.78039 + 13.6193i −0.111573 + 0.546523i
\(622\) 12.0798 + 9.86285i 0.484356 + 0.395464i
\(623\) −0.0464232 0.382330i −0.00185991 0.0153177i
\(624\) 13.6431 + 0.110300i 0.546162 + 0.00441555i
\(625\) 0.920022 7.57706i 0.0368009 0.303082i
\(626\) 0.0519240 0.0498737i 0.00207530 0.00199335i
\(627\) 41.7243 + 43.4395i 1.66631 + 1.73481i
\(628\) −1.87559 3.95272i −0.0748442 0.157731i
\(629\) 15.2771 + 10.5450i 0.609139 + 0.420458i
\(630\) 2.87694 + 4.54952i 0.114620 + 0.181257i
\(631\) 21.5094 28.6238i 0.856276 1.13950i −0.132661 0.991161i \(-0.542352\pi\)
0.988937 0.148335i \(-0.0473914\pi\)
\(632\) −0.232464 + 0.442922i −0.00924691 + 0.0176185i
\(633\) −2.27086 11.1234i −0.0902584 0.442115i
\(634\) −1.38198 0.111565i −0.0548854 0.00443081i
\(635\) 4.42899 1.28287i 0.175759 0.0509092i
\(636\) −3.51418 + 1.84438i −0.139346 + 0.0731346i
\(637\) −10.2317 + 3.32414i −0.405394 + 0.131707i
\(638\) −36.9628 19.3996i −1.46337 0.768037i
\(639\) 3.70682 + 0.756752i 0.146639 + 0.0299366i
\(640\) 0.652449 0.490284i 0.0257903 0.0193802i
\(641\) −2.00857 + 49.8422i −0.0793338 + 1.96865i 0.132043 + 0.991244i \(0.457846\pi\)
−0.211377 + 0.977405i \(0.567795\pi\)
\(642\) 4.90850 + 1.86155i 0.193723 + 0.0734695i
\(643\) 22.4306 + 6.49710i 0.884577 + 0.256221i 0.689255 0.724519i \(-0.257938\pi\)
0.195321 + 0.980739i \(0.437425\pi\)
\(644\) 9.95637 2.03261i 0.392336 0.0800959i
\(645\) −3.20704 + 3.62000i −0.126277 + 0.142538i
\(646\) 27.7197 + 33.9504i 1.09062 + 1.33576i
\(647\) 1.38067 + 34.2609i 0.0542796 + 1.34693i 0.765260 + 0.643722i \(0.222611\pi\)
−0.710980 + 0.703212i \(0.751748\pi\)
\(648\) 10.9204 32.7106i 0.428994 1.28499i
\(649\) −21.7210 19.2432i −0.852625 0.755360i
\(650\) 4.58488 + 14.1122i 0.179834 + 0.553527i
\(651\) 20.9811 18.5876i 0.822313 0.728506i
\(652\) 0.612348 + 1.43723i 0.0239814 + 0.0562864i
\(653\) −20.9795 36.3375i −0.820989 1.42200i −0.904946 0.425526i \(-0.860089\pi\)
0.0839567 0.996469i \(-0.473244\pi\)
\(654\) −0.657249 + 1.13839i −0.0257005 + 0.0445145i
\(655\) 20.9654 + 2.54566i 0.819186 + 0.0994672i
\(656\) −10.6248 + 5.04151i −0.414827 + 0.196838i
\(657\) 6.95623 + 4.01618i 0.271388 + 0.156686i
\(658\) −28.9201 + 19.9621i −1.12742 + 0.778203i
\(659\) −23.9410 10.2003i −0.932609 0.397348i −0.128419 0.991720i \(-0.540990\pi\)
−0.804190 + 0.594372i \(0.797400\pi\)
\(660\) −7.45479 + 1.21152i −0.290177 + 0.0471584i
\(661\) −18.0684 24.0446i −0.702778 0.935227i 0.297029 0.954868i \(-0.404004\pi\)
−0.999807 + 0.0196410i \(0.993748\pi\)
\(662\) 9.83911 25.9436i 0.382408 1.00833i
\(663\) −35.7789 23.0322i −1.38954 0.894496i
\(664\) −6.12868 16.1600i −0.237839 0.627130i
\(665\) 13.3900 21.1746i 0.519241 0.821115i
\(666\) −4.58573 + 1.95380i −0.177694 + 0.0757082i
\(667\) 32.0749 20.2829i 1.24195 0.785359i
\(668\) 3.24777 0.394351i 0.125660 0.0152579i
