Properties

Label 169.2.k.a.10.4
Level $169$
Weight $2$
Character 169.10
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 10.4
Character \(\chi\) \(=\) 169.10
Dual form 169.2.k.a.17.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98141 - 0.404507i) q^{2} +(-0.359410 + 0.0584099i) q^{3} +(1.92239 + 0.819053i) q^{4} +(0.199530 - 0.809524i) q^{5} +(0.735766 + 0.0296503i) q^{6} +(0.512743 - 0.243300i) q^{7} +(-0.149120 - 0.102930i) q^{8} +(-2.71985 + 0.908018i) q^{9} +O(q^{10})\) \(q+(-1.98141 - 0.404507i) q^{2} +(-0.359410 + 0.0584099i) q^{3} +(1.92239 + 0.819053i) q^{4} +(0.199530 - 0.809524i) q^{5} +(0.735766 + 0.0296503i) q^{6} +(0.512743 - 0.243300i) q^{7} +(-0.149120 - 0.102930i) q^{8} +(-2.71985 + 0.908018i) q^{9} +(-0.722808 + 1.52328i) q^{10} +(1.27925 - 3.83182i) q^{11} +(-0.738767 - 0.182090i) q^{12} +(2.71690 - 2.37032i) q^{13} +(-1.11437 + 0.274667i) q^{14} +(-0.0244289 + 0.302606i) q^{15} +(-2.64120 - 2.74978i) q^{16} +(-3.39288 - 7.15035i) q^{17} +(5.75642 - 0.698956i) q^{18} +(1.11958 + 0.646390i) q^{19} +(1.04662 - 1.39279i) q^{20} +(-0.170074 + 0.117394i) q^{21} +(-4.08472 + 7.07494i) q^{22} +(-3.79510 - 6.57331i) q^{23} +(0.0596074 + 0.0282841i) q^{24} +(3.81176 + 2.00057i) q^{25} +(-6.34210 + 3.59757i) q^{26} +(1.89176 - 0.992870i) q^{27} +(1.18497 - 0.0477525i) q^{28} +(-0.254781 + 1.24800i) q^{29} +(0.170810 - 0.589704i) q^{30} +(1.29314 + 2.46388i) q^{31} +(4.31467 + 6.82311i) q^{32} +(-0.235960 + 1.45192i) q^{33} +(3.83032 + 15.5402i) q^{34} +(-0.0946493 - 0.463623i) q^{35} +(-5.97231 - 0.482135i) q^{36} +(0.238515 - 0.377181i) q^{37} +(-1.95688 - 1.73364i) q^{38} +(-0.838033 + 1.01061i) q^{39} +(-0.113078 + 0.100179i) q^{40} +(0.704590 + 4.33551i) q^{41} +(0.384473 - 0.163808i) q^{42} +(6.85384 - 4.33410i) q^{43} +(5.59768 - 6.31848i) q^{44} +(0.192372 + 2.38296i) q^{45} +(4.86069 + 14.5595i) q^{46} +(2.97438 + 0.361155i) q^{47} +(1.10989 + 0.834028i) q^{48} +(-4.22341 + 5.17273i) q^{49} +(-6.74341 - 5.50582i) q^{50} +(1.63709 + 2.37173i) q^{51} +(7.16436 - 2.33139i) q^{52} +(-4.71980 + 6.83781i) q^{53} +(-4.14996 + 1.20205i) q^{54} +(-2.84670 - 1.80015i) q^{55} +(-0.101503 - 0.0164959i) q^{56} +(-0.440144 - 0.166925i) q^{57} +(1.00965 - 2.36974i) q^{58} +(3.83515 + 3.68371i) q^{59} +(-0.294812 + 0.561717i) q^{60} +(-6.56403 + 0.529903i) q^{61} +(-1.56559 - 5.40503i) q^{62} +(-1.17366 + 1.12732i) q^{63} +(-3.08507 - 8.13466i) q^{64} +(-1.37673 - 2.67235i) q^{65} +(1.05484 - 2.78139i) q^{66} +(-3.93637 - 9.23900i) q^{67} +(-0.665923 - 16.5247i) q^{68} +(1.74795 + 2.14084i) q^{69} +0.956912i q^{70} +(10.8017 - 8.81932i) q^{71} +(0.499046 + 0.144550i) q^{72} +(-3.93356 - 4.44007i) q^{73} +(-0.625167 + 0.650867i) q^{74} +(-1.48684 - 0.496380i) q^{75} +(1.62284 + 2.15961i) q^{76} +(-0.276354 - 2.27598i) q^{77} +(2.06928 - 1.66345i) q^{78} +(-0.977052 + 8.04675i) q^{79} +(-2.75301 + 1.58945i) q^{80} +(6.25507 - 4.70038i) q^{81} +(0.357668 - 8.87543i) q^{82} +(5.62874 - 2.13470i) q^{83} +(-0.423100 + 0.0863765i) q^{84} +(-6.46536 + 1.31991i) q^{85} +(-15.3334 + 5.81520i) q^{86} +(0.0186754 - 0.463426i) q^{87} +(-0.585172 + 0.439728i) q^{88} +(-6.62320 + 3.82391i) q^{89} +(0.582755 - 4.79942i) q^{90} +(0.816374 - 1.87639i) q^{91} +(-1.91177 - 15.7448i) q^{92} +(-0.608684 - 0.810012i) q^{93} +(-5.74736 - 1.91875i) q^{94} +(0.746658 - 0.777353i) q^{95} +(-1.94928 - 2.20028i) q^{96} +(9.36205 + 2.71175i) q^{97} +(10.4607 - 8.54089i) q^{98} +11.5835i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98141 0.404507i −1.40107 0.286030i −0.560687 0.828028i \(-0.689463\pi\)
−0.840380 + 0.541998i \(0.817668\pi\)
\(3\) −0.359410 + 0.0584099i −0.207506 + 0.0337230i −0.263275 0.964721i \(-0.584803\pi\)
0.0557698 + 0.998444i \(0.482239\pi\)
\(4\) 1.92239 + 0.819053i 0.961194 + 0.409527i
\(5\) 0.199530 0.809524i 0.0892324 0.362030i −0.909303 0.416135i \(-0.863384\pi\)
0.998535 + 0.0541049i \(0.0172305\pi\)
\(6\) 0.735766 + 0.0296503i 0.300375 + 0.0121047i
\(7\) 0.512743 0.243300i 0.193799 0.0919586i −0.329320 0.944218i \(-0.606820\pi\)
0.523119 + 0.852260i \(0.324768\pi\)
\(8\) −0.149120 0.102930i −0.0527219 0.0363913i
\(9\) −2.71985 + 0.908018i −0.906615 + 0.302673i
\(10\) −0.722808 + 1.52328i −0.228572 + 0.481705i
\(11\) 1.27925 3.83182i 0.385709 1.15534i −0.559488 0.828838i \(-0.689002\pi\)
0.945197 0.326500i \(-0.105869\pi\)
\(12\) −0.738767 0.182090i −0.213264 0.0525648i
\(13\) 2.71690 2.37032i 0.753533 0.657410i
\(14\) −1.11437 + 0.274667i −0.297828 + 0.0734079i
\(15\) −0.0244289 + 0.302606i −0.00630751 + 0.0781325i
\(16\) −2.64120 2.74978i −0.660300 0.687445i
\(17\) −3.39288 7.15035i −0.822895 1.73422i −0.665115 0.746741i \(-0.731618\pi\)
−0.157780 0.987474i \(-0.550434\pi\)
\(18\) 5.75642 0.698956i 1.35680 0.164745i
\(19\) 1.11958 + 0.646390i 0.256849 + 0.148292i 0.622896 0.782304i \(-0.285956\pi\)
−0.366047 + 0.930596i \(0.619289\pi\)
\(20\) 1.04662 1.39279i 0.234031 0.311438i
\(21\) −0.170074 + 0.117394i −0.0371132 + 0.0256174i
\(22\) −4.08472 + 7.07494i −0.870864 + 1.50838i
\(23\) −3.79510 6.57331i −0.791333 1.37063i −0.925142 0.379622i \(-0.876054\pi\)
0.133808 0.991007i \(-0.457279\pi\)
\(24\) 0.0596074 + 0.0282841i 0.0121673 + 0.00577346i
\(25\) 3.81176 + 2.00057i 0.762353 + 0.400114i
\(26\) −6.34210 + 3.59757i −1.24379 + 0.705541i
\(27\) 1.89176 0.992870i 0.364069 0.191078i
\(28\) 1.18497 0.0477525i 0.223938 0.00902438i
\(29\) −0.254781 + 1.24800i −0.0473117 + 0.231748i −0.996571 0.0827480i \(-0.973630\pi\)
0.949259 + 0.314496i \(0.101835\pi\)
\(30\) 0.170810 0.589704i 0.0311854 0.107665i
\(31\) 1.29314 + 2.46388i 0.232255 + 0.442526i 0.973493 0.228717i \(-0.0734531\pi\)
−0.741237 + 0.671243i \(0.765761\pi\)
\(32\) 4.31467 + 6.82311i 0.762733 + 1.20617i
\(33\) −0.235960 + 1.45192i −0.0410753 + 0.252747i
\(34\) 3.83032 + 15.5402i 0.656894 + 2.66512i
\(35\) −0.0946493 0.463623i −0.0159987 0.0783666i
\(36\) −5.97231 0.482135i −0.995386 0.0803558i
\(37\) 0.238515 0.377181i 0.0392115 0.0620081i −0.825015 0.565110i \(-0.808834\pi\)
0.864227 + 0.503102i \(0.167808\pi\)
\(38\) −1.95688 1.73364i −0.317447 0.281234i
\(39\) −0.838033 + 1.01061i −0.134193 + 0.161828i
\(40\) −0.113078 + 0.100179i −0.0178792 + 0.0158396i
\(41\) 0.704590 + 4.33551i 0.110038 + 0.677094i 0.982195 + 0.187866i \(0.0601571\pi\)
