Properties

Label 169.2.k.a.10.3
Level $169$
Weight $2$
Character 169.10
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 10.3
Character \(\chi\) \(=\) 169.10
Dual form 169.2.k.a.17.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99584 - 0.407454i) q^{2} +(1.34046 - 0.217845i) q^{3} +(1.97740 + 0.842491i) q^{4} +(-0.647035 + 2.62512i) q^{5} +(-2.76410 - 0.111389i) q^{6} +(-3.12689 + 1.48373i) q^{7} +(-0.250449 - 0.172873i) q^{8} +(-1.09624 + 0.365979i) q^{9} +O(q^{10})\) \(q+(-1.99584 - 0.407454i) q^{2} +(1.34046 - 0.217845i) q^{3} +(1.97740 + 0.842491i) q^{4} +(-0.647035 + 2.62512i) q^{5} +(-2.76410 - 0.111389i) q^{6} +(-3.12689 + 1.48373i) q^{7} +(-0.250449 - 0.172873i) q^{8} +(-1.09624 + 0.365979i) q^{9} +(2.36099 - 4.97569i) q^{10} +(-0.457073 + 1.36910i) q^{11} +(2.83415 + 0.698555i) q^{12} +(-2.59114 - 2.50718i) q^{13} +(6.84532 - 1.68722i) q^{14} +(-0.295451 + 3.65982i) q^{15} +(-2.54846 - 2.65323i) q^{16} +(3.18715 + 6.71677i) q^{17} +(2.33704 - 0.283768i) q^{18} +(1.35625 + 0.783031i) q^{19} +(-3.49109 + 4.64579i) q^{20} +(-3.86824 + 2.67005i) q^{21} +(1.47009 - 2.54627i) q^{22} +(2.33811 + 4.04973i) q^{23} +(-0.373376 - 0.177169i) q^{24} +(-2.04534 - 1.07347i) q^{25} +(4.14995 + 6.05971i) q^{26} +(-4.99720 + 2.62273i) q^{27} +(-7.43313 + 0.299545i) q^{28} +(1.83251 - 8.97622i) q^{29} +(2.08088 - 7.18403i) q^{30} +(2.10123 + 4.00356i) q^{31} +(4.33054 + 6.84820i) q^{32} +(-0.314435 + 1.93479i) q^{33} +(-3.62426 - 14.7042i) q^{34} +(-1.87176 - 9.16849i) q^{35} +(-2.47604 - 0.199887i) q^{36} +(2.23182 - 3.52934i) q^{37} +(-2.38781 - 2.11541i) q^{38} +(-4.01949 - 2.79630i) q^{39} +(0.615861 - 0.545605i) q^{40} +(-0.705434 - 4.34071i) q^{41} +(8.80830 - 3.75287i) q^{42} +(6.97646 - 4.41165i) q^{43} +(-2.05727 + 2.32218i) q^{44} +(-0.251434 - 3.11457i) q^{45} +(-3.01642 - 9.03528i) q^{46} +(-4.62870 - 0.562026i) q^{47} +(-3.99409 - 3.00136i) q^{48} +(3.14887 - 3.85667i) q^{49} +(3.64477 + 2.97586i) q^{50} +(5.73545 + 8.30923i) q^{51} +(-3.01144 - 7.14072i) q^{52} +(-6.04755 + 8.76139i) q^{53} +(11.0423 - 3.19843i) q^{54} +(-3.29832 - 2.08573i) q^{55} +(1.03962 + 0.168955i) q^{56} +(1.98857 + 0.754166i) q^{57} +(-7.31479 + 17.1684i) q^{58} +(2.94149 + 2.82534i) q^{59} +(-3.66759 + 6.98800i) q^{60} +(-1.14441 + 0.0923863i) q^{61} +(-2.56246 - 8.84663i) q^{62} +(2.88481 - 2.77090i) q^{63} +(-3.24364 - 8.55277i) q^{64} +(8.25823 - 5.17984i) q^{65} +(1.41590 - 3.73342i) q^{66} +(2.26143 + 5.30777i) q^{67} +(0.643443 + 15.9669i) q^{68} +(4.01635 + 4.91914i) q^{69} +19.0615i q^{70} +(-5.41606 + 4.42208i) q^{71} +(0.337820 + 0.0978509i) q^{72} +(0.379675 + 0.428564i) q^{73} +(-5.89239 + 6.13463i) q^{74} +(-2.97554 - 0.993380i) q^{75} +(2.02215 + 2.69099i) q^{76} +(-0.602156 - 4.95920i) q^{77} +(6.88290 + 7.21873i) q^{78} +(0.816417 - 6.72380i) q^{79} +(8.61398 - 4.97329i) q^{80} +(-3.35539 + 2.52141i) q^{81} +(-0.360705 + 8.95080i) q^{82} +(-1.28793 + 0.488449i) q^{83} +(-9.89854 + 2.02080i) q^{84} +(-19.6945 + 4.02067i) q^{85} +(-15.7214 + 5.96236i) q^{86} +(0.500970 - 12.4314i) q^{87} +(0.351154 - 0.263875i) q^{88} +(13.8701 - 8.00792i) q^{89} +(-0.767221 + 6.31863i) q^{90} +(11.8222 + 3.99514i) q^{91} +(1.21152 + 9.97777i) q^{92} +(3.68877 + 4.90886i) q^{93} +(9.00915 + 3.00770i) q^{94} +(-2.93309 + 3.05367i) q^{95} +(7.29676 + 8.23633i) q^{96} +(-1.48629 - 0.430509i) q^{97} +(-7.85605 + 6.41427i) q^{98} -1.66815i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99584 0.407454i −1.41127 0.288113i −0.566863 0.823812i \(-0.691843\pi\)
−0.844409 + 0.535699i \(0.820048\pi\)
\(3\) 1.34046 0.217845i 0.773913 0.125773i 0.239386 0.970924i \(-0.423054\pi\)
0.534527 + 0.845151i \(0.320490\pi\)
\(4\) 1.97740 + 0.842491i 0.988700 + 0.421246i
\(5\) −0.647035 + 2.62512i −0.289363 + 1.17399i 0.628730 + 0.777624i \(0.283575\pi\)
−0.918092 + 0.396367i \(0.870271\pi\)
\(6\) −2.76410 0.111389i −1.12844 0.0454745i
\(7\) −3.12689 + 1.48373i −1.18185 + 0.560796i −0.915201 0.402997i \(-0.867969\pi\)
−0.266652 + 0.963793i \(0.585917\pi\)
\(8\) −0.250449 0.172873i −0.0885471 0.0611197i
\(9\) −1.09624 + 0.365979i −0.365414 + 0.121993i
\(10\) 2.36099 4.97569i 0.746612 1.57345i
\(11\) −0.457073 + 1.36910i −0.137813 + 0.412800i −0.994714 0.102680i \(-0.967258\pi\)
0.856902 + 0.515480i \(0.172386\pi\)
\(12\) 2.83415 + 0.698555i 0.818149 + 0.201656i
\(13\) −2.59114 2.50718i −0.718654 0.695368i
\(14\) 6.84532 1.68722i 1.82949 0.450928i
\(15\) −0.295451 + 3.65982i −0.0762851 + 0.944961i
\(16\) −2.54846 2.65323i −0.637114 0.663306i
\(17\) 3.18715 + 6.71677i 0.772997 + 1.62906i 0.777352 + 0.629065i \(0.216562\pi\)
−0.00435589 + 0.999991i \(0.501387\pi\)
\(18\) 2.33704 0.283768i 0.550846 0.0668848i
\(19\) 1.35625 + 0.783031i 0.311145 + 0.179640i 0.647439 0.762118i \(-0.275840\pi\)
−0.336294 + 0.941757i \(0.609174\pi\)
\(20\) −3.49109 + 4.64579i −0.780631 + 1.03883i
\(21\) −3.86824 + 2.67005i −0.844118 + 0.582653i
\(22\) 1.47009 2.54627i 0.313424 0.542867i
\(23\) 2.33811 + 4.04973i 0.487530 + 0.844427i 0.999897 0.0143395i \(-0.00456458\pi\)
−0.512367 + 0.858767i \(0.671231\pi\)
\(24\) −0.373376 0.177169i −0.0762150 0.0361645i
\(25\) −2.04534 1.07347i −0.409067 0.214695i
\(26\) 4.14995 + 6.05971i 0.813871 + 1.18841i
\(27\) −4.99720 + 2.62273i −0.961712 + 0.504745i
\(28\) −7.43313 + 0.299545i −1.40473 + 0.0566087i
\(29\) 1.83251 8.97622i 0.340288 1.66684i −0.345024 0.938594i \(-0.612129\pi\)
0.685313 0.728249i \(-0.259666\pi\)
\(30\) 2.08088 7.18403i 0.379915 1.31162i
\(31\) 2.10123 + 4.00356i 0.377393 + 0.719061i 0.997875 0.0651589i \(-0.0207554\pi\)
−0.620482 + 0.784220i \(0.713063\pi\)
\(32\) 4.33054 + 6.84820i 0.765539 + 1.21060i
\(33\) −0.314435 + 1.93479i −0.0547360 + 0.336804i
\(34\) −3.62426 14.7042i −0.621556 2.52175i
\(35\) −1.87176 9.16849i −0.316385 1.54976i
\(36\) −2.47604 0.199887i −0.412674 0.0333145i
\(37\) 2.23182 3.52934i 0.366909 0.580220i −0.610386 0.792104i \(-0.708986\pi\)
0.977295 + 0.211884i \(0.0679601\pi\)
\(38\) −2.38781 2.11541i −0.387353 0.343165i
\(39\) −4.01949 2.79630i −0.643634 0.447767i
\(40\) 0.615861 0.545605i 0.0973762 0.0862677i
\(41\) −0.705434 4.34071i −0.110170 0.677905i −0.982112 0.188296i \(-0.939704\pi\)
