Properties

Label 169.2.k.a.10.5
Level $169$
Weight $2$
Character 169.10
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 10.5
Character \(\chi\) \(=\) 169.10
Dual form 169.2.k.a.17.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.44039 - 0.294058i) q^{2} +(-2.46995 + 0.401407i) q^{3} +(0.148295 + 0.0631826i) q^{4} +(0.720721 - 2.92408i) q^{5} +(3.67574 + 0.148127i) q^{6} +(-2.39377 + 1.13586i) q^{7} +(2.22471 + 1.53561i) q^{8} +(3.09394 - 1.03291i) q^{9} +O(q^{10})\) \(q+(-1.44039 - 0.294058i) q^{2} +(-2.46995 + 0.401407i) q^{3} +(0.148295 + 0.0631826i) q^{4} +(0.720721 - 2.92408i) q^{5} +(3.67574 + 0.148127i) q^{6} +(-2.39377 + 1.13586i) q^{7} +(2.22471 + 1.53561i) q^{8} +(3.09394 - 1.03291i) q^{9} +(-1.89797 + 3.99988i) q^{10} +(-0.728042 + 2.18075i) q^{11} +(-0.391644 - 0.0965315i) q^{12} +(1.92669 + 3.04760i) q^{13} +(3.78198 - 0.932173i) q^{14} +(-0.606403 + 7.51165i) q^{15} +(-2.97622 - 3.09858i) q^{16} +(1.97711 + 4.16666i) q^{17} +(-4.76021 + 0.577995i) q^{18} +(-1.79523 - 1.03648i) q^{19} +(0.291630 - 0.388089i) q^{20} +(5.45657 - 3.76640i) q^{21} +(1.68993 - 2.92705i) q^{22} +(3.57304 + 6.18869i) q^{23} +(-6.11135 - 2.89987i) q^{24} +(-3.60352 - 1.89127i) q^{25} +(-1.87902 - 4.95629i) q^{26} +(-0.580086 + 0.304452i) q^{27} +(-0.426751 + 0.0171975i) q^{28} +(0.932811 - 4.56921i) q^{29} +(3.08231 - 10.6414i) q^{30} +(-1.28190 - 2.44246i) q^{31} +(0.486196 + 0.768858i) q^{32} +(0.922863 - 5.67860i) q^{33} +(-1.62257 - 6.58301i) q^{34} +(1.59610 + 7.81822i) q^{35} +(0.524078 + 0.0423079i) q^{36} +(-1.42045 + 2.24625i) q^{37} +(2.28105 + 2.02084i) q^{38} +(-5.98217 - 6.75404i) q^{39} +(6.09364 - 5.39849i) q^{40} +(1.11879 + 6.88422i) q^{41} +(-8.96713 + 3.82054i) q^{42} +(-7.73330 + 4.89024i) q^{43} +(-0.245751 + 0.277395i) q^{44} +(-0.790441 - 9.79136i) q^{45} +(-3.32674 - 9.96481i) q^{46} +(-1.71533 - 0.208278i) q^{47} +(8.59493 + 6.45867i) q^{48} +(0.0128545 - 0.0157439i) q^{49} +(4.63433 + 3.78382i) q^{50} +(-6.55589 - 9.49785i) q^{51} +(0.0931637 + 0.573677i) q^{52} +(-7.11661 + 10.3102i) q^{53} +(0.925076 - 0.267952i) q^{54} +(5.85198 + 3.70057i) q^{55} +(-7.06970 - 1.14894i) q^{56} +(4.85020 + 1.83944i) q^{57} +(-2.68722 + 6.30715i) q^{58} +(8.35201 + 8.02221i) q^{59} +(-0.564532 + 1.07563i) q^{60} +(3.47602 - 0.280613i) q^{61} +(1.12822 + 3.89505i) q^{62} +(-6.23295 + 5.98683i) q^{63} +(2.57283 + 6.78399i) q^{64} +(10.3000 - 3.43733i) q^{65} +(-2.99912 + 7.90803i) q^{66} +(-5.31972 - 12.4858i) q^{67} +(0.0299344 + 0.742814i) q^{68} +(-11.3094 - 13.8515i) q^{69} -11.7306i q^{70} +(8.65787 - 7.06893i) q^{71} +(8.46927 + 2.45315i) q^{72} +(0.619791 + 0.699599i) q^{73} +(2.70652 - 2.81779i) q^{74} +(9.65970 + 3.22488i) q^{75} +(-0.200737 - 0.267132i) q^{76} +(-0.734261 - 6.04718i) q^{77} +(6.63058 + 11.4876i) q^{78} +(-1.68674 + 13.8916i) q^{79} +(-11.2055 + 6.46951i) q^{80} +(-6.51230 + 4.89368i) q^{81} +(0.412857 - 10.2450i) q^{82} +(10.5480 - 4.00034i) q^{83} +(1.04715 - 0.213778i) q^{84} +(13.6086 - 2.77822i) q^{85} +(12.5770 - 4.76982i) q^{86} +(-0.469889 + 11.6602i) q^{87} +(-4.96847 + 3.73356i) q^{88} +(-7.69582 + 4.44318i) q^{89} +(-1.74068 + 14.3358i) q^{90} +(-8.07371 - 5.10681i) q^{91} +(0.138847 + 1.14351i) q^{92} +(4.14666 + 5.51821i) q^{93} +(2.40949 + 0.804407i) q^{94} +(-4.32461 + 4.50239i) q^{95} +(-1.50951 - 1.70388i) q^{96} +(-9.44289 - 2.73517i) q^{97} +(-0.0231450 + 0.0188973i) q^{98} +7.49912i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.44039 0.294058i −1.01851 0.207930i −0.338370 0.941013i \(-0.609876\pi\)
−0.680139 + 0.733083i \(0.738081\pi\)
\(3\) −2.46995 + 0.401407i −1.42603 + 0.231752i −0.823940 0.566677i \(-0.808229\pi\)
−0.602089 + 0.798429i \(0.705665\pi\)
\(4\) 0.148295 + 0.0631826i 0.0741475 + 0.0315913i
\(5\) 0.720721 2.92408i 0.322316 1.30769i −0.556627 0.830762i \(-0.687905\pi\)
0.878944 0.476926i \(-0.158249\pi\)
\(6\) 3.67574 + 0.148127i 1.50061 + 0.0604726i
\(7\) −2.39377 + 1.13586i −0.904761 + 0.429314i −0.823459 0.567375i \(-0.807959\pi\)
−0.0813016 + 0.996690i \(0.525908\pi\)
\(8\) 2.22471 + 1.53561i 0.786555 + 0.542920i
\(9\) 3.09394 1.03291i 1.03131 0.344303i
\(10\) −1.89797 + 3.99988i −0.600190 + 1.26487i
\(11\) −0.728042 + 2.18075i −0.219513 + 0.657522i 0.779984 + 0.625800i \(0.215227\pi\)
−0.999497 + 0.0317220i \(0.989901\pi\)
\(12\) −0.391644 0.0965315i −0.113058 0.0278663i
\(13\) 1.92669 + 3.04760i 0.534368 + 0.845252i
\(14\) 3.78198 0.932173i 1.01078 0.249134i
\(15\) −0.606403 + 7.51165i −0.156573 + 1.93950i
\(16\) −2.97622 3.09858i −0.744056 0.774644i
\(17\) 1.97711 + 4.16666i 0.479519 + 1.01056i 0.988700 + 0.149905i \(0.0478969\pi\)
−0.509182 + 0.860659i \(0.670052\pi\)
\(18\) −4.76021 + 0.577995i −1.12199 + 0.136235i
\(19\) −1.79523 1.03648i −0.411855 0.237785i 0.279732 0.960078i \(-0.409755\pi\)
−0.691586 + 0.722294i \(0.743088\pi\)
\(20\) 0.291630 0.388089i 0.0652105 0.0867794i
\(21\) 5.45657 3.76640i 1.19072 0.821895i
\(22\) 1.68993 2.92705i 0.360295 0.624049i
\(23\) 3.57304 + 6.18869i 0.745031 + 1.29043i 0.950180 + 0.311701i \(0.100899\pi\)
−0.205149 + 0.978731i \(0.565768\pi\)
\(24\) −6.11135 2.89987i −1.24747 0.591933i
\(25\) −3.60352 1.89127i −0.720704 0.378255i
\(26\) −1.87902 4.95629i −0.368506 0.972008i
\(27\) −0.580086 + 0.304452i −0.111638 + 0.0585919i
\(28\) −0.426751 + 0.0171975i −0.0806484 + 0.00325002i
\(29\) 0.932811 4.56921i 0.173219 0.848481i −0.796572 0.604543i \(-0.793356\pi\)
0.969791 0.243938i \(-0.0784393\pi\)
\(30\) 3.08231 10.6414i 0.562751 1.94284i
\(31\) −1.28190 2.44246i −0.230237 0.438679i 0.742741 0.669579i \(-0.233525\pi\)
−0.972978 + 0.230900i \(0.925833\pi\)
\(32\) 0.486196 + 0.768858i 0.0859481 + 0.135916i
\(33\) 0.922863 5.67860i 0.160650 0.988518i
\(34\) −1.62257 6.58301i −0.278268 1.12898i
\(35\) 1.59610 + 7.81822i 0.269790 + 1.32152i
\(36\) 0.524078 + 0.0423079i 0.0873463 + 0.00705132i
\(37\) −1.42045 + 2.24625i −0.233520 + 0.369282i −0.941535 0.336915i \(-0.890616\pi\)
0.708015 + 0.706197i \(0.249591\pi\)
\(38\) 2.28105 + 2.02084i 0.370036 + 0.327823i
\(39\) −5.98217 6.75404i −0.957914 1.08151i
\(40\) 6.09364 5.39849i 0.963489 0.853577i
\(41\) 1.11879 + 6.88422i 0.174726 + 1.07513i 0.915185 + 0.403033i \(0.132044\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(42\) −8.96713 + 3.82054i −1.38366 + 0.589521i
