Properties

Label 169.2.k.a.10.9
Level $169$
Weight $2$
Character 169.10
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 10.9
Character \(\chi\) \(=\) 169.10
Dual form 169.2.k.a.17.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.164865 + 0.0336574i) q^{2} +(-1.12499 + 0.182828i) q^{3} +(-1.81391 - 0.772835i) q^{4} +(-0.123522 + 0.501150i) q^{5} +(-0.191625 - 0.00772221i) q^{6} +(-2.88976 + 1.37121i) q^{7} +(-0.549998 - 0.379636i) q^{8} +(-1.61344 + 0.538644i) q^{9} +O(q^{10})\) \(q+(0.164865 + 0.0336574i) q^{2} +(-1.12499 + 0.182828i) q^{3} +(-1.81391 - 0.772835i) q^{4} +(-0.123522 + 0.501150i) q^{5} +(-0.191625 - 0.00772221i) q^{6} +(-2.88976 + 1.37121i) q^{7} +(-0.549998 - 0.379636i) q^{8} +(-1.61344 + 0.538644i) q^{9} +(-0.0372319 + 0.0784646i) q^{10} +(0.240066 - 0.719086i) q^{11} +(2.18193 + 0.537796i) q^{12} +(-3.58772 - 0.358137i) q^{13} +(-0.522571 + 0.128802i) q^{14} +(0.0473368 - 0.586372i) q^{15} +(2.65377 + 2.76287i) q^{16} +(0.268200 + 0.565219i) q^{17} +(-0.284128 + 0.0344994i) q^{18} +(-0.570671 - 0.329477i) q^{19} +(0.611365 - 0.813579i) q^{20} +(3.00025 - 2.07092i) q^{21} +(0.0637810 - 0.110472i) q^{22} +(-3.66236 - 6.34340i) q^{23} +(0.688150 + 0.326531i) q^{24} +(4.19139 + 2.19981i) q^{25} +(-0.579435 - 0.179797i) q^{26} +(4.74421 - 2.48995i) q^{27} +(6.30149 - 0.253941i) q^{28} +(-1.52540 + 7.47192i) q^{29} +(0.0275399 - 0.0950788i) q^{30} +(-0.765658 - 1.45884i) q^{31} +(1.05889 + 1.67450i) q^{32} +(-0.138602 + 0.852854i) q^{33} +(0.0251929 + 0.102212i) q^{34} +(-0.330231 - 1.61758i) q^{35} +(3.34291 + 0.269868i) q^{36} +(5.47277 - 8.65450i) q^{37} +(-0.0829942 - 0.0735264i) q^{38} +(4.10162 - 0.253038i) q^{39} +(0.258192 - 0.228738i) q^{40} +(1.31693 + 8.10338i) q^{41} +(0.564338 - 0.240442i) q^{42} +(-8.14224 + 5.14884i) q^{43} +(-0.991194 + 1.11883i) q^{44} +(-0.0706461 - 0.875108i) q^{45} +(-0.390293 - 1.16907i) q^{46} +(-10.3516 - 1.25691i) q^{47} +(-3.49060 - 2.62301i) q^{48} +(2.04338 - 2.50269i) q^{49} +(0.616972 + 0.503742i) q^{50} +(-0.405060 - 0.586831i) q^{51} +(6.23103 + 3.42235i) q^{52} +(-0.232039 + 0.336166i) q^{53} +(0.865958 - 0.250828i) q^{54} +(0.330716 + 0.209132i) q^{55} +(2.10992 + 0.342896i) q^{56} +(0.702236 + 0.266323i) q^{57} +(-0.502971 + 1.18052i) q^{58} +(-4.85877 - 4.66692i) q^{59} +(-0.539033 + 1.02704i) q^{60} +(1.41105 - 0.113912i) q^{61} +(-0.0771293 - 0.266281i) q^{62} +(3.92385 - 3.76891i) q^{63} +(-2.59871 - 6.85224i) q^{64} +(0.622644 - 1.75375i) q^{65} +(-0.0515555 + 0.135941i) q^{66} +(1.84174 + 4.32272i) q^{67} +(-0.0496693 - 1.23253i) q^{68} +(5.27987 + 6.46667i) q^{69} -0.277796i q^{70} +(-6.31464 + 5.15575i) q^{71} +(1.09188 + 0.316266i) q^{72} +(-1.09239 - 1.23306i) q^{73} +(1.19356 - 1.24262i) q^{74} +(-5.11745 - 1.70846i) q^{75} +(0.780515 + 1.03868i) q^{76} +(0.292283 + 2.40717i) q^{77} +(0.684730 + 0.0963329i) q^{78} +(0.740466 - 6.09829i) q^{79} +(-1.71241 + 0.988662i) q^{80} +(-0.802451 + 0.603003i) q^{81} +(-0.0556236 + 1.38029i) q^{82} +(-11.0597 + 4.19440i) q^{83} +(-7.04267 + 1.43777i) q^{84} +(-0.316388 + 0.0645912i) q^{85} +(-1.51567 + 0.574816i) q^{86} +(0.349982 - 8.68471i) q^{87} +(-0.405027 + 0.304358i) q^{88} +(-8.98305 + 5.18637i) q^{89} +(0.0178068 - 0.146652i) q^{90} +(10.8587 - 3.88458i) q^{91} +(1.74080 + 14.3368i) q^{92} +(1.12807 + 1.50119i) q^{93} +(-1.66430 - 0.555626i) q^{94} +(0.235608 - 0.245294i) q^{95} +(-1.49738 - 1.69019i) q^{96} +(-4.01046 - 1.16164i) q^{97} +(0.421116 - 0.343830i) q^{98} +1.28951i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.164865 + 0.0336574i 0.116577 + 0.0237994i 0.257960 0.966156i \(-0.416950\pi\)
−0.141383 + 0.989955i \(0.545155\pi\)
\(3\) −1.12499 + 0.182828i −0.649512 + 0.105556i −0.476236 0.879317i \(-0.657999\pi\)
−0.173276 + 0.984873i \(0.555435\pi\)
\(4\) −1.81391 0.772835i −0.906956 0.386418i
\(5\) −0.123522 + 0.501150i −0.0552409 + 0.224121i −0.992074 0.125656i \(-0.959896\pi\)
0.936833 + 0.349777i \(0.113743\pi\)
\(6\) −0.191625 0.00772221i −0.0782304 0.00315258i
\(7\) −2.88976 + 1.37121i −1.09223 + 0.518268i −0.887620 0.460576i \(-0.847643\pi\)
−0.204606 + 0.978844i \(0.565591\pi\)
\(8\) −0.549998 0.379636i −0.194454 0.134222i
\(9\) −1.61344 + 0.538644i −0.537812 + 0.179548i
\(10\) −0.0372319 + 0.0784646i −0.0117738 + 0.0248127i
\(11\) 0.240066 0.719086i 0.0723827 0.216813i −0.906130 0.422999i \(-0.860977\pi\)
0.978513 + 0.206187i \(0.0661055\pi\)
\(12\) 2.18193 + 0.537796i 0.629868 + 0.155248i
\(13\) −3.58772 0.358137i −0.995055 0.0993293i
\(14\) −0.522571 + 0.128802i −0.139663 + 0.0344238i
\(15\) 0.0473368 0.586372i 0.0122223 0.151400i
\(16\) 2.65377 + 2.76287i 0.663443 + 0.690718i
\(17\) 0.268200 + 0.565219i 0.0650480 + 0.137086i 0.933371 0.358914i \(-0.116853\pi\)
−0.868323 + 0.496000i \(0.834802\pi\)
\(18\) −0.284128 + 0.0344994i −0.0669697 + 0.00813159i
\(19\) −0.570671 0.329477i −0.130921 0.0755872i 0.433109 0.901341i \(-0.357416\pi\)
−0.564030 + 0.825754i \(0.690750\pi\)
\(20\) 0.611365 0.813579i 0.136705 0.181922i
\(21\) 3.00025 2.07092i 0.654708 0.451913i
\(22\) 0.0637810 0.110472i 0.0135982 0.0235527i
\(23\) −3.66236 6.34340i −0.763656 1.32269i −0.940954 0.338533i \(-0.890069\pi\)
0.177299 0.984157i \(-0.443264\pi\)
\(24\) 0.688150 + 0.326531i 0.140468 + 0.0666529i
\(25\) 4.19139 + 2.19981i 0.838277 + 0.439962i
\(26\) −0.579435 0.179797i −0.113637 0.0352612i
\(27\) 4.74421 2.48995i 0.913023 0.479192i
\(28\) 6.30149 0.253941i 1.19087 0.0479904i
\(29\) −1.52540 + 7.47192i −0.283260 + 1.38750i 0.550252 + 0.834999i \(0.314532\pi\)
−0.833512 + 0.552502i \(0.813673\pi\)
\(30\) 0.0275399 0.0950788i 0.00502808 0.0173589i
\(31\) −0.765658 1.45884i −0.137516 0.262015i 0.806953 0.590616i \(-0.201115\pi\)
−0.944469 + 0.328601i \(0.893423\pi\)
\(32\) 1.05889 + 1.67450i 0.187187 + 0.296012i
\(33\) −0.138602 + 0.852854i −0.0241276 + 0.148463i
\(34\) 0.0251929 + 0.102212i 0.00432055 + 0.0175292i
\(35\) −0.330231 1.61758i −0.0558192 0.273421i
\(36\) 3.34291 + 0.269868i 0.557152 + 0.0449780i
\(37\) 5.47277 8.65450i 0.899718 1.42279i −0.00649954 0.999979i \(-0.502069\pi\)
0.906218 0.422811i \(-0.138957\pi\)
\(38\) −0.0829942 0.0735264i −0.0134634 0.0119276i
\(39\) 4.10162 0.253038i 0.656785 0.0405184i
\(40\) 0.258192 0.228738i 0.0408237 0.0361666i
\(41\) 1.31693 + 8.10338i 0.205669 + 1.26554i 0.860379 + 0.509655i \(0.170227\pi\)
