Properties

Label 169.2.k.a.10.15
Level $169$
Weight $2$
Character 169.10
Analytic conductor $1.349$
Analytic rank $0$
Dimension $360$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(4,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.k (of order \(78\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(360\)
Relative dimension: \(15\) over \(\Q(\zeta_{78})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{78}]$

Embedding invariants

Embedding label 10.15
Character \(\chi\) \(=\) 169.10
Dual form 169.2.k.a.17.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.38990 + 0.487901i) q^{2} +(-0.991471 + 0.161130i) q^{3} +(3.63359 + 1.54813i) q^{4} +(0.415157 - 1.68436i) q^{5} +(-2.44813 - 0.0986562i) q^{6} +(0.306738 - 0.145549i) q^{7} +(3.91375 + 2.70146i) q^{8} +(-1.88856 + 0.630493i) q^{9} +O(q^{10})\) \(q+(2.38990 + 0.487901i) q^{2} +(-0.991471 + 0.161130i) q^{3} +(3.63359 + 1.54813i) q^{4} +(0.415157 - 1.68436i) q^{5} +(-2.44813 - 0.0986562i) q^{6} +(0.306738 - 0.145549i) q^{7} +(3.91375 + 2.70146i) q^{8} +(-1.88856 + 0.630493i) q^{9} +(1.81398 - 3.82289i) q^{10} +(-1.44484 + 4.32781i) q^{11} +(-3.85205 - 0.949446i) q^{12} +(-0.598990 - 3.55545i) q^{13} +(0.804084 - 0.198189i) q^{14} +(-0.140216 + 1.73689i) q^{15} +(2.56336 + 2.66875i) q^{16} +(0.672945 + 1.41820i) q^{17} +(-4.82107 + 0.585384i) q^{18} +(-4.58930 - 2.64964i) q^{19} +(4.11612 - 5.47756i) q^{20} +(-0.280669 + 0.193732i) q^{21} +(-5.56455 + 9.63808i) q^{22} +(-0.471124 - 0.816011i) q^{23} +(-4.31565 - 2.04780i) q^{24} +(1.76257 + 0.925069i) q^{25} +(0.303183 - 8.78940i) q^{26} +(4.43912 - 2.32983i) q^{27} +(1.33989 - 0.0539956i) q^{28} +(0.634023 - 3.10565i) q^{29} +(-1.18253 + 4.08257i) q^{30} +(2.06219 + 3.92918i) q^{31} +(-0.259274 - 0.410008i) q^{32} +(0.735174 - 4.52371i) q^{33} +(0.916327 + 3.71768i) q^{34} +(-0.117812 - 0.577082i) q^{35} +(-7.83833 - 0.632775i) q^{36} +(1.10040 - 1.74015i) q^{37} +(-9.67520 - 8.57148i) q^{38} +(1.16677 + 3.42861i) q^{39} +(6.17505 - 5.47062i) q^{40} +(-0.309686 - 1.90557i) q^{41} +(-0.765292 + 0.326061i) q^{42} +(-6.96658 + 4.40540i) q^{43} +(-11.9500 + 13.4887i) q^{44} +(0.277928 + 3.44276i) q^{45} +(-0.727805 - 2.18004i) q^{46} +(13.2572 + 1.60972i) q^{47} +(-2.97152 - 2.23295i) q^{48} +(-4.35421 + 5.33294i) q^{49} +(3.76102 + 3.07078i) q^{50} +(-0.895720 - 1.29767i) q^{51} +(3.32781 - 13.8464i) q^{52} +(0.349133 - 0.505806i) q^{53} +(11.7458 - 3.40220i) q^{54} +(6.68976 + 4.23035i) q^{55} +(1.59369 + 0.259000i) q^{56} +(4.97710 + 1.88756i) q^{57} +(3.03050 - 7.11284i) q^{58} +(8.15770 + 7.83558i) q^{59} +(-3.19841 + 6.09407i) q^{60} +(2.68137 - 0.216462i) q^{61} +(3.01137 + 10.3965i) q^{62} +(-0.487524 + 0.468273i) q^{63} +(-3.04396 - 8.02627i) q^{64} +(-6.23733 - 0.467156i) q^{65} +(3.96411 - 10.4525i) q^{66} +(4.40563 + 10.3404i) q^{67} +(0.249649 + 6.19497i) q^{68} +(0.598589 + 0.733139i) q^{69} -1.43665i q^{70} +(2.33966 - 1.91027i) q^{71} +(-9.09458 - 2.63428i) q^{72} +(-7.29023 - 8.22897i) q^{73} +(3.47887 - 3.62188i) q^{74} +(-1.89659 - 0.633176i) q^{75} +(-12.5737 - 16.7325i) q^{76} +(0.186722 + 1.53780i) q^{77} +(1.11564 + 8.76329i) q^{78} +(0.217499 - 1.79126i) q^{79} +(5.55932 - 3.20968i) q^{80} +(0.749264 - 0.563035i) q^{81} +(0.189614 - 4.70522i) q^{82} +(-0.165659 + 0.0628262i) q^{83} +(-1.31976 + 0.269431i) q^{84} +(2.66814 - 0.544704i) q^{85} +(-18.7988 + 7.12944i) q^{86} +(-0.128203 + 3.18132i) q^{87} +(-17.3462 + 13.0348i) q^{88} +(-8.42901 + 4.86649i) q^{89} +(-1.01551 + 8.36344i) q^{90} +(-0.701224 - 1.00341i) q^{91} +(-0.448583 - 3.69441i) q^{92} +(-2.67771 - 3.56339i) q^{93} +(30.8980 + 10.3153i) q^{94} +(-6.36822 + 6.63002i) q^{95} +(0.323127 + 0.364735i) q^{96} +(-10.1980 - 2.95388i) q^{97} +(-13.0081 + 10.6208i) q^{98} -9.08428i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 360 q - 23 q^{2} - 24 q^{3} - 41 q^{4} - 26 q^{5} - 32 q^{6} - 26 q^{7} - 26 q^{8} - 11 q^{9} - 27 q^{10} - 26 q^{11} - 14 q^{12} - 34 q^{13} - 30 q^{14} - 84 q^{15} - 13 q^{16} - 31 q^{17} + 52 q^{18} - 33 q^{19} - 29 q^{20} - 26 q^{21} - 33 q^{22} + 57 q^{23} + 58 q^{24} + 2 q^{25} - 29 q^{26} - 30 q^{27} - 26 q^{28} - 19 q^{29} + 178 q^{30} - 78 q^{31} - 30 q^{32} - 26 q^{33} - 91 q^{34} - 18 q^{35} - 51 q^{36} - 41 q^{37} + 25 q^{38} + 12 q^{39} - 134 q^{40} - 17 q^{41} + 250 q^{42} - 28 q^{43} + 42 q^{45} + 18 q^{46} + 117 q^{47} - 57 q^{48} - 117 q^{49} - 20 q^{50} - 59 q^{51} + 37 q^{52} - 75 q^{53} + 118 q^{54} + 64 q^{55} - 42 q^{56} - 104 q^{57} - 87 q^{58} + 170 q^{59} + 78 q^{60} - 15 q^{61} + 19 q^{62} + 39 q^{63} + 32 q^{64} - 17 q^{65} + 73 q^{66} + 20 q^{67} - 76 q^{68} - 11 q^{69} + 46 q^{71} - 198 q^{72} - 26 q^{73} + 29 q^{74} - 70 q^{75} + 58 q^{76} + 6 q^{77} + 128 q^{78} - 54 q^{79} - 24 q^{80} - 7 q^{81} + 81 q^{82} + 234 q^{83} - 273 q^{84} - 74 q^{85} + 52 q^{86} - 112 q^{87} + 256 q^{88} - 27 q^{89} + 28 q^{90} - 78 q^{91} - 34 q^{92} + 51 q^{93} + 28 q^{94} - 11 q^{95} + 143 q^{96} + 40 q^{97} - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38990 + 0.487901i 1.68991 + 0.344998i 0.946220 0.323525i \(-0.104868\pi\)
0.743692 + 0.668523i \(0.233073\pi\)
\(3\) −0.991471 + 0.161130i −0.572426 + 0.0930283i −0.439733 0.898129i \(-0.644927\pi\)
−0.132694 + 0.991157i \(0.542363\pi\)
\(4\) 3.63359 + 1.54813i 1.81680 + 0.774065i
\(5\) 0.415157 1.68436i 0.185664 0.753268i −0.802084 0.597211i \(-0.796275\pi\)
0.987748 0.156057i \(-0.0498784\pi\)
\(6\) −2.44813 0.0986562i −0.999444 0.0402762i
\(7\) 0.306738 0.145549i 0.115936 0.0550123i −0.369841 0.929095i \(-0.620588\pi\)
0.485777 + 0.874083i \(0.338537\pi\)
\(8\) 3.91375 + 2.70146i 1.38372 + 0.955112i
\(9\) −1.88856 + 0.630493i −0.629519 + 0.210164i
\(10\) 1.81398 3.82289i 0.573631 1.20890i
\(11\) −1.44484 + 4.32781i −0.435635 + 1.30488i 0.470689 + 0.882299i \(0.344006\pi\)
−0.906323 + 0.422585i \(0.861123\pi\)
\(12\) −3.85205 0.949446i −1.11199 0.274081i
\(13\) −0.598990 3.55545i −0.166130 0.986104i
\(14\) 0.804084 0.198189i 0.214901 0.0529682i
\(15\) −0.140216 + 1.73689i −0.0362036 + 0.448462i
\(16\) 2.56336 + 2.66875i 0.640841 + 0.667186i