\(43\) −7.73330 + 4.89024i −1.17932 + 0.745755i −0.972563 0.232639i \(-0.925264\pi\)
−0.206753 + 0.978393i \(0.566290\pi\)
\(44\) −0.245751 + 0.277395i −0.0370483 + 0.0418189i
\(45\) −0.790441 9.79136i −0.117832 1.45961i
\(46\) −3.32674 9.96481i −0.490502 1.46923i
\(47\) −1.71533 0.208278i −0.250206 0.0303805i −0.00552730 0.999985i \(-0.501759\pi\)
−0.244679 + 0.969604i \(0.578682\pi\)
\(48\) 8.59493 + 6.45867i 1.24057 + 0.932229i
\(49\) 0.0128545 0.0157439i 0.00183635 0.00224912i
\(50\) 4.63433 + 3.78382i 0.655394 + 0.535112i
\(51\) −6.55589 9.49785i −0.918008 1.32996i
\(52\) 0.0931637 + 0.573677i 0.0129195 + 0.0795547i
\(53\) −7.11661 + 10.3102i −0.977541 + 1.41621i −0.0693812 + 0.997590i \(0.522102\pi\)
−0.908160 + 0.418623i \(0.862513\pi\)
\(54\) 0.925076 0.267952i 0.125887 0.0364636i
\(55\) 5.85198 + 3.70057i 0.789081 + 0.498985i
\(56\) −7.06970 1.14894i −0.944728 0.153533i
\(57\) 4.85020 + 1.83944i 0.642424 + 0.243639i
\(58\) −2.68722 + 6.30715i −0.352850 + 0.828169i
\(59\) 8.35201 + 8.02221i 1.08734 + 1.04440i 0.998832 + 0.0483276i \(0.0153892\pi\)
0.0885073 + 0.996076i \(0.471790\pi\)
\(60\) −0.564532 + 1.07563i −0.0728807 + 0.138863i
\(61\) 3.47602 0.280613i 0.445059 0.0359289i 0.144094 0.989564i \(-0.453973\pi\)
0.300965 + 0.953635i \(0.402691\pi\)
\(62\) 1.12822 + 3.89505i 0.143284 + 0.494672i
\(63\) −6.23295 + 5.98683i −0.785278 + 0.754270i
\(64\) 2.57283 + 6.78399i 0.321604 + 0.847999i
\(65\) 10.3000 3.43733i 1.27756 0.426349i
\(66\) −2.99912 + 7.90803i −0.369166 + 0.973411i
\(67\) −5.31972 12.4858i −0.649907 1.52539i −0.839404 0.543507i \(-0.817096\pi\)
0.189497 0.981881i \(-0.439314\pi\)
\(68\) 0.0299344 + 0.742814i 0.00363008 + 0.0900795i
\(69\) −11.3094 13.8515i −1.36150 1.66753i
\(70\) 11.7306i 1.40208i
\(71\) 8.65787 7.06893i 1.02750 0.838928i 0.0404247 0.999183i \(-0.487129\pi\)
0.987076 + 0.160254i \(0.0512315\pi\)
\(72\) 8.46927 + 2.45315i 0.998113 + 0.289107i
\(73\) 0.619791 + 0.699599i 0.0725410 + 0.0818819i 0.783661 0.621189i \(-0.213350\pi\)
−0.711120 + 0.703071i \(0.751812\pi\)
\(74\) 2.70652 2.81779i 0.314627 0.327561i
\(75\) 9.65970 + 3.22488i 1.11541 + 0.372377i
\(76\) −0.200737 0.267132i −0.0230261 0.0306422i
\(77\) −0.734261 6.04718i −0.0836768 0.689140i
\(78\) 6.63058 + 11.4876i 0.750765 + 1.30071i
\(79\) −1.68674 + 13.8916i −0.189774 + 1.56293i 0.517312 + 0.855797i \(0.326933\pi\)
−0.707085 + 0.707128i \(0.749990\pi\)
\(80\) −11.2055 + 6.46951i −1.25281 + 0.723313i
\(81\) −6.51230 + 4.89368i −0.723589 + 0.543742i
\(82\) 0.412857 10.2450i 0.0455925 1.13137i
\(83\) 10.5480 4.00034i 1.15780 0.439094i 0.300432 0.953803i \(-0.402869\pi\)
0.857365 + 0.514709i \(0.172100\pi\)
\(84\) 1.04715 0.213778i 0.114254 0.0233251i
\(85\) 13.6086 2.77822i 1.47606 0.301340i
\(86\) 12.5770 4.76982i 1.35621 0.514343i
\(87\) −0.469889 + 11.6602i −0.0503774 + 1.25010i
\(88\) −4.96847 + 3.73356i −0.529641 + 0.397999i
\(89\) −7.69582 + 4.44318i −0.815755 + 0.470976i −0.848950 0.528472i \(-0.822765\pi\)
0.0331953 + 0.999449i \(0.489432\pi\)
\(90\) −1.74068 + 14.3358i −0.183484 + 1.51113i
\(91\) −8.07371 5.10681i −0.846355 0.535339i
\(92\) 0.138847 + 1.14351i 0.0144758 + 0.119219i
\(93\) 4.14666 + 5.51821i 0.429989 + 0.572211i
\(94\) 2.40949 + 0.804407i 0.248520 + 0.0829682i
\(95\) −4.32461 + 4.50239i −0.443695 + 0.461936i
\(96\) −1.50951 1.70388i −0.154063 0.173902i
\(97\) −9.44289 2.73517i −0.958780 0.277714i −0.238301 0.971191i \(-0.576591\pi\)
−0.720478 + 0.693477i \(0.756078\pi\)
\(98\) −0.0231450 + 0.0188973i −0.00233800 + 0.00190892i
\(99\) 7.49912i 0.753690i
\(100\) −0.414889 0.508146i −0.0414889 0.0508146i
\(101\) −0.339038 8.41314i −0.0337356 0.837139i −0.924159 0.382007i \(-0.875233\pi\)
0.890424 0.455132i \(-0.150408\pi\)
\(102\) 6.65013 + 15.6084i 0.658461 + 1.54546i
\(103\) −6.20496 + 16.3611i −0.611393 + 1.61211i 0.168150 + 0.985761i \(0.446221\pi\)
−0.779543 + 0.626349i \(0.784549\pi\)
\(104\) −0.393580 + 9.73868i −0.0385937 + 0.954956i
\(105\) −7.08058 18.6700i −0.690994 1.82200i
\(106\) 13.2825 12.7580i 1.29011 1.23917i
\(107\) −0.891155 3.07662i −0.0861512 0.297429i 0.905860 0.423577i \(-0.139226\pi\)
−0.992011 + 0.126148i \(0.959738\pi\)
\(108\) −0.105260 + 0.00849746i −0.0101286 + 0.000817668i
\(109\) −4.36041 + 8.30807i −0.417652 + 0.795769i −0.999851 0.0172774i \(-0.994500\pi\)
0.582199 + 0.813046i \(0.302192\pi\)
\(110\) −7.34095 7.05108i −0.699933 0.672294i
\(111\) 2.60677 6.11832i 0.247424 0.580726i
\(112\) 10.6440 + 4.03672i 1.00576 + 0.381434i
\(113\) −14.1084 2.29283i −1.32720 0.215691i −0.544853 0.838531i \(-0.683415\pi\)
−0.782349 + 0.622840i \(0.785979\pi\)
\(114\) −6.44527 4.07574i −0.603655 0.381728i
\(115\) 20.6714 5.98754i 1.92762 0.558341i
\(116\) 0.427026 0.618654i 0.0396484 0.0574406i
\(117\) 9.10896 + 7.43899i 0.842124 + 0.687735i
\(118\) −9.67116 14.0111i −0.890302 1.28983i
\(119\) −9.46549 7.72833i −0.867700 0.708455i
\(120\) −12.8840 + 15.7801i −1.17614 + 1.44052i
\(121\) 4.56823 + 3.43280i 0.415294 + 0.312073i
\(122\) −5.08934 0.617958i −0.460767 0.0559473i
\(123\) −5.52674 16.5546i −0.498330 1.49268i
\(124\) −0.0357787 0.443199i −0.00321302 0.0398004i
\(125\) 1.85790 2.09714i 0.166176 0.187574i
\(126\) 10.7384 6.79052i 0.956648 0.604948i
\(127\) 7.12471 3.03556i 0.632216 0.269362i −0.0519938 0.998647i \(-0.516558\pi\)
0.684210 + 0.729285i \(0.260147\pi\)
\(128\) −2.00284 12.3240i −0.177028 1.08929i
\(129\) 17.1379 15.1829i 1.50891 1.33678i
\(130\) −15.8468 + 1.92230i −1.38986 + 0.168597i
\(131\) 10.0777 + 8.92808i 0.880495 + 0.780050i 0.976542 0.215327i \(-0.0690816\pi\)
−0.0960475 + 0.995377i \(0.530620\pi\)
\(132\) 0.495645 0.783800i 0.0431404 0.0682210i
\(133\) 5.47468 + 0.441962i 0.474715 + 0.0383229i
\(134\) 3.99091 + 19.5488i 0.344763 + 1.68876i
\(135\) 0.472163 + 1.91564i 0.0406373 + 0.164872i
\(136\) −1.99987 + 12.3057i −0.171487 + 1.05520i
\(137\) −5.45974 8.63390i −0.466457 0.737643i 0.527243 0.849715i \(-0.323226\pi\)
−0.993700 + 0.112071i \(0.964252\pi\)
\(138\) 12.2168 + 23.2773i 1.03997 + 1.98149i
\(139\) 2.28591 7.89187i 0.193888 0.669380i −0.803377 0.595471i \(-0.796965\pi\)
0.997265 0.0739088i \(-0.0235474\pi\)