0.871942 0.489609i \(-0.162861\pi\)
\(42\) 8.80830 3.75287i 1.35915 0.579080i
\(43\) 6.97646 4.41165i 1.06390 0.672770i 0.116620 0.993177i \(-0.462794\pi\)
0.947280 + 0.320407i \(0.103820\pi\)
\(44\) −2.05727 + 2.32218i −0.310146 + 0.350082i
\(45\) −0.251434 3.11457i −0.0374816 0.464293i
\(46\) −3.01642 9.03528i −0.444747 1.33218i
\(47\) −4.62870 0.562026i −0.675166 0.0819799i −0.224230 0.974536i \(-0.571987\pi\)
−0.450936 + 0.892556i \(0.648910\pi\)
\(48\) −3.99409 3.00136i −0.576497 0.433210i
\(49\) 3.14887 3.85667i 0.449839 0.550952i
\(50\) 3.64477 + 2.97586i 0.515448 + 0.420851i
\(51\) 5.73545 + 8.30923i 0.803124 + 1.16353i
\(52\) −3.01144 7.14072i −0.417612 0.990240i
\(53\) −6.04755 + 8.76139i −0.830695 + 1.20347i 0.146095 + 0.989271i \(0.453330\pi\)
−0.976790 + 0.214199i \(0.931286\pi\)
\(54\) 11.0423 3.19843i 1.50266 0.435251i
\(55\) −3.29832 2.08573i −0.444745 0.281240i
\(56\) 1.03962 + 0.168955i 0.138925 + 0.0225776i
\(57\) 1.98857 + 0.754166i 0.263393 + 0.0998917i
\(58\) −7.31479 + 17.1684i −0.960479 + 2.25433i
\(59\) 2.94149 + 2.82534i 0.382949 + 0.367827i 0.859339 0.511407i \(-0.170875\pi\)
−0.476390 + 0.879234i \(0.658055\pi\)
\(60\) −3.66759 + 6.98800i −0.473484 + 0.902147i
\(61\) −1.14441 + 0.0923863i −0.146527 + 0.0118289i −0.153512 0.988147i \(-0.549058\pi\)
0.00698561 + 0.999976i \(0.497776\pi\)
\(62\) −2.56246 8.84663i −0.325432 1.12352i
\(63\) 2.88481 2.77090i 0.363452 0.349101i
\(64\) −3.24364 8.55277i −0.405455 1.06910i
\(65\) 8.25823 5.17984i 1.02431 0.642479i
\(66\) 1.41590 3.73342i 0.174285 0.459552i
\(67\) 2.26143 + 5.30777i 0.276277 + 0.648447i 0.999092 0.0425946i \(-0.0135624\pi\)
−0.722815 + 0.691042i \(0.757152\pi\)
\(68\) 0.643443 + 15.9669i 0.0780289 + 1.93627i
\(69\) 4.01635 + 4.91914i 0.483512 + 0.592195i
\(70\) 19.0615i 2.27828i
\(71\) −5.41606 + 4.42208i −0.642768 + 0.524804i −0.896825 0.442385i \(-0.854132\pi\)
0.254057 + 0.967189i \(0.418235\pi\)
\(72\) 0.337820 + 0.0978509i 0.0398125 + 0.0115318i
\(73\) 0.379675 + 0.428564i 0.0444375 + 0.0501596i 0.770309 0.637671i \(-0.220102\pi\)
−0.725872 + 0.687830i \(0.758563\pi\)
\(74\) −5.89239 + 6.13463i −0.684977 + 0.713136i
\(75\) −2.97554 0.993380i −0.343585 0.114706i
\(76\) 2.02215 + 2.69099i 0.231956 + 0.308678i
\(77\) −0.602156 4.95920i −0.0686221 0.565154i
\(78\) 6.88290 + 7.21873i 0.779335 + 0.817360i
\(79\) 0.816417 6.72380i 0.0918541 0.756486i −0.871898 0.489687i \(-0.837111\pi\)
0.963752 0.266799i \(-0.0859660\pi\)
\(80\) 8.61398 4.97329i 0.963073 0.556030i
\(81\) −3.35539 + 2.52141i −0.372821 + 0.280157i
\(82\) −0.360705 + 8.95080i −0.0398332 + 0.988450i
\(83\) −1.28793 + 0.488449i −0.141369 + 0.0536143i −0.424275 0.905533i \(-0.639471\pi\)
0.282906 + 0.959148i \(0.408702\pi\)
\(84\) −9.89854 + 2.02080i −1.08002 + 0.220488i
\(85\) −19.6945 + 4.02067i −2.13617 + 0.436103i
\(86\) −15.7214 + 5.96236i −1.69529 + 0.642937i
\(87\) 0.500970 12.4314i 0.0537096 1.33279i
\(88\) 0.351154 0.263875i 0.0374331 0.0281292i
\(89\) 13.8701 8.00792i 1.47023 0.848837i 0.470788 0.882246i \(-0.343970\pi\)
0.999442 + 0.0334089i \(0.0106364\pi\)
\(90\) −0.767221 + 6.31863i −0.0808722 + 0.666042i
\(91\) 11.8222 + 3.99514i 1.23930 + 0.418804i
\(92\) 1.21152 + 9.97777i 0.126310 + 1.04025i
\(93\) 3.68877 + 4.90886i 0.382508 + 0.509025i
\(94\) 9.00915 + 3.00770i 0.929223 + 0.310220i
\(95\) −2.93309 + 3.05367i −0.300929 + 0.313300i
\(96\) 7.29676 + 8.23633i 0.744722 + 0.840617i
\(97\) −1.48629 0.430509i −0.150910 0.0437116i 0.201903 0.979406i \(-0.435288\pi\)
−0.352813 + 0.935694i \(0.614775\pi\)
\(98\) −7.85605 + 6.41427i −0.793581 + 0.647939i
\(99\) 1.66815i 0.167655i
\(100\) −3.14005 3.84586i −0.314005 0.384586i
\(101\) 0.245955 + 6.10331i 0.0244734 + 0.607302i 0.964169 + 0.265289i \(0.0854675\pi\)
−0.939695 + 0.342012i \(0.888891\pi\)
\(102\) −8.06141 18.9208i −0.798199 1.87344i
\(103\) −4.19702 + 11.0666i −0.413545 + 1.09043i 0.552831 + 0.833293i \(0.313547\pi\)
−0.966376 + 0.257134i \(0.917222\pi\)
\(104\) 0.215526 + 1.07586i 0.0211341 + 0.105497i
\(105\) −4.50633 11.8822i −0.439773 1.15958i
\(106\) 15.6398 15.0222i 1.51907 1.45909i
\(107\) 4.36722 + 15.0774i 0.422195 + 1.45759i 0.836761 + 0.547568i \(0.184446\pi\)
−0.414566 + 0.910019i \(0.636067\pi\)
\(108\) −12.0911 + 0.976093i −1.16347 + 0.0939246i
\(109\) 8.34150 15.8934i 0.798971 1.52231i −0.0529231 0.998599i \(-0.516854\pi\)
0.851894 0.523714i \(-0.175454\pi\)
\(110\) 5.73308 + 5.50670i 0.546627 + 0.525043i
\(111\) 2.22281 5.21712i 0.210979 0.495187i
\(112\) 11.9054 + 4.51513i 1.12496 + 0.426639i
\(113\) 16.6925 + 2.71280i 1.57030 + 0.255199i 0.882363 0.470569i \(-0.155951\pi\)
0.687939 + 0.725768i \(0.258516\pi\)
\(114\) −3.66158 2.31545i −0.342939 0.216861i
\(115\) −12.1439 + 3.51752i −1.13242 + 0.328010i
\(116\) 11.1860 16.2057i 1.03859 1.50466i
\(117\) 3.75810 + 1.80018i 0.347436 + 0.166426i
\(118\) −4.71954 6.83744i −0.434469 0.629437i
\(119\) −19.9317 16.2737i −1.82714 1.49181i
\(120\) 0.706677 0.865523i 0.0645105 0.0790110i
\(121\) 7.12835 + 5.35660i 0.648031 + 0.486964i
\(122\) 2.32170 + 0.281906i 0.210197 + 0.0255225i
\(123\) −1.89121 5.66486i −0.170525 0.510783i
\(124\) 0.782009 + 9.68692i 0.0702265 + 0.869911i
\(125\) −4.82297 + 5.44401i −0.431380 + 0.486927i
\(126\) −6.88664 + 4.35485i −0.613510 + 0.387960i
\(127\) −5.02428 + 2.14065i −0.445833 + 0.189952i −0.603203 0.797588i \(-0.706109\pi\)
0.157369 + 0.987540i \(0.449699\pi\)
\(128\) 0.389439 + 2.39632i 0.0344219 + 0.211806i
\(129\) 8.39059 7.43341i 0.738750 0.654475i
\(130\) −18.5926 + 6.97328i −1.63068 + 0.611597i
\(131\) −8.32220 7.37283i −0.727114 0.644167i 0.216093 0.976373i \(-0.430669\pi\)
−0.943207 + 0.332206i \(0.892207\pi\)
\(132\) −2.25181 + 3.56095i −0.195995 + 0.309941i
\(133\) −5.40264 0.436146i −0.468469 0.0378187i
\(134\) −2.35078 11.5149i −0.203076 0.994734i
\(135\) −3.65163 14.8153i −0.314283 1.27509i
\(136\) 0.362927 2.23318i 0.0311207 0.191494i
\(137\) −0.432359 0.683721i −0.0369389 0.0584142i 0.826216 0.563354i \(-0.190489\pi\)
−0.863155 + 0.504940i \(0.831515\pi\)
\(138\) −6.01168 11.4543i −0.511748 0.975054i
\(139\) −1.53574 + 5.30200i −0.130260 + 0.449710i −0.998958 0.0456318i \(-0.985470\pi\)