−0.872156 + 0.489227i \(0.837279\pi\)
\(42\) 0.384473 0.163808i 0.0593254 0.0252762i
\(43\) 6.85384 4.33410i 1.04520 0.660945i 0.102550 0.994728i \(-0.467300\pi\)
0.942650 + 0.333783i \(0.108325\pi\)
\(44\) 5.59768 6.31848i 0.843883 0.952547i
\(45\) 0.192372 + 2.38296i 0.0286771 + 0.355230i
\(46\) 4.86069 + 14.5595i 0.716670 + 2.14669i
\(47\) 2.97438 + 0.361155i 0.433857 + 0.0526798i 0.334552 0.942377i \(-0.391415\pi\)
0.0993051 + 0.995057i \(0.468338\pi\)
\(48\) 1.10989 + 0.834028i 0.160199 + 0.120382i
\(49\) −4.22341 + 5.17273i −0.603344 + 0.738962i
\(50\) −6.74341 5.50582i −0.953662 0.778641i
\(51\) 1.63709 + 2.37173i 0.229238 + 0.332109i
\(52\) 7.16436 2.33139i 0.993519 0.323306i
\(53\) −4.71980 + 6.83781i −0.648315 + 0.939246i 0.351680 + 0.936120i \(0.385610\pi\)
−0.999995 + 0.00312596i \(0.999005\pi\)
\(54\) −4.14996 + 1.20205i −0.564738 + 0.163578i
\(55\) −2.84670 1.80015i −0.383849 0.242732i
\(56\) −0.101503 0.0164959i −0.0135639 0.00220435i
\(57\) −0.440144 0.166925i −0.0582986 0.0221097i
\(58\) 1.00965 2.36974i 0.132574 0.311162i
\(59\) 3.83515 + 3.68371i 0.499294 + 0.479578i 0.899545 0.436827i \(-0.143898\pi\)
−0.400252 + 0.916405i \(0.631077\pi\)
\(60\) −0.294812 + 0.561717i −0.0380601 + 0.0725174i
\(61\) −6.56403 + 0.529903i −0.840438 + 0.0678472i −0.493185 0.869924i \(-0.664167\pi\)
−0.347253 + 0.937772i \(0.612885\pi\)
\(62\) −1.56559 5.40503i −0.198830 0.686440i
\(63\) −1.17366 + 1.12732i −0.147867 + 0.142029i
\(64\) −3.08507 8.13466i −0.385634 1.01683i
\(65\) −1.37673 2.67235i −0.170762 0.331464i
\(66\) 1.05484 2.78139i 0.129842 0.342366i
\(67\) −3.93637 9.23900i −0.480904 1.12872i −0.966990 0.254813i \(-0.917986\pi\)
0.486086 0.873911i \(-0.338424\pi\)
\(68\) −0.665923 16.5247i −0.0807550 2.00391i
\(69\) 1.74795 + 2.14084i 0.210428 + 0.257727i
\(70\) 0.956912i 0.114373i
\(71\) 10.8017 8.81932i 1.28193 1.04666i 0.285840 0.958277i \(-0.407728\pi\)
0.996087 0.0883829i \(-0.0281699\pi\)
\(72\) 0.499046 + 0.144550i 0.0588131 + 0.0170354i
\(73\) −3.93356 4.44007i −0.460388 0.519670i 0.471770 0.881721i \(-0.343615\pi\)
−0.932158 + 0.362051i \(0.882077\pi\)
\(74\) −0.625167 + 0.650867i −0.0726741 + 0.0756618i
\(75\) −1.48684 0.496380i −0.171686 0.0573171i
\(76\) 1.62284 + 2.15961i 0.186153 + 0.247724i
\(77\) −0.276354 2.27598i −0.0314935 0.259372i
\(78\) 2.06928 1.66345i 0.234300 0.188348i
\(79\) −0.977052 + 8.04675i −0.109927 + 0.905330i 0.828533 + 0.559941i \(0.189176\pi\)
−0.938460 + 0.345389i \(0.887747\pi\)
\(80\) −2.75301 + 1.58945i −0.307796 + 0.177706i
\(81\) 6.25507 4.70038i 0.695008 0.522265i
\(82\) 0.357668 8.87543i 0.0394978 0.980127i
\(83\) 5.62874 2.13470i 0.617834 0.234314i −0.0257752 0.999668i \(-0.508205\pi\)
0.643609 + 0.765354i \(0.277436\pi\)
\(84\) −0.423100 + 0.0863765i −0.0461640 + 0.00942445i
\(85\) −6.46536 + 1.31991i −0.701267 + 0.143165i
\(86\) −15.3334 + 5.81520i −1.65344 + 0.627069i
\(87\) 0.0186754 0.463426i 0.00200222 0.0496845i
\(88\) −0.585172 + 0.439728i −0.0623795 + 0.0468752i
\(89\) −6.62320 + 3.82391i −0.702058 + 0.405333i −0.808114 0.589027i \(-0.799511\pi\)
0.106055 + 0.994360i \(0.466178\pi\)
\(90\) 0.582755 4.79942i 0.0614278 0.505903i
\(91\) 0.816374 1.87639i 0.0855793 0.196699i
\(92\) −1.91177 15.7448i −0.199316 1.64151i
\(93\) −0.608684 0.810012i −0.0631176 0.0839943i
\(94\) −5.74736 1.91875i −0.592795 0.197904i
\(95\) 0.746658 0.777353i 0.0766055 0.0797547i
\(96\) −1.94928 2.20028i −0.198947 0.224565i
\(97\) 9.36205 + 2.71175i 0.950572 + 0.275336i 0.717055 0.697016i \(-0.245490\pi\)
0.233516 + 0.972353i \(0.424977\pi\)
\(98\) 10.4607 8.54089i 1.05669 0.862761i
\(99\) 11.5835i 1.16419i
\(100\) 5.68912 + 6.96791i 0.568912 + 0.696791i
\(101\) 0.586135 + 14.5448i 0.0583226 + 1.44726i 0.718174 + 0.695864i \(0.244978\pi\)
−0.659851 + 0.751396i \(0.729381\pi\)
\(102\) −2.28436 5.36158i −0.226185 0.530876i
\(103\) 3.41621 9.00781i 0.336609 0.887566i −0.654685 0.755902i \(-0.727199\pi\)
0.991294 0.131664i \(-0.0420320\pi\)
\(104\) −0.649122 + 0.0738116i −0.0636517 + 0.00723782i
\(105\) 0.0610981 + 0.161103i 0.00596257 + 0.0157220i
\(106\) 12.1178 11.6393i 1.17698 1.13051i
\(107\) 4.35174 + 15.0240i 0.420699 + 1.45242i 0.839010 + 0.544117i \(0.183135\pi\)
−0.418311 + 0.908304i \(0.637378\pi\)
\(108\) 4.44990 0.359233i 0.428192 0.0345672i
\(109\) −1.03474 + 1.97153i −0.0991101 + 0.188839i −0.929963 0.367654i \(-0.880161\pi\)
0.830852 + 0.556493i \(0.187853\pi\)
\(110\) 4.91231 + 4.71833i 0.468370 + 0.449876i
\(111\) −0.0636935 + 0.149494i −0.00604552 + 0.0141894i
\(112\) −2.02328 0.767328i −0.191182 0.0725057i
\(113\) −13.5393 2.20035i −1.27367 0.206992i −0.514279 0.857623i \(-0.671940\pi\)
−0.759394 + 0.650631i \(0.774504\pi\)
\(114\) 0.804583 + 0.508787i 0.0753561 + 0.0476523i
\(115\) −6.07848 + 1.76065i −0.566822 + 0.164182i
\(116\) −1.51197 + 2.19046i −0.140383 + 0.203379i
\(117\) −5.23726 + 8.91391i −0.484185 + 0.824091i
\(118\) −6.10890 8.85027i −0.562370 0.814733i
\(119\) −3.47935 2.84081i −0.318952 0.260416i
\(120\) 0.0347901 0.0426101i 0.00317589 0.00388975i
\(121\) −4.25252 3.19556i −0.386593 0.290506i
\(122\) 13.2204 + 1.60524i 1.19692 + 0.145332i
\(123\) −0.506474 1.51707i −0.0456672 0.136790i
\(124\) 0.467876 + 5.79569i 0.0420165 + 0.520468i
\(125\) 5.14446 5.80690i 0.460135 0.519385i
\(126\) 2.78151 1.75892i 0.247796 0.156697i
\(127\) 1.38833 0.591511i 0.123194 0.0524881i −0.329490 0.944159i \(-0.606877\pi\)
0.452684 + 0.891671i \(0.350467\pi\)
\(128\) 0.232292 + 1.42935i 0.0205319 + 0.126338i
\(129\) −2.21019 + 1.95805i −0.194596 + 0.172397i
\(130\) 1.64688 + 5.85191i 0.144441 + 0.513246i
\(131\) −9.41572 8.34160i −0.822655 0.728809i 0.142695 0.989767i \(-0.454423\pi\)
−0.965350 + 0.260958i \(0.915962\pi\)
\(132\) −1.64280 + 2.59789i −0.142988 + 0.226117i
\(133\) 0.731323 + 0.0590385i 0.0634138 + 0.00511929i
\(134\) 4.06231 + 19.8985i 0.350930 + 1.71897i
\(135\) −0.426290 1.72953i −0.0366892 0.148854i
\(136\) −0.230040 + 1.41549i −0.0197257 + 0.121377i
\(137\) 11.8021 + 18.6635i 1.00832 + 1.59453i 0.784717 + 0.619854i \(0.212808\pi\)
0.223605 + 0.974680i \(0.428218\pi\)
\(138\) −2.59740 4.94894i −0.221106 0.421282i
\(139\) −2.79865 + 9.66208i −0.237379 + 0.819527i 0.750039 + 0.661394i \(0.230035\pi\)
−0.987418 + 0.158133i \(0.949453\pi\)