\(140\) −0.257282 + 1.26025i −0.0217443 + 0.106510i
\(141\) 4.32038 0.174105i 0.363842 0.0146623i
\(142\) −14.5494 + 7.63611i −1.22096 + 0.640808i
\(143\) −8.04877 + 1.98286i −0.673072 + 0.165815i
\(144\) −12.4088 6.51264i −1.03407 0.542720i
\(145\) −12.6884 6.02074i −1.05372 0.499995i
\(146\) −0.687018 1.18995i −0.0568580 0.0984810i
\(147\) −0.0254302 + 0.0440465i −0.00209745 + 0.00363289i
\(148\) −0.352569 + 0.243361i −0.0289810 + 0.0200041i
\(149\) 6.62838 8.82077i 0.543018 0.722626i −0.441626 0.897199i \(-0.645598\pi\)
0.984644 + 0.174573i \(0.0558546\pi\)
\(150\) −12.9654 7.48560i −1.05862 0.611197i
\(151\) −3.59474 + 0.436481i −0.292536 + 0.0355203i −0.265489 0.964114i \(-0.585533\pi\)
−0.0270469 + 0.999634i \(0.508610\pi\)
\(152\) −2.40226 5.06265i −0.194849 0.410635i
\(153\) 10.4208 + 10.8492i 0.842474 + 0.877109i
\(154\) −0.720599 + 8.92622i −0.0580675 + 0.719295i
\(155\) −8.06585 + 1.98805i −0.647864 + 0.159684i
\(156\) −0.460388 1.37956i −0.0368605 0.110453i
\(157\) 11.5182 + 2.83897i 0.919249 + 0.226575i 0.670428 0.741975i \(-0.266111\pi\)
0.248821 + 0.968549i \(0.419957\pi\)
\(158\) 6.51450 19.5133i 0.518266 1.55239i
\(159\) 13.4391 28.3223i 1.06579 2.24611i
\(160\) 2.59861 0.867544i 0.205438 0.0685854i
\(161\) −15.5825 10.7558i −1.22808 0.847680i
\(162\) 10.8193 5.13381i 0.850043 0.403350i
\(163\) −2.93976 0.118468i −0.230260 0.00927916i −0.0751322 0.997174i \(-0.523938\pi\)
−0.155128 + 0.987894i \(0.549579\pi\)
\(164\) −0.269051 + 1.09158i −0.0210094 + 0.0852384i
\(165\) −15.9396 6.79121i −1.24089 0.528695i
\(166\) −16.3696 + 2.66032i −1.27053 + 0.206481i
\(167\) 5.68919 + 1.16146i 0.440243 + 0.0898763i 0.415034 0.909806i \(-0.363770\pi\)
0.0252091 + 0.999682i \(0.491975\pi\)
\(168\) 17.9230 1.38279
\(169\) −5.57571 + 11.7436i −0.428901 + 0.903352i
\(170\) −20.4186 −1.56604
\(171\) −6.62493 1.35249i −0.506621 0.103427i
\(172\) −1.45579 + 0.236588i −0.111003 + 0.0180397i
\(173\) 12.4648 + 5.31077i 0.947684 + 0.403770i 0.809818 0.586681i \(-0.199566\pi\)
0.137865 + 0.990451i \(0.455976\pi\)
\(174\) 4.10559 16.6570i 0.311244 1.26277i
\(175\) 10.7742 + 0.434187i 0.814455 + 0.0328214i
\(176\) 8.92405 4.23451i 0.672676 0.319189i
\(177\) −23.8493 16.4620i −1.79262 1.23736i
\(178\) 12.3915 4.13690i 0.928785 0.310074i
\(179\) 4.53762 9.56284i 0.339158 0.714760i −0.660181 0.751106i \(-0.729521\pi\)
0.999339 + 0.0363462i \(0.0115719\pi\)
\(180\) 0.501425 1.50195i 0.0373740 0.111949i
\(181\) −9.53712 2.35069i −0.708888 0.174725i −0.131644 0.991297i \(-0.542026\pi\)
−0.577244 + 0.816572i \(0.695872\pi\)
\(182\) 10.1276 + 9.72993i 0.750707 + 0.721230i
\(183\) −8.47297 + 2.08840i −0.626340 + 0.154379i
\(184\) −1.55441 + 19.2549i −0.114593 + 1.41949i
\(185\) 5.54448 + 5.77242i 0.407638 + 0.424397i
\(186\) −4.35014 9.16773i −0.318968 0.672211i
\(187\) −10.5259 + 1.27807i −0.769729 + 0.0934620i
\(188\) −0.241215 0.139265i −0.0175924 0.0101570i
\(189\) 1.04278 1.38769i 0.0758509 0.100939i
\(190\) 7.55309 5.21352i 0.547959 0.378228i
\(191\) −11.7666 + 20.3803i −0.851399 + 1.47467i 0.0285467 + 0.999592i \(0.490912\pi\)
−0.879946 + 0.475074i \(0.842421\pi\)
\(192\) −9.07791 15.7234i −0.655142 1.13474i
\(193\) 2.50329 + 1.18783i 0.180191 + 0.0855017i 0.516651 0.856196i \(-0.327178\pi\)
−0.336460 + 0.941698i \(0.609230\pi\)
\(194\) 12.7971 + 6.71646i 0.918781 + 0.482214i
\(195\) −24.0608 + 12.6246i −1.72303 + 0.904064i
\(196\) 0.00290099 0.00152256i 0.000207214 0.000108754i
\(197\) 14.1183 0.568950i 1.00589 0.0405360i 0.468152 0.883648i \(-0.344920\pi\)
0.537738 + 0.843112i \(0.319279\pi\)
\(198\) 2.20517 10.8017i 0.156715 0.767641i
\(199\) 1.77077 6.11340i 0.125526 0.433367i −0.872995 0.487729i \(-0.837825\pi\)
0.998521 + 0.0543620i \(0.0173125\pi\)
\(200\) −5.11255 9.74114i −0.361512 0.688803i
\(201\) 18.1514 + 28.7041i 1.28030 + 2.02463i
\(202\) −1.98560 + 12.2179i −0.139707 + 0.859649i
\(203\) 2.95704 + 11.9972i 0.207544 + 0.842038i
\(204\) −0.372107 1.82270i −0.0260527 0.127615i
\(205\) 20.9363 + 1.69016i 1.46226 + 0.118046i
\(206\) 13.7487 21.7418i 0.957916 1.51482i
\(207\) 17.4471 + 15.4568i 1.21266 + 1.07432i
\(208\) 3.70895 15.0403i 0.257169 1.04286i
\(209\) 3.56731 3.16036i 0.246756 0.218607i
\(210\) 4.70875 + 28.9741i 0.324935 + 1.99940i
\(211\) 2.11367 0.900551i 0.145511 0.0619965i −0.317983 0.948096i \(-0.603006\pi\)
0.463495 + 0.886100i \(0.346595\pi\)
\(212\) −1.70678 + 1.07930i −0.117222 + 0.0741269i
\(213\) −18.5470 + 20.9353i −1.27082 + 1.43446i
\(214\) 0.378906 + 4.69359i 0.0259015 + 0.320847i
\(215\) 8.72590 + 26.1373i 0.595102 + 1.78255i
\(216\) −1.75804 0.213465i −0.119620 0.0145245i
\(217\) 5.84288 + 4.39064i 0.396640 + 0.298056i
\(218\) 8.72375 10.6847i 0.590847 0.723656i
\(219\) −1.81168 1.47919i −0.122422 0.0999544i
\(220\) 0.634008 + 0.918519i 0.0427448 + 0.0619266i
\(221\) −8.88904 + 14.0533i −0.597942 + 0.945328i
\(222\) −5.55391 + 8.04623i −0.372754 + 0.540028i
\(223\) −3.32386 + 0.962767i −0.222582 + 0.0644716i −0.387635 0.921813i \(-0.626708\pi\)
0.165053 + 0.986285i \(0.447221\pi\)
\(224\) −2.03716 1.28822i −0.136113 0.0860728i
\(225\) −13.1026 2.12938i −0.873506 0.141959i
\(226\) 19.6473 + 7.45124i 1.30692 + 0.495649i
\(227\) −3.45980 + 8.12046i −0.229635 + 0.538974i −0.994442 0.105286i \(-0.966424\pi\)
0.764807 + 0.644260i \(0.222834\pi\)
\(228\) 0.603039 + 0.579227i 0.0399373 + 0.0383603i
\(229\) 6.82600 13.0059i 0.451075 0.859452i −0.548651 0.836051i \(-0.684858\pi\)
0.999726 0.0234003i \(-0.00744924\pi\)
\(230\) −31.5356 + 2.54581i −2.07939 + 0.167866i
\(231\) 4.24097 + 14.6415i 0.279035 + 0.963342i
\(232\) 9.09176 8.73275i 0.596903 0.573333i
\(233\) 3.03983 + 8.01536i 0.199146 + 0.525104i 0.996970 0.0777860i \(-0.0247851\pi\)
−0.797824 + 0.602890i \(0.794016\pi\)
\(234\) −10.9330 13.3936i −0.714710 0.875567i
\(235\) −1.84529 + 4.86564i −0.120374 + 0.317399i
\(236\) 0.731697 + 1.71736i 0.0476294 + 0.111790i
\(237\) −1.40999 34.9887i −0.0915890 2.27276i
\(238\) 11.3614 + 13.9152i 0.736452 + 0.901989i
\(239\) 24.7581i 1.60147i −0.599018 0.800736i \(-0.704442\pi\)
0.599018 0.800736i \(-0.295558\pi\)
\(240\) 25.0802 20.4774i 1.61892 1.32181i
\(241\) −5.57823 1.61576i −0.359326 0.104080i 0.0936443 0.995606i \(-0.470148\pi\)