0.868698 + 0.495342i \(0.164957\pi\)
\(140\) 4.02315 19.7067i 0.340018 1.66552i
\(141\) −6.32701 + 0.254970i −0.532830 + 0.0214723i
\(142\) 12.6114 6.61897i 1.05832 0.555451i
\(143\) 4.61693 2.40157i 0.386087 0.200830i
\(144\) 3.76475 + 1.97589i 0.313729 + 0.164658i
\(145\) 22.3780 + 10.6185i 1.85839 + 0.881817i
\(146\) −0.583150 1.01004i −0.0482618 0.0835919i
\(147\) 3.38077 5.85566i 0.278841 0.482967i
\(148\) 7.38663 5.09862i 0.607177 0.419104i
\(149\) 6.01119 7.99944i 0.492456 0.655340i −0.482978 0.875633i \(-0.660445\pi\)
0.975434 + 0.220293i \(0.0707012\pi\)
\(150\) 5.53394 + 3.19502i 0.451844 + 0.260872i
\(151\) 7.83377 0.951191i 0.637503 0.0774068i 0.204597 0.978846i \(-0.434411\pi\)
0.432905 + 0.901439i \(0.357488\pi\)
\(152\) −0.204307 0.430567i −0.0165715 0.0349236i
\(153\) −5.95208 6.19677i −0.481197 0.500979i
\(154\) −0.818838 + 10.1431i −0.0659838 + 0.817356i
\(155\) −11.8694 + 2.92555i −0.953375 + 0.234986i
\(156\) −5.59228 8.91580i −0.447741 0.713835i
\(157\) 6.30630 + 1.55436i 0.503298 + 0.124052i 0.482787 0.875738i \(-0.339625\pi\)
0.0205108 + 0.999790i \(0.493471\pi\)
\(158\) −4.36907 + 13.0870i −0.347585 + 1.04114i
\(159\) −6.19785 + 13.0617i −0.491522 + 1.03586i
\(160\) −20.7794 + 6.93718i −1.64275 + 0.548432i
\(161\) −13.3197 9.19393i −1.04974 0.724584i
\(162\) 7.72417 3.66516i 0.606868 0.287963i
\(163\) 3.43491 + 0.138422i 0.269043 + 0.0108421i 0.174421 0.984671i \(-0.444195\pi\)
0.0946223 + 0.995513i \(0.469836\pi\)
\(164\) 2.26209 9.17764i 0.176639 0.716653i
\(165\) −4.87562 2.07731i −0.379567 0.161718i
\(166\) 2.76953 0.450093i 0.214957 0.0349340i
\(167\) −10.0033 2.04219i −0.774079 0.158029i −0.203282 0.979120i \(-0.565161\pi\)
−0.570797 + 0.821091i \(0.693366\pi\)
\(168\) 1.43037 0.110356
\(169\) 0.428052 + 12.9930i 0.0329271 + 0.999458i
\(170\) 40.9454 3.14037
\(171\) −1.77335 0.362032i −0.135611 0.0276853i
\(172\) 17.5120 2.84598i 1.33528 0.217004i
\(173\) 7.96615 + 3.39406i 0.605655 + 0.258046i 0.672950 0.739688i \(-0.265027\pi\)
−0.0672953 + 0.997733i \(0.521437\pi\)
\(174\) −6.06509 + 24.6070i −0.459793 + 1.86546i
\(175\) 7.98828 + 0.321917i 0.603857 + 0.0243346i
\(176\) 4.79737 2.27638i 0.361615 0.171589i
\(177\) 4.55842 + 3.14645i 0.342632 + 0.236502i
\(178\) −30.9454 + 10.3311i −2.31946 + 0.774348i
\(179\) −6.42291 + 13.5360i −0.480071 + 1.01173i 0.508513 + 0.861054i \(0.330195\pi\)
−0.988584 + 0.150673i \(0.951856\pi\)
\(180\) 2.12681 6.37058i 0.158523 0.474835i
\(181\) 6.10303 + 1.50426i 0.453634 + 0.111811i 0.459511 0.888172i \(-0.348025\pi\)
−0.00587692 + 0.999983i \(0.501871\pi\)
\(182\) −21.9674 12.7906i −1.62833 0.948106i
\(183\) −1.51391 + 0.373144i −0.111911 + 0.0275836i
\(184\) 0.114509 1.41845i 0.00844170 0.104569i
\(185\) 7.82088 + 8.14240i 0.575003 + 0.598641i
\(186\) −5.36206 11.3003i −0.393165 0.828579i
\(187\) −10.6527 + 1.29347i −0.779003 + 0.0945881i
\(188\) −8.67929 5.01099i −0.633002 0.365464i
\(189\) 11.7343 15.6155i 0.853542 1.13586i
\(190\) 7.09821 4.89954i 0.514958 0.355450i
\(191\) −2.27209 + 3.93538i −0.164403 + 0.284754i −0.936443 0.350820i \(-0.885903\pi\)
0.772040 + 0.635574i \(0.219236\pi\)
\(192\) −6.21114 10.7580i −0.448250 0.776392i
\(193\) −3.69510 1.75335i −0.265979 0.126209i 0.291033 0.956713i \(-0.406001\pi\)
−0.557012 + 0.830504i \(0.688052\pi\)
\(194\) 2.79099 + 1.46482i 0.200381 + 0.105168i
\(195\) 9.94139 8.74236i 0.711918 0.626054i
\(196\) 9.47578 4.97327i 0.676841 0.355234i
\(197\) −8.32247 + 0.335384i −0.592951 + 0.0238951i −0.334928 0.942244i \(-0.608712\pi\)
−0.258023 + 0.966139i \(0.583071\pi\)
\(198\) −0.679692 + 3.32935i −0.0483036 + 0.236607i
\(199\) −6.04448 + 20.8680i −0.428482 + 1.47929i 0.398556 + 0.917144i \(0.369511\pi\)
−0.827038 + 0.562146i \(0.809976\pi\)
\(200\) 0.326678 + 0.622433i 0.0230996 + 0.0440127i
\(201\) 4.18762 + 6.62219i 0.295372 + 0.467093i
\(202\) 1.99593 12.2814i 0.140433 0.864119i
\(203\) 7.58821 + 30.7866i 0.532588 + 2.16080i
\(204\) 4.34082 + 21.2627i 0.303918 + 1.48869i
\(205\) 11.8513 + 0.956739i 0.827734 + 0.0668216i
\(206\) 12.8857 20.3771i 0.897790 1.41974i
\(207\) −4.04525 3.58378i −0.281165 0.249090i
\(208\) −0.0487057 + 13.2643i −0.00337713 + 0.919717i
\(209\) −1.69195 + 1.49894i −0.117035 + 0.103684i
\(210\) 4.15246 + 25.5511i 0.286547 + 1.76319i
\(211\) 22.1462 9.43563i 1.52461 0.649576i 0.542872 0.839815i \(-0.317337\pi\)
0.981738 + 0.190240i \(0.0609265\pi\)
\(212\) −19.3398 + 12.2298i −1.32826 + 0.839944i
\(213\) −6.29667 + 7.10747i −0.431441 + 0.486996i
\(214\) −2.57293 31.8715i −0.175882 2.17869i
\(215\) 7.06710 + 21.1686i 0.481972 + 1.44368i
\(216\) 1.70494 + 0.207018i 0.116007 + 0.0140858i
\(217\) −12.5105 9.40105i −0.849269 0.638185i
\(218\) −23.1241 + 28.3219i −1.56616 + 1.91820i
\(219\) 0.602298 + 0.491761i 0.0406995 + 0.0332301i
\(220\) −4.76488 6.90312i −0.321248 0.465409i
\(221\) 8.58182 25.3949i 0.577276 1.70824i
\(222\) −6.56210 + 9.50684i −0.440419 + 0.638057i
\(223\) 9.11836 2.64117i 0.610611 0.176865i 0.0415163 0.999138i \(-0.486781\pi\)
0.569094 + 0.822272i \(0.307294\pi\)
\(224\) −23.7020 14.9882i −1.58366 1.00144i
\(225\) 2.63505 + 0.428237i 0.175670 + 0.0285492i
\(226\) −32.2103 12.2158i −2.14260 0.812580i
\(227\) −8.61999 + 20.2319i −0.572129 + 1.34284i 0.342871 + 0.939382i \(0.388600\pi\)
−0.915000 + 0.403453i \(0.867810\pi\)
\(228\) 3.29682 + 3.16664i 0.218337 + 0.209716i
\(229\) 9.84511 18.7583i 0.650583 1.23958i −0.307078 0.951684i \(-0.599351\pi\)
0.957661 0.287898i \(-0.0929566\pi\)
\(230\) 25.6705 2.07233i 1.69266 0.136646i
\(231\) −1.88750 6.51642i −0.124189 0.428749i
\(232\) −2.01069 + 1.93130i −0.132008 + 0.126796i
\(233\) −7.20397 18.9953i −0.471948 1.24442i −0.933905 0.357522i \(-0.883622\pi\)
0.461957 0.886902i \(-0.347147\pi\)
\(234\) −6.76707 5.12411i −0.442377 0.334974i
\(235\) 4.47032 11.7873i 0.291611 0.768916i
\(236\) 3.43617 + 8.06499i 0.223676 + 0.524986i
\(237\) −0.370377 9.19081i −0.0240586 0.597007i
\(238\) 33.1497 + 40.6010i 2.14878 + 2.63177i
\(239\) 11.8144i 0.764210i 0.924119 + 0.382105i \(0.124801\pi\)
−0.924119 + 0.382105i \(0.875199\pi\)
\(240\) 10.4633 8.54299i 0.675401 0.551448i
\(241\) −21.9046 6.34476i −1.41100 0.408702i −0.516700 0.856166i \(-0.672840\pi\)