\(17\) 0.672945 + 1.41820i 0.163213 + 0.343964i 0.968537 0.248871i \(-0.0800596\pi\)
−0.805323 + 0.592836i \(0.798008\pi\)
\(18\) −4.82107 + 0.585384i −1.13634 + 0.137976i
\(19\) −4.58930 2.64964i −1.05286 0.607868i −0.129410 0.991591i \(-0.541308\pi\)
−0.923448 + 0.383723i \(0.874642\pi\)
\(20\) 4.11612 5.47756i 0.920392 1.22482i
\(21\) −0.280669 + 0.193732i −0.0612471 + 0.0422758i
\(22\) −5.56455 + 9.63808i −1.18637 + 2.05485i
\(23\) −0.471124 0.816011i −0.0982361 0.170150i 0.812718 0.582657i \(-0.197987\pi\)
−0.910955 + 0.412507i \(0.864653\pi\)
\(24\) −4.31565 2.04780i −0.880929 0.418006i
\(25\) 1.76257 + 0.925069i 0.352514 + 0.185014i
\(26\) 0.303183 8.78940i 0.0594590 1.72374i
\(27\) 4.43912 2.32983i 0.854310 0.448376i
\(28\) 1.33989 0.0539956i 0.253215 0.0102042i
\(29\) 0.634023 3.10565i 0.117735 0.576705i −0.877531 0.479520i \(-0.840811\pi\)
0.995266 0.0971854i \(-0.0309840\pi\)
\(30\) −1.18253 + 4.08257i −0.215899 + 0.745372i
\(31\) 2.06219 + 3.92918i 0.370381 + 0.705701i 0.997304 0.0733795i \(-0.0233784\pi\)
−0.626923 + 0.779081i \(0.715686\pi\)
\(32\) −0.259274 0.410008i −0.0458335 0.0724799i
\(33\) 0.735174 4.52371i 0.127977 0.787477i
\(34\) 0.916327 + 3.71768i 0.157149 + 0.637577i
\(35\) −0.117812 0.577082i −0.0199139 0.0975446i
\(36\) −7.83833 0.632775i −1.30639 0.105463i
\(37\) 1.10040 1.74015i 0.180905 0.286078i −0.742546 0.669795i \(-0.766382\pi\)
0.923451 + 0.383717i \(0.125356\pi\)
\(38\) −9.67520 8.57148i −1.56952 1.39048i
\(39\) 1.16677 + 3.42861i 0.186833 + 0.549017i
\(40\) 6.17505 5.47062i 0.976362 0.864981i
\(41\) −0.309686 1.90557i −0.0483648 0.297601i 0.951587 0.307378i \(-0.0994517\pi\)
−0.999952 + 0.00977769i \(0.996888\pi\)
\(42\) −0.765292 + 0.326061i −0.118087 + 0.0503122i
\(43\) −6.96658 + 4.40540i −1.06239 + 0.671817i −0.946912 0.321493i \(-0.895815\pi\)
−0.115481 + 0.993310i \(0.536841\pi\)
\(44\) −11.9500 + 13.4887i −1.80152 + 2.03350i
\(45\) 0.277928 + 3.44276i 0.0414311 + 0.513216i
\(46\) −0.727805 2.18004i −0.107309 0.321430i
\(47\) 13.2572 + 1.60972i 1.93377 + 0.234802i 0.994199 0.107557i \(-0.0343028\pi\)
0.939569 + 0.342359i \(0.111226\pi\)
\(48\) −2.97152 2.23295i −0.428902 0.322299i
\(49\) −4.35421 + 5.33294i −0.622031 + 0.761849i
\(50\) 3.76102 + 3.07078i 0.531888 + 0.434273i
\(51\) −0.895720 1.29767i −0.125426 0.181711i
\(52\) 3.32781 13.8464i 0.461484 1.92015i
\(53\) 0.349133 0.505806i 0.0479571 0.0694779i −0.798272 0.602297i \(-0.794252\pi\)
0.846229 + 0.532820i \(0.178868\pi\)
\(54\) 11.7458 3.40220i 1.59840 0.462981i
\(55\) 6.68976 + 4.23035i 0.902046 + 0.570420i
\(56\) 1.59369 + 0.259000i 0.212966 + 0.0346103i
\(57\) 4.97710 + 1.88756i 0.659233 + 0.250014i
\(58\) 3.03050 7.11284i 0.397924 0.933962i
\(59\) 8.15770 + 7.83558i 1.06204 + 1.02011i 0.999757 + 0.0220468i \(0.00701828\pi\)
0.0622850 + 0.998058i \(0.480161\pi\)
\(60\) −3.19841 + 6.09407i −0.412914 + 0.786741i
\(61\) 2.68137 0.216462i 0.343314 0.0277152i 0.0923927 0.995723i \(-0.470548\pi\)
0.250921 + 0.968007i \(0.419266\pi\)
\(62\) 3.01137 + 10.3965i 0.382445 + 1.32035i
\(63\) −0.487524 + 0.468273i −0.0614222 + 0.0589969i