−0.452970 + 0.891526i \(0.649636\pi\)
\(242\) −5.57059 6.28790i −0.358091 0.404201i
\(243\) 15.4822 16.1187i 0.993183 1.03401i
\(244\) 0.533206 + 0.178010i 0.0341350 + 0.0113960i
\(245\) −0.0367718 0.0489344i −0.00234926 0.00312630i
\(246\) 3.09265 + 25.4703i 0.197180 + 1.62393i
\(247\) −0.300093 7.46813i −0.0190945 0.475186i
\(248\) 0.898800 7.40228i 0.0570738 0.470045i
\(249\) −24.4474 + 14.1147i −1.54929 + 0.894483i
\(250\) −3.29279 + 2.47437i −0.208254 + 0.156493i
\(251\) 0.403273 10.0071i 0.0254543 0.631643i −0.935237 0.354023i \(-0.884813\pi\)
0.960691 0.277620i \(-0.0895455\pi\)
\(252\) −1.30258 + 0.494003i −0.0820547 + 0.0311193i
\(253\) −16.0973 + 3.28630i −1.01203 + 0.206608i
\(254\) −11.1550 + 2.27731i −0.699926 + 0.142891i
\(255\) −32.4974 + 12.3246i −2.03507 + 0.771799i
\(256\) −0.154790 + 3.84108i −0.00967439 + 0.240067i
\(257\) −6.15675 + 4.62650i −0.384047 + 0.288593i −0.775179 0.631742i \(-0.782340\pi\)
0.391131 + 0.920335i \(0.372084\pi\)
\(258\) −29.1499 + 16.8297i −1.81479 + 1.04777i
\(259\) 0.848794 6.99045i 0.0527415 0.434365i
\(260\) 1.74462 + 0.141043i 0.108197 + 0.00874711i
\(261\) −1.83352 15.1004i −0.113492 0.934690i
\(262\) −11.8905 15.8234i −0.734596 0.977570i
\(263\) −12.0983 4.03901i −0.746013 0.249056i −0.0818514 0.996645i \(-0.526083\pi\)
−0.664162 + 0.747589i \(0.731211\pi\)
\(264\) 10.7732 11.2161i 0.663046 0.690304i
\(265\) 25.0187 + 28.2403i 1.53689 + 1.73479i
\(266\) −7.75571 2.24647i −0.475533 0.137740i
\(267\) 17.2248 14.0636i 1.05414 0.860679i
\(268\) 2.18770i 0.133635i
\(269\) 14.6662 + 17.9628i 0.894212 + 1.09521i 0.994957 + 0.100299i \(0.0319800\pi\)
−0.100745 + 0.994912i \(0.532123\pi\)
\(270\) −0.116790 2.89811i −0.00710761 0.176374i
\(271\) 2.68352 + 6.29844i 0.163012 + 0.382603i 0.981376 0.192097i \(-0.0615289\pi\)
−0.818364 + 0.574700i \(0.805119\pi\)
\(272\) 7.02642 18.5271i 0.426039 1.12337i
\(273\) 21.9916 + 9.37274i 1.33099 + 0.567264i
\(274\) 5.32530 + 14.0417i 0.321713 + 0.848288i
\(275\) 6.74792 6.48146i 0.406915 0.390847i
\(276\) −0.801956 2.76867i −0.0482721 0.166655i
\(277\) 0.749735 0.0605249i 0.0450472 0.00363659i −0.0579224 0.998321i \(-0.518448\pi\)
0.102970 + 0.994685i \(0.467166\pi\)
\(278\) −5.61327 + 10.6952i −0.336661 + 0.641455i
\(279\) −6.48897 6.23274i −0.388485 0.373144i
\(280\) −8.45486 + 19.8443i −0.505275 + 1.18592i
\(281\) −10.5361 3.99581i −0.628531 0.238370i 0.0197099 0.999806i \(-0.493726\pi\)
−0.648241 + 0.761435i \(0.724495\pi\)
\(282\) −6.27423 1.01966i −0.373625 0.0607200i
\(283\) −8.83975 5.58992i −0.525469 0.332286i 0.245252 0.969459i \(-0.421129\pi\)
−0.770721 + 0.637173i \(0.780104\pi\)
\(284\) 1.73055 0.501261i 0.102689 0.0297444i
\(285\) 8.87430 12.8566i 0.525668 0.761561i
\(286\) 12.1765 0.489289i 0.720009 0.0289322i
\(287\) −10.4976 15.2085i −0.619656 0.897727i
\(288\) 2.29842 + 1.87660i 0.135436 + 0.110580i
\(289\) −2.70057 + 3.30760i −0.158857 + 0.194565i
\(290\) 16.5059 + 12.4033i 0.969257 + 0.728350i
\(291\) 24.4214 + 2.96530i 1.43161 + 0.173829i
\(292\) 0.0477094 + 0.142907i 0.00279198 + 0.00836300i
\(293\) 0.954751 + 11.8267i 0.0557772 + 0.690924i 0.962865 + 0.269983i \(0.0870180\pi\)
−0.907088 + 0.420941i \(0.861700\pi\)
\(294\) 0.0495817 0.0559661i 0.00289166 0.00326401i
\(295\) 29.4771 18.6402i 1.71622 1.08527i
\(296\) −6.60945 + 2.81602i −0.384167 + 0.163678i
\(297\) −0.241609 1.48668i −0.0140196 0.0862658i
\(298\) −12.1413 + 10.7562i −0.703325 + 0.623091i
\(299\) −11.9765 + 22.8129i −0.692618 + 1.31930i
\(300\) 1.22873 + 1.08856i 0.0709407 + 0.0628480i
\(301\) 12.9571 20.4901i 0.746836 1.18103i
\(302\) 5.30618 + 0.428359i 0.305336 + 0.0246493i
\(303\) 4.21450 + 20.6440i 0.242117 + 1.18597i
\(304\) 2.13141 + 8.64746i 0.122245 + 0.495966i
\(305\) 1.68470 10.3664i 0.0964659 0.593579i
\(306\) −11.8198 18.6915i −0.675691 1.06852i
\(307\) −12.9700 24.7122i −0.740236 1.41040i −0.905584 0.424166i \(-0.860567\pi\)
0.165348 0.986235i \(-0.447125\pi\)
\(308\) 0.273189 0.943159i 0.0155664 0.0537415i
\(309\) 8.75850 42.9020i 0.498254 2.44061i
\(310\) 12.2026 0.491747i 0.693059 0.0279293i
\(311\) −0.804546 + 0.422258i −0.0456216 + 0.0239441i −0.487380 0.873190i \(-0.662047\pi\)
0.441758 + 0.897134i \(0.354355\pi\)
\(312\) −2.93705 24.2121i −0.166278 1.37074i
\(313\) 29.1398 + 15.2938i 1.64708 + 0.864454i 0.994266 + 0.106937i \(0.0341042\pi\)
0.652815 + 0.757518i \(0.273588\pi\)
\(314\) −15.7558 7.47623i −0.889152 0.421908i
\(315\) 13.0137 + 22.5405i 0.733242 + 1.27001i
\(316\) −1.12784 + 1.95348i −0.0634461 + 0.109892i
\(317\) −23.0144 + 15.8857i −1.29262 + 0.892231i −0.997989 0.0633807i \(-0.979812\pi\)
−0.294630 + 0.955611i \(0.595196\pi\)
\(318\) −27.6860 + 36.8434i −1.55255 + 2.06607i
\(319\) 9.28520 + 5.36081i 0.519871 + 0.300148i
\(320\) 21.6912 2.63379i 1.21258 0.147233i
\(321\) 3.43609 + 7.24141i 0.191784 + 0.404176i
\(322\) 19.2821 + 20.0748i 1.07455 + 1.11872i
\(323\) 0.769290 9.52937i 0.0428044 0.530228i
\(324\) −1.27494 + 0.314244i −0.0708298 + 0.0174580i
\(325\) −1.17904 14.6260i −0.0654011 0.811304i
\(326\) 4.19957 + 1.03510i 0.232593 + 0.0573289i
\(327\) 7.43511 22.2709i 0.411162 1.23158i
\(328\) −8.08247 + 17.0334i −0.446280 + 0.940515i
\(329\) 4.34268 1.44980i 0.239419 0.0799300i
\(330\) 20.9622 + 14.4691i 1.15393 + 0.796500i
\(331\) −24.2804 + 11.5212i −1.33457 + 0.633263i −0.956288 0.292426i \(-0.905537\pi\)
−0.378285 + 0.925689i \(0.623486\pi\)
\(332\) 1.81697 + 0.0732215i 0.0997193 + 0.00401855i
\(333\) −2.07460 + 8.41697i −0.113687 + 0.461247i
\(334\) −7.85312 3.34590i −0.429704 0.183080i
\(335\) −40.3436 + 6.55648i −2.20421 + 0.358219i
\(336\) −27.9104 5.69796i −1.52264 0.310849i
\(337\) −5.75488 −0.313488 −0.156744 0.987639i \(-0.550100\pi\)
−0.156744 + 0.987639i \(0.550100\pi\)
\(338\) 11.4845 15.2757i 0.624674 0.830891i
\(339\) 35.7674 1.94262
\(340\) 2.19362 + 0.447831i 0.118966 + 0.0242871i
\(341\) 6.25969 1.01730i 0.338981 0.0550898i
\(342\) 9.14478 + 3.89623i 0.494493 + 0.210684i
\(343\) 4.42573 17.9559i 0.238967 0.969527i
\(344\) −24.7139 0.995935i −1.33248 0.0536972i
\(345\) −48.6540 + 23.0866i −2.61944 + 1.24294i
\(346\) −16.3926 11.3150i −0.881269 0.608296i
\(347\) −12.5264 + 4.18191i −0.672450 + 0.224497i −0.632331 0.774698i \(-0.717902\pi\)