−0.894302 + 0.447465i \(0.852327\pi\)
\(242\) −12.0445 13.5954i −0.774248 0.873945i
\(243\) 7.78000 8.09984i 0.499087 0.519605i
\(244\) −2.34079 0.781470i −0.149854 0.0500285i
\(245\) 8.08679 + 10.7616i 0.516646 + 0.687531i
\(246\) 1.46638 + 12.0767i 0.0934930 + 0.769984i
\(247\) −1.55103 5.42931i −0.0986899 0.345459i
\(248\) 0.165855 1.36593i 0.0105318 0.0867369i
\(249\) −1.62001 + 0.935316i −0.102664 + 0.0592732i
\(250\) 11.8441 8.90024i 0.749085 0.562901i
\(251\) 0.811317 20.1326i 0.0512099 1.27076i −0.745544 0.666457i \(-0.767810\pi\)
0.796754 0.604304i \(-0.206549\pi\)
\(252\) 8.03888 3.04875i 0.506402 0.192053i
\(253\) −6.61318 + 1.35009i −0.415767 + 0.0848795i
\(254\) 10.8999 2.22523i 0.683919 0.139623i
\(255\) −25.5238 + 9.67990i −1.59836 + 0.606179i
\(256\) −0.537511 + 13.3382i −0.0335944 + 0.833637i
\(257\) 15.9028 11.9502i 0.991991 0.745433i 0.0248549 0.999691i \(-0.492088\pi\)
0.967136 + 0.254258i \(0.0818312\pi\)
\(258\) −19.7750 + 11.4171i −1.23114 + 0.710799i
\(259\) −1.74207 + 14.3473i −0.108247 + 0.891495i
\(260\) 20.6938 3.28512i 1.28337 0.203734i
\(261\) 1.27624 + 10.5108i 0.0789972 + 0.650600i
\(262\) 13.6057 + 18.1059i 0.840563 + 1.11859i
\(263\) −26.1751 8.73854i −1.61403 0.538842i −0.640608 0.767868i \(-0.721317\pi\)
−0.973420 + 0.229027i \(0.926446\pi\)
\(264\) 0.413222 0.430210i 0.0254321 0.0264776i
\(265\) −19.0868 21.5445i −1.17249 1.32347i
\(266\) 10.6051 + 3.07180i 0.650240 + 0.188344i
\(267\) 16.8478 13.7558i 1.03107 0.841842i
\(268\) 12.4008i 0.757500i
\(269\) −4.38696 5.37305i −0.267478 0.327601i 0.623349 0.781944i \(-0.285772\pi\)
−0.890827 + 0.454343i \(0.849874\pi\)
\(270\) 1.25154 + 31.0568i 0.0761666 + 1.89005i
\(271\) −5.84265 13.7132i −0.354916 0.833018i −0.997752 0.0670145i \(-0.978653\pi\)
0.642836 0.766004i \(-0.277758\pi\)
\(272\) 9.69879 25.5736i 0.588076 1.55063i
\(273\) 16.7175 + 2.77990i 1.01179 + 0.168247i
\(274\) 0.584334 + 1.54076i 0.0353009 + 0.0930809i
\(275\) 2.40456 2.30962i 0.145001 0.139275i
\(276\) 3.79760 + 13.1108i 0.228589 + 0.789180i
\(277\) 8.19712 0.661740i 0.492517 0.0397601i 0.168286 0.985738i \(-0.446177\pi\)
0.324231 + 0.945978i \(0.394895\pi\)
\(278\) 5.22542 9.95620i 0.313400 0.597133i
\(279\) −3.76868 3.61987i −0.225625 0.216716i
\(280\) −1.11620 + 2.61982i −0.0667057 + 0.156564i
\(281\) 23.1226 + 8.76924i 1.37938 + 0.523129i 0.929123 0.369771i \(-0.120564\pi\)
0.450255 + 0.892900i \(0.351333\pi\)
\(282\) 12.7316 + 2.06908i 0.758155 + 0.123212i
\(283\) −14.0566 8.88886i −0.835578 0.528388i 0.0468131 0.998904i \(-0.485093\pi\)
−0.882392 + 0.470516i \(0.844068\pi\)
\(284\) −14.4353 + 4.18123i −0.856576 + 0.248110i
\(285\) −3.26645 + 4.73227i −0.193488 + 0.280316i
\(286\) −10.1932 + 2.91197i −0.602736 + 0.172188i
\(287\) 8.64625 + 12.5263i 0.510372 + 0.739401i
\(288\) −7.25362 5.92240i −0.427424 0.348981i
\(289\) −24.2055 + 29.6464i −1.42385 + 1.74390i
\(290\) −40.3363 30.3108i −2.36863 1.77991i
\(291\) −2.08609 0.253298i −0.122289 0.0148486i
\(292\) 0.389707 + 1.16731i 0.0228059 + 0.0683119i
\(293\) 0.140226 + 1.73702i 0.00819212 + 0.101478i 0.999561 0.0296235i \(-0.00943082\pi\)
−0.991369 + 0.131101i \(0.958149\pi\)
\(294\) −9.13338 + 10.3095i −0.532670 + 0.601260i
\(295\) −9.32010 + 5.89367i −0.542637 + 0.343143i
\(296\) −1.16908 + 0.498099i −0.0679515 + 0.0289514i
\(297\) −1.30670 8.04046i −0.0758225 0.466555i
\(298\) −15.2568 + 13.5163i −0.883801 + 0.782980i
\(299\) 4.09503 16.3555i 0.236822 0.945864i
\(300\) −5.04691 4.47117i −0.291383 0.258143i
\(301\) −15.2689 + 24.1459i −0.880087 + 1.39175i
\(302\) −16.0225 1.29347i −0.921992 0.0744309i
\(303\) 1.65927 + 8.12764i 0.0953225 + 0.466921i
\(304\) −1.37879 5.59395i −0.0790788 0.320835i
\(305\) 0.497947 3.06399i 0.0285124 0.175444i
\(306\) 9.35450 + 14.7930i 0.534761 + 0.845657i
\(307\) 9.06808 + 17.2778i 0.517543 + 0.986095i 0.994255 + 0.107036i \(0.0341360\pi\)
−0.476712 + 0.879059i \(0.658172\pi\)
\(308\) 2.98738 10.3136i 0.170222 0.587674i
\(309\) −3.21511 + 15.7486i −0.182901 + 0.895909i
\(310\) 24.8815 1.00269i 1.41317 0.0569489i
\(311\) −17.5336 + 9.20232i −0.994237 + 0.521816i −0.881689 0.471831i \(-0.843593\pi\)
−0.112548 + 0.993646i \(0.535901\pi\)
\(312\) 0.523275 + 1.39519i 0.0296246 + 0.0789872i
\(313\) 1.14134 + 0.599021i 0.0645123 + 0.0338586i 0.496671 0.867939i \(-0.334556\pi\)
−0.432159 + 0.901798i \(0.642248\pi\)
\(314\) −11.9530 5.67178i −0.674549 0.320077i
\(315\) 5.40738 + 9.36585i 0.304671 + 0.527706i
\(316\) 7.27912 12.6078i 0.409483 0.709245i
\(317\) 4.60209 3.17659i 0.258479 0.178415i −0.431777 0.901980i \(-0.642113\pi\)
0.690256 + 0.723565i \(0.257498\pi\)
\(318\) 17.6920 23.5437i 0.992116 1.32027i
\(319\) 11.4518 + 6.61168i 0.641176 + 0.370183i
\(320\) 24.5508 2.98101i 1.37243 0.166643i
\(321\) 9.13862 + 19.2592i 0.510068 + 1.07495i
\(322\) 22.8379 + 23.7768i 1.27271 + 1.32503i
\(323\) −0.936872 + 11.6052i −0.0521290 + 0.645733i
\(324\) −8.75920 + 2.15895i −0.486622 + 0.119942i
\(325\) 2.60836 + 7.90956i 0.144686 + 0.438743i
\(326\) −6.79914 1.67584i −0.376569 0.0928160i
\(327\) 7.71912 23.1216i 0.426868 1.27863i
\(328\) −0.573714 + 1.20908i −0.0316781 + 0.0667601i
\(329\) 15.3073 5.11034i 0.843920 0.281742i
\(330\) 8.88455 + 6.13256i 0.489078 + 0.337586i
\(331\) 8.12738 3.85649i 0.446721 0.211972i −0.192024 0.981390i \(-0.561505\pi\)
0.638745 + 0.769418i \(0.279454\pi\)
\(332\) −2.95828 0.119214i −0.162356 0.00654274i
\(333\) −1.15495 + 4.68581i −0.0632907 + 0.256781i
\(334\) 19.1329 + 8.15177i 1.04691 + 0.446045i
\(335\) −15.3968 + 2.50222i −0.841215 + 0.136711i
\(336\) 16.9423 + 3.45879i 0.924277 + 0.188693i
\(337\) −13.4769 −0.734135 −0.367067 0.930194i \(-0.619638\pi\)
−0.367067 + 0.930194i \(0.619638\pi\)
\(338\) 4.43970 26.1063i 0.241488 1.41999i
\(339\) 22.9666 1.24737
\(340\) −42.3313 8.64200i −2.29574 0.468679i
\(341\) −6.44171 + 1.04688i −0.348838 + 0.0566917i
\(342\) 3.39181 + 1.44511i 0.183408 + 0.0781429i
\(343\) 1.67406 6.79193i 0.0903908 0.366730i
\(344\) −2.50990 0.101146i −0.135325 0.00545340i
\(345\) −15.5121 + 7.36057i −0.835142 + 0.396280i
\(346\) −14.5162 10.0198i −0.780398 0.538670i
\(347\) 29.6704 9.90544i 1.59279 0.531752i 0.624382 0.781119i \(-0.285351\pi\)