−0.654710 + 0.755881i \(0.727209\pi\)
\(42\) 0.564338 0.240442i 0.0870792 0.0371010i
\(43\) −8.14224 + 5.14884i −1.24168 + 0.785191i −0.983500 0.180906i \(-0.942097\pi\)
−0.258179 + 0.966097i \(0.583123\pi\)
\(44\) −0.991194 + 1.11883i −0.149428 + 0.168669i
\(45\) −0.0706461 0.875108i −0.0105313 0.130453i
\(46\) −0.390293 1.16907i −0.0575455 0.172370i
\(47\) −10.3516 1.25691i −1.50993 0.183339i −0.676697 0.736262i \(-0.736589\pi\)
−0.833232 + 0.552923i \(0.813512\pi\)
\(48\) −3.49060 2.62301i −0.503824 0.378599i
\(49\) 2.04338 2.50269i 0.291912 0.357527i
\(50\) 0.616972 + 0.503742i 0.0872531 + 0.0712399i
\(51\) −0.405060 0.586831i −0.0567197 0.0821727i
\(52\) 6.23103 + 3.42235i 0.864088 + 0.474594i
\(53\) −0.232039 + 0.336166i −0.0318730 + 0.0461759i −0.838596 0.544753i \(-0.816623\pi\)
0.806723 + 0.590929i \(0.201239\pi\)
\(54\) 0.865958 0.250828i 0.117842 0.0341334i
\(55\) 0.330716 + 0.209132i 0.0445938 + 0.0281994i
\(56\) 2.10992 + 0.342896i 0.281950 + 0.0458214i
\(57\) 0.702236 + 0.266323i 0.0930134 + 0.0352753i
\(58\) −0.502971 + 1.18052i −0.0660433 + 0.155009i
\(59\) −4.85877 4.66692i −0.632558 0.607581i 0.306279 0.951942i \(-0.400916\pi\)
−0.938837 + 0.344361i \(0.888096\pi\)
\(60\) −0.539033 + 1.02704i −0.0695889 + 0.132591i
\(61\) 1.41105 0.113912i 0.180667 0.0145849i 0.0101980 0.999948i \(-0.496754\pi\)
0.170469 + 0.985363i \(0.445472\pi\)
\(62\) −0.0771293 0.266281i −0.00979543 0.0338177i
\(63\) 3.92385 3.76891i 0.494359 0.474838i
\(64\) −2.59871 6.85224i −0.324839 0.856531i
\(65\) 0.622644 1.75375i 0.0772295 0.217526i
\(66\) −0.0515555 + 0.135941i −0.00634604 + 0.0167331i
\(67\) 1.84174 + 4.32272i 0.225004 + 0.528104i 0.993773 0.111422i \(-0.0355406\pi\)
−0.768769 + 0.639527i \(0.779130\pi\)
\(68\) −0.0496693 1.23253i −0.00602329 0.149466i
\(69\) 5.27987 + 6.46667i 0.635622 + 0.778496i
\(70\) 0.277796i 0.0332030i
\(71\) −6.31464 + 5.15575i −0.749410 + 0.611874i −0.928230 0.372007i \(-0.878670\pi\)
0.178820 + 0.983882i \(0.442772\pi\)
\(72\) 1.09188 + 0.316266i 0.128679 + 0.0372723i
\(73\) −1.09239 1.23306i −0.127855 0.144318i 0.681097 0.732193i \(-0.261503\pi\)
−0.808952 + 0.587875i \(0.799965\pi\)
\(74\) 1.19356 1.24262i 0.138748 0.144452i
\(75\) −5.11745 1.70846i −0.590912 0.197275i
\(76\) 0.780515 + 1.03868i 0.0895312 + 0.119144i
\(77\) 0.292283 + 2.40717i 0.0333087 + 0.274322i
\(78\) 0.684730 + 0.0963329i 0.0775304 + 0.0109076i
\(79\) 0.740466 6.09829i 0.0833089 0.686111i −0.889895 0.456166i \(-0.849222\pi\)
0.973204 0.229945i \(-0.0738546\pi\)
\(80\) −1.71241 + 0.988662i −0.191454 + 0.110536i
\(81\) −0.802451 + 0.603003i −0.0891612 + 0.0670003i
\(82\) −0.0556236 + 1.38029i −0.00614260 + 0.152427i
\(83\) −11.0597 + 4.19440i −1.21396 + 0.460395i −0.876710 0.481020i \(-0.840267\pi\)
−0.337252 + 0.941415i \(0.609497\pi\)
\(84\) −7.04267 + 1.43777i −0.768419 + 0.156874i
\(85\) −0.316388 + 0.0645912i −0.0343171 + 0.00700590i
\(86\) −1.51567 + 0.574816i −0.163438 + 0.0619840i
\(87\) 0.349982 8.68471i 0.0375220 0.931099i
\(88\) −0.405027 + 0.304358i −0.0431760 + 0.0324447i
\(89\) −8.98305 + 5.18637i −0.952202 + 0.549754i −0.893764 0.448537i \(-0.851945\pi\)
−0.0584374 + 0.998291i \(0.518612\pi\)
\(90\) 0.0178068 0.146652i 0.00187700 0.0154585i
\(91\) 10.8587 3.88458i 1.13830 0.407215i
\(92\) 1.74080 + 14.3368i 0.181491 + 1.49471i
\(93\) 1.12807 + 1.50119i 0.116976 + 0.155666i
\(94\) −1.66430 0.555626i −0.171660 0.0573084i
\(95\) 0.235608 0.245294i 0.0241729 0.0251666i
\(96\) −1.49738 1.69019i −0.152826 0.172505i
\(97\) −4.01046 1.16164i −0.407200 0.117947i 0.0682953 0.997665i \(-0.478244\pi\)
−0.475495 + 0.879718i \(0.657731\pi\)
\(98\) 0.421116 0.343830i 0.0425391 0.0347321i
\(99\) 1.28951i 0.129601i
\(100\) −5.90271 7.22951i −0.590271 0.722951i
\(101\) −0.162933 4.04314i −0.0162124 0.402307i −0.986838 0.161712i \(-0.948298\pi\)
0.970626 0.240595i \(-0.0773426\pi\)
\(102\) −0.0470290 0.110381i −0.00465656 0.0109293i
\(103\) 0.122022 0.321746i 0.0120232 0.0317026i −0.928870 0.370405i \(-0.879219\pi\)
0.940893 + 0.338703i \(0.109988\pi\)
\(104\) 1.83728 + 1.55900i 0.180160 + 0.152873i
\(105\) 0.667245 + 1.75938i 0.0651165 + 0.171698i
\(106\) −0.0495695 + 0.0476121i −0.00481461 + 0.00462450i
\(107\) 1.33334 + 4.60321i 0.128898 + 0.445009i 0.998840 0.0481451i \(-0.0153310\pi\)
−0.869942 + 0.493154i \(0.835844\pi\)
\(108\) −10.5299 + 0.850061i −1.01324 + 0.0817972i
\(109\) −2.63917 + 5.02852i −0.252787 + 0.481645i −0.978471 0.206383i \(-0.933831\pi\)
0.725685 + 0.688028i \(0.241523\pi\)
\(110\) 0.0474846 + 0.0456096i 0.00452748 + 0.00434871i
\(111\) −4.57452 + 10.7368i −0.434194 + 1.01909i
\(112\) −11.4572 4.34516i −1.08261 0.410579i
\(113\) −1.71560 0.278812i −0.161390 0.0262285i 0.0791792 0.996860i \(-0.474770\pi\)
−0.240569 + 0.970632i \(0.577334\pi\)
\(114\) 0.106810 + 0.0675427i 0.0100037 + 0.00632595i
\(115\) 3.63138 1.05184i 0.338628 0.0980848i
\(116\) 8.54151 12.3745i 0.793059 1.14894i
\(117\) 5.98147 1.35467i 0.552987 0.125240i
\(118\) −0.643965 0.932944i −0.0592818 0.0858844i
\(119\) −1.55007 1.26559i −0.142094 0.116016i
\(120\) −0.248643 + 0.304532i −0.0226979 + 0.0277999i
\(121\) 8.33442 + 6.26291i 0.757674 + 0.569355i
\(122\) 0.236467 + 0.0287123i 0.0214087 + 0.00259949i
\(123\) −2.96306 8.87544i −0.267170 0.800271i
\(124\) 0.261393 + 3.23793i 0.0234738 + 0.290775i
\(125\) −3.33151 + 3.76050i −0.297980 + 0.336349i
\(126\) 0.773756 0.489294i 0.0689317 0.0435898i
\(127\) 13.1646 5.60891i 1.16817 0.497711i 0.281250 0.959635i \(-0.409251\pi\)
0.886920 + 0.461924i \(0.152841\pi\)
\(128\) −0.833423 5.12826i −0.0736649 0.453278i
\(129\) 8.21857 7.28102i 0.723605 0.641058i
\(130\) 0.161679 0.268175i 0.0141802 0.0235205i
\(131\) 16.4329 + 14.5583i 1.43575 + 1.27196i 0.905652 + 0.424021i \(0.139382\pi\)
0.530094 + 0.847939i \(0.322157\pi\)
\(132\) 0.910528 1.43989i 0.0792513 0.125326i
\(133\) 2.10088 + 0.169601i 0.182170 + 0.0147063i
\(134\) 0.158146 + 0.774653i 0.0136618 + 0.0669198i
\(135\) 0.661824 + 2.68513i 0.0569607 + 0.231099i
\(136\) 0.0670683 0.412688i 0.00575106 0.0353877i
\(137\) −11.1517 17.6350i −0.952756 1.50666i −0.859572 0.511014i \(-0.829270\pi\)
−0.0931841 0.995649i \(-0.529705\pi\)
\(138\) 0.652814 + 1.24383i 0.0555712 + 0.105882i
\(139\) −0.632316 + 2.18301i −0.0536324 + 0.185160i −0.982862 0.184342i \(-0.940985\pi\)
0.929230 + 0.369502i \(0.120472\pi\)