−0.0401188 + 0.999195i \(0.512774\pi\)
\(348\) −0.806403 + 1.69946i −0.0432277 + 0.0911005i
\(349\) −4.95408 + 14.8393i −0.265186 + 0.794328i 0.728791 + 0.684736i \(0.240083\pi\)
−0.993977 + 0.109592i \(0.965046\pi\)
\(350\) −15.3914 3.79364i −0.822706 0.202779i
\(351\) −2.04550 1.18128i −0.109180 0.0630522i
\(352\) −2.03066 + 0.500513i −0.108235 + 0.0266774i
\(353\) −0.460539 + 5.70480i −0.0245120 + 0.303636i 0.972872 + 0.231346i \(0.0743129\pi\)
−0.997384 + 0.0722903i \(0.976969\pi\)
\(354\) 29.5115 + 30.7247i 1.56852 + 1.63300i
\(355\) −14.4302 30.4110i −0.765876 1.61405i
\(356\) −1.42198 + 0.172660i −0.0753650 + 0.00915096i
\(357\) 26.4815 + 15.2891i 1.40155 + 0.809186i
\(358\) −9.34797 + 12.4399i −0.494056 + 0.657469i
\(359\) 15.1214 10.4375i 0.798075 0.550871i −0.0977852 0.995208i \(-0.531176\pi\)
0.895860 + 0.444336i \(0.146560\pi\)
\(360\) 13.2772 22.9968i 0.699770 1.21204i
\(361\) −7.35142 12.7330i −0.386917 0.670160i
\(362\) 13.0459 + 6.19037i 0.685679 + 0.325359i
\(363\) −12.6613 6.64515i −0.664544 0.348780i
\(364\) −0.874629 1.26743i −0.0458430 0.0664315i
\(365\) 2.49238 1.30810i 0.130457 0.0684692i
\(366\) 12.8185 0.516568i 0.670034 0.0270014i
\(367\) −2.03763 + 9.98096i −0.106363 + 0.521002i 0.891344 + 0.453327i \(0.149763\pi\)
−0.997707 + 0.0676745i \(0.978442\pi\)
\(368\) 8.54197 29.4903i 0.445281 1.53729i
\(369\) 10.5723 + 20.1437i 0.550370 + 1.04864i
\(370\) −6.28879 9.94493i −0.326939 0.517012i
\(371\) 5.32462 32.7637i 0.276441 1.70101i
\(372\) 0.266275 + 1.08032i 0.0138057 + 0.0560120i
\(373\) −4.53029 22.1908i −0.234570 1.14900i −0.910973 0.412467i \(-0.864667\pi\)
0.676403 0.736532i \(-0.263538\pi\)
\(374\) 15.5372 + 1.25429i 0.803410 + 0.0648580i
\(375\) −3.74713 + 5.92561i −0.193501 + 0.305997i
\(376\) −3.49627 3.09743i −0.180307 0.159738i
\(377\) 15.7224 5.96063i 0.809743 0.306988i
\(378\) −1.91007 + 1.69217i −0.0982432 + 0.0870359i
\(379\) 0.123009 + 0.756908i 0.00631857 + 0.0388797i 0.990018 0.140940i \(-0.0450126\pi\)
−0.983700 + 0.179820i \(0.942448\pi\)
\(380\) −0.925791 + 0.394443i −0.0474921 + 0.0202345i
\(381\) −16.3792 + 10.3576i −0.839133 + 0.530635i
\(382\) 22.9414 25.8955i 1.17379 1.32493i
\(383\) 1.39687 + 17.3033i 0.0713765 + 0.884157i 0.929048 + 0.369959i \(0.120628\pi\)
−0.857672 + 0.514198i \(0.828090\pi\)
\(384\) 9.89384 + 29.6357i 0.504893 + 1.51234i
\(385\) −18.2116 2.21129i −0.928151 0.112698i
\(386\) −3.25643 2.44705i −0.165748 0.124551i
\(387\) −18.8752 + 23.1179i −0.959479 + 1.17515i
\(388\) −1.22752 1.00224i −0.0623178 0.0508809i
\(389\) −8.97918 13.0086i −0.455262 0.659561i 0.526389 0.850244i \(-0.323545\pi\)
−0.981652 + 0.190682i \(0.938930\pi\)
\(390\) 38.3693 11.1090i 1.94291 0.562527i
\(391\) −18.7219 + 27.1234i −0.946808 + 1.37169i
\(392\) 0.0527739 0.0152861i 0.00266548 0.000772067i
\(393\) −28.4753 18.0067i −1.43639 0.908317i
\(394\) −20.5032 3.33210i −1.03294 0.167869i
\(395\) 39.4044 + 14.9441i 1.98265 + 0.751921i
\(396\) −0.473814 + 1.11208i −0.0238100 + 0.0558842i
\(397\) 4.08421 + 3.92293i 0.204980 + 0.196886i 0.788184 0.615440i \(-0.211022\pi\)
−0.583204 + 0.812326i \(0.698201\pi\)
\(398\) −4.34829 + 8.28497i −0.217960 + 0.415288i
\(399\) −13.6996 + 1.10595i −0.685838 + 0.0553666i
\(400\) 4.86463 + 16.7946i 0.243231 + 0.839732i
\(401\) 20.6179 19.8037i 1.02961 0.988951i 0.0296632 0.999560i \(-0.490557\pi\)
0.999944 + 0.0106091i \(0.00337703\pi\)
\(402\) −17.7044 46.6827i −0.883015 2.32832i
\(403\) 4.97381 8.61260i 0.247763 0.429024i
\(404\) 0.481287 1.26905i 0.0239449 0.0631375i
\(405\) 9.61595 + 22.5695i 0.477820 + 1.12149i
\(406\) −0.731428 18.1502i −0.0363001 0.900779i
\(407\) −3.86438 4.73301i −0.191550 0.234607i
\(408\) 31.1973i 1.54450i
\(409\) 5.51120 4.49976i 0.272511 0.222499i −0.486328 0.873776i \(-0.661664\pi\)
0.758840 + 0.651278i \(0.225767\pi\)
\(410\) −29.6595 8.59098i −1.46478 0.424278i
\(411\) 16.9510 + 19.1338i 0.836132 + 0.943798i
\(412\) −1.95390 + 2.03423i −0.0962619 + 0.100219i
\(413\) −29.1049 9.71665i −1.43216 0.478125i
\(414\) −20.5855 27.3943i −1.01172 1.34636i
\(415\) −4.09513 33.7264i −0.201022 1.65556i
\(416\) −1.40642 + 2.96308i −0.0689553 + 0.145277i
\(417\) −2.47824 + 20.4101i −0.121360 + 0.999489i
\(418\) −6.06765 + 3.50316i −0.296778 + 0.171345i
\(419\) 9.89442 7.43517i 0.483374 0.363232i −0.330945 0.943650i \(-0.607367\pi\)
0.814319 + 0.580418i \(0.197111\pi\)
\(420\) 0.129602 3.21603i 0.00632391 0.156926i
\(421\) −23.6749 + 8.97869i −1.15384 + 0.437595i −0.855977 0.517013i \(-0.827044\pi\)
−0.297865 + 0.954608i \(0.596275\pi\)
\(422\) −3.30932 + 0.675603i −0.161095 + 0.0328879i
\(423\) −5.52225 + 1.12737i −0.268501 + 0.0548148i
\(424\) −31.6648 + 12.0089i −1.53778 + 0.583203i
\(425\) 0.755757 18.7539i 0.0366596 0.909698i
\(426\) 32.8711 24.7011i 1.59261 1.19677i
\(427\) −8.00207 + 4.62000i −0.387247 + 0.223577i
\(428\) 0.0622353 0.512554i 0.00300826 0.0247752i
\(429\) 19.0842 8.12841i 0.921393 0.392443i
\(430\) −4.88284 40.2138i −0.235471 1.93928i
\(431\) 9.11418 + 12.1288i 0.439015 + 0.584223i 0.963671 0.267092i \(-0.0860626\pi\)
−0.524656 + 0.851314i \(0.675806\pi\)
\(432\) 2.66983 + 0.891322i 0.128452 + 0.0428837i
\(433\) 10.9749 11.4261i 0.527420 0.549102i −0.403190 0.915116i \(-0.632098\pi\)
0.930609 + 0.366015i \(0.119278\pi\)
\(434\) −7.12492 8.04238i −0.342007 0.386046i
\(435\) 33.7566 + 9.77773i 1.61851 + 0.468806i
\(436\) −1.17155 + 0.956543i −0.0561072 + 0.0458101i
\(437\) 14.8135i 0.708627i
\(438\) 2.17456 + 2.66335i 0.103904 + 0.127260i
\(439\) 0.829311 + 20.5791i 0.0395809 + 0.982189i 0.889966 + 0.456028i \(0.150728\pi\)
−0.850385 + 0.526161i \(0.823631\pi\)
\(440\) 7.33636 + 17.2191i 0.349747 + 0.820886i
\(441\) 0.0235089 0.0619880i 0.00111947 0.00295181i
\(442\) 16.9362 17.6284i 0.805572 0.838495i
\(443\) −11.2017 29.5366i −0.532211 1.40332i −0.884106 0.467286i \(-0.845232\pi\)
0.351896 0.936039i \(-0.385537\pi\)
\(444\) 0.773143 0.742614i 0.0366918 0.0352429i
\(445\) 7.44568 + 25.7055i 0.352959 + 1.21856i
\(446\) 5.07076 0.409354i 0.240107 0.0193835i
\(447\) −12.8311 + 24.4476i −0.606889 + 1.15633i
\(448\) −13.8644 13.3170i −0.655033 0.629167i
\(449\) 9.58027 22.4857i 0.452121 1.06117i −0.525500 0.850793i \(-0.676122\pi\)
0.977621 0.210373i \(-0.0674679\pi\)