0.968409 + 0.249367i \(0.0802226\pi\)
\(348\) 11.4640 24.1599i 0.614535 1.29510i
\(349\) −8.30961 + 24.8903i −0.444803 + 1.33235i 0.452827 + 0.891599i \(0.350416\pi\)
−0.897630 + 0.440750i \(0.854713\pi\)
\(350\) −15.8122 3.89735i −0.845196 0.208322i
\(351\) 19.5241 + 5.73302i 1.04212 + 0.306006i
\(352\) −11.3553 + 2.79882i −0.605238 + 0.149178i
\(353\) 0.745481 9.23443i 0.0396779 0.491499i −0.946149 0.323732i \(-0.895062\pi\)
0.985827 0.167767i \(-0.0536557\pi\)
\(354\) −7.81585 8.13716i −0.415408 0.432485i
\(355\) −8.10412 17.0791i −0.430122 0.906463i
\(356\) 34.1734 4.14940i 1.81118 0.219918i
\(357\) −30.2628 17.4722i −1.60167 0.924727i
\(358\) 18.3344 24.3986i 0.969002 1.28951i
\(359\) 1.96186 1.35418i 0.103543 0.0714706i −0.515168 0.857089i \(-0.672271\pi\)
0.618711 + 0.785619i \(0.287655\pi\)
\(360\) −0.475452 + 0.823507i −0.0250585 + 0.0434026i
\(361\) −8.27373 14.3305i −0.435459 0.754238i
\(362\) −11.5677 5.48897i −0.607987 0.288494i
\(363\) 10.7222 + 5.62742i 0.562767 + 0.295363i
\(364\) 20.0113 + 17.8601i 1.04888 + 0.936122i
\(365\) −1.37070 + 0.719397i −0.0717455 + 0.0376549i
\(366\) 3.17355 0.127890i 0.165884 0.00668491i
\(367\) 2.87149 14.0655i 0.149891 0.734214i −0.833472 0.552562i \(-0.813650\pi\)
0.983363 0.181652i \(-0.0581444\pi\)
\(368\) 4.78627 16.5241i 0.249501 0.861379i
\(369\) 2.36194 + 4.50029i 0.122958 + 0.234276i
\(370\) −12.2916 19.4376i −0.639009 1.01051i
\(371\) 5.91051 36.3688i 0.306858 1.88818i
\(372\) 3.15850 + 12.8145i 0.163761 + 0.664403i
\(373\) −4.82209 23.6202i −0.249678 1.22301i −0.890381 0.455216i \(-0.849562\pi\)
0.640703 0.767789i \(-0.278643\pi\)
\(374\) 21.7881 + 1.75892i 1.12664 + 0.0909515i
\(375\) −5.27904 + 8.34813i −0.272608 + 0.431095i
\(376\) 1.06210 + 0.940934i 0.0547734 + 0.0485250i
\(377\) −27.2533 + 18.6642i −1.40362 + 0.961258i
\(378\) −29.7823 + 26.3848i −1.53184 + 1.35709i
\(379\) −3.48094 21.4191i −0.178804 1.10023i −0.908941 0.416925i \(-0.863108\pi\)
0.730137 0.683301i \(-0.239456\pi\)
\(380\) −8.37258 + 3.56722i −0.429504 + 0.182995i
\(381\) −6.26851 + 3.96396i −0.321145 + 0.203080i
\(382\) 6.13822 6.92862i 0.314059 0.354499i
\(383\) 1.46898 + 18.1966i 0.0750614 + 0.929802i 0.919229 + 0.393723i \(0.128813\pi\)
−0.844168 + 0.536079i \(0.819905\pi\)
\(384\) 1.04405 + 3.12732i 0.0532791 + 0.159590i
\(385\) 13.4081 + 1.62804i 0.683342 + 0.0829727i
\(386\) 6.66043 + 5.00499i 0.339007 + 0.254747i
\(387\) −6.03332 + 7.38947i −0.306691 + 0.375628i
\(388\) −2.57629 2.10348i −0.130791 0.106788i
\(389\) 2.54967 + 3.69384i 0.129274 + 0.187285i 0.882276 0.470733i \(-0.156010\pi\)
−0.753002 + 0.658018i \(0.771395\pi\)
\(390\) −23.4035 + 13.3977i −1.18508 + 0.678419i
\(391\) −19.7492 + 28.6116i −0.998760 + 1.44695i
\(392\) −1.45534 + 0.421545i −0.0735059 + 0.0212913i
\(393\) −12.7617 8.07001i −0.643742 0.407078i
\(394\) 16.7470 + 2.72165i 0.843700 + 0.137115i
\(395\) 17.1225 + 6.49372i 0.861529 + 0.326735i
\(396\) 1.40540 3.29859i 0.0706239 0.165760i
\(397\) 1.36751 + 1.31351i 0.0686335 + 0.0659234i 0.726256 0.687424i \(-0.241258\pi\)
−0.657623 + 0.753347i \(0.728438\pi\)
\(398\) 20.5665 39.1862i 1.03091 1.96423i
\(399\) −7.33702 + 0.592306i −0.367310 + 0.0296524i
\(400\) 2.36428 + 8.16244i 0.118214 + 0.408122i
\(401\) −15.5436 + 14.9298i −0.776211 + 0.745561i −0.971974 0.235090i \(-0.924461\pi\)
0.195762 + 0.980651i \(0.437282\pi\)
\(402\) −5.65958 14.9231i −0.282274 0.744296i
\(403\) 4.59308 15.6420i 0.228798 0.779183i
\(404\) −4.65563 + 12.2759i −0.231626 + 0.610748i
\(405\) −4.44796 10.4397i −0.221021 0.518755i
\(406\) −2.60075 64.5370i −0.129073 3.20292i
\(407\) 3.81192 + 4.66875i 0.188950 + 0.231421i
\(408\) 3.07254i 0.152113i
\(409\) 10.0783 8.22867i 0.498340 0.406882i −0.349662 0.936876i \(-0.613703\pi\)
0.848001 + 0.529994i \(0.177806\pi\)
\(410\) −23.2636 6.73837i −1.14890 0.332784i
\(411\) −0.728504 0.822310i −0.0359344 0.0405616i
\(412\) −17.6227 + 18.3472i −0.868209 + 0.903901i
\(413\) −13.3897 4.47015i −0.658865 0.219962i
\(414\) 6.61345 + 8.80091i 0.325033 + 0.432541i
\(415\) −0.448901 3.69703i −0.0220357 0.181480i
\(416\) 5.94866 28.6022i 0.291657 1.40234i
\(417\) −0.903581 + 7.44166i −0.0442485 + 0.364419i
\(418\) 3.98762 2.30225i 0.195041 0.112607i
\(419\) 4.65288 3.49641i 0.227308 0.170811i −0.480986 0.876728i \(-0.659721\pi\)
0.708294 + 0.705917i \(0.249465\pi\)
\(420\) 1.09985 27.2924i 0.0536670 1.33173i
\(421\) −2.10953 + 0.800040i −0.102812 + 0.0389916i −0.405475 0.914106i \(-0.632894\pi\)
0.302662 + 0.953098i \(0.402125\pi\)
\(422\) −48.0449 + 9.80844i −2.33879 + 0.477467i
\(423\) 5.27987 1.07789i 0.256716 0.0524089i
\(424\) 3.02921 1.14883i 0.147111 0.0557920i
\(425\) 0.691499 17.1594i 0.0335426 0.832352i
\(426\) 15.4631 11.6198i 0.749190 0.562980i
\(427\) 3.44137 1.98687i 0.166539 0.0961515i
\(428\) −4.06683 + 33.4934i −0.196578 + 1.61896i
\(429\) 5.66563 4.22498i 0.273539 0.203984i
\(430\) −5.47960 45.1286i −0.264250 2.17629i
\(431\) 14.8592 + 19.7740i 0.715743 + 0.952480i 0.999980 0.00627342i \(-0.00199690\pi\)
−0.284238 + 0.958754i \(0.591740\pi\)
\(432\) 19.6939 + 6.57477i 0.947521 + 0.316329i
\(433\) 0.0650389 0.0677127i 0.00312557 0.00325406i −0.719638 0.694350i \(-0.755692\pi\)
0.722763 + 0.691096i \(0.242872\pi\)
\(434\) 21.1385 + 23.8604i 1.01468 + 1.14534i
\(435\) 32.3099 + 9.35868i 1.54914 + 0.448714i
\(436\) 29.8845 24.4000i 1.43121 1.16855i
\(437\) 7.32325i 0.350319i
\(438\) −1.00172 1.22688i −0.0478641 0.0586228i
\(439\) 0.454911 + 11.2885i 0.0217117 + 0.538771i 0.973046 + 0.230611i \(0.0740724\pi\)
−0.951334 + 0.308161i \(0.900287\pi\)
\(440\) 0.465495 + 1.09256i 0.0221916 + 0.0520857i
\(441\) −2.04046 + 5.38026i −0.0971649 + 0.256203i
\(442\) −27.4752 + 47.1874i −1.30686 + 2.24448i
\(443\) −13.8305 36.4679i −0.657105 1.73264i −0.680323 0.732913i \(-0.738160\pi\)
0.0232177 0.999730i \(-0.492609\pi\)
\(444\) 8.79075 8.44363i 0.417190 0.400717i
\(445\) 12.0473 + 41.5922i 0.571098 + 1.97166i
\(446\) −19.2749 + 1.55603i −0.912695 + 0.0736803i
\(447\) 6.31510 12.0324i 0.298694 0.569114i
\(448\) 22.8325 + 21.9309i 1.07873 + 1.03614i
\(449\) −9.96239 + 23.3826i −0.470154 + 1.10349i 0.501087 + 0.865397i \(0.332934\pi\)