\(140\) −0.651112 + 3.18936i −0.0550290 + 0.269550i
\(141\) 11.8752 0.478553i 1.00007 0.0403015i
\(142\) −1.21459 + 0.637467i −0.101926 + 0.0534950i
\(143\) −1.11882 + 2.49390i −0.0935605 + 0.208551i
\(144\) −5.76990 3.02828i −0.480825 0.252356i
\(145\) −3.55613 1.68741i −0.295321 0.140131i
\(146\) −0.138596 0.240055i −0.0114703 0.0198671i
\(147\) −1.84122 + 3.18908i −0.151861 + 0.263031i
\(148\) −16.6156 + 11.4689i −1.36580 + 0.942741i
\(149\) 3.65425 4.86293i 0.299368 0.398386i −0.624545 0.780989i \(-0.714716\pi\)
0.923913 + 0.382602i \(0.124972\pi\)
\(150\) −0.786185 0.453904i −0.0641918 0.0370611i
\(151\) 12.5317 1.52162i 1.01982 0.123828i 0.406488 0.913656i \(-0.366753\pi\)
0.613328 + 0.789828i \(0.289830\pi\)
\(152\) 0.188786 + 0.397859i 0.0153126 + 0.0322706i
\(153\) −0.737176 0.767481i −0.0595971 0.0620472i
\(154\) −0.0328318 + 0.406694i −0.00264566 + 0.0327724i
\(155\) 0.825673 0.203510i 0.0663197 0.0163463i
\(156\) −7.63554 2.71089i −0.611332 0.217045i
\(157\) 11.5306 + 2.84205i 0.920245 + 0.226820i 0.670860 0.741584i \(-0.265925\pi\)
0.249385 + 0.968404i \(0.419771\pi\)
\(158\) 0.327329 0.980471i 0.0260409 0.0780021i
\(159\) 0.199580 0.420606i 0.0158277 0.0333562i
\(160\) −0.969970 + 0.323824i −0.0766829 + 0.0256005i
\(161\) 19.2815 + 13.3090i 1.51959 + 1.04890i
\(162\) −0.152591 + 0.0724055i −0.0119887 + 0.00568872i
\(163\) 7.88152 + 0.317614i 0.617328 + 0.0248775i 0.346960 0.937880i \(-0.387214\pi\)
0.270367 + 0.962757i \(0.412855\pi\)
\(164\) 3.87379 15.7166i 0.302492 1.22726i
\(165\) −0.410287 0.174807i −0.0319408 0.0136087i
\(166\) −1.96453 + 0.319267i −0.152477 + 0.0247799i
\(167\) −21.0044 4.28809i −1.62537 0.331822i −0.700955 0.713205i \(-0.747243\pi\)
−0.924417 + 0.381383i \(0.875448\pi\)
\(168\) −2.43633 −0.187967
\(169\) 12.7435 + 2.56979i 0.980267 + 0.197676i
\(170\) −0.0543353 −0.00416733
\(171\) 1.09821 + 0.224202i 0.0839823 + 0.0171451i
\(172\) 18.7485 3.04693i 1.42956 0.232326i
\(173\) 13.8225 + 5.88920i 1.05090 + 0.447747i 0.847194 0.531284i \(-0.178290\pi\)
0.203708 + 0.979032i \(0.434701\pi\)
\(174\) 0.350004 1.42002i 0.0265338 0.107652i
\(175\) −15.1285 0.609658i −1.14361 0.0460858i
\(176\) 2.62382 1.24502i 0.197778 0.0938468i
\(177\) 6.31931 + 4.36190i 0.474988 + 0.327861i
\(178\) −1.65555 + 0.552703i −0.124089 + 0.0414269i
\(179\) 3.72197 7.84388i 0.278193 0.586279i −0.715475 0.698639i \(-0.753790\pi\)
0.993668 + 0.112360i \(0.0358409\pi\)
\(180\) −0.548169 + 1.64197i −0.0408581 + 0.122385i
\(181\) 0.541691 + 0.133515i 0.0402635 + 0.00992407i 0.259396 0.965771i \(-0.416477\pi\)
−0.219132 + 0.975695i \(0.570323\pi\)
\(182\) 1.92097 0.274954i 0.142392 0.0203810i
\(183\) −1.56659 + 0.386130i −0.115806 + 0.0285436i
\(184\) −0.393892 + 4.87922i −0.0290381 + 0.359701i
\(185\) 3.66119 + 3.81170i 0.269176 + 0.280242i
\(186\) 0.135453 + 0.285462i 0.00993192 + 0.0209311i
\(187\) 0.470827 0.0571687i 0.0344303 0.00418059i
\(188\) 17.8054 + 10.2800i 1.29859 + 0.749743i
\(189\) −10.2954 + 13.7007i −0.748879 + 0.996576i
\(190\) 0.0470994 0.0325104i 0.00341695 0.00235855i
\(191\) 6.41345 11.1084i 0.464061 0.803777i −0.535098 0.844790i \(-0.679725\pi\)
0.999159 + 0.0410130i \(0.0130585\pi\)
\(192\) 4.17631 + 7.23358i 0.301399 + 0.522039i
\(193\) −1.44459 0.685465i −0.103984 0.0493408i 0.375990 0.926624i \(-0.377303\pi\)
−0.479974 + 0.877283i \(0.659354\pi\)
\(194\) −0.622085 0.326495i −0.0446631 0.0234410i
\(195\) −0.379832 + 2.08678i −0.0272004 + 0.149438i
\(196\) −5.64068 + 2.96046i −0.402906 + 0.211461i
\(197\) −13.5181 + 0.544762i −0.963127 + 0.0388127i −0.516844 0.856079i \(-0.672893\pi\)
−0.446282 + 0.894892i \(0.647252\pi\)
\(198\) −0.0434015 + 0.212595i −0.00308441 + 0.0151084i
\(199\) 5.31838 18.3612i 0.377010 1.30159i −0.517937 0.855419i \(-0.673300\pi\)
0.894947 0.446172i \(-0.147213\pi\)
\(200\) −1.47013 2.80109i −0.103954 0.198067i
\(201\) −2.86225 4.52629i −0.201888 0.319260i
\(202\) 0.109220 0.672055i 0.00768466 0.0472856i
\(203\) −5.83751 23.6837i −0.409713 1.66227i
\(204\) 0.281219 + 1.37750i 0.0196893 + 0.0964445i
\(205\) −4.22368 0.340971i −0.294995 0.0238144i
\(206\) 0.0309463 0.0489377i 0.00215613 0.00340965i
\(207\) 9.32583 + 8.26196i 0.648190 + 0.574246i
\(208\) −8.53151 10.8628i −0.591554 0.753201i
\(209\) −0.373921 + 0.331265i −0.0258646 + 0.0229141i
\(210\) 0.0507891 + 0.312518i 0.00350478 + 0.0215658i
\(211\) −18.7356 + 7.98247i −1.28981 + 0.549536i −0.924440 0.381327i \(-0.875467\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(212\) 0.680698 0.430448i 0.0467506 0.0295633i
\(213\) 6.16128 6.95465i 0.422164 0.476525i
\(214\) 0.0648882 + 0.803784i 0.00443566 + 0.0549455i
\(215\) −1.57459 4.71648i −0.107386 0.321661i
\(216\) −3.55458 0.431604i −0.241859 0.0293669i
\(217\) 4.21294 + 3.16582i 0.285993 + 0.214910i
\(218\) −0.604354 + 0.740199i −0.0409320 + 0.0501326i
\(219\) 1.45437 + 1.18745i 0.0982770 + 0.0802407i
\(220\) −0.438265 0.634937i −0.0295478 0.0428074i
\(221\) −0.759800 2.12390i −0.0511097 0.142869i
\(222\) −1.11555 + 1.61615i −0.0748708 + 0.108469i
\(223\) −6.86142 + 1.98744i −0.459475 + 0.133089i −0.499880 0.866095i \(-0.666622\pi\)
0.0404047 + 0.999183i \(0.487135\pi\)
\(224\) −5.35601 3.38694i −0.357864 0.226299i
\(225\) −7.94745 1.29159i −0.529830 0.0861057i
\(226\) −0.273458 0.103709i −0.0181902 0.00689862i
\(227\) −7.92494 + 18.6005i −0.525997 + 1.23456i 0.419151 + 0.907917i \(0.362328\pi\)
−0.945148 + 0.326643i \(0.894082\pi\)
\(228\) −1.06797 1.02580i −0.0707280 0.0679352i
\(229\) −10.5959 + 20.1888i −0.700196 + 1.33411i 0.232198 + 0.972669i \(0.425408\pi\)
−0.932394 + 0.361444i \(0.882284\pi\)
\(230\) 0.634089 0.0511890i 0.0418106 0.00337530i
\(231\) −0.768913 2.65460i −0.0505908 0.174660i
\(232\) 3.67558 3.53044i 0.241314 0.231785i
\(233\) −5.67537 14.9647i −0.371806 0.980371i −0.982127 0.188217i \(-0.939729\pi\)
0.610322 0.792154i \(-0.291040\pi\)
\(234\) 1.03173 0.0220175i 0.0674462 0.00143933i
\(235\) 1.90855 5.03243i 0.124500 0.328279i
\(236\) 5.20663 + 12.2204i 0.338923 + 0.795481i
\(237\) 0.281924 + 6.99588i 0.0183130 + 0.454431i
\(238\) −0.212955 0.260823i −0.0138038 0.0169066i
\(239\) 13.2090i 0.854421i −0.904152 0.427210i \(-0.859496\pi\)
0.904152 0.427210i \(-0.140504\pi\)
\(240\) 1.74569 1.42531i 0.112684 0.0920035i
\(241\) −14.3996 4.17090i −0.927562 0.268672i −0.220144 0.975467i \(-0.570653\pi\)