\(450\) 18.2467 + 6.92005i 0.860157 + 0.326214i
\(451\) −15.8273 2.57219i −0.745279 0.121120i
\(452\) −1.94733 1.23142i −0.0915948 0.0579210i
\(453\) 8.70364 2.52104i 0.408933 0.118449i
\(454\) 7.37135 10.6792i 0.345955 0.501202i
\(455\) −20.7516 + 19.9276i −0.972850 + 0.934219i
\(456\) 7.96564 + 11.5402i 0.373025 + 0.540421i
\(457\) −12.0207 9.81460i −0.562305 0.459108i 0.308163 0.951334i \(-0.400286\pi\)
−0.870467 + 0.492226i \(0.836183\pi\)
\(458\) −13.6566 + 16.7263i −0.638130 + 0.781568i
\(459\) −2.41544 1.81509i −0.112743 0.0847210i
\(460\) 3.44377 + 0.418150i 0.160567 + 0.0194963i
\(461\) 3.04479 + 9.12026i 0.141810 + 0.424773i 0.995358 0.0962414i \(-0.0306821\pi\)
−0.853548 + 0.521014i \(0.825554\pi\)
\(462\) −1.80320 22.3366i −0.0838923 1.03919i
\(463\) −9.88776 + 11.1610i −0.459523 + 0.518694i −0.931906 0.362699i \(-0.881855\pi\)
0.472383 + 0.881393i \(0.343394\pi\)
\(464\) −16.9343 + 10.7086i −0.786156 + 0.497135i
\(465\) 19.1243 8.14809i 0.886866 0.377858i
\(466\) −2.02156 12.4391i −0.0936468 0.576232i
\(467\) −0.941102 + 0.833744i −0.0435490 + 0.0385811i −0.684617 0.728903i \(-0.740030\pi\)
0.641068 + 0.767484i \(0.278492\pi\)
\(468\) 0.880799 + 1.67869i 0.0407150 + 0.0775976i
\(469\) 26.9164 + 23.8458i 1.24288 + 1.10110i
\(470\) 4.08872 6.46579i 0.188599 0.298245i
\(471\) −29.5889 2.38866i −1.36338 0.110064i
\(472\) 6.26185 + 30.6725i 0.288225 + 1.41182i
\(473\) −5.03424 20.4247i −0.231475 0.939129i
\(474\) −8.25774 + 50.8119i −0.379291 + 2.33387i
\(475\) 4.50890 + 7.13025i 0.206882 + 0.327158i
\(476\) −0.915389 1.74413i −0.0419568 0.0799420i
\(477\) −11.3689 + 39.2499i −0.520545 + 1.79713i
\(478\) −7.28032 + 35.6614i −0.332994 + 1.63111i
\(479\) −33.4346 + 1.34737i −1.52767 + 0.0615628i −0.789791 0.613376i \(-0.789811\pi\)
−0.737874 + 0.674938i \(0.764170\pi\)
\(480\) −6.07022 + 3.18589i −0.277066 + 0.145416i
\(481\) −9.58244 0.00110437i −0.436922 5.03548e-5i
\(482\) 7.55971 + 3.96764i 0.344335 + 0.180721i
\(483\) 42.8056 + 20.3115i 1.94772 + 0.924206i
\(484\) 0.460552 + 0.797700i 0.0209342 + 0.0362591i
\(485\) −14.8035 + 25.6405i −0.672193 + 1.16427i
\(486\) −27.0402 + 18.6645i −1.22657 + 0.846640i
\(487\) 11.9955 15.9631i 0.543566 0.723355i −0.441167 0.897425i \(-0.645435\pi\)
0.984733 + 0.174070i \(0.0556919\pi\)
\(488\) 8.16406 + 4.71352i 0.369570 + 0.213371i
\(489\) 7.30863 0.887429i 0.330508 0.0401309i
\(490\) 0.0385762 + 0.0812976i 0.00174270 + 0.00367265i
\(491\) 19.5706 + 20.3751i 0.883209 + 0.919517i 0.997261 0.0739572i \(-0.0235628\pi\)
−0.114053 + 0.993475i \(0.536383\pi\)
\(492\) 0.226375 2.80416i 0.0102058 0.126421i
\(493\) 20.8826 5.14711i 0.940507 0.231814i
\(494\) −1.76381 + 10.8453i −0.0793575 + 0.487951i
\(495\) 21.9280 + 5.40477i 0.985591 + 0.242926i
\(496\) −3.75293 + 11.2414i −0.168511 + 0.504753i
\(497\) −12.6957 + 26.7555i −0.569478 + 1.20015i
\(498\) 39.3643 13.1417i 1.76396 0.588895i
\(499\) 33.3196 + 22.9988i 1.49159 + 1.02957i 0.985991 + 0.166799i \(0.0533432\pi\)
0.505597 + 0.862770i \(0.331272\pi\)
\(500\) 0.408021 0.193608i 0.0182472 0.00865842i
\(501\) −14.5183 0.585066i −0.648628 0.0261388i
\(502\) −3.52354 + 14.2956i −0.157263 + 0.638042i
\(503\) 15.6840 + 6.68232i 0.699314 + 0.297950i 0.712210 0.701967i \(-0.247695\pi\)
−0.0128953 + 0.999917i \(0.504105\pi\)
\(504\) −23.0600 + 3.74761i −1.02717 + 0.166932i
\(505\) −24.8451 5.07215i −1.10559 0.225708i
\(506\) 24.1528 1.07372
\(507\) 9.05780 31.2442i 0.402271 1.38760i
\(508\) 1.24835 0.0553867
\(509\) 27.4807 + 5.61023i 1.21806 + 0.248669i 0.765719 0.643175i \(-0.222383\pi\)
0.452343 + 0.891844i \(0.350588\pi\)
\(510\) 50.4331 8.19618i 2.23322 0.362933i
\(511\) −2.27828 0.970686i −0.100785 0.0429406i
\(512\) −4.62357 + 18.7585i −0.204335 + 0.829018i
\(513\) 1.35695 + 0.0546831i 0.0599107 + 0.00241432i
\(514\) 10.2286 4.85352i 0.451163 0.214080i
\(515\) 43.3692 + 29.9356i 1.91108 + 1.31912i
\(516\) 3.50076 1.16873i 0.154112 0.0514503i
\(517\) 1.70303 3.58907i 0.0748993 0.157847i
\(518\) −3.27819 + 9.81938i −0.144035 + 0.431439i
\(519\) −32.9194 8.11389i −1.44500 0.356160i
\(520\) 28.1930 + 8.16973i 1.23635 + 0.358266i
\(521\) 9.62948 2.37345i 0.421875 0.103983i −0.0226622 0.999743i \(-0.507214\pi\)
0.444537 + 0.895760i \(0.353368\pi\)
\(522\) −1.79940 + 22.2896i −0.0787577 + 0.975589i
\(523\) 0.818019 + 0.851648i 0.0357695 + 0.0372400i 0.738847 0.673873i \(-0.235371\pi\)
−0.703077 + 0.711113i \(0.748191\pi\)
\(524\) 0.930376 + 1.96073i 0.0406437 + 0.0856547i
\(525\) −26.7861 + 3.25243i −1.16904 + 0.141948i
\(526\) 16.2386 + 9.37535i 0.708036 + 0.408785i
\(527\) 7.64246 10.1703i 0.332911 0.443024i
\(528\) −20.3422 + 14.0412i −0.885282 + 0.611066i
\(529\) −14.0333 + 24.3063i −0.610142 + 1.05680i
\(530\) −27.7324 48.0340i −1.20462 2.08646i
\(531\) 34.1268 + 16.1934i 1.48098 + 0.702733i
\(532\) 0.783943 + 0.411445i 0.0339882 + 0.0178384i
\(533\) −18.8248 + 16.6734i −0.815391 + 0.722206i
\(534\) −28.9459 + 15.1920i −1.25261 + 0.657422i
\(535\) −9.63857 + 0.388421i −0.416712 + 0.0167929i
\(536\) 7.33852 35.9464i 0.316976 1.55265i
\(537\) −7.36913 + 25.4412i −0.318002 + 1.09787i
\(538\) −15.8429 30.1861i −0.683036 1.30142i
\(539\) 0.0249749 + 0.0394946i 0.00107574 + 0.00170115i
\(540\) −0.0510158 + 0.313913i −0.00219537 + 0.0135086i
\(541\) −1.46880 5.95917i −0.0631488 0.256205i 0.930880 0.365326i \(-0.119042\pi\)
−0.994028 + 0.109121i \(0.965196\pi\)
\(542\) −2.01320 9.86133i −0.0864745 0.423580i
\(543\) 24.4998 + 1.97783i 1.05139 + 0.0848768i
\(544\) −2.24231 + 3.54593i −0.0961382 + 0.152030i
\(545\) 21.1508 + 18.7380i 0.906002 + 0.802647i
\(546\) −28.9204 19.9672i −1.23768 0.854517i
\(547\) 5.79636 5.13513i 0.247835 0.219562i −0.530055 0.847963i \(-0.677829\pi\)
0.777890 + 0.628401i \(0.216290\pi\)
\(548\) −0.264141 1.62532i −0.0112835 0.0694304i
\(549\) 10.4647 4.45861i 0.446625 0.190289i
\(550\) −11.6256 + 7.35156i −0.495716 + 0.313471i
\(551\) −6.41051 + 7.23596i −0.273097 + 0.308262i
\(552\) −3.88970 48.1826i −0.165557 2.05079i
\(553\) −11.7412 35.1692i −0.499287 1.49555i
\(554\) −1.09771 0.133286i −0.0466372 0.00566278i
\(555\) −16.0117 12.0320i −0.679659 0.510731i
\(556\) 0.837618 1.02590i 0.0355229 0.0435077i