−0.971242 + 0.238096i \(0.923477\pi\)
\(450\) −5.08465 1.92835i −0.239693 0.0909035i
\(451\) 6.26531 + 1.01821i 0.295022 + 0.0479457i
\(452\) 30.7223 + 19.4276i 1.44506 + 0.913798i
\(453\) 10.2936 2.98158i 0.483636 0.140087i
\(454\) 25.4477 36.8673i 1.19432 1.73027i
\(455\) −18.1371 + 28.4497i −0.850280 + 1.33374i
\(456\) −0.367662 0.532650i −0.0172173 0.0249436i
\(457\) 17.2405 + 14.0764i 0.806475 + 0.658467i 0.943231 0.332138i \(-0.107770\pi\)
−0.136755 + 0.990605i \(0.543667\pi\)
\(458\) −27.2924 + 33.4271i −1.27529 + 1.56195i
\(459\) −33.5431 25.2060i −1.56566 1.17652i
\(460\) −26.9768 3.27557i −1.25780 0.152724i
\(461\) 2.94728 + 8.82819i 0.137269 + 0.411170i 0.994624 0.103556i \(-0.0330220\pi\)
−0.857355 + 0.514726i \(0.827894\pi\)
\(462\) 1.11202 + 13.7748i 0.0517357 + 0.640862i
\(463\) 21.8475 24.6607i 1.01534 1.14608i 0.0261151 0.999659i \(-0.491686\pi\)
0.989222 0.146420i \(-0.0467752\pi\)
\(464\) −28.4860 + 18.0135i −1.32243 + 0.836254i
\(465\) −15.2731 + 6.50727i −0.708274 + 0.301767i
\(466\) 6.63826 + 40.8469i 0.307512 + 1.89219i
\(467\) −9.81858 + 8.69850i −0.454350 + 0.402519i −0.859018 0.511945i \(-0.828925\pi\)
0.404669 + 0.914463i \(0.367387\pi\)
\(468\) 5.91463 + 6.72583i 0.273404 + 0.310901i
\(469\) −14.9465 13.2415i −0.690166 0.611434i
\(470\) −13.7248 + 21.7040i −0.633078 + 1.00113i
\(471\) 8.79193 + 0.709758i 0.405111 + 0.0327039i
\(472\) −0.248270 1.21610i −0.0114275 0.0559758i
\(473\) 2.85124 + 11.5679i 0.131100 + 0.531894i
\(474\) −3.00562 + 18.4943i −0.138053 + 0.849471i
\(475\) −1.93342 3.05746i −0.0887114 0.140286i
\(476\) −25.7025 48.9720i −1.17807 2.24463i
\(477\) 3.42309 11.8179i 0.156733 0.541104i
\(478\) 4.81382 23.5796i 0.220179 1.07851i
\(479\) 17.7174 0.713987i 0.809529 0.0326229i 0.367950 0.929846i \(-0.380060\pi\)
0.441579 + 0.897223i \(0.354419\pi\)
\(480\) −26.3426 + 13.8257i −1.20237 + 0.631053i
\(481\) −14.6317 + 3.54944i −0.667146 + 0.161841i
\(482\) 41.1330 + 21.5882i 1.87355 + 0.983317i
\(483\) −19.8574 9.42243i −0.903541 0.428736i
\(484\) 9.58269 + 16.5977i 0.435577 + 0.754442i
\(485\) 2.09182 3.62314i 0.0949847 0.164518i
\(486\) −18.8279 + 12.9960i −0.854053 + 0.589510i
\(487\) 0.220056 0.292841i 0.00997169 0.0132699i −0.794429 0.607357i \(-0.792230\pi\)
0.804401 + 0.594087i \(0.202486\pi\)
\(488\) 0.302587 + 0.174699i 0.0136975 + 0.00790825i
\(489\) 4.63451 0.562731i 0.209580 0.0254476i
\(490\) −11.7551 24.7734i −0.531041 1.11915i
\(491\) 12.8909 + 13.4209i 0.581759 + 0.605675i 0.945419 0.325856i \(-0.105653\pi\)
−0.363660 + 0.931532i \(0.618473\pi\)
\(492\) 1.03292 12.7950i 0.0465677 0.576844i
\(493\) 66.1317 16.3000i 2.97842 0.734115i
\(494\) 0.883422 + 11.4680i 0.0397470 + 0.515970i
\(495\) 4.37909 + 1.07935i 0.196825 + 0.0485131i
\(496\) 5.26746 15.7780i 0.236516 0.708451i
\(497\) 10.3743 21.8633i 0.465350 0.980703i
\(498\) 3.61439 1.20666i 0.161965 0.0540717i
\(499\) 3.01408 + 2.08047i 0.134929 + 0.0931344i 0.633617 0.773647i \(-0.281569\pi\)
−0.498689 + 0.866781i \(0.666185\pi\)
\(500\) −14.1235 + 6.70167i −0.631621 + 0.299708i
\(501\) −13.8539 0.558292i −0.618946 0.0249427i
\(502\) −9.82237 + 39.8509i −0.438394 + 1.77863i
\(503\) 28.0334 + 11.9439i 1.24995 + 0.532552i 0.912610 0.408832i \(-0.134064\pi\)
0.337336 + 0.941384i \(0.390474\pi\)
\(504\) −1.20151 + 0.195265i −0.0535196 + 0.00869778i
\(505\) −16.1811 3.30339i −0.720048 0.146999i
\(506\) 13.7490 0.611215
\(507\) 3.40424 + 17.3232i 0.151188 + 0.769352i
\(508\) −11.7385 −0.520811
\(509\) −0.0254264 0.00519084i −0.00112701 0.000230080i 0.199462 0.979906i \(-0.436081\pi\)
−0.200589 + 0.979675i \(0.564286\pi\)
\(510\) 54.8855 8.91976i 2.43037 0.394974i
\(511\) −1.82307 0.776738i −0.0806480 0.0343609i
\(512\) 7.66948 31.1163i 0.338946 1.37516i
\(513\) −8.83113 0.355882i −0.389904 0.0157126i
\(514\) −36.6087 + 17.3710i −1.61474 + 0.766203i
\(515\) −26.3356 18.1782i −1.16049 0.801027i
\(516\) 22.8541 7.62983i 1.00610 0.335884i
\(517\) 2.88513 6.08028i 0.126888 0.267410i
\(518\) 9.32274 27.9250i 0.409618 1.22695i
\(519\) 11.4177 + 2.81420i 0.501180 + 0.123530i
\(520\) −2.96372 0.130336i −0.129968 0.00571559i
\(521\) −24.1345 + 5.94861i −1.05735 + 0.260613i −0.729404 0.684083i \(-0.760203\pi\)
−0.327946 + 0.944697i \(0.606356\pi\)
\(522\) 1.73548 21.4978i 0.0759600 0.940934i
\(523\) −19.6729 20.4816i −0.860235 0.895599i 0.135222 0.990815i \(-0.456825\pi\)
−0.995457 + 0.0952159i \(0.969646\pi\)
\(524\) −10.2448 21.5904i −0.447545 0.943181i
\(525\) 10.7781 1.30869i 0.470394 0.0571161i
\(526\) 48.6808 + 28.1059i 2.12258 + 1.22547i
\(527\) −20.1941 + 26.8734i −0.879668 + 1.17063i
\(528\) 5.93477 4.09647i 0.258278 0.178276i
\(529\) 0.566459 0.981136i 0.0246286 0.0426581i
\(530\) 29.3157 + 50.7763i 1.27339 + 2.20558i
\(531\) −4.25859 2.02073i −0.184807 0.0876921i
\(532\) −10.3157 5.41411i −0.447244 0.234732i
\(533\) −9.05508 + 13.0161i −0.392219 + 0.563788i
\(534\) −39.2304 + 20.5897i −1.69766 + 0.891003i
\(535\) −42.4058 + 1.70889i −1.83336 + 0.0738819i
\(536\) 0.351195 1.72026i 0.0151693 0.0743041i
\(537\) −5.66087 + 19.5436i −0.244285 + 0.843369i
\(538\) 6.56640 + 12.5112i 0.283098 + 0.539398i
\(539\) 3.84090 + 6.07390i 0.165439 + 0.261622i
\(540\) 5.26099 32.3722i 0.226397 1.39308i
\(541\) −0.594343 2.41134i −0.0255528 0.103672i 0.956781 0.290810i \(-0.0939248\pi\)
−0.982334 + 0.187138i \(0.940079\pi\)
\(542\) 6.07350 + 29.7500i 0.260879 + 1.27787i
\(543\) 8.50854 + 0.686880i 0.365136 + 0.0294769i
\(544\) −32.1957 + 50.9135i −1.38038 + 2.18290i
\(545\) 36.3249 + 32.1811i 1.55599 + 1.37848i
\(546\) −32.2327 12.3598i −1.37943 0.528951i
\(547\) 10.2667 9.09547i 0.438971 0.388894i −0.414488 0.910055i \(-0.636039\pi\)
0.853459 + 0.521161i \(0.174501\pi\)
\(548\) −0.278917 1.71625i −0.0119148 0.0733144i
\(549\) 1.22074 0.520108i 0.0520998 0.0221977i
\(550\) −5.74019 + 3.62987i −0.244762 + 0.154778i
\(551\) 9.51399 10.7391i 0.405310 0.457500i
\(552\) −0.155508 1.92631i −0.00661886 0.0819893i
\(553\) 7.42344 + 22.2359i 0.315677 + 0.945567i
\(554\) −16.6298 2.01922i −0.706531 0.0857884i
\(555\) 12.2573 + 9.21079i 0.520295 + 0.390976i
\(556\) −7.50366 + 9.19032i −0.318226 + 0.389756i
\(557\) 11.9942 + 9.79294i 0.508209 + 0.414940i 0.851552 0.524270i \(-0.175662\pi\)