−0.707418 + 0.706796i \(0.750140\pi\)
\(242\) 1.16326 + 1.31305i 0.0747771 + 0.0844059i
\(243\) −10.3422 + 10.7674i −0.663452 + 0.690727i
\(244\) −2.64756 0.883885i −0.169493 0.0565850i
\(245\) 1.00182 + 1.33318i 0.0640039 + 0.0851737i
\(246\) −0.189780 1.56298i −0.0120999 0.0996517i
\(247\) 1.92941 + 1.38645i 0.122765 + 0.0882177i
\(248\) −0.132718 + 1.09303i −0.00842759 + 0.0694074i
\(249\) 11.6752 6.74068i 0.739886 0.427173i
\(250\) −0.675818 + 0.507844i −0.0427425 + 0.0321189i
\(251\) 0.0121479 0.301448i 0.000766770 0.0190272i −0.998760 0.0497777i \(-0.984149\pi\)
0.999527 + 0.0307505i \(0.00978974\pi\)
\(252\) −10.0303 + 3.80398i −0.631847 + 0.239628i
\(253\) −5.44066 + 1.11072i −0.342051 + 0.0698303i
\(254\) 2.35916 0.481626i 0.148027 0.0302199i
\(255\) 0.344124 0.130509i 0.0215499 0.00817280i
\(256\) −0.554974 + 13.7715i −0.0346859 + 0.860722i
\(257\) −13.0581 + 9.81249i −0.814539 + 0.612086i −0.924211 0.381881i \(-0.875276\pi\)
0.109672 + 0.993968i \(0.465020\pi\)
\(258\) 1.60001 0.923768i 0.0996125 0.0575113i
\(259\) −3.94788 + 32.5137i −0.245309 + 2.02030i
\(260\) −2.48478 + 2.69994i −0.154100 + 0.167443i
\(261\) −1.56356 12.8771i −0.0967822 0.797073i
\(262\) 2.21921 + 2.95323i 0.137103 + 0.182451i
\(263\) −7.25061 2.42061i −0.447092 0.149261i 0.0842021 0.996449i \(-0.473166\pi\)
−0.531294 + 0.847187i \(0.678294\pi\)
\(264\) 0.400005 0.416450i 0.0246186 0.0256307i
\(265\) −0.139808 0.157810i −0.00858831 0.00969420i
\(266\) 0.340653 + 0.0986714i 0.0208868 + 0.00604993i
\(267\) 9.15761 7.47696i 0.560437 0.457583i
\(268\) 9.26439i 0.565913i
\(269\) 8.83887 + 10.8256i 0.538915 + 0.660051i 0.970240 0.242145i \(-0.0778511\pi\)
−0.431325 + 0.902197i \(0.641954\pi\)
\(270\) 0.0187372 + 0.464958i 0.00114031 + 0.0282964i
\(271\) −0.928803 2.17998i −0.0564208 0.132424i 0.889383 0.457162i \(-0.151134\pi\)
−0.945804 + 0.324738i \(0.894724\pi\)
\(272\) −0.849886 + 2.24097i −0.0515319 + 0.135878i
\(273\) −11.5057 + 6.35540i −0.696359 + 0.384646i
\(274\) −1.24498 3.28274i −0.0752118 0.198317i
\(275\) 2.58806 2.48587i 0.156066 0.149903i
\(276\) −4.57955 15.8104i −0.275656 0.951676i
\(277\) −27.4915 + 2.21934i −1.65180 + 0.133347i −0.870951 0.491371i \(-0.836496\pi\)
−0.780851 + 0.624718i \(0.785214\pi\)
\(278\) −0.177721 + 0.338619i −0.0106590 + 0.0203090i
\(279\) 2.02113 + 1.94133i 0.121002 + 0.116224i
\(280\) −0.432465 + 1.01503i −0.0258447 + 0.0606598i
\(281\) 11.4512 + 4.34286i 0.683120 + 0.259073i 0.671659 0.740861i \(-0.265582\pi\)
0.0114620 + 0.999934i \(0.496351\pi\)
\(282\) 1.97391 + 0.320791i 0.117544 + 0.0191028i
\(283\) 0.664368 + 0.420121i 0.0394926 + 0.0249736i 0.554066 0.832473i \(-0.313075\pi\)
−0.514574 + 0.857446i \(0.672050\pi\)
\(284\) 15.4387 4.47189i 0.916121 0.265358i
\(285\) −0.220210 + 0.319029i −0.0130441 + 0.0188976i
\(286\) −0.268393 + 0.373500i −0.0158704 + 0.0220855i
\(287\) −14.9170 21.6110i −0.880524 1.27566i
\(288\) −2.61040 2.13133i −0.153820 0.125590i
\(289\) 10.5040 12.8651i 0.617884 0.756771i
\(290\) −0.529487 0.397884i −0.0310926 0.0233645i
\(291\) 4.72410 + 0.573609i 0.276932 + 0.0336256i
\(292\) 1.02855 + 3.08089i 0.0601915 + 0.180296i
\(293\) −0.0457505 0.566721i −0.00267277 0.0331082i 0.995283 0.0970096i \(-0.0309277\pi\)
−0.997956 + 0.0639014i \(0.979646\pi\)
\(294\) −0.410889 + 0.463797i −0.0239635 + 0.0270492i
\(295\) 2.93899 1.85851i 0.171115 0.108206i
\(296\) −6.29557 + 2.68229i −0.365923 + 0.155905i
\(297\) −0.651566 4.00925i −0.0378077 0.232640i
\(298\) 0.766131 0.678733i 0.0443808 0.0393179i
\(299\) 10.8677 + 24.0700i 0.628497 + 1.39200i
\(300\) 7.96224 + 7.05393i 0.459700 + 0.407259i
\(301\) 16.4690 26.0436i 0.949256 1.50113i
\(302\) 2.11725 + 0.170922i 0.121834 + 0.00983547i
\(303\) 0.922498 + 4.51870i 0.0529961 + 0.259592i
\(304\) −0.604129 2.45105i −0.0346492 0.140577i
\(305\) −0.117210 + 0.721220i −0.00671140 + 0.0412969i
\(306\) −0.0957029 0.151342i −0.00547097 0.00865165i
\(307\) 6.08213 + 11.5885i 0.347125 + 0.661392i 0.994947 0.100400i \(-0.0320122\pi\)
−0.647822 + 0.761792i \(0.724320\pi\)
\(308\) 1.33017 4.59227i 0.0757933 0.261669i
\(309\) −0.0784493 + 0.384270i −0.00446283 + 0.0218604i
\(310\) 0.142974 0.00576166i 0.00812038 0.000327240i
\(311\) −22.6960 + 11.9118i −1.28697 + 0.675454i −0.962716 0.270515i \(-0.912806\pi\)
−0.324255 + 0.945970i \(0.605114\pi\)
\(312\) −2.35195 1.41795i −0.133153 0.0802758i
\(313\) −28.2752 14.8400i −1.59821 0.838805i −0.999278 0.0380040i \(-0.987900\pi\)
−0.598931 0.800801i \(-0.704408\pi\)
\(314\) 1.80534 + 0.856645i 0.101881 + 0.0483433i
\(315\) 1.40411 + 2.43198i 0.0791124 + 0.137027i
\(316\) −6.05611 + 10.4895i −0.340683 + 0.590080i
\(317\) 14.9257 10.3025i 0.838312 0.578645i −0.0697098 0.997567i \(-0.522207\pi\)
0.908022 + 0.418922i \(0.137592\pi\)
\(318\) 0.0470602 0.0626258i 0.00263901 0.00351188i
\(319\) 5.00675 + 2.89065i 0.280324 + 0.161845i
\(320\) 3.75500 0.455940i 0.209911 0.0254878i
\(321\) −2.34159 4.93479i −0.130695 0.275433i
\(322\) 2.73089 + 2.84316i 0.152187 + 0.158443i
\(323\) 0.0331729 0.410920i 0.00184579 0.0228642i
\(324\) 1.92160 0.473631i 0.106755 0.0263128i
\(325\) −14.2497 9.39339i −0.790431 0.521052i
\(326\) 1.28869 + 0.317635i 0.0713742 + 0.0175922i
\(327\) 2.04968 6.13955i 0.113348 0.339518i
\(328\) 2.35203 4.95679i 0.129869 0.273693i
\(329\) 31.6370 10.5620i 1.74420 0.582301i
\(330\) −0.0617584 0.0426288i −0.00339969 0.00234664i
\(331\) 19.2319 9.12565i 1.05708 0.501591i 0.180864 0.983508i \(-0.442111\pi\)
0.876217 + 0.481917i \(0.160059\pi\)
\(332\) 23.3029 + 0.939075i 1.27891 + 0.0515385i
\(333\) −4.16827 + 16.9114i −0.228420 + 0.926736i
\(334\) −3.31857 1.41391i −0.181584 0.0773657i
\(335\) −2.39383 + 0.389035i −0.130789 + 0.0212552i
\(336\) 13.6837 + 2.79354i 0.746506 + 0.152400i
\(337\) 9.15446 0.498675 0.249338 0.968417i \(-0.419787\pi\)
0.249338 + 0.968417i \(0.419787\pi\)
\(338\) 2.01446 + 0.852580i 0.109572 + 0.0463742i
\(339\) 1.98101 0.107594
\(340\) 0.623819 + 0.127354i 0.0338313 + 0.00690672i
\(341\) −1.23284 + 0.200356i −0.0667619 + 0.0108499i
\(342\) 0.173510 + 0.0739259i 0.00938237 + 0.00399745i
\(343\) 2.88512 11.7054i 0.155782 0.632031i
\(344\) 6.43290 + 0.259237i 0.346839 + 0.0139771i
\(345\) −3.89295 + 1.84723i −0.209590 + 0.0994515i
\(346\) 2.08062 + 1.43615i 0.111855 + 0.0772078i
\(347\) 14.1582 4.72670i 0.760051 0.253742i 0.0898839 0.995952i \(-0.471350\pi\)