\(557\) −13.0357 10.6433i −0.552339 0.450971i 0.314714 0.949186i \(-0.398091\pi\)
−0.867053 + 0.498216i \(0.833989\pi\)
\(558\) 7.51386 + 10.8857i 0.318087 + 0.460829i
\(559\) −29.8032 14.1460i −1.26054 0.598312i
\(560\) 19.4750 28.2144i 0.822969 1.19228i
\(561\) 25.4854 7.38195i 1.07600 0.311666i
\(562\) 14.0011 + 8.85375i 0.590600 + 0.373473i
\(563\) 20.2953 + 3.29831i 0.855347 + 0.139007i 0.572245 0.820083i \(-0.306073\pi\)
0.283102 + 0.959090i \(0.408637\pi\)
\(564\) 0.651691 + 0.247154i 0.0274412 + 0.0104071i
\(565\) −16.8726 + 39.6015i −0.709836 + 1.66605i
\(566\) 11.0889 + 10.6511i 0.466102 + 0.447697i
\(567\) 10.0304 19.1114i 0.421239 0.802604i
\(568\) 30.1164 2.43125i 1.26366 0.102013i
\(569\) −7.75641 26.7782i −0.325165 1.12260i −0.942029 0.335531i \(-0.891084\pi\)
0.616864 0.787070i \(-0.288403\pi\)
\(570\) −16.5630 + 15.9090i −0.693749 + 0.666355i
\(571\) −9.26305 24.4247i −0.387647 1.02214i −0.976807 0.214124i \(-0.931310\pi\)
0.589160 0.808017i \(-0.299459\pi\)
\(572\) −1.31888 0.214494i −0.0551450 0.00896845i
\(573\) 20.8821 55.0616i 0.872363 2.30023i
\(574\) 10.6485 + 24.9930i 0.444461 + 1.04319i
\(575\) −1.17102 29.0587i −0.0488351 1.21183i
\(576\) 14.9674 + 18.3318i 0.623642 + 0.763823i
\(577\) 19.8498i 0.826357i 0.910650 + 0.413179i \(0.135581\pi\)
−0.910650 + 0.413179i \(0.864419\pi\)
\(578\) 4.86250 3.97011i 0.202253 0.165135i
\(579\) −6.65982 1.92904i −0.276773 0.0801682i
\(580\) −1.50123 1.69453i −0.0623350 0.0703617i
\(581\) −20.7058 + 21.5570i −0.859020 + 0.894334i
\(582\) −34.3044 11.4525i −1.42196 0.474721i
\(583\) −17.3028 23.0258i −0.716608 0.953632i
\(584\) 0.304546 + 2.50816i 0.0126022 + 0.103789i
\(585\) 28.3172 21.2739i 1.17077 0.879567i
\(586\) 2.10252 17.3158i 0.0868544 0.715311i
\(587\) 15.7985 9.12125i 0.652073 0.376474i −0.137177 0.990547i \(-0.543803\pi\)
0.789250 + 0.614072i \(0.210470\pi\)
\(588\) −0.00655415 + 0.00492512i −0.000270288 + 0.000203109i
\(589\) −0.230244 + 5.71346i −0.00948706 + 0.235419i
\(590\) −47.9397 + 18.1811i −1.97365 + 0.748506i
\(591\) −34.6433 + 7.07248i −1.42503 + 0.290923i
\(592\) 11.1878 2.28400i 0.459814 0.0938717i
\(593\) 18.9827 7.19919i 0.779527 0.295635i 0.0674365 0.997724i \(-0.478518\pi\)
0.712090 + 0.702088i \(0.247749\pi\)
\(594\) −0.0891584 + 2.21244i −0.00365821 + 0.0907777i
\(595\) −29.4202 + 22.1079i −1.20611 + 0.906334i
\(596\) 1.54027 0.889278i 0.0630921 0.0364263i
\(597\) −1.91976 + 15.8106i −0.0785704 + 0.647085i
\(598\) 23.9591 29.3377i 0.979762 1.19971i
\(599\) 1.96622 + 16.1933i 0.0803377 + 0.661641i 0.976133 + 0.217174i \(0.0696838\pi\)
−0.895795 + 0.444467i \(0.853393\pi\)
\(600\) 16.5379 + 22.0080i 0.675158 + 0.898472i
\(601\) 30.7010 + 10.2495i 1.25232 + 0.418086i 0.864025 0.503449i \(-0.167936\pi\)
0.388295 + 0.921535i \(0.373064\pi\)
\(602\) −24.6886 + 25.7035i −1.00623 + 1.04760i
\(603\) −29.3556 33.1357i −1.19545 1.34939i
\(604\) −0.560660 0.162397i −0.0228129 0.00660785i
\(605\) 13.3302 10.8838i 0.541950 0.442488i
\(606\) 30.9747i 1.25826i
\(607\) −9.36778 11.4734i −0.380227 0.465693i 0.548666 0.836041i \(-0.315136\pi\)
−0.928893 + 0.370348i \(0.879238\pi\)
\(608\) −0.0759311 1.88421i −0.00307941 0.0764148i
\(609\) −12.1195 28.4456i −0.491108 1.15267i
\(610\) −5.47495 + 14.4363i −0.221674 + 0.584507i
\(611\) −2.67016 5.62891i −0.108023 0.227721i
\(612\) 0.859875 + 2.26730i 0.0347584 + 0.0916503i
\(613\) 2.11934 2.03565i 0.0855991 0.0822191i −0.648704 0.761041i \(-0.724689\pi\)
0.734303 + 0.678822i \(0.237509\pi\)
\(614\) 11.4150 + 39.4092i 0.460672 + 1.59043i
\(615\) −52.3903 + 4.22938i −2.11258 + 0.170545i
\(616\) 7.65259 14.5808i 0.308332 0.587477i
\(617\) 19.0347 + 18.2831i 0.766309 + 0.736050i 0.970032 0.242979i \(-0.0781246\pi\)
−0.203723 + 0.979029i \(0.565304\pi\)
\(618\) −25.2313 + 59.2201i −1.01495 + 2.38218i
\(619\) 19.0342 + 7.21873i 0.765050 + 0.290145i 0.706097 0.708115i \(-0.250454\pi\)
0.0589536 + 0.998261i \(0.481224\pi\)
\(620\) −1.32174 0.214803i −0.0530822 0.00862669i
\(621\) −3.95683 2.50215i −0.158782 0.100408i
\(622\) 1.28303 0.371634i 0.0514447 0.0149011i
\(623\) 13.3752 19.3773i 0.535867 0.776337i
\(624\) −3.12364 + 38.6378i −0.125046 + 1.54675i
\(625\) −16.3524 23.6905i −0.654095 0.947620i
\(626\) −37.4755 30.5978i −1.49782 1.22293i
\(627\) −7.54251 + 9.23789i −0.301219 + 0.368926i
\(628\) 1.52871 + 1.14875i 0.0610022 + 0.0458402i
\(629\) −12.1678 1.47743i −0.485160 0.0589091i
\(630\) −12.1167 36.2939i −0.482740 1.44598i
\(631\) 1.82739 + 22.6363i 0.0727474 + 0.901139i 0.925481 + 0.378793i \(0.123661\pi\)
−0.852734 + 0.522346i \(0.825057\pi\)
\(632\) −25.0846 + 28.3146i −0.997810 + 1.12630i
\(633\) −4.85918 + 3.07276i −0.193135 + 0.122131i
\(634\) 37.8211 16.1141i 1.50207 0.639971i
\(635\) −3.74128 23.0210i −0.148468 0.913561i
\(636\) 3.78243 3.35094i 0.149983 0.132874i
\(637\) 0.0727475 + 0.00884166i 0.00288236 + 0.000350319i
\(638\) −11.7979 10.4520i −0.467084 0.413800i
\(639\) 19.4854 30.8136i 0.770829 1.21897i
\(640\) −37.4797 3.02568i −1.48152 0.119600i
\(641\) 8.23595 + 40.3424i 0.325300 + 1.59343i 0.732946 + 0.680287i \(0.238145\pi\)
−0.407645 + 0.913140i \(0.633650\pi\)
\(642\) −2.81992 11.4409i −0.111293 0.451535i
\(643\) 6.25380 38.4812i 0.246626 1.51755i −0.507978 0.861370i \(-0.669607\pi\)
0.754604 0.656180i \(-0.227829\pi\)
\(644\) −1.63123 2.57958i −0.0642795 0.101650i
\(645\) −32.0443 61.0552i −1.26174 2.40405i
\(646\) −3.91026 + 13.4998i −0.153847 + 0.531142i
\(647\) 1.22864 6.01830i 0.0483030 0.236604i −0.948471 0.316864i \(-0.897370\pi\)
0.996774 + 0.0802605i \(0.0255752\pi\)
\(648\) −22.0028 + 0.886682i −0.864351 + 0.0348321i
\(649\) −23.5751 + 12.3732i −0.925403 + 0.485689i
\(650\) −2.60261 + 21.4138i −0.102083 + 0.839920i
\(651\) −16.1941 8.49931i −0.634696 0.333114i
\(652\) −0.428467 0.203310i −0.0167801 0.00796224i
\(653\) 12.6632 + 21.9333i 0.495548 + 0.858315i 0.999987 0.00513255i \(-0.00163375\pi\)
−0.504438 + 0.863448i \(0.668300\pi\)
\(654\) −17.2584 + 29.8924i −0.674856 + 1.16888i
\(655\) 33.3696 23.0334i 1.30386 0.899989i
\(656\) 18.0015 23.9557i 0.702841 0.935311i
\(657\) 2.64022 + 1.52433i 0.103005 + 0.0594698i
\(658\) −6.68147 + 0.811277i −0.260471 + 0.0316269i
\(659\) −1.25305 2.64074i −0.0488118 0.102869i 0.877579 0.479432i \(-0.159157\pi\)