\(64\) −3.04396 8.02627i −0.380495 1.00328i
\(65\) −6.23733 0.467156i −0.773645 0.0579436i
\(66\) 3.96411 10.4525i 0.487948 1.28661i
\(67\) 4.40563 + 10.3404i 0.538233 + 1.26328i 0.937991 + 0.346659i \(0.112684\pi\)
−0.399758 + 0.916621i \(0.630906\pi\)
\(68\) 0.249649 + 6.19497i 0.0302744 + 0.751251i
\(69\) 0.598589 + 0.733139i 0.0720617 + 0.0882596i
\(70\) 1.43665i 0.171712i
\(71\) 2.33966 1.91027i 0.277666 0.226707i −0.483371 0.875416i \(-0.660588\pi\)
0.761037 + 0.648708i \(0.224690\pi\)
\(72\) −9.09458 2.63428i −1.07181 0.310453i
\(73\) −7.29023 8.22897i −0.853257 0.963128i 0.146402 0.989225i \(-0.453231\pi\)
−0.999659 + 0.0260967i \(0.991692\pi\)
\(74\) 3.47887 3.62188i 0.404410 0.421035i
\(75\) −1.89659 0.633176i −0.219000 0.0731129i
\(76\) −12.5737 16.7325i −1.44230 1.91935i
\(77\) 0.186722 + 1.53780i 0.0212790 + 0.175248i
\(78\) 1.11564 + 8.76329i 0.126321 + 0.992247i
\(79\) 0.217499 1.79126i 0.0244705 0.201533i −0.975346 0.220680i \(-0.929172\pi\)
0.999817 + 0.0191477i \(0.00609528\pi\)
\(80\) 5.55932 3.20968i 0.621551 0.358853i
\(81\) 0.749264 0.563035i 0.0832515 0.0625595i
\(82\) 0.189614 4.70522i 0.0209393 0.519604i
\(83\) −0.165659 + 0.0628262i −0.0181834 + 0.00689607i −0.363680 0.931524i \(-0.618480\pi\)
0.345496 + 0.938420i \(0.387711\pi\)
\(84\) −1.31976 + 0.269431i −0.143998 + 0.0293973i
\(85\) 2.66814 0.544704i 0.289400 0.0590815i
\(86\) −18.7988 + 7.12944i −2.02713 + 0.768787i
\(87\) −0.128203 + 3.18132i −0.0137448 + 0.341074i
\(88\) −17.3462 + 13.0348i −1.84911 + 1.38951i
\(89\) −8.42901 + 4.86649i −0.893473 + 0.515847i −0.875077 0.483984i \(-0.839189\pi\)
−0.0183963 + 0.999831i \(0.505856\pi\)
\(90\) −1.01551 + 8.36344i −0.107044 + 0.881584i
\(91\) −0.701224 1.00341i −0.0735082 0.105186i
\(92\) −0.448583 3.69441i −0.0467680 0.385169i
\(93\) −2.67771 3.56339i −0.277666 0.369506i
\(94\) 30.8980 + 10.3153i 3.18689 + 1.06394i
\(95\) −6.36822 + 6.63002i −0.653366 + 0.680226i
\(96\) 0.323127 + 0.364735i 0.0329790 + 0.0372256i
\(97\) −10.1980 2.95388i −1.03545 0.299921i −0.283381 0.959008i \(-0.591456\pi\)
−0.752067 + 0.659086i \(0.770943\pi\)
\(98\) −13.0081 + 10.6208i −1.31401 + 1.07286i
\(99\) 9.08428i 0.913004i
\(100\) 4.97234 + 6.09001i 0.497234 + 0.609001i
\(101\) −0.624451 15.4956i −0.0621352 1.54187i −0.666708 0.745319i \(-0.732297\pi\)
0.604573 0.796550i \(-0.293344\pi\)
\(102\) −1.50754 3.53833i −0.149269 0.350347i
\(103\) 0.685504 1.80753i 0.0675447 0.178101i −0.896994 0.442043i \(-0.854254\pi\)
0.964538 + 0.263943i \(0.0850229\pi\)
\(104\) 7.26062 15.5333i 0.711962 1.52316i
\(105\) 0.209792 + 0.553177i 0.0204736 + 0.0539846i
\(106\) 1.08117 1.03848i 0.105013 0.100866i
\(107\) 1.37290 + 4.73981i 0.132724 + 0.458215i 0.999156 0.0410798i \(-0.0130798\pi\)
−0.866432 + 0.499294i \(0.833593\pi\)
\(108\) 19.7369 1.59332i 1.89918 0.153318i
\(109\) 8.35924 15.9272i 0.800670 1.52555i −0.0493404 0.998782i \(-0.515712\pi\)
0.850010 0.526767i \(-0.176596\pi\)
\(110\) 13.9238 + 13.3740i 1.32758 + 1.27516i
\(111\) −0.810628 + 1.90261i −0.0769414 + 0.180588i