\(669\) −20.3298 + 47.7159i −0.785997 + 1.84480i
\(670\) −5.05432 15.1395i −0.195266 0.584892i
\(671\) 33.9620 12.8801i 1.31109 0.497230i
\(672\) −27.3141 + 2.20502i −1.05366 + 0.0850606i
\(673\) −5.93007 20.4730i −0.228587 0.789175i −0.990020 0.140930i \(-0.954991\pi\)
0.761432 0.648245i \(-0.224497\pi\)
\(674\) −19.7929 + 0.797627i −0.762394 + 0.0307234i
\(675\) 12.6957 0.488658
\(676\) 6.96098 + 7.48573i 0.267730 + 0.287913i
\(677\) −20.0506 −0.770608 −0.385304 0.922790i \(-0.625903\pi\)
−0.385304 + 0.922790i \(0.625903\pi\)
\(678\) 30.8523 1.24331i 1.18488 0.0477489i
\(679\) 8.89071 + 30.6943i 0.341194 + 1.17794i
\(680\) −19.4114 + 1.56705i −0.744392 + 0.0600935i
\(681\) −4.61465 + 1.75010i −0.176834 + 0.0670641i
\(682\) −6.04224 18.0987i −0.231370 0.693036i
\(683\) 1.01570 2.38392i 0.0388645 0.0912183i −0.899416 0.437094i \(-0.856008\pi\)
0.938280 + 0.345875i \(0.112418\pi\)
\(684\) 7.56934 0.919084i 0.289421 0.0351421i
\(685\) −2.29421 + 1.45077i −0.0876571 + 0.0554310i
\(686\) 12.8617 5.47984i 0.491061 0.209221i
\(687\) −29.9830 + 47.4143i −1.14392 + 1.80897i
\(688\) 1.31908 + 3.47813i 0.0502895 + 0.132602i
\(689\) 8.22997 + 2.82172i 0.313537 + 0.107499i
\(690\) −3.75805 + 9.90917i −0.143067 + 0.377236i
\(691\) 10.1737 + 13.5388i 0.387027 + 0.515040i 0.950344 0.311201i \(-0.100731\pi\)
−0.563317 + 0.826241i \(0.690475\pi\)
\(692\) −11.5704 + 1.88037i −0.439840 + 0.0714810i
\(693\) −16.3250 6.95541i −0.620134 0.264214i
\(694\) −11.3816 + 7.85613i −0.432039 + 0.298215i
\(695\) 19.4608 + 11.2357i 0.738189 + 0.426194i
\(696\) −53.8238 + 25.5397i −2.04019 + 0.968080i
\(697\) 36.4100 + 4.42098i 1.37913 + 0.167456i
\(698\) −8.33926 + 14.4440i −0.315645 + 0.546714i
\(699\) 0.166152 + 0.287784i 0.00628445 + 0.0108850i
\(700\) −3.63792 8.53852i −0.137501 0.322726i
\(701\) −20.7571 + 18.3892i −0.783984 + 0.694550i −0.956910 0.290385i \(-0.906217\pi\)
0.172925 + 0.984935i \(0.444678\pi\)
\(702\) −12.2426 + 5.68840i −0.462068 + 0.214695i
\(703\) 17.3651 + 15.3842i 0.654938 + 0.580225i
\(704\) −10.5859 + 31.7088i −0.398973 + 1.19507i
\(705\) 0.956065 + 23.7245i 0.0360075 + 0.893517i
\(706\) −24.4897 29.9945i −0.921683 1.12886i
\(707\) −5.27553 + 5.95484i −0.198407 + 0.223955i
\(708\) −11.4513 + 2.33780i −0.430365 + 0.0878597i
\(709\) 4.03142 + 1.16771i 0.151403 + 0.0438544i 0.353054 0.935603i \(-0.385143\pi\)
−0.201651 + 0.979458i \(0.564631\pi\)
\(710\) −3.18650 1.20848i −0.119587 0.0453534i
\(711\) −0.00902369 + 0.223920i −0.000338415 + 0.00839767i
\(712\) −0.299116 + 0.224771i −0.0112098 + 0.00842365i
\(713\) 16.9957 + 3.46971i 0.636496 + 0.129942i
\(714\) −36.3754 19.0913i −1.36132 0.714473i
\(715\) 13.1552 + 10.0529i 0.491978 + 0.375959i
\(716\) 5.89703 3.09500i 0.220382 0.115666i
\(717\) 1.51217 0.438007i 0.0564732 0.0163577i
\(718\) 13.9849 + 1.12898i 0.521912 + 0.0421331i