−0.926391 + 0.376563i \(0.877106\pi\)
\(660\) −1.93467 2.01421i −0.0753070 0.0784028i
\(661\) 2.99198 37.0623i 0.116374 1.44156i −0.630292 0.776358i \(-0.717065\pi\)
0.746667 0.665198i \(-0.231653\pi\)
\(662\) 38.3612 9.45519i 1.49095 0.367486i
\(663\) 16.3144 38.2792i 0.633600 1.48664i
\(664\) 29.6093 + 7.29804i 1.14906 + 0.283219i
\(665\) 5.23804 15.6899i 0.203123 0.608427i
\(666\) 5.46330 11.5137i 0.211699 0.446145i
\(667\) 31.6104 10.5531i 1.22396 0.408618i
\(668\) 0.770295 + 0.531696i 0.0298036 + 0.0205719i
\(669\) 7.82332 3.71221i 0.302467 0.143522i
\(670\) 60.0386 + 2.41947i 2.31949 + 0.0934723i
\(671\) −1.91874 + 7.78464i −0.0740722 + 0.300523i
\(672\) 5.54879 + 2.36412i 0.214049 + 0.0911978i
\(673\) 12.0355 1.95595i 0.463933 0.0753965i 0.0760481 0.997104i \(-0.475770\pi\)
0.387885 + 0.921708i \(0.373206\pi\)
\(674\) 8.28928 + 1.69227i 0.319291 + 0.0651837i
\(675\) 2.66615 0.102620
\(676\) −1.56884 + 1.38923i −0.0603400 + 0.0534317i
\(677\) −17.6021 −0.676505 −0.338253 0.941055i \(-0.609836\pi\)
−0.338253 + 0.941055i \(0.609836\pi\)
\(678\) −51.5189 10.5177i −1.97857 0.403929i
\(679\) 25.7109 4.17843i 0.986693 0.160353i
\(680\) 34.5415 + 14.7168i 1.32461 + 0.564362i
\(681\) 5.28595 21.4459i 0.202558 0.821811i
\(682\) −9.31554 0.375403i −0.356710 0.0143749i
\(683\) −9.37111 + 4.44665i −0.358575 + 0.170146i −0.599454 0.800409i \(-0.704616\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(684\) −0.896991 0.619148i −0.0342973 0.0236737i
\(685\) −29.1811 + 9.74210i −1.11495 + 0.372226i
\(686\) −11.6548 + 24.5621i −0.444984 + 0.937784i
\(687\) −11.6393 + 34.8639i −0.444066 + 1.33014i
\(688\) 38.1688 + 9.40777i 1.45517 + 0.358668i
\(689\) −45.1328 1.82400i −1.71942 0.0694889i
\(690\) 76.8695 18.9466i 2.92637 0.721286i
\(691\) 1.18924 14.7314i 0.0452409 0.560409i −0.933941 0.357426i \(-0.883654\pi\)
0.979182 0.202983i \(-0.0650636\pi\)
\(692\) 1.51292 + 1.57512i 0.0575128 + 0.0598771i
\(693\) −8.51795 17.9512i −0.323570 0.681909i
\(694\) 19.2726 2.34011i 0.731577 0.0888295i
\(695\) −21.4290 12.3720i −0.812847 0.469297i
\(696\) −18.9509 + 25.2190i −0.718330 + 0.955924i
\(697\) −26.4723 + 18.2725i −1.00271 + 0.692120i
\(698\) 11.4994 19.9176i 0.435259 0.753891i
\(699\) −10.7257 18.5774i −0.405681 0.702661i
\(700\) 1.57033 + 0.745132i 0.0593530 + 0.0281633i
\(701\) −8.87178 4.65627i −0.335083 0.175865i 0.288787 0.957393i \(-0.406748\pi\)
−0.623870 + 0.781528i \(0.714440\pi\)
\(702\) 2.59895 + 2.30300i 0.0980909 + 0.0869211i
\(703\) 4.87823 2.56029i 0.183986 0.0965632i
\(704\) −16.6673 + 0.671671i −0.628174 + 0.0253145i
\(705\) 2.60469 12.7586i 0.0980983 0.480517i
\(706\) 2.34090 8.08172i 0.0881009 0.304159i
\(707\) 10.3677 + 19.7541i 0.389919 + 0.742928i
\(708\) −2.49662 3.94808i −0.0938286 0.148378i
\(709\) −0.214546 + 1.32015i −0.00805743 + 0.0495793i −0.990768 0.135571i \(-0.956713\pi\)
0.982710 + 0.185150i \(0.0592772\pi\)
\(710\) 11.8425 + 48.0471i 0.444443 + 1.80317i
\(711\) 9.13006 + 44.7220i 0.342404 + 1.67721i
\(712\) −23.9440 1.93296i −0.897339 0.0724407i
\(713\) 10.5354 16.6603i 0.394552 0.623934i
\(714\) −33.6479 29.8094i −1.25924 1.11559i
\(715\) −0.00287712 + 24.9643i −0.000107598 + 0.933614i
\(716\) 1.27711 1.13142i 0.0477279 0.0422832i
\(717\) 9.93809 + 61.1515i 0.371145 + 2.28374i
\(718\) −24.8499 + 10.5876i −0.927390 + 0.395124i
\(719\) −0.357250 + 0.225911i −0.0133232 + 0.00842508i −0.541111 0.840951i \(-0.681996\pi\)
0.527788 + 0.849376i \(0.323022\pi\)
\(720\) −27.9868 + 31.5905i −1.04301 + 1.17731i
\(721\) −3.73068 46.2128i −0.138938 1.72105i
\(722\) 6.84467 + 20.5023i 0.254732 + 0.763016i
\(723\) 14.4266 + 1.75170i 0.536530 + 0.0651465i
\(724\) −1.26578 0.951175i −0.0470425 0.0353501i
\(725\) −12.0030 + 14.7010i −0.445782 + 0.545983i
\(726\) 16.2831 + 13.2948i 0.604323 + 0.493415i
\(727\) 26.0507 + 37.7409i 0.966166 + 1.39973i 0.916083 + 0.400988i \(0.131333\pi\)
0.0500830 + 0.998745i \(0.484051\pi\)
\(728\) −10.1196 23.7592i −0.375058 0.880576i
\(729\) −17.8877 + 25.9149i −0.662509 + 0.959809i
\(730\) −3.97466 + 1.15127i −0.147109 + 0.0426105i
\(731\) −35.6655 22.5535i −1.31914 0.834172i
\(732\) −1.38845 0.225645i −0.0513186 0.00834008i
\(733\) −28.8039 10.9239i −1.06390 0.403483i −0.240324 0.970693i \(-0.577254\pi\)
−0.823574 + 0.567209i \(0.808023\pi\)
\(734\) 5.86995 13.7773i 0.216664 0.508529i
\(735\) 0.110467 + 0.106105i 0.00407465 + 0.00391375i
\(736\) −3.02102 + 5.75608i −0.111356 + 0.212172i
\(737\) 31.1015 2.51078i 1.14564 0.0924856i
\(738\) −9.30475 32.1237i −0.342512 1.18249i
\(739\) 26.5166 25.4695i 0.975427 0.936911i −0.0225966 0.999745i \(-0.507193\pi\)
0.998024 + 0.0628340i \(0.0200139\pi\)
\(740\) 0.457503 + 1.20634i 0.0168181 + 0.0443458i
\(741\) 3.73897 + 18.3255i 0.137355 + 0.673203i
\(742\) −17.3040 + 45.6268i −0.635248 + 1.67501i
\(743\) 0.727536 + 1.70759i 0.0266907 + 0.0626454i 0.932791 0.360417i \(-0.117365\pi\)
−0.906101 + 0.423062i \(0.860955\pi\)
\(744\) 0.751331 + 18.6441i 0.0275451 + 0.683525i
\(745\) −21.0154 25.7392i −0.769946 0.943012i
\(746\) 33.2956i 1.21904i
\(747\) 28.5030 23.2720i 1.04287 0.851476i
\(748\) −1.64169 0.475521i −0.0600261 0.0173868i
\(749\) 5.62784 + 6.35251i 0.205637 + 0.232116i
\(750\) 7.13980 7.43332i 0.260709 0.271427i
\(751\) −1.26190 0.421283i −0.0460473 0.0153728i 0.293551 0.955943i \(-0.405163\pi\)
−0.339598 + 0.940571i \(0.610291\pi\)
\(752\) 4.45983 + 5.93495i 0.162633 + 0.216425i
\(753\) 3.02085 + 24.8790i 0.110086 + 0.906640i
\(754\) −24.3991 + 3.96235i −0.888563 + 0.144300i
\(755\) −1.31450 + 10.8259i −0.0478396 + 0.393995i
\(756\) 0.242316 0.139901i 0.00881296 0.00508817i
\(757\) −38.7577 + 29.1245i −1.40867 + 1.05855i −0.420153 + 0.907453i \(0.638024\pi\)
−0.988519 + 0.151095i \(0.951720\pi\)
\(758\) 0.0453929 1.12641i 0.00164875 0.0409132i
\(759\) 38.4406 14.5786i 1.39530 0.529169i
\(760\) −16.5349 + 3.37563i −0.599785 + 0.122447i
\(761\) 5.55710 1.13449i 0.201445 0.0411252i −0.0982436 0.995162i \(-0.531322\pi\)
0.299688 + 0.954037i \(0.403117\pi\)
\(762\) 26.6382 10.1025i 0.965000 0.365976i
\(763\) 1.00104 24.8405i 0.0362399 0.899285i
\(764\) −3.03260 + 2.27885i −0.109716 + 0.0824460i
\(765\) 39.2345 22.6521i 1.41853 0.818987i
\(766\) 3.07613 25.3342i 0