\(112\) 1.17471 + 0.445510i 0.111000 + 0.0420967i
\(113\) 17.9491 + 2.91701i 1.68851 + 0.274409i 0.927361 0.374168i \(-0.122072\pi\)
0.761149 + 0.648578i \(0.224636\pi\)
\(114\) 10.9738 + 6.93941i 1.02779 + 0.649935i
\(115\) −1.57004 + 0.454769i −0.146407 + 0.0424074i
\(116\) 7.11173 10.3031i 0.660308 0.956621i
\(117\) 3.37291 + 6.33701i 0.311826 + 0.585856i
\(118\) 15.6731 + 22.7064i 1.44282 + 2.09029i
\(119\) 0.412835 + 0.337069i 0.0378445 + 0.0308991i
\(120\) −5.24091 + 6.41895i −0.478427 + 0.585967i
\(121\) −7.84854 5.89780i −0.713504 0.536163i
\(122\) 6.51380 + 0.790919i 0.589732 + 0.0716064i
\(123\) 0.614089 + 1.83942i 0.0553706 + 0.165855i
\(124\) 1.41029 + 17.4696i 0.126648 + 1.56881i
\(125\) 8.04171 9.07722i 0.719273 0.811891i
\(126\) −1.39360 + 0.881260i −0.124152 + 0.0785089i
\(127\) −9.35764 + 3.98692i −0.830356 + 0.353782i −0.764960 0.644078i \(-0.777241\pi\)
−0.0653961 + 0.997859i \(0.520831\pi\)
\(128\) −3.20309 19.7094i −0.283116 1.74208i
\(129\) 6.19732 5.49035i 0.545644 0.483398i
\(130\) −14.6786 4.15965i −1.28740 0.364825i
\(131\) −14.0728 12.4674i −1.22954 1.08928i −0.993056 0.117645i \(-0.962465\pi\)
−0.236487 0.971635i \(-0.575996\pi\)
\(132\) 9.67461 15.2992i 0.842067 1.33162i
\(133\) −1.79336 0.144775i −0.155504 0.0125536i
\(134\) 5.48391 + 26.8620i 0.473738 + 2.32052i
\(135\) −2.08134 8.44433i −0.179133 0.726772i
\(136\) −1.19748 + 7.36842i −0.102683 + 0.631837i
\(137\) 10.0647 + 15.9161i 0.859890 + 1.35981i 0.932018 + 0.362411i \(0.118046\pi\)
−0.0721286 + 0.997395i \(0.522979\pi\)
\(138\) 1.07287 + 2.04418i 0.0913285 + 0.174012i
\(139\) −0.195698 + 0.675626i −0.0165988 + 0.0573059i −0.968390 0.249441i \(-0.919753\pi\)
0.951791 + 0.306747i \(0.0992404\pi\)
\(140\) 0.465316 2.27927i 0.0393264 0.192633i
\(141\) −13.4036 + 0.540145i −1.12878 + 0.0454884i
\(142\) 6.52356 3.42383i 0.547445 0.287321i
\(143\) 16.2528 + 2.54473i 1.35912 + 0.212801i
\(144\) −6.52368 3.42389i −0.543640 0.285325i
\(145\) −4.96781 2.35726i −0.412554 0.195759i
\(146\) −13.4080 23.2233i −1.10965 1.92197i
\(147\) 3.45778 5.98905i 0.285193 0.493969i
\(148\) 6.69239 4.61942i 0.550111 0.379714i
\(149\) −11.0390 + 14.6902i −0.904346 + 1.20347i 0.0741595 + 0.997246i \(0.476373\pi\)
−0.978506 + 0.206220i \(0.933884\pi\)
\(150\) −4.22374 2.43858i −0.344867 0.199109i
\(151\) −19.0957 + 2.31864i −1.55399 + 0.188688i −0.852016 0.523515i \(-0.824620\pi\)
−0.701973 + 0.712204i \(0.747697\pi\)
\(152\) −10.8035 22.7678i −0.876278 1.84672i
\(153\) −2.16506 2.25407i −0.175035 0.182231i
\(154\) −0.304045 + 3.76628i −0.0245007 + 0.303495i
\(155\) 7.47428 1.84224i 0.600349 0.147973i
\(156\) −1.06837 + 14.2645i −0.0855377 + 1.14207i
\(157\) −12.0136 2.96108i −0.958787 0.236320i −0.271282 0.962500i \(-0.587448\pi\)
−0.687505 + 0.726180i \(0.741294\pi\)
\(158\) 1.39376 4.17481i 0.110881 0.332130i
\(159\) −0.264655 + 0.557748i −0.0209885 + 0.0442323i
\(160\) −0.798240 + 0.266492i −0.0631064 + 0.0210680i
\(161\) −0.263281 0.181730i −0.0207494 0.0143223i
\(162\) 2.06537 0.980029i 0.162271 0.0769984i