\(140\) 0.197779 0.968786i 0.0167154 0.0818774i
\(141\) −1.09012 + 0.0439302i −0.0918044 + 0.00369959i
\(142\) −24.9700 + 13.1053i −2.09544 + 1.09977i
\(143\) −5.60706 13.4429i −0.468886 1.12415i
\(144\) 9.68051 + 5.08072i 0.806709 + 0.423394i
\(145\) 0.959450 + 0.455265i 0.0796780 + 0.0378077i
\(146\) 5.99794 + 10.3887i 0.496393 + 0.859777i
\(147\) 1.21580 2.10582i 0.100277 0.173685i
\(148\) 0.767448 0.529731i 0.0630839 0.0435437i
\(149\) 0.0650079 0.0865098i 0.00532566 0.00708716i −0.796772 0.604280i \(-0.793461\pi\)
0.802098 + 0.597193i \(0.203717\pi\)
\(150\) 2.74525 + 1.58497i 0.224148 + 0.129412i
\(151\) 12.2193 1.48370i 0.994396 0.120742i 0.392870 0.919594i \(-0.371482\pi\)
0.601527 + 0.798853i \(0.294559\pi\)
\(152\) −0.100419 0.211628i −0.00814505 0.0171653i
\(153\) 15.7208 + 16.3671i 1.27095 + 1.32320i
\(154\) −0.373081 + 4.62143i −0.0300637 + 0.372406i
\(155\) 2.25259 0.555214i 0.180932 0.0445958i
\(156\) −2.43877 + 1.25640i −0.195258 + 0.100592i
\(157\) −1.44039 0.355023i −0.114955 0.0283339i 0.181418 0.983406i \(-0.441931\pi\)
−0.296374 + 0.955072i \(0.595777\pi\)
\(158\) 5.19090 15.5487i 0.412966 1.23698i
\(159\) 1.29695 2.73327i 0.102855 0.216762i
\(160\) 6.38437 2.13142i 0.504729 0.168503i
\(161\) −3.54519 2.44707i −0.279400 0.192856i
\(162\) −14.2952 + 6.78315i −1.12314 + 0.532934i
\(163\) −8.98974 0.362274i −0.704131 0.0283755i −0.314382 0.949297i \(-0.601797\pi\)
−0.389749 + 0.920921i \(0.627438\pi\)
\(164\) −2.19652 + 8.91164i −0.171520 + 0.695882i
\(165\) 1.12828 + 0.480716i 0.0878366 + 0.0374237i
\(166\) −12.0163 + 1.95284i −0.932647 + 0.151570i
\(167\) −5.50517 1.12389i −0.426003 0.0869691i −0.0177597 0.999842i \(-0.505653\pi\)
−0.408243 + 0.912873i \(0.633859\pi\)
\(168\) 0.0374448 0.00288893
\(169\) 1.76313 12.8799i 0.135625 0.990760i
\(170\) 13.3444 1.02347
\(171\) −3.63202 0.741482i −0.277747 0.0567025i
\(172\) 16.7256 2.71817i 1.27531 0.207259i
\(173\) 7.37230 + 3.14104i 0.560505 + 0.238809i 0.653589 0.756849i \(-0.273262\pi\)
−0.0930842 + 0.995658i \(0.529673\pi\)
\(174\) −0.224463 + 0.910682i −0.0170165 + 0.0690386i
\(175\) 2.44119 + 0.0983767i 0.184537 + 0.00743658i
\(176\) −13.9154 + 6.60296i −1.04892 + 0.497717i
\(177\) −1.59356 1.09995i −0.119779 0.0826775i
\(178\) 14.6701 4.89759i 1.09957 0.367090i
\(179\) 1.55991 3.28744i 0.116593 0.245715i −0.836761 0.547568i \(-0.815554\pi\)
0.953355 + 0.301853i \(0.0976051\pi\)
\(180\) −1.58195 + 4.73853i −0.117912 + 0.353189i
\(181\) −2.90279 0.715474i −0.215763 0.0531808i 0.129952 0.991520i \(-0.458518\pi\)
−0.345715 + 0.938339i \(0.612364\pi\)
\(182\) −2.37658 + 3.38766i −0.176164 + 0.251110i
\(183\) 2.32823 0.573857i 0.172108 0.0424207i
\(184\) −0.110666 + 1.37084i −0.00815839 + 0.101060i
\(185\) −0.257746 0.268342i −0.0189499 0.0197289i
\(186\) 0.878396 + 1.85118i 0.0644071 + 0.135735i
\(187\) −31.7392 + 3.85384i −2.32100 + 0.281821i
\(188\) 5.42210 + 3.13045i 0.395447 + 0.228312i
\(189\) 0.728420 0.969350i 0.0529847 0.0705099i
\(190\) −1.79388 + 1.23822i −0.130142 + 0.0898302i
\(191\) 11.6024 20.0959i 0.839519 1.45409i −0.0507791 0.998710i \(-0.516170\pi\)
0.890298 0.455379i \(-0.150496\pi\)
\(192\) 1.58395 + 2.74348i 0.114312 + 0.197994i
\(193\) 1.42782 + 0.677510i 0.102777 + 0.0487683i 0.479387 0.877604i \(-0.340859\pi\)
−0.376610 + 0.926372i \(0.622910\pi\)
\(194\) −17.4531 9.16009i −1.25306 0.657656i
\(195\) 0.650903 + 0.880055i 0.0466121 + 0.0630221i
\(196\) −12.3558 + 6.48481i −0.882555 + 0.463201i
\(197\) −3.04241 + 0.122605i −0.216762 + 0.00873523i −0.148410 0.988926i \(-0.547415\pi\)
−0.0683529 + 0.997661i \(0.521774\pi\)
\(198\) 4.68563 22.9517i 0.332993 1.63111i
\(199\) 1.28786 4.44621i 0.0912940 0.315184i −0.901855 0.432039i \(-0.857794\pi\)
0.993149 + 0.116856i \(0.0372814\pi\)
\(200\) −0.362492 0.690670i −0.0256320 0.0488377i
\(201\) 1.95442 + 3.09067i 0.137854 + 0.217999i
\(202\) 4.72210 29.0562i 0.332246 2.04439i
\(203\) 0.173001 + 0.701892i 0.0121423 + 0.0492631i
\(204\) 1.20455 + 5.90026i 0.0843351 + 0.413101i
\(205\) 3.65029 + 0.294682i 0.254947 + 0.0205815i
\(206\) −10.4126 + 16.4663i −0.725482 + 1.14726i
\(207\) 16.2908 + 14.4324i 1.13229 + 1.00312i
\(208\) −13.6938 1.21039i −0.949492 0.0839254i
\(209\) 3.90908 3.46314i 0.270397 0.239550i
\(210\) −0.0558931 0.343924i −0.00385699 0.0237330i
\(211\) 7.68775 3.27545i 0.529247 0.225491i −0.110778 0.993845i \(-0.535334\pi\)
0.640025 + 0.768354i \(0.278924\pi\)
\(212\) −14.6738 + 9.27917i −1.00780 + 0.637296i
\(213\) −3.36711 + 3.80068i −0.230711 + 0.260418i
\(214\) −2.54527 31.5289i −0.173991 2.15527i
\(215\) −2.14102 6.41313i −0.146016 0.437372i
\(216\) −0.384295 0.0466618i −0.0261480 0.00317494i
\(217\) 1.26251 + 0.948716i 0.0857048 + 0.0644030i
\(218\) 2.84774 3.48785i 0.192873 0.236227i
\(219\) 1.67310 + 1.36605i 0.113058 + 0.0923089i
\(220\) −3.99805 5.79218i −0.269549 0.390509i
\(221\) −26.1668 11.3846i −1.76017 0.765810i
\(222\) 0.186674 0.270444i 0.0125288 0.0181510i
\(223\) 19.8507 5.74983i 1.32930 0.385037i 0.463799 0.885940i \(-0.346486\pi\)
0.865503 + 0.500903i \(0.166999\pi\)
\(224\) 3.87238 + 2.44874i 0.258734 + 0.163614i
\(225\) −12.1840 1.98009i −0.812264 0.132006i
\(226\) 25.9369 + 9.83655i 1.72529 + 0.654318i
\(227\) −10.2652 + 24.0932i −0.681323 + 1.59912i 0.114380 + 0.993437i \(0.463512\pi\)
−0.795703 + 0.605687i \(0.792898\pi\)
\(228\) −0.709408 0.681396i −0.0469817 0.0451266i
\(229\) 13.2417 25.2299i 0.875034 1.66724i 0.139000 0.990292i \(-0.455611\pi\)
0.736034 0.676945i \(-0.236697\pi\)
\(230\) 12.7561 1.02978i 0.841115 0.0679019i
\(231\) 0.232264 + 0.801870i 0.0152819 + 0.0527592i
\(232\) 0.166450 0.159877i 0.0109280 0.0104965i
\(233\) −0.0460780 0.121498i −0.00301867 0.00795957i 0.933498 0.358581i \(-0.116739\pi\)
−0.936517 + 0.350622i \(0.885970\pi\)
\(234\) 13.9829 15.5436i 0.914090 1.01612i
\(235\) 0.885840 2.33577i 0.0577858 0.152369i
\(236\) 4.35549 + 10.2227i 0.283518 + 0.665441i
\(237\) −0.118847 2.94915i −0.00771993 0.191568i
\(238\) 5.74489 + 7.03622i 0.372386 + 0.456090i
\(239\) 16.9713i 1.09778i 0.835894 + 0.548892i \(0.184950\pi\)
−0.835894 + 0.548892i \(0.815050\pi\)
\(240\) 0.896621 0.732069i 0.0578767 0.0472548i
\(241\) −14.6155 4.23342i −0.941465 0.272699i −0.228217 0.973610i \(-0.573289\pi\)
−0.713248 + 0.700912i \(0.752777\pi\)