\(719\) −0.119586 0.585769i −0.00445979 0.0218455i 0.977500 0.210936i \(-0.0676512\pi\)
−0.981960 + 0.189091i \(0.939446\pi\)
\(720\) 1.30006 2.47705i 0.0484503 0.0923143i
\(721\) −18.7906 + 25.0058i −0.699799 + 0.931263i
\(722\) 18.0889 + 28.6052i 0.673197 + 1.06458i
\(723\) −31.8524 21.9861i −1.18460 0.817673i
\(724\) 0.718540 + 1.51429i 0.0267043 + 0.0562782i
\(725\) −24.0109 24.9980i −0.891742 0.928402i
\(726\) −9.43458 + 9.06203i −0.350150 + 0.336324i
\(727\) 2.80420 23.0947i 0.104002 0.856533i −0.843576 0.537009i \(-0.819554\pi\)
0.947578 0.319524i \(-0.103523\pi\)
\(728\) 25.9875 + 23.4006i 0.963160 + 0.867284i
\(729\) 0.708360 + 5.83387i 0.0262356 + 0.216069i
\(730\) −5.60467 4.57607i −0.207438 0.169368i
\(731\) 2.32058 11.3670i 0.0858298 0.420422i
\(732\) 4.07002 14.0513i 0.150432 0.519352i
\(733\) 6.85464 27.8103i 0.253182 1.02720i −0.697390 0.716692i \(-0.745655\pi\)
0.950571 0.310506i \(-0.100499\pi\)
\(734\) 2.40376 + 29.7759i 0.0887244 + 1.09905i
\(735\) −1.12575 + 6.92701i −0.0415238 + 0.255506i
\(736\) −11.2452 12.6932i −0.414505 0.467879i
\(737\) 42.0639 + 31.6089i 1.54944 + 1.16433i
\(738\) −6.22877 + 7.62886i −0.229284 + 0.280822i
\(739\) 3.54807 + 21.8321i 0.130518 + 0.803108i 0.966937 + 0.255017i \(0.0820811\pi\)
−0.836419 + 0.548091i \(0.815355\pi\)
\(740\) −2.82450 + 0.696176i −0.103831 + 0.0255919i
\(741\) −40.9196 33.9649i −1.50322 1.24773i
\(742\) 8.15557 + 2.01017i 0.299400 + 0.0737955i
\(743\) 0.184228 2.28207i 0.00675865 0.0837209i −0.992499 0.122256i \(-0.960987\pi\)
0.999257 + 0.0385351i \(0.0122691\pi\)
\(744\) −25.8297 8.62323i −0.946964 0.316143i
\(745\) 5.62370 5.85489i 0.206036 0.214507i
\(746\) 41.8272i 1.53140i
\(747\) −5.58425 5.36375i −0.204317 0.196249i
\(748\) 14.0338 11.4583i 0.513128 0.418956i
\(749\) 3.34518 + 6.37370i 0.122230 + 0.232890i
\(750\) 22.3422 + 3.63097i 0.815823 + 0.132584i
\(751\) −18.1820 11.4976i −0.663471 0.419553i 0.159841 0.987143i \(-0.448902\pi\)
−0.823312 + 0.567589i \(0.807876\pi\)
\(752\) 16.4995 + 7.82909i 0.601673 + 0.285497i
\(753\) 7.93262 + 11.4924i 0.289081 + 0.418806i
\(754\) 34.3545 + 13.3476i 1.25112 + 0.486091i
\(755\) −9.79479 + 14.1902i −0.356469 + 0.516434i
\(756\) 7.31259 4.22193i 0.265956 0.153550i
\(757\) 18.5939 39.1858i 0.675806 1.42423i −0.218077 0.975932i \(-0.569978\pi\)
0.893883 0.448300i \(-0.147970\pi\)
\(758\) 13.2707 4.43041i 0.482013 0.160920i
\(759\) −8.36088 33.9214i −0.303481 1.23127i
\(760\) −24.3189 0.980018i −0.882139 0.0355490i
\(761\) 15.0291 + 0.605651i 0.544804 + 0.0219548i 0.311143 0.950363i \(-0.399288\pi\)
0.233661 + 0.972318i \(0.424929\pi\)
\(762\) −2.26141 9.17492i −0.0819224 0.332372i
\(763\) −1.70966 + 0.570767i −0.0618937 + 0.0206632i
\(764\) −5.10218 + 10.7526i −0.184590 + 0.389016i
\(765\) −7.55584 + 4.36237i −0.273182 + 0.157722i
\(766\) −8.50556 + 12.3224i −0.307318 + 0.445227i