\(163\) −18.6073 0.749847i −1.45743 0.0587325i −0.701167 0.712997i \(-0.747337\pi\)
−0.756266 + 0.654264i \(0.772978\pi\)
\(164\) 1.82480 7.40351i 0.142493 0.578117i
\(165\) −7.31434 3.11635i −0.569420 0.242607i
\(166\) −0.426561 + 0.0693228i −0.0331075 + 0.00538050i
\(167\) 6.53242 + 1.33360i 0.505494 + 0.103197i 0.446003 0.895032i \(-0.352847\pi\)
0.0594910 + 0.998229i \(0.481052\pi\)
\(168\) −1.62183 −0.125127
\(169\) −12.2824 + 4.25935i −0.944802 + 0.327643i
\(170\) 6.64233 0.509444
\(171\) 10.3377 + 2.11046i 0.790547 + 0.161391i
\(172\) −32.1338 + 5.22226i −2.45018 + 0.398193i
\(173\) 1.17688 + 0.501424i 0.0894769 + 0.0381225i 0.436241 0.899830i \(-0.356309\pi\)
−0.346764 + 0.937952i \(0.612720\pi\)
\(174\) −1.85856 + 7.54048i −0.140897 + 0.571643i
\(175\) 0.675290 + 0.0272132i 0.0510471 + 0.00205713i
\(176\) −15.2535 + 7.23786i −1.14977 + 0.545575i
\(177\) −9.35067 6.45430i −0.702839 0.485135i
\(178\) −22.5188 + 7.51789i −1.68786 + 0.563489i
\(179\) 7.54843 15.9080i 0.564196 1.18902i −0.398183 0.917306i \(-0.630359\pi\)
0.962379 0.271712i \(-0.0875897\pi\)
\(180\) −4.31996 + 12.9399i −0.321991 + 0.964480i
\(181\) 4.34025 + 1.06978i 0.322608 + 0.0795158i 0.397294 0.917691i \(-0.369949\pi\)
−0.0746860 + 0.997207i \(0.523795\pi\)
\(182\) −1.18629 2.74017i −0.0879336 0.203115i
\(183\) −2.62362 + 0.646665i −0.193944 + 0.0478028i
\(184\) 0.360564 4.46638i 0.0265811 0.329266i
\(185\) −2.47419 2.57591i −0.181906 0.189384i
\(186\) −4.66087 9.82258i −0.341752 0.720226i
\(187\) −7.11001 + 0.863311i −0.519935 + 0.0631316i
\(188\) 45.6794 + 26.3730i 3.33151 + 1.92345i
\(189\) 1.02254 1.36076i 0.0743790 0.0989805i
\(190\) −18.4542 + 12.7380i −1.33881 + 0.924111i
\(191\) −2.59531 + 4.49521i −0.187790 + 0.325262i −0.944513 0.328474i \(-0.893466\pi\)
0.756723 + 0.653735i \(0.226799\pi\)
\(192\) 4.31127 + 7.46734i 0.311139 + 0.538909i
\(193\) 13.8311 + 6.56294i 0.995584 + 0.472411i 0.855541 0.517735i \(-0.173225\pi\)
0.140043 + 0.990145i \(0.455276\pi\)
\(194\) −22.9309 12.0351i −1.64634 0.864067i
\(195\) 6.25940 0.541847i 0.448245 0.0388025i
\(196\) −24.0775 + 12.6369i −1.71982 + 0.902633i
\(197\) −22.9183 + 0.923576i −1.63286 + 0.0658021i −0.839645 0.543136i \(-0.817237\pi\)
−0.793218 + 0.608938i \(0.791596\pi\)
\(198\) 4.43223 21.7105i 0.314985 1.54290i
\(199\) 4.38660 15.1443i 0.310958 1.07355i −0.641056 0.767494i \(-0.721503\pi\)
0.952013 0.306056i \(-0.0990096\pi\)
\(200\) 4.39922 + 8.38201i 0.311072 + 0.592697i
\(201\) −6.03420 9.54232i −0.425620 0.673064i
\(202\) 6.06794 37.3375i 0.426939 2.62706i
\(203\) −0.257545 1.04490i −0.0180761 0.0733377i
\(204\) −1.24571 6.10191i −0.0872175 0.427219i
\(205\) −3.33824 0.269490i −0.233153 0.0188220i
\(206\) 2.52018 3.98534i 0.175589 0.277672i
\(207\) 1.40423 + 1.24404i 0.0976009 + 0.0864669i
\(208\) 7.95316 10.7125i 0.551452 0.742776i
\(209\) 18.0979 16.0334i 1.25186 1.10905i
\(210\) 0.231486 + 1.42439i 0.0159741 + 0.0982925i
\(211\) 14.1892 6.04545i 0.976824 0.416186i 0.156245 0.987718i \(-0.450061\pi\)
0.820579 + 0.571533i \(0.193651\pi\)
\(212\) 2.05166 1.29739i 0.140909 0.0891052i