\(242\) 7.13335 + 8.05188i 0.458549 + 0.517595i
\(243\) −6.41356 + 6.67722i −0.411430 + 0.428344i
\(244\) −13.0526 4.35761i −0.835609 0.278967i
\(245\) 3.34476 + 4.45106i 0.213689 + 0.284368i
\(246\) 0.389863 + 3.21081i 0.0248568 + 0.204714i
\(247\) 4.57395 0.897589i 0.291033 0.0571122i
\(248\) 0.0607738 0.500517i 0.00385914 0.0317829i
\(249\) −1.89834 + 1.09601i −0.120302 + 0.0694566i
\(250\) −12.5422 + 9.42486i −0.793239 + 0.596080i
\(251\) −0.0185469 + 0.460236i −0.00117067 + 0.0290498i −0.999669 0.0257368i \(-0.991807\pi\)
0.998498 + 0.0547866i \(0.0174479\pi\)
\(252\) −3.17956 + 1.20585i −0.200294 + 0.0759614i
\(253\) −30.0426 + 6.13325i −1.88876 + 0.385594i
\(254\) −2.99011 + 0.610436i −0.187616 + 0.0383021i
\(255\) 2.24662 0.852031i 0.140689 0.0533563i
\(256\) −0.582712 + 14.4598i −0.0364195 + 0.903740i
\(257\) 13.3104 10.0021i 0.830279 0.623914i −0.0982552 0.995161i \(-0.531326\pi\)
0.928534 + 0.371247i \(0.121070\pi\)
\(258\) 5.17132 2.98567i 0.321953 0.185879i
\(259\) 0.0305288 0.251427i 0.00189697 0.0156229i
\(260\) −0.457816 6.26491i −0.0283925 0.388533i
\(261\) −0.440242 3.62572i −0.0272503 0.224426i
\(262\) 15.2821 + 20.3368i 0.944133 + 1.25641i
\(263\) 21.6446 + 7.22601i 1.33466 + 0.445575i 0.892373 0.451298i \(-0.149039\pi\)
0.442287 + 0.896873i \(0.354167\pi\)
\(264\) 0.184632 0.192223i 0.0113633 0.0118305i
\(265\) 4.59363 + 5.18514i 0.282185 + 0.318521i
\(266\) −1.42517 0.412805i −0.0873826 0.0253107i
\(267\) 2.15709 1.76121i 0.132012 0.107784i
\(268\) 20.9850i 1.28187i
\(269\) −5.48825 6.72189i −0.334625 0.409841i 0.579695 0.814833i \(-0.303172\pi\)
−0.914320 + 0.404992i \(0.867274\pi\)
\(270\) 0.145048 + 3.59934i 0.00882736 + 0.219049i
\(271\) 9.20898 + 21.6143i 0.559406 + 1.31297i 0.924208 + 0.381889i \(0.124726\pi\)
−0.364802 + 0.931085i \(0.618863\pi\)
\(272\) −10.7006 + 28.2152i −0.648820 + 1.71080i
\(273\) −0.183814 + 0.722078i −0.0111249 + 0.0437021i
\(274\) −15.8352 41.7541i −0.956642 2.52246i
\(275\) 12.5420 12.0468i 0.756313 0.726448i
\(276\) 1.60676 + 5.54719i 0.0967158 + 0.333902i
\(277\) 14.4174 1.16390i 0.866260 0.0699318i 0.360658 0.932698i \(-0.382552\pi\)
0.505603 + 0.862766i \(0.331270\pi\)
\(278\) 9.45365 18.0124i 0.566992 1.08031i
\(279\) −5.75440 5.52717i −0.344507 0.330903i
\(280\) −0.0336067 + 0.0788778i −0.00200838 + 0.00471385i
\(281\) 22.6743 + 8.59922i 1.35263 + 0.512986i 0.921176 0.389147i \(-0.127230\pi\)
0.431458 + 0.902133i \(0.357999\pi\)
\(282\) 2.17774 + 0.353916i 0.129682 + 0.0210754i
\(283\) −3.57663 2.26172i −0.212609 0.134446i 0.423917 0.905701i \(-0.360655\pi\)
−0.636526 + 0.771255i \(0.719629\pi\)
\(284\) 27.9886 8.10698i 1.66082 0.481061i
\(285\) −0.222951 + 0.323001i −0.0132065 + 0.0191329i
\(286\) 5.67211 + 28.9040i 0.335399 + 1.70913i
\(287\) 1.41610 + 2.05158i 0.0835899 + 0.121101i
\(288\) −17.9307 14.6400i −1.05658 0.862670i
\(289\) −28.8643 + 35.3523i −1.69790 + 2.07955i
\(290\) −1.71690 1.29017i −0.100820 0.0757613i
\(291\) −3.52321 0.427795i −0.206534 0.0250778i
\(292\) −3.92517 11.7573i −0.229703 0.688045i
\(293\) −1.20977 14.9856i −0.0706753 0.875470i −0.930834 0.365443i \(-0.880917\pi\)
0.860158 0.510027i \(-0.170365\pi\)
\(294\) −3.26081 + 3.68069i −0.190174 + 0.214662i
\(295\) 3.74727 2.36963i 0.218175 0.137965i
\(296\) −0.0743905 + 0.0316948i −0.00432386 + 0.00184223i
\(297\) −1.38447 8.51900i −0.0803353 0.494323i
\(298\) −0.163801 + 0.145115i −0.00948874 + 0.00840629i
\(299\) −25.8918 8.86342i −1.49736 0.512585i
\(300\) −2.45172 2.17204i −0.141550 0.125403i
\(301\) 2.45977 3.88982i 0.141779 0.224205i
\(302\) −24.8117 2.00300i −1.42775 0.115260i
\(303\) −1.06022 5.19331i −0.0609082 0.298348i
\(304\) −1.17961 4.78585i −0.0676550 0.274487i
\(305\) −0.880750 + 5.41947i −0.0504316 + 0.310318i
\(306\) −24.5286 38.7889i −1.40221 2.21742i
\(307\) −9.77659 18.6277i −0.557979 1.06314i −0.987132 0.159909i \(-0.948880\pi\)
0.429153 0.903232i \(-0.358812\pi\)
\(308\) 1.33289 4.60167i 0.0759484 0.262204i
\(309\) −0.701677 + 3.43704i −0.0399170 + 0.195526i
\(310\) −4.68788 + 0.188915i −0.266254 + 0.0107297i
\(311\) 10.8740 5.70710i 0.616606 0.323620i −0.127340 0.991859i \(-0.540644\pi\)
0.743946 + 0.668239i \(0.232952\pi\)
\(312\) 0.228990 0.0644438i 0.0129640 0.00364841i
\(313\) 9.37867 + 4.92230i 0.530114 + 0.278225i 0.708470 0.705741i \(-0.249386\pi\)
−0.178356 + 0.983966i \(0.557078\pi\)
\(314\) 2.71038 + 1.28609i 0.152956 + 0.0725783i
\(315\) 0.678410 + 1.17504i 0.0382240 + 0.0662060i
\(316\) −8.46899 + 14.6687i −0.476418 + 0.825180i
\(317\) −9.32802 + 6.43867i −0.523914 + 0.361632i −0.800476 0.599364i \(-0.795420\pi\)
0.276563 + 0.960996i \(0.410805\pi\)
\(318\) −3.67541 + 4.89108i −0.206107 + 0.274278i
\(319\) 4.45619 + 2.57278i 0.249499 + 0.144048i
\(320\) −7.20076 + 0.874331i −0.402535 + 0.0488766i
\(321\) −2.44161 5.14558i −0.136277 0.287198i
\(322\) 6.03461 + 6.28270i 0.336296 + 0.350121i
\(323\) 0.823310 10.1985i 0.0458102 0.567461i
\(324\) 15.8745 3.91272i 0.881919 0.217374i
\(325\) 15.0982 3.59976i 0.837497 0.199679i
\(326\) 17.6658 + 4.35423i 0.978418 + 0.241158i
\(327\) 0.256739 0.769028i 0.0141977 0.0425274i
\(328\) 0.341187 0.719036i 0.0188389 0.0397021i
\(329\) 1.61296 0.538485i 0.0889253 0.0296876i
\(330\) −2.04113 1.40889i −0.112361 0.0775569i
\(331\) 6.18877 2.93661i 0.340166 0.161411i −0.250944 0.968002i \(-0.580741\pi\)
0.591110 + 0.806591i \(0.298690\pi\)
\(332\) 12.5690 + 0.506515i 0.689816 + 0.0277986i
\(333\) −0.306236 + 1.24245i −0.0167816 + 0.0680857i
\(334\) 10.4534 + 4.45376i 0.571983 + 0.243699i
\(335\) −8.26461 + 1.34313i −0.451544 + 0.0733830i
\(336\) 0.772007 + 0.157606i 0.0421164 + 0.00859813i
\(337\) −8.13288 −0.443026 −0.221513 0.975157i \(-0.571100\pi\)
−0.221513 + 0.975157i \(0.571100\pi\)
\(338\) −8.70348 + 24.8071i −0.473407 + 1.34933i
\(339\) 4.99470 0.271275
\(340\) −13.5100 2.75809i −0.732683 0.149578i
\(341\) 11.0954 1.80318i 0.600850 0.0976476i
\(342\) 6.89657 + 2.93836i 0.372924 + 0.158888i
\(343\) −1.85774 + 7.53716i −0.100309 + 0.406969i
\(344\) −1.46815 0.0591646i −0.0791576 0.00318994i
\(345\) 2.08183 0.987841i 0.112082 0.0531836i
\(346\) −13.3369 9.20583i −0.716999 0.494908i
\(347\) −16.7589 + 5.59495i −0.899666 + 0.300353i −0.728626 0.684911i \(-0.759841\pi\)
−0.171040 + 0.985264i \(0.554713\pi\)