−0.343343 + 0.939210i \(0.611559\pi\)
\(558\) 6.04675 + 8.76024i 0.255980 + 0.370850i
\(559\) −29.1378 6.06006i −1.23240 0.256313i
\(560\) −19.5560 + 28.3317i −0.826391 + 1.19723i
\(561\) −13.9977 + 4.05449i −0.590984 + 0.171181i
\(562\) −42.5759 26.9234i −1.79596 1.13569i
\(563\) 12.0409 + 1.95684i 0.507464 + 0.0824709i 0.408753 0.912645i \(-0.365964\pi\)
0.0987111 + 0.995116i \(0.468528\pi\)
\(564\) −12.7258 4.82627i −0.535854 0.203223i
\(565\) −17.9221 + 42.0647i −0.753988 + 1.76967i
\(566\) 24.4329 + 23.4681i 1.02699 + 0.986440i
\(567\) 6.75084 12.8626i 0.283509 0.540180i
\(568\) 2.12090 0.171217i 0.0889912 0.00718411i
\(569\) −10.7535 37.1254i −0.450810 1.55638i −0.788448 0.615101i \(-0.789115\pi\)
0.337638 0.941276i \(-0.390372\pi\)
\(570\) 8.44750 8.11393i 0.353827 0.339855i
\(571\) 6.05784 + 15.9732i 0.253513 + 0.668458i 0.999995 + 0.00305317i \(0.000971854\pi\)
−0.746483 + 0.665405i \(0.768259\pi\)
\(572\) 11.1528 0.859142i 0.466323 0.0359225i
\(573\) −2.18834 + 5.77017i −0.0914191 + 0.241052i
\(574\) −12.1527 28.5233i −0.507242 1.19054i
\(575\) −0.434941 10.7930i −0.0181383 0.450098i
\(576\) 6.68595 + 8.18880i 0.278581 + 0.341200i
\(577\) 13.4756i 0.560998i −0.959854 0.280499i \(-0.909500\pi\)
0.959854 0.280499i \(-0.0904999\pi\)
\(578\) 60.3898 49.3068i 2.51189 2.05089i
\(579\) −5.33509 1.54533i −0.221719 0.0642216i
\(580\) 35.3042 + 39.8502i 1.46593 + 1.65469i
\(581\) 3.30250 3.43827i 0.137011 0.142644i
\(582\) 4.06030 + 1.35553i 0.168305 + 0.0561884i
\(583\) −9.23107 12.2843i −0.382312 0.508764i
\(584\) −0.0210022 0.172969i −0.000869078 0.00715750i
\(585\) −7.15730 + 8.70069i −0.295918 + 0.359729i
\(586\) 0.427884 3.52394i 0.0176757 0.145573i
\(587\) −21.5551 + 12.4449i −0.889675 + 0.513654i −0.873836 0.486220i \(-0.838375\pi\)
−0.0158390 + 0.999875i \(0.505042\pi\)
\(588\) 11.6185 8.73071i 0.479138 0.360049i
\(589\) −0.285119 + 7.07516i −0.0117481 + 0.291527i
\(590\) 21.0028 7.96532i 0.864672 0.327927i
\(591\) −11.0828 + 2.26258i −0.455887 + 0.0930701i
\(592\) −15.0518 + 3.07285i −0.618626 + 0.126293i
\(593\) 4.21478 1.59846i 0.173080 0.0656407i −0.266543 0.963823i \(-0.585881\pi\)
0.439623 + 0.898182i \(0.355112\pi\)
\(594\) −0.668147 + 16.5799i −0.0274144 + 0.680281i
\(595\) 55.6171 41.7935i 2.28008 1.71337i
\(596\) 18.6260 10.7537i 0.762950 0.440489i
\(597\) −3.55637 + 29.2894i −0.145553 + 1.19873i
\(598\) −14.8371 + 30.9744i −0.606736 + 1.26664i
\(599\) −4.66539 38.4229i −0.190623 1.56992i −0.703020 0.711170i \(-0.748166\pi\)
0.512397 0.858748i \(-0.328757\pi\)
\(600\) 0.573492 + 0.763179i 0.0234127 + 0.0311567i
\(601\) −30.0712 10.0392i −1.22663 0.409509i −0.371749 0.928333i \(-0.621242\pi\)
−0.854881 + 0.518824i \(0.826370\pi\)
\(602\) 40.3127 41.9700i 1.64302 1.71057i
\(603\) −4.42160 4.99096i −0.180062 0.203248i
\(604\) 16.2919 + 4.71899i 0.662906 + 0.192013i
\(605\) −18.6740 + 15.2469i −0.759207 + 0.619874i
\(606\) 16.8975i 0.686416i
\(607\) 2.21518 + 2.71310i 0.0899113 + 0.110121i 0.817601 0.575785i \(-0.195303\pi\)
−0.727690 + 0.685906i \(0.759406\pi\)
\(608\) 0.510939 + 12.6788i 0.0207213 + 0.514194i
\(609\) 16.8784 + 39.6150i 0.683947 + 1.60528i
\(610\) −2.24226 + 5.91235i −0.0907864 + 0.239384i
\(611\) 10.5845 + 13.0613i 0.428204 + 0.528404i
\(612\) −6.54891 17.2681i −0.264724 0.698020i
\(613\) 25.6194 24.6078i 1.03476 0.993900i 0.0347745 0.999395i \(-0.488929\pi\)
0.999985 + 0.00549524i \(0.00174920\pi\)
\(614\) −11.0585 38.1785i −0.446286 1.54076i
\(615\) 16.0946 1.29929i 0.648998 0.0523925i
\(616\) −0.706500 + 1.34612i −0.0284657 + 0.0542369i
\(617\) −32.6896 31.3988i −1.31603 1.26407i −0.941566 0.336828i \(-0.890646\pi\)
−0.374468 0.927240i \(-0.622175\pi\)
\(618\) 12.8337 30.1218i 0.516246 1.21167i
\(619\) 11.1348 + 4.22288i 0.447546 + 0.169732i 0.568073 0.822978i \(-0.307689\pi\)
−0.120527 + 0.992710i \(0.538458\pi\)
\(620\) −25.9353 4.21490i −1.04159 0.169275i
\(621\) −22.3054 14.1051i −0.895084 0.566017i
\(622\) 38.7437 11.2222i 1.55348 0.449971i
\(623\) −31.4888 + 45.6193i −1.26157 + 1.82770i
\(624\) 2.82429 + 17.7909i 0.113062 + 0.712205i
\(625\) −17.7315 25.6885i −0.709260 1.02754i
\(626\) −2.03386 1.66059i −0.0812892 0.0663706i
\(627\) −1.94145 + 2.37785i −0.0775342 + 0.0949621i
\(628\) 11.1605 + 8.38660i 0.445354 + 0.334662i
\(629\) 30.8189 + 3.74209i 1.22883 + 0.149207i
\(630\) −6.97611 20.8960i −0.277935 0.832517i
\(631\) −2.35467 29.1678i −0.0937377 1.16115i −0.857090 0.515167i \(-0.827730\pi\)
0.763352 0.645983i \(-0.223552\pi\)
\(632\) −1.36683 + 1.54283i −0.0543696 + 0.0613706i
\(633\) 27.6306 17.4725i 1.09822 0.694470i
\(634\) −10.4793 + 4.46483i −0.416188 + 0.177321i
\(635\) −2.36858 14.5744i −0.0939941 0.578369i
\(636\) −23.2600 + 20.6066i −0.922319 + 0.817103i
\(637\) −17.8285 + 2.09838i −0.706393 + 0.0831407i
\(638\) −20.1620 17.8619i −0.798219 0.707161i
\(639\) 4.31892 6.82983i 0.170854 0.270184i
\(640\) −6.54260 0.528174i −0.258619 0.0208779i
\(641\) 0.990553 + 4.85205i 0.0391245 + 0.191644i 0.994656 0.103245i \(-0.0329225\pi\)
−0.955532 + 0.294889i \(0.904717\pi\)
\(642\) −10.3920 42.1619i −0.410138 1.66400i
\(643\) 3.72884 22.9445i 0.147051 0.904841i −0.803734 0.594989i \(-0.797156\pi\)
0.950785 0.309852i \(-0.100280\pi\)
\(644\) −18.5926 29.4018i −0.732650 1.15859i
\(645\) 14.0846 + 26.8360i 0.554581 + 1.05667i
\(646\) 6.59844 22.7805i 0.259612 0.896286i
\(647\) 0.265425 1.30014i 0.0104349 0.0511136i −0.974240 0.225514i \(-0.927594\pi\)
0.984675 + 0.174401i \(0.0557988\pi\)
\(648\) 1.27624 0.0514306i 0.0501353 0.00202038i
\(649\) −5.21265 + 2.73581i −0.204614 + 0.107390i
\(650\) −1.98309 16.8490i −0.0777831 0.660872i
\(651\) −18.8178 9.87634i −0.737527 0.387084i
\(652\) 6.67558 + 3.16760i 0.261436 + 0.124053i
\(653\) −1.69876 2.94233i −0.0664774 0.115142i 0.830871 0.556465i \(-0.187843\pi\)
−0.897348 + 0.441323i \(0.854509\pi\)
\(654\) −24.8271 + 43.0018i −0.970816 + 1.68150i
\(655\) 24.7393 17.0763i 0.966646 0.667227i
\(656\) −9.71912 + 12.9338i −0.379468 + 0.504980i
\(657\) −0.573061 0.330857i −0.0223572 0.0129079i
\(658\) −32.6332 + 3.96239i −1.27217 + 0.154470i
\(659\) −7.24058 15.2592i −0.282053 0.594414i 0.712139 0.702039i \(-0.247727\pi\)