\(213\) −2.01190 + 2.27097i −0.137853 + 0.155604i
\(214\) 0.968537 + 11.9975i 0.0662078 + 0.820131i
\(215\) 4.52805 + 13.5632i 0.308810 + 0.924999i
\(216\) 23.6676 + 2.87376i 1.61037 + 0.195535i
\(217\) 1.20444 + 0.905077i 0.0817627 + 0.0614407i
\(218\) 27.7486 33.9858i 1.87937 2.30181i
\(219\) 8.55399 + 6.98412i 0.578025 + 0.471943i
\(220\) 17.7587 + 25.7280i 1.19729 + 1.73458i
\(221\) 4.63926 3.24211i 0.312070 0.218088i
\(222\) −2.86560 + 4.15154i −0.192327 + 0.278633i
\(223\) −20.9558 + 6.06992i −1.40330 + 0.406472i −0.891653 0.452720i \(-0.850454\pi\)
−0.511652 + 0.859193i \(0.670966\pi\)
\(224\) −0.139205 0.0880280i −0.00930104 0.00588162i
\(225\) −3.91196 0.635756i −0.260798 0.0423837i
\(226\) 41.4733 + 15.7287i 2.75876 + 1.04626i
\(227\) −2.18603 + 5.13080i −0.145092 + 0.340543i −0.976631 0.214923i \(-0.931050\pi\)
0.831539 + 0.555466i \(0.187460\pi\)
\(228\) 15.1626 + 14.5638i 1.00417 + 0.964514i
\(229\) −3.22405 + 6.14292i −0.213051 + 0.405935i −0.968405 0.249382i \(-0.919773\pi\)
0.755354 + 0.655317i \(0.227465\pi\)
\(230\) −3.97412 + 0.320825i −0.262046 + 0.0211545i
\(231\) −0.432915 1.49460i −0.0284837 0.0983372i
\(232\) 10.8712 10.4419i 0.713730 0.685547i
\(233\) −0.648913 1.71104i −0.0425117 0.112094i 0.912079 0.410014i \(-0.134476\pi\)
−0.954591 + 0.297920i \(0.903707\pi\)
\(234\) 4.96907 + 16.7904i 0.324838 + 1.09762i
\(235\) 8.21519 21.6617i 0.535900 1.41305i
\(236\) 17.5113 + 41.1005i 1.13989 + 2.67541i
\(237\) 0.0729820 + 1.81103i 0.00474069 + 0.117639i
\(238\) 0.822176 + 1.00698i 0.0532938 + 0.0652730i
\(239\) 20.5168i 1.32712i 0.748122 + 0.663561i \(0.230956\pi\)
−0.748122 + 0.663561i \(0.769044\pi\)
\(240\) −4.99474 + 4.07808i −0.322409 + 0.263239i
\(241\) −6.48504 1.87841i −0.417738 0.120999i 0.0626909 0.998033i \(-0.480032\pi\)
−0.480429 + 0.877034i \(0.659519\pi\)
\(242\) −15.8797 17.9244i −1.02078 1.15223i
\(243\) −11.0708 + 11.5259i −0.710193 + 0.739389i
\(244\) 10.0781 + 3.36457i 0.645185 + 0.215394i
\(245\) 7.17491 + 9.54807i 0.458388 + 0.610004i
\(246\) 0.570154 + 4.69564i 0.0363517 + 0.299383i
\(247\) −6.67170 + 17.9041i −0.424510 + 1.13921i
\(248\) −2.54364 + 20.9487i −0.161521 + 1.33025i
\(249\) 0.154123 0.0889830i 0.00976715 0.00563907i
\(250\) 23.6476 17.7700i 1.49561 1.12388i
\(251\) 0.798190 19.8069i 0.0503813 1.25020i −0.754315 0.656513i \(-0.772031\pi\)
0.804696 0.593687i \(-0.202328\pi\)
\(252\) −2.49641 + 0.946764i −0.157259 + 0.0596405i
\(253\) 4.21224 0.859935i 0.264821 0.0540636i
\(254\) −24.3090 + 4.96272i −1.52528 + 0.311389i
\(255\) −2.55761 + 0.969975i −0.160164 + 0.0607422i
\(256\) 1.26989 31.5120i 0.0793682 1.96950i
\(257\) −11.5477 + 8.67757i −0.720328 + 0.541292i −0.896487 0.443070i \(-0.853889\pi\)
0.176159 + 0.984362i \(0.443633\pi\)
\(258\) 17.4897 10.0977i 1.08886 0.628654i
\(259\) 0.0842585 0.693931i 0.00523557 0.0431188i
\(260\) −21.9407 11.3536i −1.36070 0.704123i
\(261\) 0.760702 + 6.26495i 0.0470863 + 0.387790i
\(262\) −27.5496 36.6618i −1.70202 2.26498i
\(263\) 15.9441 + 5.32293i 0.983156 + 0.328226i 0.762402 0.647104i \(-0.224020\pi\)