0.670168 + 0.742210i \(0.266222\pi\)
\(348\) −7.34669 + 15.4828i −0.393824 + 0.829966i
\(349\) −8.23672 + 24.6720i −0.440901 + 1.32066i 0.460493 + 0.887663i \(0.347672\pi\)
−0.901395 + 0.432998i \(0.857456\pi\)
\(350\) −2.47364 0.609697i −0.132221 0.0325897i
\(351\) −17.9126 + 7.23418i −0.956106 + 0.386132i
\(352\) 1.45831 0.359441i 0.0777281 0.0191583i
\(353\) −1.60144 + 19.8375i −0.0852363 + 1.05584i 0.802855 + 0.596174i \(0.203313\pi\)
−0.888091 + 0.459667i \(0.847969\pi\)
\(354\) 0.895022 + 0.931816i 0.0475699 + 0.0495255i
\(355\) −1.80380 3.80143i −0.0957359 0.201759i
\(356\) 20.3027 2.46519i 1.07604 0.130655i
\(357\) 1.97519 + 1.14038i 0.104538 + 0.0603552i
\(358\) 0.877626 1.16791i 0.0463840 0.0617258i
\(359\) 9.19339 6.34574i 0.485208 0.334915i −0.300218 0.953871i \(-0.597059\pi\)
0.785426 + 0.618956i \(0.212444\pi\)
\(360\) −0.293368 + 0.508128i −0.0154618 + 0.0267807i
\(361\) −9.28289 16.0784i −0.488573 0.846234i
\(362\) 0.0848120 + 0.0402438i 0.00445762 + 0.00211517i
\(363\) −10.5212 5.52193i −0.552218 0.289826i
\(364\) −22.6989 1.34572i −1.18975 0.0705351i
\(365\) 0.752881 0.395142i 0.0394076 0.0206827i
\(366\) −0.271272 + 0.0109319i −0.0141796 + 0.000571419i
\(367\) −6.02521 + 29.5134i −0.314513 + 1.54059i 0.448249 + 0.893909i \(0.352048\pi\)
−0.762762 + 0.646679i \(0.776157\pi\)
\(368\) 7.80691 26.9526i 0.406963 1.40500i
\(369\) −6.48962 12.3649i −0.337836 0.643693i
\(370\) 0.475310 + 0.751642i 0.0247102 + 0.0390760i
\(371\) 0.209582 1.28961i 0.0108810 0.0669533i
\(372\) −0.886050 3.59485i −0.0459395 0.186384i
\(373\) 1.01741 + 4.98360i 0.0526795 + 0.258041i 0.997598 0.0692633i \(-0.0220649\pi\)
−0.944919 + 0.327304i \(0.893860\pi\)
\(374\) 0.0795469 + 0.00642169i 0.00411327 + 0.000332058i
\(375\) 3.06039 4.83962i 0.158038 0.249917i
\(376\) 5.21616 + 4.62112i 0.269003 + 0.238316i
\(377\) 8.14869 26.2609i 0.419679 1.35250i
\(378\) −2.15847 + 1.91224i −0.111020 + 0.0983551i
\(379\) 1.75708 + 10.8117i 0.0902549 + 0.555361i 0.992314 + 0.123748i \(0.0394913\pi\)
−0.902059 + 0.431613i \(0.857945\pi\)
\(380\) −0.616944 + 0.262855i −0.0316486 + 0.0134842i
\(381\) −13.7846 + 8.71683i −0.706204 + 0.446577i
\(382\) 1.43123 1.61553i 0.0732282 0.0826576i
\(383\) −0.202704 2.51094i −0.0103577 0.128303i 0.989512 0.144451i \(-0.0461417\pi\)
−0.999870 + 0.0161481i \(0.994860\pi\)
\(384\) 1.87518 + 5.61686i 0.0956926 + 0.286634i
\(385\) −1.24245 0.150861i −0.0633214 0.00768861i
\(386\) −0.215091 0.161630i −0.0109478 0.00822675i
\(387\) 10.3636 12.6931i 0.526811 0.645226i
\(388\) 6.37685 + 5.20654i 0.323736 + 0.264322i
\(389\) 2.95763 + 4.28486i 0.149958 + 0.217251i 0.890762 0.454469i \(-0.150171\pi\)
−0.740805 + 0.671720i \(0.765556\pi\)
\(390\) −0.132857 + 0.331253i −0.00672746 + 0.0167737i
\(391\) 2.60317 3.77134i 0.131648 0.190725i
\(392\) −2.07397 + 0.600732i −0.104751 + 0.0303415i
\(393\) −21.1485 13.3735i −1.06680 0.674602i
\(394\) −2.24700 0.365173i −0.113202 0.0183971i
\(395\) 2.96469 + 1.12436i 0.149170 + 0.0565727i
\(396\) 0.996578 2.33906i 0.0500799 0.117542i
\(397\) 13.1630 + 12.6432i 0.660631 + 0.634545i 0.946112 0.323839i \(-0.104974\pi\)
−0.285481 + 0.958384i \(0.592153\pi\)
\(398\) 1.49480 2.84811i 0.0749278 0.142763i
\(399\) −2.39448 + 0.193302i −0.119874 + 0.00967721i
\(400\) 5.04520 + 17.4181i 0.252260 + 0.870903i
\(401\) −22.4686 + 21.5813i −1.12203 + 1.07772i −0.125701 + 0.992068i \(0.540118\pi\)
−0.996325 + 0.0856530i \(0.972702\pi\)
\(402\) −0.319542 0.842562i −0.0159373 0.0420232i
\(403\) 2.22450 + 5.50812i 0.110810 + 0.274379i
\(404\) −2.82913 + 7.45981i −0.140755 + 0.371140i
\(405\) −0.203074 0.476633i −0.0100908 0.0236841i
\(406\) −0.165268 4.10108i −0.00820211 0.203533i
\(407\) −4.90950 6.01304i −0.243355 0.298055i
\(408\) 0.476531i 0.0235918i
\(409\) 24.2269 19.7806i 1.19794 0.978089i 0.197944 0.980213i \(-0.436573\pi\)
0.999998 + 0.00212387i \(0.000676050\pi\)
\(410\) −0.684860 0.198372i −0.0338228 0.00979690i
\(411\) 15.7698 + 17.8004i 0.777864 + 0.878027i
\(412\) −0.469995 + 0.489316i −0.0231550 + 0.0241069i
\(413\) 20.4400 + 6.82388i 1.00579 + 0.335781i
\(414\) 1.25942 + 1.67599i 0.0618973 + 0.0823704i
\(415\) −0.735900 6.06068i −0.0361239 0.297507i
\(416\) −3.19929 6.38685i −0.156858 0.313141i
\(417\) 0.312233 2.57147i 0.0152901 0.125925i
\(418\) −0.0727959 + 0.0420287i −0.00356056 + 0.00205569i
\(419\) 12.1019 9.09401i 0.591218 0.444271i −0.262555 0.964917i \(-0.584565\pi\)
0.853773 + 0.520646i \(0.174309\pi\)
\(420\) 0.149388 3.70703i 0.00728940 0.180885i
\(421\) 4.05583 1.53817i 0.197669 0.0749660i −0.253784 0.967261i \(-0.581675\pi\)
0.451453 + 0.892295i \(0.350906\pi\)
\(422\) −3.35750 + 0.685439i −0.163441 + 0.0333667i
\(423\) 17.3786 3.54787i 0.844976 0.172503i
\(424\) 0.255241 0.0968003i 0.0123956 0.00470104i
\(425\) −0.119245 + 2.95904i −0.00578425 + 0.143535i
\(426\) 1.24985 0.939205i 0.0605556 0.0455046i
\(427\) −3.92141 + 2.26402i −0.189770 + 0.109564i
\(428\) 1.13897 9.38026i 0.0550542 0.453412i
\(429\) 0.802705 3.01016i 0.0387550 0.145332i
\(430\) −0.100850 0.830579i −0.00486344 0.0400541i
\(431\) −20.8991 27.8116i −1.00667 1.33964i −0.939743 0.341881i \(-0.888936\pi\)
−0.0669303 0.997758i \(-0.521321\pi\)
\(432\) 19.4695 + 6.49986i 0.936725 + 0.312725i
\(433\) 12.2806 12.7855i 0.590170 0.614432i −0.357411 0.933947i \(-0.616341\pi\)
0.947581 + 0.319515i \(0.103520\pi\)
\(434\) 0.588012 + 0.663728i 0.0282255 + 0.0318600i
\(435\) 4.30911 + 1.24815i 0.206606 + 0.0598442i
\(436\) 8.67344 7.08165i 0.415383 0.339149i
\(437\) 4.82666i 0.230890i
\(438\) 0.199807 + 0.244720i 0.00954716 + 0.0116932i
\(439\) 0.0471222 + 1.16932i 0.00224902 + 0.0558088i 0.999924 0.0123458i \(-0.00392990\pi\)
−0.997675 + 0.0681546i \(0.978289\pi\)
\(440\) −0.102499 0.240574i −0.00488645 0.0114689i
\(441\) −1.94881 + 5.13858i −0.0928004 + 0.244695i
\(442\) −0.0537794 0.375730i −0.00255802 0.0178716i
\(443\) 7.02958 + 18.5355i 0.333985 + 0.880647i 0.991838 + 0.127501i \(0.0406955\pi\)
−0.657853 + 0.753146i \(0.728535\pi\)
\(444\) 16.5955 15.9402i 0.787589 0.756490i
\(445\) −1.48954 5.14249i −0.0706110 0.243777i
\(446\) −1.19810 + 0.0967206i −0.0567317 + 0.00457985i
\(447\) −3.22191 + 6.13884i −0.152391 + 0.290357i
\(448\) 16.9055 + 16.2380i 0.798710 + 0.767172i
\(449\) −10.8690 + 25.5104i −0.512939 + 1.20391i 0.439239 + 0.898370i \(0.355248\pi\)