\(348\) 0.415472 0.875589i 0.0222716 0.0469365i
\(349\) 0.107283 0.321353i 0.00574275 0.0172016i −0.945626 0.325256i \(-0.894550\pi\)
0.951369 + 0.308054i \(0.0996778\pi\)
\(350\) −4.79720 1.18240i −0.256421 0.0632021i
\(351\) 2.78629 7.18161i 0.148721 0.383326i
\(352\) 31.6645 7.80460i 1.68772 0.415986i
\(353\) −2.21982 + 27.4974i −0.118149 + 1.46354i 0.617710 + 0.786406i \(0.288060\pi\)
−0.735859 + 0.677134i \(0.763222\pi\)
\(354\) 2.71255 + 2.82406i 0.144170 + 0.150097i
\(355\) −4.98419 10.5040i −0.264533 0.557492i
\(356\) −15.8644 + 1.92628i −0.840809 + 0.102093i
\(357\) 1.41645 + 0.817786i 0.0749664 + 0.0432818i
\(358\) −4.42061 + 5.88277i −0.233637 + 0.310914i
\(359\) 9.64610 6.65822i 0.509102 0.351408i −0.285658 0.958332i \(-0.592212\pi\)
0.794760 + 0.606924i \(0.207597\pi\)
\(360\) 0.216591 0.375147i 0.0114154 0.0197720i
\(361\) −8.66436 15.0071i −0.456019 0.789848i
\(362\) 5.46220 + 2.59185i 0.287087 + 0.136224i
\(363\) 1.71505 + 0.900129i 0.0900169 + 0.0472445i
\(364\) 3.10625 2.93849i 0.162812 0.154019i
\(365\) −4.37920 + 2.29838i −0.229218 + 0.120303i
\(366\) −4.84530 + 0.195259i −0.253268 + 0.0102063i
\(367\) 6.18614 30.3017i 0.322914 1.58174i −0.416918 0.908944i \(-0.636890\pi\)
0.739832 0.672792i \(-0.234905\pi\)
\(368\) −8.05154 + 27.7971i −0.419715 + 1.44903i
\(369\) −5.85310 11.1521i −0.304700 0.580558i
\(370\) 0.402153 + 0.635954i 0.0209070 + 0.0330617i
\(371\) −0.756408 + 4.65437i −0.0392708 + 0.241643i
\(372\) −0.506685 2.05570i −0.0262704 0.106583i
\(373\) 3.65110 + 17.8843i 0.189047 + 0.926013i 0.958013 + 0.286724i \(0.0925662\pi\)
−0.768966 + 0.639289i \(0.779229\pi\)
\(374\) 64.4473 + 5.20272i 3.33249 + 0.269026i
\(375\) −1.50979 + 2.38755i −0.0779654 + 0.123292i
\(376\) −0.406365 0.360008i −0.0209567 0.0185660i
\(377\) 2.26595 + 3.99461i 0.116702 + 0.205733i
\(378\) −1.83540 + 1.62603i −0.0944030 + 0.0836338i
\(379\) 4.02840 + 24.7878i 0.206925 + 1.27326i 0.857763 + 0.514045i \(0.171854\pi\)
−0.650838 + 0.759217i \(0.725582\pi\)
\(380\) 2.07206 0.882822i 0.106294 0.0452878i
\(381\) −0.464429 + 0.293687i −0.0237934 + 0.0150461i
\(382\) −31.1180 + 35.1249i −1.59213 + 1.79715i
\(383\) −2.10578 26.0848i −0.107601 1.33287i −0.795007 0.606600i \(-0.792533\pi\)
0.687407 0.726273i \(-0.258749\pi\)
\(384\) −0.166976 0.500154i −0.00852096 0.0255234i
\(385\) −1.89760 0.230411i −0.0967108 0.0117428i
\(386\) −2.55504 1.91999i −0.130048 0.0977248i
\(387\) −14.7059 + 18.0115i −0.747544 + 0.915576i
\(388\) 15.7764 + 12.8810i 0.800926 + 0.653936i
\(389\) 9.74281 + 14.1149i 0.493980 + 0.715653i 0.988112 0.153733i \(-0.0491296\pi\)
−0.494132 + 0.869387i \(0.664514\pi\)
\(390\) −0.933715 2.00704i −0.0472805 0.101631i
\(391\) −34.1251 + 49.4388i −1.72578 + 2.50023i
\(392\) 1.16222 0.336643i 0.0587012 0.0170030i
\(393\) 3.87134 + 2.44809i 0.195283 + 0.123490i
\(394\) 6.07784 + 0.987745i 0.306197 + 0.0497619i
\(395\) 6.31908 + 2.39651i 0.317948 + 0.120582i
\(396\) −9.48754 + 22.2681i −0.476767 + 1.11901i
\(397\) 24.3624 + 23.4004i 1.22271 + 1.17443i 0.978840 + 0.204626i \(0.0655977\pi\)
0.243874 + 0.969807i \(0.421582\pi\)
\(398\) −4.35030 + 8.28880i −0.218061 + 0.415480i
\(399\) −0.266294 + 0.0214975i −0.0133314 + 0.00107622i
\(400\) −4.56651 15.7654i −0.228325 0.788271i
\(401\) 9.56291 9.18530i 0.477549 0.458692i −0.414883 0.909875i \(-0.636177\pi\)
0.892431 + 0.451183i \(0.148998\pi\)
\(402\) −2.62231 6.91445i −0.130789 0.344861i
\(403\) 9.35354 + 3.62895i 0.465933 + 0.180771i
\(404\) −10.7862 + 28.4408i −0.536632 + 1.41498i
\(405\) −2.55700 6.00150i −0.127058 0.298217i
\(406\) −0.0588647 1.46071i −0.00292141 0.0724940i
\(407\) −1.14017 1.39645i −0.0565161 0.0692197i
\(408\) 0.522179i 0.0258517i
\(409\) 9.20864 7.51862i 0.455338 0.371772i −0.376842 0.926278i \(-0.622990\pi\)
0.832180 + 0.554506i \(0.187093\pi\)
\(410\) −7.11351 2.06045i −0.351311 0.101758i
\(411\) −5.33194 6.01851i −0.263005 0.296871i
\(412\) 13.9452 14.5184i 0.687029 0.715273i
\(413\) 2.86269 + 0.955706i 0.140864 + 0.0470272i
\(414\) −26.4406 35.1861i −1.29949 1.72930i
\(415\) −0.604989 4.98253i −0.0296977 0.244583i
\(416\) 27.8955 + 8.31056i 1.36769 + 0.407458i
\(417\) 0.441505 3.63612i 0.0216206 0.178062i
\(418\) −9.14634 + 5.28064i −0.447362 + 0.258285i
\(419\) −9.59782 + 7.21229i −0.468884 + 0.352344i −0.808772 0.588122i \(-0.799867\pi\)
0.339888 + 0.940466i \(0.389611\pi\)
\(420\) −0.0144972 + 0.359744i −0.000707391 + 0.0175537i
\(421\) 14.2110 5.38953i 0.692603 0.262670i 0.0169147 0.999857i \(-0.494616\pi\)
0.675689 + 0.737187i \(0.263846\pi\)
\(422\) −16.5575 + 3.38024i −0.806007 + 0.164548i
\(423\) −8.41778 + 1.71850i −0.409286 + 0.0835564i
\(424\) 1.40763 0.533845i 0.0683608 0.0259258i
\(425\) 1.37189 34.0431i 0.0665465 1.65134i
\(426\) 8.20902 6.16868i 0.397728 0.298873i
\(427\) −3.23673 + 1.86873i −0.156637 + 0.0904342i
\(428\) −3.93968 + 32.4462i −0.190432 + 1.56835i
\(429\) 2.80044 + 4.50402i 0.135206 + 0.217456i
\(430\) 1.64807 + 13.5731i 0.0794769 + 0.654551i
\(431\) 16.8623 + 22.4396i 0.812226 + 1.08088i 0.995210 + 0.0977611i \(0.0311681\pi\)
−0.182983 + 0.983116i \(0.558575\pi\)
\(432\) −7.72668 2.57955i −0.371750 0.124108i
\(433\) 20.4016 21.2403i 0.980439 1.02075i −0.0193414 0.999813i \(-0.506157\pi\)
0.999781 0.0209327i \(-0.00666357\pi\)
\(434\) −2.11779 2.39049i −0.101657 0.114747i
\(435\) −0.371428 0.107586i −0.0178086 0.00515833i
\(436\) −3.60396 + 2.94254i −0.172598 + 0.140922i
\(437\) 9.81246i 0.469394i
\(438\) −2.76253 3.38348i −0.131999 0.161669i
\(439\) 0.204291 + 5.06942i 0.00975026 + 0.241950i 0.996714 + 0.0810054i \(0.0258131\pi\)
−0.986963 + 0.160945i \(0.948546\pi\)
\(440\) 0.239211 + 0.561449i 0.0114040 + 0.0267661i
\(441\) 6.79008 17.9040i 0.323337 0.852570i
\(442\) 47.2419 + 33.1421i 2.24707 + 1.57641i
\(443\) −3.74187 9.86650i −0.177782 0.468771i 0.816271 0.577668i \(-0.196037\pi\)
−0.994053 + 0.108897i \(0.965268\pi\)
\(444\) −0.244887 + 0.235218i −0.0116218 + 0.0111629i
\(445\) 1.77402 + 6.12462i 0.0840966 + 0.290335i
\(446\) −41.6582 + 3.36300i −1.97257 + 0.159243i
\(447\) −0.0183115 + 0.0348896i −0.000866104 + 0.00165022i
\(448\) −3.56101 3.42039i −0.168242 0.161598i
\(449\) 3.49925 8.21305i 0.165140 0.387598i −0.816765 0.576970i \(-0.804235\pi\)
0.981905 + 0.189372i \(0.0606452\pi\)