−0.994192 + 0.107625i \(0.965675\pi\)
\(660\) −7.89093 8.21533i −0.307154 0.319781i
\(661\) 3.50810 43.4557i 0.136449 1.69023i −0.460269 0.887779i \(-0.652247\pi\)
0.596719 0.802451i \(-0.296471\pi\)
\(662\) −17.7923 + 4.38541i −0.691517 + 0.170444i
\(663\) 5.97141 35.9102i 0.231910 1.39464i
\(664\) 0.407002 + 0.100317i 0.0157947 + 0.00389305i
\(665\) 4.64063 13.9004i 0.179956 0.539034i
\(666\) 4.21434 8.88153i 0.163302 0.344152i
\(667\) 40.6359 13.5663i 1.57343 0.525287i
\(668\) −18.0600 12.4659i −0.698762 0.482321i
\(669\) 11.6474 5.52676i 0.450315 0.213677i
\(670\) 31.7490 + 1.27944i 1.22657 + 0.0494291i
\(671\) 0.396593 1.60904i 0.0153103 0.0621163i
\(672\) −35.0366 14.9277i −1.35157 0.575849i
\(673\) −17.8765 + 2.90521i −0.689087 + 0.111988i −0.494865 0.868970i \(-0.664782\pi\)
−0.194222 + 0.980958i \(0.562218\pi\)
\(674\) 26.8978 + 5.49122i 1.03606 + 0.211514i
\(675\) 13.0364 0.501771
\(676\) −10.1000 + 26.0529i −0.388462 + 1.00203i
\(677\) 39.7823 1.52896 0.764478 0.644650i \(-0.222997\pi\)
0.764478 + 0.644650i \(0.222997\pi\)
\(678\) −45.8377 9.35782i −1.76038 0.359385i
\(679\) 5.28622 0.859095i 0.202867 0.0329690i
\(680\) 5.62754 + 2.39767i 0.215806 + 0.0919465i
\(681\) −7.14731 + 28.9978i −0.273885 + 1.11120i
\(682\) 13.2832 + 0.535293i 0.508639 + 0.0204974i
\(683\) 17.5182 8.31251i 0.670317 0.318069i −0.0629437 0.998017i \(-0.520049\pi\)
0.733261 + 0.679948i \(0.237998\pi\)
\(684\) −3.20161 2.20991i −0.122417 0.0844981i
\(685\) 2.07460 0.692604i 0.0792664 0.0264630i
\(686\) −6.10855 + 12.8735i −0.233226 + 0.491513i
\(687\) 9.11054 27.2894i 0.347589 1.04116i
\(688\) −29.4843 7.26723i −1.12408 0.277061i
\(689\) 37.6365 7.53970i 1.43384 0.287240i
\(690\) 33.9587 8.37007i 1.29279 0.318643i
\(691\) −3.87669 + 48.0214i −0.147476 + 1.82682i 0.325270 + 0.945621i \(0.394545\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(692\) 12.8928 + 13.4228i 0.490110 + 0.510259i
\(693\) 2.47507 + 5.21611i 0.0940203 + 0.198144i
\(694\) −63.2534 + 7.68035i −2.40107 + 0.291542i
\(695\) −12.9247 7.46209i −0.490263 0.283053i
\(696\) −2.27452 + 3.02684i −0.0862156 + 0.114732i
\(697\) 26.9072 18.5727i 1.01918 0.703492i
\(698\) 26.7263 46.2913i 1.01161 1.75215i
\(699\) −13.7946 23.8930i −0.521762 0.903717i
\(700\) 15.5248 + 7.36661i 0.586783 + 0.278432i
\(701\) −39.9471 20.9659i −1.50878 0.791869i −0.511073 0.859537i \(-0.670752\pi\)
−0.997708 + 0.0676680i \(0.978444\pi\)
\(702\) −36.6311 19.3974i −1.38255 0.732107i
\(703\) 5.79048 3.03908i 0.218392 0.114621i
\(704\) 13.1922 0.531627i 0.497199 0.0200365i
\(705\) 3.42447 16.7741i 0.128973 0.631751i
\(706\) −5.25046 + 18.1267i −0.197604 + 0.682207i
\(707\) −9.82472 18.7194i −0.369497 0.704017i
\(708\) 6.36296 + 10.0622i 0.239135 + 0.378161i
\(709\) −3.79625 + 23.3593i −0.142571 + 0.877276i 0.812946 + 0.582339i \(0.197863\pi\)
−0.955517 + 0.294936i \(0.904702\pi\)
\(710\) 9.21559 + 37.3891i 0.345855 + 1.40319i
\(711\) 1.56578 + 7.66970i 0.0587213 + 0.287636i
\(712\) −4.85811 0.392187i −0.182065 0.0146978i
\(713\) −11.3004 + 17.8702i −0.423205 + 0.669245i
\(714\) 53.2805 + 47.2024i 1.99397 + 1.76651i
\(715\) 3.31711 + 13.6739i 0.124053 + 0.511376i
\(716\) −24.1046 + 21.3548i −0.900831 + 0.798067i
\(717\) 2.57371 + 15.8367i 0.0961171 + 0.591432i
\(718\) −4.46733 + 1.90335i −0.166719 + 0.0710324i
\(719\) 4.50633 2.84963i 0.168058 0.106273i −0.447789 0.894139i \(-0.647788\pi\)
0.615847 + 0.787866i \(0.288814\pi\)
\(720\) −7.62289 + 8.60446i −0.284088 + 0.320669i
\(721\) −3.29625 40.8314i −0.122759 1.52064i
\(722\) 10.6740 + 31.9726i 0.397246 + 1.18990i
\(723\) −30.7444 3.73305i −1.14340 0.138833i
\(724\) 10.8008 + 8.11627i 0.401408 + 0.301639i
\(725\) −13.3838 + 16.3922i −0.497064 + 0.608792i
\(726\) −19.1068 15.6002i −0.709119 0.578978i
\(727\) 5.28256 + 7.65311i 0.195919 + 0.283838i 0.908615 0.417636i \(-0.137141\pi\)
−0.712695 + 0.701474i \(0.752526\pi\)
\(728\) −2.27021 3.04431i −0.0841395 0.112830i
\(729\) 15.8170 22.9149i 0.585815 0.848700i
\(730\) 3.02881 0.877305i 0.112101 0.0324705i
\(731\) 51.8670 + 32.7987i 1.91837 + 1.21310i
\(732\) −3.30797 0.537597i −0.122266 0.0198701i
\(733\) 11.3559 + 4.30672i 0.419439 + 0.159072i 0.555290 0.831657i \(-0.312607\pi\)
−0.135850 + 0.990729i \(0.543377\pi\)
\(734\) −11.4621 + 26.9025i −0.423073 + 0.992989i
\(735\) 13.1844 + 12.6637i 0.486312 + 0.467109i
\(736\) −17.6081 + 33.5494i −0.649043 + 1.23665i
\(737\) −8.30051 + 0.670087i −0.305753 + 0.0246830i
\(738\) −2.88039 9.94425i −0.106028 0.366053i
\(739\) −5.82810 + 5.59797i −0.214390 + 0.205925i −0.792225 0.610229i \(-0.791077\pi\)
0.577835 + 0.816154i \(0.303898\pi\)
\(740\) 8.60510 + 22.6898i 0.316330 + 0.834093i
\(741\) −3.26184 6.93987i −0.119827 0.254942i
\(742\) −26.6150 + 70.1781i −0.977069 + 2.57632i
\(743\) 3.49446 + 8.20179i 0.128199 + 0.300895i 0.971694 0.236243i \(-0.0759160\pi\)
−0.843495 + 0.537137i \(0.819506\pi\)
\(744\) −0.0752418 1.86711i −0.00275850 0.0684515i
\(745\) 17.1101 + 20.9560i 0.626865 + 0.767770i
\(746\) 49.1068i 1.79793i
\(747\) 1.23313 1.00682i 0.0451177 0.0368375i
\(748\) −22.1544 6.41710i −0.810044 0.234632i
\(749\) −36.0266 40.6656i −1.31638 1.48589i
\(750\) 13.9376 14.5106i 0.508929 0.529851i
\(751\) 18.5847 + 6.20450i 0.678167 + 0.226405i 0.634826 0.772655i \(-0.281072\pi\)
0.0433407 + 0.999060i \(0.486200\pi\)
\(752\) 10.3049 + 13.7133i 0.375780 + 0.500072i
\(753\) −3.29827 27.1637i −0.120196 0.989899i
\(754\) 61.9981 26.1464i 2.25784 0.952195i
\(755\) −2.57172 + 21.1800i −0.0935946 + 0.770821i
\(756\) 36.3592 20.9920i 1.32237 0.763472i
\(757\) 4.88221 3.66875i 0.177447 0.133343i −0.508308 0.861176i \(-0.669729\pi\)
0.685755 + 0.727833i \(0.259472\pi\)
\(758\) −1.77989 + 44.1674i −0.0646484 + 1.60423i
\(759\) −8.57057 + 3.25039i −0.311092 + 0.117982i
\(760\) 1.26249 0.257738i 0.0457952 0.00934915i
\(761\) 2.29304 0.468127i 0.0831226 0.0169696i −0.158284 0.987394i \(-0.550596\pi\)
0.241407 + 0.970424i \(0.422391\pi\)
\(762\) 14.1261 5.35731i 0.511733 0.194075i
\(763\) −2.50147 + 62.0734i −0.0905594 + 2.24721i
\(764\) −7.80836 + 5.86760i −0.282496 + 0.212282i
\(765\) 20.1185 11.6154i 0.727386 0.419956i
\(766\) 4.48242 36.9160i 0.161956 1.33383i