−0.952178 + 0.305542i \(0.901162\pi\)
\(450\) −1.26678 0.480428i −0.0597167 0.0226476i
\(451\) 6.14317 + 0.998363i 0.289271 + 0.0470111i
\(452\) 2.89647 + 1.83162i 0.136239 + 0.0861521i
\(453\) −13.8198 + 4.00296i −0.649312 + 0.188076i
\(454\) −1.93259 + 2.79984i −0.0907009 + 0.131403i
\(455\) 0.605462 + 5.92169i 0.0283845 + 0.277613i
\(456\) −0.285122 0.413071i −0.0133521 0.0193438i
\(457\) −24.8072 20.2545i −1.16043 0.947464i −0.161211 0.986920i \(-0.551540\pi\)
−0.999221 + 0.0394559i \(0.987438\pi\)
\(458\) −2.42639 + 2.97179i −0.113378 + 0.138863i
\(459\) 2.67977 + 2.01371i 0.125081 + 0.0939921i
\(460\) −7.39990 0.898511i −0.345022 0.0418933i
\(461\) −11.1580 33.4222i −0.519679 1.55663i −0.802010 0.597311i \(-0.796236\pi\)
0.282331 0.959317i \(-0.408892\pi\)
\(462\) −0.0374199 0.463529i −0.00174093 0.0215653i
\(463\) −4.72320 + 5.33139i −0.219505 + 0.247770i −0.847940 0.530092i \(-0.822157\pi\)
0.628435 + 0.777862i \(0.283696\pi\)
\(464\) −24.6920 + 15.6143i −1.14630 + 0.724875i
\(465\) −0.891665 + 0.379903i −0.0413500 + 0.0176176i
\(466\) −0.431995 2.65817i −0.0200118 0.123137i
\(467\) −21.9782 + 19.4710i −1.01703 + 0.901011i −0.995112 0.0987491i \(-0.968516\pi\)
−0.0219185 + 0.999760i \(0.506977\pi\)
\(468\) −11.8968 2.16543i −0.549929 0.100097i
\(469\) −11.2495 9.96622i −0.519455 0.460197i
\(470\) 0.484031 0.765433i 0.0223267 0.0353068i
\(471\) −13.4914 1.08914i −0.621653 0.0501850i
\(472\) 0.900586 + 4.41136i 0.0414528 + 0.203049i
\(473\) 1.74778 + 7.09103i 0.0803631 + 0.326046i
\(474\) −0.188984 + 1.16286i −0.00868031 + 0.0534121i
\(475\) −1.66712 2.63633i −0.0764925 0.120963i
\(476\) 1.83359 + 3.49361i 0.0840425 + 0.160130i
\(477\) 0.193306 0.667368i 0.00885086 0.0305567i
\(478\) 0.444581 2.17770i 0.0203347 0.0996059i
\(479\) −21.1343 + 0.851683i −0.965651 + 0.0389144i −0.518078 0.855333i \(-0.673352\pi\)
−0.447572 + 0.894248i \(0.647711\pi\)
\(480\) 1.03200 0.541636i 0.0471042 0.0247222i
\(481\) −22.7343 + 29.0899i −1.03659 + 1.32639i
\(482\) −2.23361 1.17229i −0.101738 0.0533963i
\(483\) −24.1247 11.4473i −1.09771 0.520871i
\(484\) −10.2777 17.8015i −0.467168 0.809159i
\(485\) 1.07754 1.86635i 0.0489285 0.0847466i
\(486\) −2.06747 + 1.42707i −0.0937822 + 0.0647331i
\(487\) 9.62455 12.8080i 0.436130 0.580384i −0.526849 0.849959i \(-0.676627\pi\)
0.962979 + 0.269575i \(0.0868832\pi\)
\(488\) −0.819321 0.473035i −0.0370889 0.0214133i
\(489\) −8.92468 + 1.08365i −0.403588 + 0.0490045i
\(490\) 0.120293 + 0.253513i 0.00543430 + 0.0114526i
\(491\) 18.0422 + 18.7839i 0.814234 + 0.847707i 0.990624 0.136613i \(-0.0436217\pi\)
−0.176391 + 0.984320i \(0.556442\pi\)
\(492\) −1.48453 + 18.3892i −0.0669278 + 0.829050i
\(493\) −4.63239 + 1.14178i −0.208632 + 0.0514232i
\(494\) 0.271427 + 0.293516i 0.0122121 + 0.0132059i
\(495\) −0.646238 0.159283i −0.0290462 0.00715925i
\(496\) 1.99870 5.98684i 0.0897443 0.268817i
\(497\) 11.1782 23.5576i 0.501411 1.05670i
\(498\) 2.15170 0.718344i 0.0964201 0.0321898i
\(499\) −11.3831 7.85719i −0.509578 0.351736i 0.285367 0.958418i \(-0.407885\pi\)
−0.794944 + 0.606682i \(0.792500\pi\)
\(500\) 8.94932 4.24650i 0.400226 0.189909i
\(501\) 24.4137 + 0.983840i 1.09073 + 0.0439547i
\(502\) 0.0121487 0.0492892i 0.000542223 0.00219989i
\(503\) 16.8929 + 7.19741i 0.753219 + 0.320917i 0.734228 0.678903i \(-0.237544\pi\)
0.0189912 + 0.999820i \(0.493955\pi\)
\(504\) −3.58892 + 0.583257i −0.159863 + 0.0259803i
\(505\) 2.04635 + 0.417764i 0.0910612 + 0.0185903i
\(506\) −0.934357 −0.0415372
\(507\) −14.8061 0.561114i −0.657562 0.0249199i
\(508\) −28.2142 −1.25180
\(509\) −17.6882 3.61107i −0.784016 0.160058i −0.208689 0.977982i \(-0.566920\pi\)
−0.575326 + 0.817924i \(0.695125\pi\)
\(510\) 0.0611266 0.00993404i 0.00270673 0.000439887i
\(511\) 4.84753 + 2.06534i 0.214442 + 0.0913652i
\(512\) −3.04176 + 12.3409i −0.134428 + 0.545396i
\(513\) −3.52776 0.142164i −0.155755 0.00627669i
\(514\) −2.48308 + 1.17823i −0.109524 + 0.0519697i
\(515\) 0.146171 + 0.100894i 0.00644106 + 0.00444594i
\(516\) −20.5348 + 6.85552i −0.903994 + 0.301797i
\(517\) −3.38888 + 7.14191i −0.149043 + 0.314101i
\(518\) −1.74519 + 5.22749i −0.0766794 + 0.229683i
\(519\) −16.6268 4.09814i −0.729836 0.179888i
\(520\) −1.00824 + 0.728180i −0.0442142 + 0.0319328i
\(521\) −5.96955 + 1.47136i −0.261531 + 0.0644615i −0.367901 0.929865i \(-0.619923\pi\)
0.106370 + 0.994327i \(0.466077\pi\)
\(522\) 0.175633 2.17561i 0.00768726 0.0952238i
\(523\) 24.6005 + 25.6118i 1.07571 + 1.11993i 0.992356 + 0.123408i \(0.0393823\pi\)
0.0833494 + 0.996520i \(0.473438\pi\)
\(524\) −18.5566 39.1073i −0.810650 1.70841i
\(525\) 17.1308 2.08006i 0.747652 0.0907813i
\(526\) −1.11390 0.643110i −0.0485683 0.0280409i
\(527\) 0.619215 0.824025i 0.0269734 0.0358951i
\(528\) −2.72414 + 1.88034i −0.118553 + 0.0818314i
\(529\) −15.3258 + 26.5451i −0.666340 + 1.15414i
\(530\) −0.0177379 0.0307229i −0.000770484 0.00133452i
\(531\) 10.3531 + 4.91262i 0.449288 + 0.213190i
\(532\) −3.67974 1.93128i −0.159537 0.0837315i
\(533\) −1.82265 29.5443i −0.0789477 1.27971i
\(534\) 1.76142 0.924466i 0.0762243 0.0400056i
\(535\) −2.47160 + 0.0996019i −0.106856 + 0.00430617i
\(536\) 0.628108 3.07668i 0.0271301 0.132892i
\(537\) −2.75309 + 9.50475i −0.118804 + 0.410160i
\(538\) 1.09286 + 2.08226i 0.0471163 + 0.0897727i
\(539\) −1.30910 2.07018i −0.0563870 0.0891689i
\(540\) 0.874670 5.38206i 0.0376398 0.231607i
\(541\) 7.00032 + 28.4014i 0.300967 + 1.22107i 0.905449 + 0.424454i \(0.139534\pi\)
−0.604482 + 0.796619i \(0.706620\pi\)
\(542\) −0.0797545 0.390663i −0.00342575 0.0167804i
\(543\) −0.633806 0.0511661i −0.0271992 0.00219575i
\(544\) −0.662464 + 1.04760i −0.0284029 + 0.0449156i
\(545\) −2.19405 1.94376i −0.0939827 0.0832614i
\(546\) −2.11080 + 0.660528i −0.0903338 + 0.0282680i
\(547\) 11.3755 10.0778i 0.486380 0.430895i −0.383957 0.923351i \(-0.625439\pi\)
0.870338 + 0.492456i \(0.163901\pi\)
\(548\) 6.59926 + 40.6069i 0.281906 + 1.73464i
\(549\) −2.21529 + 0.943845i −0.0945461 + 0.0402823i
\(550\) 0.510348 0.322725i 0.0217613 0.0137610i
\(551\) 3.33233 3.76142i 0.141962 0.160242i
\(552\) −0.448937 5.56108i −0.0191080 0.236695i
\(553\) 6.22225 + 18.6379i 0.264597 + 0.792565i
\(554\) −4.60707 0.559400i −0.195736 0.0237666i
\(555\) −4.81569 3.61875i −0.204415 0.153608i
\(556\) 2.83407 3.47111i 0.120191 0.147208i