\(450\) 23.3404 + 8.85185i 1.10028 + 0.417280i
\(451\) 17.5143 + 2.84635i 0.824715 + 0.134029i
\(452\) −24.2256 15.3194i −1.13948 0.720562i
\(453\) −4.30510 + 1.24699i −0.202271 + 0.0585886i
\(454\) 30.0854 43.5862i 1.41198 2.04560i
\(455\) −1.35609 1.03527i −0.0635745 0.0485342i
\(456\) 0.0484528 + 0.0701960i 0.00226901 + 0.00328723i
\(457\) −20.7151 16.9134i −0.969012 0.791173i 0.00894965 0.999960i \(-0.497151\pi\)
−0.977961 + 0.208786i \(0.933049\pi\)
\(458\) −36.4428 + 44.6343i −1.70286 + 2.08562i
\(459\) −13.5179 10.1580i −0.630960 0.474136i
\(460\) −13.1273 1.59394i −0.612062 0.0743178i
\(461\) −1.87362 5.61218i −0.0872633 0.261385i 0.895858 0.444340i \(-0.146562\pi\)
−0.983121 + 0.182955i \(0.941434\pi\)
\(462\) −0.135848 1.68278i −0.00632023 0.0782902i
\(463\) −16.6639 + 18.8097i −0.774437 + 0.874159i −0.994862 0.101245i \(-0.967717\pi\)
0.220424 + 0.975404i \(0.429256\pi\)
\(464\) 4.10466 2.59563i 0.190554 0.120499i
\(465\) −0.777174 + 0.331123i −0.0360406 + 0.0153555i
\(466\) 0.0421526 + 0.259375i 0.00195268 + 0.0120153i
\(467\) 2.20099 1.94990i 0.101850 0.0902308i −0.610661 0.791892i \(-0.709096\pi\)
0.712511 + 0.701661i \(0.247558\pi\)
\(468\) −17.3690 + 12.8464i −0.802883 + 0.593825i
\(469\) −4.26619 3.77951i −0.196994 0.174522i
\(470\) −2.70004 + 4.26978i −0.124544 + 0.196950i
\(471\) 0.538427 + 0.0434663i 0.0248094 + 0.00200282i
\(472\) −0.192733 0.944067i −0.00887124 0.0434542i
\(473\) −7.83974 31.8071i −0.360472 1.46249i
\(474\) −0.957470 + 5.89155i −0.0439781 + 0.270608i
\(475\) 2.97443 + 4.70368i 0.136476 + 0.215820i
\(476\) −4.36190 8.31091i −0.199927 0.380930i
\(477\) 6.62828 22.8835i 0.303488 1.04776i
\(478\) 6.86502 33.6271i 0.313999 1.53807i
\(479\) 5.03752 0.203005i 0.230170 0.00927553i 0.0750870 0.997177i \(-0.476077\pi\)
0.155083 + 0.987901i \(0.450436\pi\)
\(480\) −2.17011 + 1.13896i −0.0990517 + 0.0519864i
\(481\) −0.246019 1.59012i −0.0112175 0.0725032i
\(482\) 27.2467 + 14.3002i 1.24105 + 0.651356i
\(483\) 1.41711 + 0.672428i 0.0644809 + 0.0305966i
\(484\) −5.55766 9.62615i −0.252621 0.437552i
\(485\) 4.06323 7.03772i 0.184502 0.319567i
\(486\) 15.4088 10.6360i 0.698960 0.482457i
\(487\) 9.50482 12.6486i 0.430704 0.573164i −0.530958 0.847398i \(-0.678168\pi\)
0.961663 + 0.274234i \(0.0884244\pi\)
\(488\) 1.03337 + 0.596617i 0.0467785 + 0.0270076i
\(489\) 3.25217 0.394885i 0.147068 0.0178573i
\(490\) −4.82684 10.1723i −0.218054 0.459540i
\(491\) 2.05125 + 2.13558i 0.0925717 + 0.0963773i 0.765877 0.642988i \(-0.222305\pi\)
−0.673305 + 0.739365i \(0.735126\pi\)
\(492\) 0.268925 3.33123i 0.0121241 0.150184i
\(493\) 9.78809 2.41255i 0.440833 0.108656i
\(494\) −9.42593 0.0717048i −0.424093 0.00322615i
\(495\) 9.37716 + 2.31126i 0.421472 + 0.103884i
\(496\) 3.35968 10.0635i 0.150854 0.451863i
\(497\) 3.39276 7.15009i 0.152186 0.320725i
\(498\) 4.20472 1.40374i 0.188418 0.0629032i
\(499\) −20.2933 14.0075i −0.908453 0.627060i 0.0194785 0.999810i \(-0.493799\pi\)
−0.927932 + 0.372750i \(0.878415\pi\)
\(500\) 14.6458 6.94953i 0.654981 0.310792i
\(501\) 2.04426 + 0.0823810i 0.0913309 + 0.00368051i
\(502\) 0.222918 0.904412i 0.00994930 0.0403659i
\(503\) −27.7470 11.8219i −1.23718 0.527112i −0.328458 0.944518i \(-0.606529\pi\)
−0.908720 + 0.417406i \(0.862939\pi\)
\(504\) 0.291051 0.0473004i 0.0129645 0.00210693i
\(505\) 11.8913 + 2.42763i 0.529156 + 0.108028i
\(506\) 62.0076 2.75658
\(507\) 0.118626 + 4.73215i 0.00526835 + 0.210162i
\(508\) 3.15338 0.139909
\(509\) −39.0915 7.98059i −1.73270 0.353734i −0.772925 0.634497i \(-0.781207\pi\)
−0.959777 + 0.280764i \(0.909412\pi\)
\(510\) −4.79613 + 0.779446i −0.212376 + 0.0345145i
\(511\) −3.09717 1.31958i −0.137011 0.0583748i
\(512\) 7.69680 31.2272i 0.340154 1.38006i
\(513\) 2.75975 + 0.111214i 0.121846 + 0.00491023i
\(514\) −30.4192 + 14.4341i −1.34173 + 0.636661i
\(515\) −6.61040 4.56283i −0.291289 0.201062i
\(516\) −5.85259 + 1.95388i −0.257646 + 0.0860148i
\(517\) 5.18885 10.9353i 0.228206 0.480933i
\(518\) −0.162194 + 0.485830i −0.00712640 + 0.0213462i
\(519\) −2.83315 0.698308i −0.124361 0.0306523i
\(520\) −0.0697670 + 0.540208i −0.00305948 + 0.0236897i
\(521\) −0.506081 + 0.124738i −0.0221718 + 0.00546486i −0.250386 0.968146i \(-0.580558\pi\)
0.228214 + 0.973611i \(0.426711\pi\)
\(522\) −0.594330 + 7.36210i −0.0260131 + 0.322230i
\(523\) 18.5672 + 19.3305i 0.811889 + 0.845266i 0.990337 0.138684i \(-0.0442871\pi\)
−0.178448 + 0.983949i \(0.557108\pi\)
\(524\) −11.2685 23.7478i −0.492265 1.03743i
\(525\) −0.883136 + 0.107232i −0.0385432 + 0.00467999i
\(526\) −39.9637 23.0730i −1.74250 1.00603i
\(527\) 13.2301 17.6061i 0.576313 0.766933i
\(528\) 4.61568 3.18597i 0.200871 0.138652i
\(529\) −17.3056 + 29.9741i −0.752417 + 1.30322i
\(530\) −7.00443 12.1320i −0.304253 0.526982i
\(531\) −13.7759 6.53673i −0.597822 0.283670i
\(532\) 1.35753 + 0.712488i 0.0588565 + 0.0308903i
\(533\) 12.1909 + 10.1091i 0.528045 + 0.437872i
\(534\) −4.98650 + 2.61712i −0.215787 + 0.113254i
\(535\) 13.0306 0.525113i 0.563360 0.0227026i
\(536\) −0.363980 + 1.78289i −0.0157215 + 0.0770091i
\(537\) −0.368629 + 1.27266i −0.0159075 + 0.0549191i
\(538\) 8.15541 + 15.5388i 0.351605 + 0.669927i
\(539\) 14.4182 + 22.8006i 0.621036 + 0.982090i
\(540\) 0.597080 3.67398i 0.0256942 0.158103i
\(541\) 1.04163 + 4.22607i 0.0447832 + 0.181693i 0.989074 0.147419i \(-0.0470967\pi\)
−0.944291 + 0.329112i \(0.893251\pi\)
\(542\) −9.50362 46.5518i −0.408215 1.99957i
\(543\) 1.08509 + 0.0875971i 0.0465655 + 0.00375915i
\(544\) 34.1484 54.0014i 1.46410 2.31529i
\(545\) 1.38954 + 1.23103i 0.0595214 + 0.0527313i
\(546\) 0.656296 1.35638i 0.0280869 0.0580475i
\(547\) −28.5793 + 25.3190i −1.22196 + 1.08256i −0.227906 + 0.973683i \(0.573188\pi\)
−0.994055 + 0.108879i \(0.965274\pi\)
\(548\) 7.40180 + 45.5451i 0.316189 + 1.94559i
\(549\) 17.3720 7.40151i 0.741418 0.315889i
\(550\) −29.7239 + 18.7962i −1.26743 + 0.801474i
\(551\) −1.09194 + 1.23255i −0.0465184 + 0.0525084i
\(552\) −0.0402963 0.499159i −0.00171512 0.0212456i
\(553\) 1.45679 + 4.36363i 0.0619492 + 0.185560i
\(554\) −29.0376 3.52581i −1.23369 0.149797i
\(555\) 0.108310 + 0.0813900i 0.00459752 + 0.00345481i
\(556\) −13.2939 + 16.2820i −0.563785 + 0.690511i
\(557\) 2.75524 + 2.24958i 0.116743 + 0.0953179i 0.689019 0.724744i \(-0.258042\pi\)
−0.572275 + 0.820061i \(0.693939\pi\)
\(558\) 9.16602 + 13.2793i 0.388029 + 0.562157i
\(559\) 8.34798 28.0212i 0.353082 1.18517i
\(560\) −1.02487 + 1.48479i −0.0433088 + 0.0627437i
\(561\) 11.1823 3.23900i 0.472118 0.136751i
\(562\) −41.4485 26.2105i −1.74840 1.10562i
\(563\) −32.6921 5.31299i −1.37781 0.223916i −0.574025 0.818837i \(-0.694619\pi\)
−0.803784 + 0.594922i \(0.797183\pi\)
\(564\) −2.13161 0.808413i −0.0897569 0.0340403i
\(565\) −4.48274 + 10.5214i −0.188590 + 0.442637i
\(566\) 6.17188 + 5.92817i 0.259423 + 0.249180i
\(567\) 2.06364 3.93194i 0.0866649 0.165126i
\(568\) −2.51852 + 0.203316i −0.105675 + 0.00853096i
\(569\) 4.73651 + 16.3523i 0.198565 + 0.685525i 0.996561 + 0.0828626i \(0.0264063\pi\)
−0.797996 + 0.602662i \(0.794107\pi\)
\(570\) 0.572414 0.549811i 0.0239758 0.0230290i
\(571\) 0.309848 + 0.817002i 0.0129667 + 0.0341905i 0.941343 0.337450i \(-0.109565\pi\)
−0.928377 + 0.371641i \(0.878795\pi\)
\(572\) 0.231525 30.4350i 0.00968054 1.27255i
\(573\) −2.99622 + 7.90037i −0.125169 + 0.330043i
\(574\) −1.97600 4.63783i −0.0824765 0.193579i
\(575\) −1.31568 32.6483i −0.0548676 1.36153i
\(576\) 15.7773 + 19.3237i 0.657389 + 0.805155i
\(577\) 21.8359i 0.909042i −0.890736 0.454521i \(-0.849810\pi\)
0.890736 0.454521i \(-0.150190\pi\)
\(578\) 71.4922 58.3716i 2.97368 2.42794i
\(579\) −0.552748 0.160105i −0.0229714 0.00665375i
\(580\) 1.47155 + 1.66104i 0.0611028 + 0.0689708i
\(581\) 2.36672 2.46402i 0.0981882 0.102225i
\(582\) 6.80787 + 2.27280i 0.282195 + 0.0942106i
\(583\) 20.1635 + 26.8327i 0.835086 + 1.11130i
\(584\) 0.129555 + 1.06698i 0.00536104 + 0.0441521i
\(585\) 6.17103 + 6.01828i 0.255141 + 0.248825i
\(586\) −3.66476 + 30.1820i −0.151390 + 1.24681i
\(587\) −18.8984 + 10.9110i −0.780020 + 0.450345i −0.836438 0.548062i \(-0.815366\pi\)
0.0564171 + 0.998407i \(0.482032\pi\)
\(588\) 4.06202 3.05241i 0.167515 0.125879i
\(589\) −0.144849 + 3.59439i −0.00596839 + 0.148104i
\(590\) −8.38341 + 3.17941i −0.345140 + 0.130894i
\(591\) 1.08631 0.221772i 0.0446849 0.00912248i
\(592\) −1.66713 + 0.340347i −0.0685186 + 0.0139882i
\(593\) −43.1274 + 16.3561i −1.77103 + 0.671663i −0.771664 + 0.636030i \(0.780575\pi\)
−0.999365 + 0.0356326i \(0.988655\pi\)
\(594\) −0.702794 + 17.4396i −0.0288360 + 0.715557i
\(595\) −2.99393 + 2.24980i −0.122739 + 0.0922326i
\(596\) 0.195827 0.113061i 0.00802137 0.00463114i
\(597\) −0.203168 + 1.67324i −0.00831511 + 0.0684811i
\(598\) 47.7169 + 28.0355i 1.95129 + 1.14646i
\(599\) −2.77821 22.8806i −0.113515 0.934878i −0.932527 0.361101i \(-0.882401\pi\)
0.819012 0.573776i \(-0.194522\pi\)
\(600\) 0.170625 + 0.227061i 0.00696575 + 0.00926972i
\(601\) −30.3097 10.1189i −1.23636 0.412757i −0.377999 0.925806i \(-0.623388\pi\)
−0.858359 + 0.513049i \(0.828516\pi\)
\(602\) −6.44726 + 6.71231i −0.262771 + 0.273573i
\(603\) 19.0955 + 21.5544i 0.777628 + 0.877761i
\(604\) 24.7056 + 7.15605i 1.00525 + 0.291176i
\(605\) −3.43539 + 2.80491i −0.139668 + 0.114036i
\(606\) 10.7189i 0.435427i
\(607\) 2.16624 + 2.65316i 0.0879249 + 0.107688i 0.816694 0.577071i \(-0.195805\pi\)
−0.728769 + 0.684760i \(0.759907\pi\)
\(608\) 0.420233 + 10.4280i 0.0170427 + 0.422910i
\(609\) −0.103176 0.242162i −0.00418089 0.00981291i
\(610\) 3.93734 10.3819i 0.159418 0.420351i
\(611\) 8.93715 6.06901i 0.361558 0.245526i
\(612\) 16.8159 + 44.3400i 0.679744 + 1.79234i
\(613\) 9.38595 9.01533i 0.379095 0.364126i −0.478824 0.877911i \(-0.658937\pi\)
0.857919 + 0.513785i \(0.171757\pi\)
\(614\) 11.8363 + 40.8638i 0.477676 + 1.64913i
\(615\) −1.32916 + 0.107301i −0.0535971 + 0.00432680i
\(616\) −0.193057 + 0.367840i −0.00777849 + 0.0148207i
\(617\) 7.15321 + 6.87075i 0.287977 + 0.276606i 0.822766 0.568380i \(-0.192429\pi\)
−0.534789 + 0.844986i \(0.679609\pi\)
\(618\) 2.78061 6.52634i 0.111853 0.262528i
\(619\) −8.47219 3.21308i −0.340526 0.129145i 0.178413 0.983956i \(-0.442904\pi\)
−0.518939 + 0.854811i \(0.673673\pi\)
\(620\) 4.78510 + 0.777655i 0.192174 + 0.0312314i
\(621\) −13.7058 8.66705i −0.549997 0.347797i
\(622\) −23.8543 + 6.90949i −0.956471 + 0.277045i
\(623\) −2.46565 + 3.57210i −0.0987840 + 0.143113i
\(624\) 4.99238 0.364825i 0.199855 0.0146047i
\(625\) 8.55284 + 12.3909i 0.342114 + 0.495637i
\(626\) −16.5918 13.5468i −0.663144 0.541440i
\(627\) −1.20268 + 1.47302i −0.0480305 + 0.0588267i
\(628\) −2.47820 1.86224i −0.0988909 0.0743117i
\(629\) −3.50623 0.425733i −0.139802 0.0169751i
\(630\) −0.868893 2.60265i −0.0346175 0.103692i
\(631\) 2.67804 + 33.1735i 0.106611 + 1.32061i 0.799978 + 0.600030i \(0.204845\pi\)
−0.693367 + 0.720585i \(0.743873\pi\)
\(632\) 0.973951 1.09936i 0.0387417 0.0437303i
\(633\) −2.57174 + 1.62627i −0.102218 + 0.0646384i
\(634\) 21.0871 8.98437i 0.837475 0.356815i
\(635\) −0.201830 1.24191i −0.00800937 0.0492836i
\(636\) 4.73193 4.19213i 0.187633 0.166229i
\(637\) 0.786467 + 24.0647i 0.0311610 + 0.953477i
\(638\) −7.78882 6.90029i −0.308362 0.273185i
\(639\) −21.3709 + 33.7953i −0.845418 + 1.33692i
\(640\) 1.20344 + 0.0971517i 0.0475701 + 0.00384026i
\(641\) 6.29240 + 30.8222i 0.248535 + 1.21740i 0.892038 + 0.451960i \(0.149275\pi\)
−0.643503 + 0.765443i \(0.722520\pi\)
\(642\) 2.75640 + 11.1831i 0.108786 + 0.441363i
\(643\) −6.08337 + 37.4325i −0.239905 + 1.47619i 0.535396 + 0.844601i \(0.320162\pi\)
−0.775301 + 0.631592i \(0.782402\pi\)
\(644\) −4.81096 7.60792i −0.189578 0.299794i
\(645\) 1.14409 + 2.17989i 0.0450486 + 0.0858330i
\(646\) −5.75669 + 19.8744i −0.226494 + 0.781947i
\(647\) 7.62603 37.3548i 0.299810 1.46857i −0.498799 0.866718i \(-0.666225\pi\)
0.798609 0.601850i \(-0.205569\pi\)
\(648\) −1.41657 + 0.0570857i −0.0556480 + 0.00224254i
\(649\) 19.0214 9.98322i 0.746657 0.391876i
\(650\) −31.3718 + 1.02527i −1.23050 + 0.0402146i
\(651\) −0.509174 0.267235i −0.0199561 0.0104738i
\(652\) −16.9850 8.05951i −0.665186 0.315635i
\(653\) 13.5210 + 23.4190i 0.529116 + 0.916456i 0.999423 + 0.0339532i \(0.0108097\pi\)
−0.470307 + 0.882503i \(0.655857\pi\)
\(654\) −0.819782 + 1.41990i −0.0320560 + 0.0555227i
\(655\) −8.63144 + 5.95785i −0.337258 + 0.232792i
\(656\) 10.0608 13.3884i 0.392806 0.522730i
\(657\) 14.7303 + 8.50455i 0.574685 + 0.331794i
\(658\) −3.41375 + 0.414504i −0.133082 + 0.0161591i
\(659\) 9.72456 + 20.4941i 0.378815 + 0.798336i 0.999894 + 0.0145874i \(0.00464347\pi\)