\(557\) −22.4553 18.3342i −0.951461 0.776844i 0.0233845 0.999727i \(-0.492556\pi\)
−0.974845 + 0.222883i \(0.928453\pi\)
\(558\) 0.267874 + 0.388082i 0.0113400 + 0.0164288i
\(559\) 31.0561 15.5566i 1.31353 0.657973i
\(560\) 3.59280 5.20507i 0.151824 0.219954i
\(561\) −0.519223 + 0.150395i −0.0219216 + 0.00634967i
\(562\) 1.74173 + 1.10140i 0.0734704 + 0.0464599i
\(563\) 10.2551 + 1.66662i 0.432203 + 0.0702398i 0.372621 0.927984i \(-0.378459\pi\)
0.0595817 + 0.998223i \(0.481023\pi\)
\(564\) −21.9104 8.30950i −0.922593 0.349893i
\(565\) 0.351642 0.825334i 0.0147937 0.0347221i
\(566\) 0.0953907 + 0.0916240i 0.00400957 + 0.00385125i
\(567\) 1.49205 2.84286i 0.0626601 0.119389i
\(568\) 5.43035 0.438383i 0.227852 0.0183941i
\(569\) 7.81019 + 26.9639i 0.327420 + 1.13039i 0.940339 + 0.340240i \(0.110508\pi\)
−0.612918 + 0.790146i \(0.710005\pi\)
\(570\) −0.0470425 + 0.0451849i −0.00197039 + 0.00189259i
\(571\) −0.627067 1.65344i −0.0262419 0.0691943i 0.921255 0.388959i \(-0.127165\pi\)
−0.947497 + 0.319765i \(0.896396\pi\)
\(572\) 3.95682 3.65905i 0.165443 0.152993i
\(573\) −5.18412 + 13.6694i −0.216570 + 0.571048i
\(574\) −1.73192 4.06497i −0.0722890 0.169668i
\(575\) −1.39611 34.6441i −0.0582219 1.44476i
\(576\) 7.88378 + 9.65588i 0.328491 + 0.402328i
\(577\) 30.0602i 1.25142i −0.780055 0.625711i \(-0.784809\pi\)
0.780055 0.625711i \(-0.215191\pi\)
\(578\) 2.16475 1.76746i 0.0900418 0.0735168i
\(579\) 1.75047 + 0.507029i 0.0727469 + 0.0210714i
\(580\) 5.14642 + 5.80911i 0.213693 + 0.241210i
\(581\) 26.2085 27.2860i 1.08731 1.13201i
\(582\) 0.759531 + 0.253569i 0.0314836 + 0.0105108i
\(583\) 0.186028 + 0.247558i 0.00770447 + 0.0102528i
\(584\) 0.132701 + 1.09289i 0.00549120 + 0.0452241i
\(585\) −0.0599502 + 3.16495i −0.00247864 + 0.130854i
\(586\) 0.0115317 0.0949722i 0.000476371 0.00392327i
\(587\) −23.1437 + 13.3620i −0.955243 + 0.551510i −0.894706 0.446656i \(-0.852615\pi\)
−0.0605376 + 0.998166i \(0.519281\pi\)
\(588\) 5.80445 4.36176i 0.239371 0.179876i
\(589\) −0.0437153 + 1.08478i −0.00180126 + 0.0446977i
\(590\) 0.547089 0.207483i 0.0225233 0.00854196i
\(591\) 15.1081 3.08435i 0.621466 0.126873i
\(592\) 38.4347 7.84651i 1.57966 0.322490i
\(593\) 44.3024 16.8017i 1.81928 0.689963i 0.827589 0.561334i \(-0.189712\pi\)
0.991693 0.128629i \(-0.0410576\pi\)
\(594\) 0.0275205 0.682914i 0.00112918 0.0280203i
\(595\) 0.825719 0.620487i 0.0338512 0.0254375i
\(596\) −10.3867 + 5.99678i −0.425457 + 0.245638i
\(597\) −2.62617 + 21.6285i −0.107482 + 0.885195i
\(598\) 0.981574 + 4.33407i 0.0401396 + 0.177233i
\(599\) −0.303388 2.49862i −0.0123961 0.102091i 0.985198 0.171423i \(-0.0548364\pi\)
−0.997594 + 0.0693317i \(0.977913\pi\)
\(600\) 2.16599 + 2.88242i 0.0884264 + 0.117674i
\(601\) −19.7290 6.58652i −0.804764 0.268670i −0.115619 0.993294i \(-0.536885\pi\)
−0.689145 + 0.724624i \(0.742014\pi\)
\(602\) 3.59172 3.73937i 0.146387 0.152405i
\(603\) −5.29994 5.98239i −0.215830 0.243622i
\(604\) −23.9074 6.92485i −0.972777 0.281768i
\(605\) −4.16814 + 3.40318i −0.169459 + 0.138359i
\(606\) 0.776023i 0.0315238i
\(607\) 0.569862 + 0.697954i 0.0231300 + 0.0283291i 0.786040 0.618175i \(-0.212128\pi\)
−0.762910 + 0.646504i \(0.776230\pi\)
\(608\) −0.0525681 1.30446i −0.00213192 0.0529030i
\(609\) 10.8972 + 25.5766i 0.441576 + 1.03642i
\(610\) −0.0435981 + 0.114959i −0.00176524 + 0.00465455i
\(611\) 36.6883 + 8.21670i 1.48425 + 0.332412i
\(612\) 0.744035 + 1.96186i 0.0300758 + 0.0793034i
\(613\) 19.8576 19.0735i 0.802043 0.770372i −0.174738 0.984615i \(-0.555908\pi\)
0.976780 + 0.214243i \(0.0687283\pi\)
\(614\) 0.612689 + 2.11525i 0.0247261 + 0.0853645i
\(615\) 4.81393 0.388621i 0.194116 0.0156707i
\(616\) 0.753092 1.43490i 0.0303429 0.0578137i
\(617\) 21.7129 + 20.8555i 0.874128 + 0.839611i 0.988090 0.153874i \(-0.0491750\pi\)
−0.113963 + 0.993485i \(0.536354\pi\)
\(618\) −0.0258671 + 0.0607123i −0.00104053 + 0.00244220i
\(619\) −26.9693 10.2281i −1.08399 0.411103i −0.253042 0.967455i \(-0.581431\pi\)
−0.830946 + 0.556352i \(0.812200\pi\)
\(620\) −1.65498 0.268960i −0.0664655 0.0108017i
\(621\) −33.1698 20.9753i −1.33106 0.841710i
\(622\) −4.14269 + 1.19994i −0.166107 + 0.0481134i
\(623\) 18.8473 27.3050i 0.755100 1.09395i
\(624\) 11.5839 + 10.6607i 0.463727 + 0.426771i
\(625\) 11.9719 + 17.3442i 0.478875 + 0.693770i
\(626\) −4.16211 3.39826i −0.166351 0.135822i
\(627\) 0.360092 0.441033i 0.0143807 0.0176131i
\(628\) −18.7191 14.0665i −0.746974 0.561315i
\(629\) 6.35949 + 0.772181i 0.253569 + 0.0307889i
\(630\) 0.149633 + 0.448207i 0.00596154 + 0.0178570i
\(631\) 1.86026 + 23.0435i 0.0740558 + 0.917345i 0.921982 + 0.387232i \(0.126569\pi\)
−0.847927 + 0.530114i \(0.822149\pi\)
\(632\) −2.72238 + 3.07294i −0.108291 + 0.122235i
\(633\) 19.6179 12.4056i 0.779740 0.493078i
\(634\) 2.80748 1.19616i 0.111499 0.0475054i
\(635\) 1.18478 + 7.29027i 0.0470167 + 0.289305i
\(636\) −0.687080 + 0.608700i −0.0272445 + 0.0241365i
\(637\) −8.22739 + 8.24714i −0.325981 + 0.326764i
\(638\) 0.728146 + 0.645081i 0.0288276 + 0.0255390i
\(639\) 7.41116 11.7198i 0.293181 0.463629i
\(640\) 2.67297 + 0.215785i 0.105659 + 0.00852964i
\(641\) 7.31299 + 35.8214i 0.288846 + 1.41486i 0.822311 + 0.569038i \(0.192684\pi\)
−0.533465 + 0.845822i \(0.679110\pi\)
\(642\) −0.219953 0.892384i −0.00868085 0.0352196i
\(643\) −3.59617 + 22.1281i −0.141819 + 0.872647i 0.814466 + 0.580211i \(0.197030\pi\)
−0.956285 + 0.292436i \(0.905534\pi\)
\(644\) −24.6892 39.0428i −0.972890 1.53850i
\(645\) 2.63371 + 5.01811i 0.103702 + 0.197588i
\(646\) 0.0192995 0.0666297i 0.000759330 0.00262151i
\(647\) −3.72816 + 18.2617i −0.146569 + 0.717943i 0.838378 + 0.545089i \(0.183504\pi\)
−0.984947 + 0.172854i \(0.944701\pi\)
\(648\) 0.670268 0.0270109i 0.0263306 0.00106109i
\(649\) −4.52234 + 2.37351i −0.177517 + 0.0931683i
\(650\) −2.03312 2.02825i −0.0797454 0.0795544i
\(651\) −5.31831 2.79126i −0.208441 0.109398i
\(652\) −14.0509 6.66724i −0.550276 0.261109i
\(653\) −14.7469 25.5424i −0.577091 0.999551i −0.995811 0.0914358i \(-0.970854\pi\)
0.418720 0.908116i \(-0.362479\pi\)
\(654\) 0.544561 0.943208i 0.0212940 0.0368824i
\(655\) −9.32570 + 6.43706i −0.364385 + 0.251517i
\(656\) −18.8938 + 25.1430i −0.737677 + 0.981670i
\(657\) 2.42668 + 1.40105i 0.0946740 + 0.0546600i
\(658\) 5.57131 0.676480i 0.217192 0.0263719i