−0.621079 + 0.783748i \(0.713305\pi\)
\(660\) 1.77526 + 1.84824i 0.0691020 + 0.0719428i
\(661\) −0.221785 + 2.74729i −0.00862642 + 0.106857i −0.999638 0.0269222i \(-0.991429\pi\)
0.991011 + 0.133780i \(0.0427114\pi\)
\(662\) −13.4504 + 3.31522i −0.522763 + 0.128850i
\(663\) 10.0696 + 2.56334i 0.391070 + 0.0995518i
\(664\) −1.05908 0.261040i −0.0411004 0.0101303i
\(665\) 0.193714 0.580244i 0.00751190 0.0225009i
\(666\) 1.10936 2.33792i 0.0429867 0.0905926i
\(667\) 9.17041 3.06153i 0.355080 0.118543i
\(668\) −9.66255 6.66958i −0.373855 0.258054i
\(669\) −6.79871 + 3.22603i −0.262853 + 0.124725i
\(670\) 16.9189 + 0.681807i 0.653633 + 0.0263405i
\(671\) −6.36654 + 25.8301i −0.245778 + 0.997159i
\(672\) −1.53480 0.653919i −0.0592063 0.0252255i
\(673\) −29.6332 + 4.81586i −1.14228 + 0.185638i −0.701968 0.712209i \(-0.747695\pi\)
−0.440308 + 0.897847i \(0.645131\pi\)
\(674\) 16.1145 + 3.28981i 0.620709 + 0.126719i
\(675\) 9.19723 0.354002
\(676\) 13.9387 23.3160i 0.536105 0.896771i
\(677\) 51.2295 1.96891 0.984455 0.175635i \(-0.0561979\pi\)
0.984455 + 0.175635i \(0.0561979\pi\)
\(678\) −9.89653 2.02039i −0.380074 0.0775926i
\(679\) 5.46009 0.887351i 0.209539 0.0340534i
\(680\) 1.09997 + 0.468655i 0.0421821 + 0.0179721i
\(681\) 2.28213 9.25895i 0.0874512 0.354804i
\(682\) −22.7139 0.915340i −0.869761 0.0350502i
\(683\) −13.6510 + 6.47747i −0.522340 + 0.247854i −0.671560 0.740951i \(-0.734375\pi\)
0.149219 + 0.988804i \(0.452324\pi\)
\(684\) −6.37484 4.40023i −0.243748 0.168247i
\(685\) 17.4634 5.83016i 0.667244 0.222759i
\(686\) 6.72978 14.1827i 0.256944 0.541499i
\(687\) −3.28552 + 9.84133i −0.125350 + 0.375470i
\(688\) −30.0202 7.39931i −1.14451 0.282096i
\(689\) 3.38459 + 29.7651i 0.128943 + 1.13396i
\(690\) −4.52454 + 1.11520i −0.172246 + 0.0424549i
\(691\) −1.77991 + 22.0482i −0.0677110 + 0.838752i 0.870384 + 0.492374i \(0.163871\pi\)
−0.938095 + 0.346378i \(0.887411\pi\)
\(692\) 11.5997 + 12.0766i 0.440956 + 0.459084i
\(693\) 2.81827 + 5.93938i 0.107057 + 0.225619i
\(694\) 35.4695 4.30677i 1.34640 0.163483i
\(695\) 7.26327 + 4.19345i 0.275511 + 0.159067i
\(696\) −0.0504854 + 0.0671839i −0.00191364 + 0.00254660i
\(697\) 28.6099 19.7480i 1.08368 0.748007i
\(698\) −0.342562 + 0.593335i −0.0129662 + 0.0224580i
\(699\) 0.0236576 + 0.0409761i 0.000894811 + 0.00154986i
\(700\) 4.61234 + 2.18858i 0.174330 + 0.0827207i
\(701\) −8.72133 4.57731i −0.329400 0.172883i 0.291913 0.956445i \(-0.405708\pi\)
−0.621313 + 0.783562i \(0.713401\pi\)
\(702\) −8.42579 + 13.1026i −0.318011 + 0.494526i
\(703\) 0.510842 0.268111i 0.0192668 0.0101120i
\(704\) −35.1172 + 1.41517i −1.32353 + 0.0533363i
\(705\) −0.181948 + 0.891241i −0.00685256 + 0.0335661i
\(706\) 15.5213 53.5856i 0.584151 2.01672i
\(707\) 3.83928 + 7.31513i 0.144391 + 0.275114i
\(708\) −2.16251 3.41974i −0.0812723 0.128522i
\(709\) 5.97503 36.7659i 0.224397 1.38077i −0.593235 0.805029i \(-0.702149\pi\)
0.817632 0.575741i \(-0.195286\pi\)
\(710\) 5.62678 + 22.8287i 0.211169 + 0.856747i
\(711\) −4.64916 22.7731i −0.174357 0.854058i
\(712\) 1.38125 + 0.111506i 0.0517644 + 0.00417886i
\(713\) 11.2882 17.8509i 0.422747 0.668522i
\(714\) −2.47576 2.19333i −0.0926529 0.0820833i
\(715\) −12.0012 + 1.85679i −0.448818 + 0.0694399i
\(716\) 5.69135 5.04209i 0.212696 0.188432i
\(717\) −0.991293 6.09967i −0.0370205 0.227796i
\(718\) −21.8061 + 9.29073i −0.813798 + 0.346727i
\(719\) −0.595116 + 0.376329i −0.0221941 + 0.0140347i −0.545517 0.838100i \(-0.683667\pi\)
0.523323 + 0.852135i \(0.324692\pi\)
\(720\) 6.04451 6.82285i 0.225266 0.254272i
\(721\) −0.439958 5.44985i −0.0163849 0.202963i
\(722\) 11.0971 + 33.2400i 0.412993 + 1.23706i
\(723\) 5.50022 + 0.667848i 0.204555 + 0.0248375i
\(724\) −4.99429 3.75296i −0.185611 0.139478i
\(725\) −3.46788 + 4.24738i −0.128794 + 0.157744i
\(726\) −3.03411 2.47727i −0.112606 0.0919402i
\(727\) −6.80178 9.85408i −0.252264 0.365468i 0.676308 0.736619i \(-0.263579\pi\)
−0.928573 + 0.371151i \(0.878963\pi\)
\(728\) −0.314875 + 0.195778i −0.0116700 + 0.00725600i
\(729\) −11.4190 + 16.5433i −0.422927 + 0.612716i
\(730\) 9.60669 2.78261i 0.355560 0.102989i
\(731\) −54.2446 34.3022i −2.00631 1.26871i
\(732\) 4.94578 + 0.803768i 0.182801 + 0.0297081i
\(733\) −31.6153 11.9901i −1.16774 0.442864i −0.306898 0.951742i \(-0.599291\pi\)
−0.860838 + 0.508879i \(0.830060\pi\)
\(734\) −24.5145 + 57.5377i −0.904847 + 2.12375i
\(735\) −1.46213 1.40439i −0.0539313 0.0518018i
\(736\) 28.4758 54.2561i 1.04963 1.99990i
\(737\) −40.4378 + 3.26448i −1.48955 + 0.120249i
\(738\) 7.08625 + 24.4646i 0.260848 + 0.900553i
\(739\) 9.93585 9.54351i 0.365496 0.351064i −0.487368 0.873197i \(-0.662043\pi\)
0.852864 + 0.522133i \(0.174863\pi\)
\(740\) −0.275701 0.726965i −0.0101350 0.0267238i
\(741\) −1.59150 + 0.589766i −0.0584651 + 0.0216656i
\(742\) 3.38148 8.91622i 0.124138 0.327325i
\(743\) 16.6682 + 39.1216i 0.611496 + 1.43523i 0.881411 + 0.472350i \(0.156594\pi\)
−0.269915 + 0.962884i \(0.586996\pi\)
\(744\) 0.00739242 + 0.183441i 0.000271019 + 0.00672527i
\(745\) −0.0570608 0.0698867i −0.00209054 0.00256045i
\(746\) 36.9129i 1.35148i
\(747\) −13.3709 + 10.9170i −0.489217 + 0.399434i
\(748\) −64.1716 18.5875i −2.34635 0.679628i
\(749\) 5.88665 + 6.64465i 0.215093 + 0.242790i
\(750\) 3.95730 4.11998i 0.144500 0.150440i
\(751\) −10.0976 3.37108i −0.368467 0.123012i 0.126404 0.991979i \(-0.459656\pi\)
−0.494871 + 0.868966i \(0.664785\pi\)
\(752\) −6.86283 9.13277i −0.250262 0.333038i
\(753\) −0.0202164 0.166497i −0.000736726 0.00606749i
\(754\) −2.87392 8.83154i −0.104662 0.321626i
\(755\) 1.23703 10.1879i 0.0450203 0.370775i
\(756\) 2.19425 1.26685i 0.0798043 0.0460750i
\(757\) −9.80176 + 7.36555i −0.356251 + 0.267705i −0.763766 0.645493i \(-0.776652\pi\)
0.407515 + 0.913199i \(0.366395\pi\)
\(758\) 2.04492 50.7442i 0.0742748 1.84311i
\(759\) 10.4394 3.95914i 0.378926 0.143708i
\(760\) −0.191355 + 0.0390653i −0.00694116 + 0.00141705i
\(761\) 26.7319 5.45736i 0.969031 0.197829i 0.310659 0.950521i \(-0.399450\pi\)
0.658372 + 0.752692i \(0.271245\pi\)
\(762\) 1.03902 0.394049i 0.0376398 0.0142749i
\(763\) −0.0508827 + 1.26264i −0.00184208 + 0.0457107i
\(764\) 38.7639 29.1292i 1.40243 1.05386i
\(765\) 16.3863 9.46062i 0.592447 0.342049i
\(766\) −6.37908