\(659\) 17.1245 + 36.0891i 0.667075 + 1.40583i 0.901105 + 0.433601i \(0.142757\pi\)
−0.234030 + 0.972229i \(0.575192\pi\)
\(660\) 0.609128 + 0.634169i 0.0237103 + 0.0246850i
\(661\) 1.86020 23.0427i 0.0723532 0.896255i −0.854164 0.520003i \(-0.825931\pi\)
0.926517 0.376252i \(-0.122787\pi\)
\(662\) 3.47781 0.857203i 0.135169 0.0333161i
\(663\) 1.24308 + 2.25045i 0.0482771 + 0.0874003i
\(664\) 7.67516 + 1.89176i 0.297854 + 0.0734144i
\(665\) −0.344502 + 1.03191i −0.0133592 + 0.0400157i
\(666\) −1.25639 + 2.64779i −0.0486843 + 0.102600i
\(667\) 52.9840 17.6886i 2.05155 0.684907i
\(668\) 34.7862 + 24.0112i 1.34592 + 0.929021i
\(669\) 7.35566 3.49031i 0.284386 0.134943i
\(670\) −0.407752 0.0164318i −0.0157528 0.000634817i
\(671\) 0.256833 1.04201i 0.00991495 0.0402265i
\(672\) 6.64468 + 2.83103i 0.256324 + 0.109209i
\(673\) −5.37189 + 0.873018i −0.207071 + 0.0336524i −0.263062 0.964779i \(-0.584732\pi\)
0.0559907 + 0.998431i \(0.482168\pi\)
\(674\) 1.50925 + 0.308115i 0.0581341 + 0.0118682i
\(675\) 25.3622 0.976193
\(676\) −21.1295 14.5100i −0.812673 0.558076i
\(677\) −16.6072 −0.638265 −0.319133 0.947710i \(-0.603392\pi\)
−0.319133 + 0.947710i \(0.603392\pi\)
\(678\) 0.326598 + 0.0666755i 0.0125429 + 0.00256066i
\(679\) 13.1821 2.14230i 0.505883 0.0822140i
\(680\) 0.198534 + 0.0845875i 0.00761344 + 0.00324378i
\(681\) 5.51476 22.3743i 0.211326 0.857384i
\(682\) −0.209995 0.00846252i −0.00804113 0.000324046i
\(683\) −7.35850 + 3.49165i −0.281565 + 0.133604i −0.564238 0.825612i \(-0.690830\pi\)
0.282673 + 0.959216i \(0.408779\pi\)
\(684\) −1.81879 1.25542i −0.0695431 0.0480021i
\(685\) 10.2153 3.41037i 0.390306 0.130303i
\(686\) 0.869627 1.83270i 0.0332025 0.0699728i
\(687\) 8.22917 24.6494i 0.313963 0.940433i
\(688\) −35.8332 8.83210i −1.36613 0.336721i
\(689\) 0.952883 1.12297i 0.0363019 0.0427817i
\(690\) −0.703984 + 0.173517i −0.0268002 + 0.00660566i
\(691\) −0.327175 + 4.05279i −0.0124463 + 0.154175i −0.999995 0.00313792i \(-0.999001\pi\)
0.987549 + 0.157313i \(0.0502832\pi\)
\(692\) −20.5213 21.3650i −0.780104 0.812174i
\(693\) −1.76819 3.72637i −0.0671678 0.141553i
\(694\) 2.49328 0.302739i 0.0946435 0.0114918i
\(695\) −1.01591 0.586536i −0.0385357 0.0222486i
\(696\) −3.48952 + 4.64371i −0.132270 + 0.176019i
\(697\) −4.22699 + 2.91768i −0.160109 + 0.110515i
\(698\) −2.18834 + 3.79032i −0.0828299 + 0.143466i
\(699\) 9.12070 + 15.7975i 0.344976 + 0.597517i
\(700\) 26.9706 + 12.7977i 1.01939 + 0.483708i
\(701\) −30.1354 15.8163i −1.13820 0.597373i −0.213075 0.977036i \(-0.568348\pi\)
−0.925125 + 0.379663i \(0.876040\pi\)
\(702\) −3.19665 + 0.589769i −0.120650 + 0.0222594i
\(703\) −5.97461 + 3.13572i −0.225337 + 0.118266i
\(704\) −5.55121 + 0.223706i −0.209219 + 0.00843125i
\(705\) −1.22702 + 6.01036i −0.0462124 + 0.226363i
\(706\) −0.931699 + 3.21660i −0.0350649 + 0.121058i
\(707\) 6.01482 + 11.4603i 0.226211 + 0.431008i
\(708\) −8.09163 12.7959i −0.304102 0.480899i
\(709\) 8.33958 51.3155i 0.313199 1.92719i −0.0572908 0.998358i \(-0.518246\pi\)
0.370490 0.928836i \(-0.379190\pi\)
\(710\) −0.169437 0.687434i −0.00635887 0.0257989i
\(711\) 2.09011 + 10.2380i 0.0783853 + 0.383957i
\(712\) 6.90959 + 0.557800i 0.258948 + 0.0209044i
\(713\) −6.44988 + 10.1997i −0.241550 + 0.381981i
\(714\) 0.287258 + 0.254488i 0.0107503 + 0.00952398i
\(715\) −1.11162 0.868750i −0.0415722 0.0324894i
\(716\) −12.8133 + 11.3516i −0.478857 + 0.424230i
\(717\) 2.41499 + 14.8600i 0.0901893 + 0.554957i
\(718\) 1.72925 0.736763i 0.0645349 0.0274958i
\(719\) −26.0299 + 16.4603i −0.970751 + 0.613866i −0.922921 0.384990i \(-0.874205\pi\)
−0.0478300 + 0.998855i \(0.515231\pi\)
\(720\) 2.23033 2.51753i 0.0831196 0.0938226i
\(721\) 0.0885661 + 1.09709i 0.00329837 + 0.0408577i
\(722\) −0.989264 2.96321i −0.0368166 0.110279i
\(723\) 16.9620 + 2.05956i 0.630823 + 0.0765958i
\(724\) −0.879394 0.660822i −0.0326824 0.0245592i
\(725\) −22.8304 + 27.9621i −0.847898 + 1.03849i
\(726\) −1.54872 1.26449i −0.0574782 0.0469295i
\(727\) 13.0536 + 18.9113i 0.484129 + 0.701383i 0.986590 0.163218i \(-0.0521872\pi\)
−0.502461 + 0.864600i \(0.667572\pi\)
\(728\) −7.44701 1.98585i −0.276004 0.0736007i
\(729\) 11.3769 16.4823i 0.421366 0.610454i
\(730\) 0.137423 0.0398051i 0.00508626 0.00147325i
\(731\) −5.09397 3.22123i −0.188407 0.119142i
\(732\) 3.14007 + 0.510312i 0.116060 + 0.0188617i
\(733\) 32.1092 + 12.1774i 1.18598 + 0.449783i 0.867159 0.498032i \(-0.165944\pi\)
0.318821 + 0.947815i \(0.396713\pi\)
\(734\) −1.98669 + 4.66293i −0.0733300 + 0.172112i
\(735\) −1.37078 1.31665i −0.0505619 0.0485654i
\(736\) 6.74397 12.8496i 0.248586 0.473641i
\(737\) 3.55055 0.286630i 0.130786 0.0105581i
\(738\) −0.653738 2.25697i −0.0240644 0.0830801i
\(739\) 8.63416 8.29322i 0.317613 0.305071i −0.516915 0.856036i \(-0.672920\pi\)
0.834528 + 0.550965i \(0.185740\pi\)
\(740\) −3.69526 9.74359i −0.135840 0.358182i
\(741\) −2.42405 1.20699i −0.0890496 0.0443398i
\(742\) 0.0779577 0.205558i 0.00286192 0.00754626i
\(743\) 13.6420 + 32.0189i 0.500476 + 1.17466i 0.958338 + 0.285636i \(0.0922050\pi\)
−0.457862 + 0.889023i \(0.651385\pi\)
\(744\) −0.0505309 1.25391i −0.00185255 0.0459706i
\(745\) 1.98567 + 2.43201i 0.0727495 + 0.0891019i
\(746\) 0.855864i 0.0313354i
\(747\) 15.5849 12.7246i 0.570220 0.465570i
\(748\) −0.898220 0.260173i −0.0328422 0.00951286i
\(749\) −10.1650 11.4739i −0.371420 0.419247i
\(750\) 0.667439 0.694878i 0.0243714 0.0253734i
\(751\) −5.55809 1.85556i −0.202818 0.0677105i 0.213444 0.976955i \(-0.431532\pi\)
−0.416262 + 0.909245i \(0.636660\pi\)
\(752\) −23.9980 31.9355i −0.875117 1.16457i
\(753\) 0.0414469 + 0.341346i 0.00151041 + 0.0124393i
\(754\) 2.22730 4.05523i 0.0811136 0.147683i
\(755\) −0.785384 + 6.46822i −0.0285831 + 0.235403i
\(756\) 29.2633 16.8952i 1.06429 0.614471i
\(757\) 3.63069 2.72829i 0.131960 0.0991613i −0.532713 0.846296i \(-0.678827\pi\)
0.664673 + 0.747135i \(0.268571\pi\)
\(758\) −0.0742144 + 1.84161i −0.00269559 + 0.0668903i
\(759\) 5.91761 2.24425i 0.214796 0.0814612i
\(760\) −0.222706 + 0.0454658i −0.00807841 + 0.00164922i
\(761\) −31.9603 + 6.52475i −1.15856 + 0.236522i −0.740602 0.671944i \(-0.765460\pi\)
−0.417959 + 0.908466i \(0.637255\pi\)
\(762\) −2.56597 + 0.973146i −0.0929555 + 0.0352534i
\(763\) 0.731423 18.1501i 0.0264793 0.657077i
\(764\) −20.2184 + 15.1932i −0.731476 + 0.549669i
\(765\) 0.475681 0.274635i 0.0171983