0.220754 + 0.975329i \(0.429148\pi\)
\(264\) 15.0979 15.7186i 0.929213 0.967413i
\(265\) −0.707014 0.798054i −0.0434316 0.0490241i
\(266\) −4.21532 1.22098i −0.258458 0.0748631i
\(267\) 7.57299 6.18315i 0.463459 0.378403i
\(268\) 44.3933i 2.71175i
\(269\) 0.320684 + 0.392766i 0.0195524 + 0.0239474i 0.784289 0.620396i \(-0.213028\pi\)
−0.764736 + 0.644343i \(0.777131\pi\)
\(270\) −0.854191 21.1965i −0.0519844 1.28998i
\(271\) 1.84304 + 4.32577i 0.111957 + 0.262772i 0.966528 0.256563i \(-0.0825901\pi\)
−0.854571 + 0.519335i \(0.826180\pi\)
\(272\) −2.05982 + 5.43129i −0.124895 + 0.329320i
\(273\) 0.856922 + 0.881862i 0.0518633 + 0.0533727i
\(274\) 16.2882 + 42.9485i 0.984007 + 2.59461i
\(275\) −6.55015 + 6.29151i −0.394989 + 0.379392i
\(276\) 1.04004 + 3.59062i 0.0626028 + 0.216130i
\(277\) 16.1500 1.30377i 0.970361 0.0783356i 0.414890 0.909872i \(-0.363820\pi\)
0.555471 + 0.831536i \(0.312538\pi\)
\(278\) −0.797335 + 1.51920i −0.0478210 + 0.0911153i
\(279\) −6.37189 6.12028i −0.381475 0.366412i
\(280\) 1.09788 2.57682i 0.0656108 0.153994i
\(281\) 27.9384 + 10.5956i 1.66666 + 0.632083i 0.994151 0.108002i \(-0.0344452\pi\)
0.672514 + 0.740084i \(0.265214\pi\)
\(282\) −32.2966 5.24871i −1.92324 0.312556i
\(283\) −22.8887 14.4739i −1.36059 0.860386i −0.363140 0.931734i \(-0.618295\pi\)
−0.997451 + 0.0713483i \(0.977270\pi\)
\(284\) 11.4587 3.31905i 0.679949 0.196950i
\(285\) 5.24561 7.59958i 0.310723 0.450161i
\(286\) 37.6008 + 14.0114i 2.22338 + 0.828509i
\(287\) −0.372346 0.539437i −0.0219789 0.0318420i
\(288\) 0.748160 + 0.610854i 0.0440858 + 0.0359949i
\(289\) 9.19313 11.2595i 0.540772 0.662326i
\(290\) −10.7224 8.05739i −0.629644 0.473146i
\(291\) 10.5870 + 1.28549i 0.620619 + 0.0753567i
\(292\) −13.7502 41.1870i −0.804671 2.41028i
\(293\) −0.113299 1.40346i −0.00661902 0.0819913i 0.992604 0.121394i \(-0.0387365\pi\)
−0.999223 + 0.0394029i \(0.987454\pi\)
\(294\) 11.1858 12.6262i 0.652369 0.736373i
\(295\) 16.5846 10.4875i 0.965596 0.610606i
\(296\) 9.00764 3.83780i 0.523558 0.223067i
\(297\) 3.66927 + 22.5779i 0.212913 + 1.31010i
\(298\) −33.5493 + 29.7221i −1.94346 + 1.72175i
\(299\) −2.61908 + 2.16384i −0.151466 + 0.125138i
\(300\) −5.91122 5.23688i −0.341284 0.302351i
\(301\) −1.49571 + 2.36528i −0.0862114 + 0.136332i
\(302\) −46.7681 3.77551i −2.69120 0.217256i
\(303\) 3.11593 + 15.2628i 0.179005 + 0.876826i
\(304\) −4.69286 19.0397i −0.269154 1.09200i
\(305\) 0.748589 4.60625i 0.0428641 0.263753i
\(306\) −4.07451 6.44332i −0.232924 0.368340i
\(307\) 5.05362 + 9.62886i 0.288425 + 0.549548i 0.985956 0.167007i \(-0.0534102\pi\)
−0.697531 + 0.716555i \(0.745718\pi\)
\(308\) −1.70224 + 5.87680i −0.0969939 + 0.334862i
\(309\) −0.388412 + 1.90257i −0.0220960 + 0.108233i
\(310\) 18.7616 0.756066i 1.06559 0.0429416i
\(311\) −7.92326 + 4.15845i −0.449287 + 0.235804i −0.674162 0.738584i \(-0.735495\pi\)
0.224875 + 0.974388i \(0.427803\pi\)
\(312\) −4.69583 + 16.5707i −0.265849 + 0.938131i
\(313\) 23.3978 + 12.2801i 1.32252 + 0.694114i 0.970323 0.241811i \(-0.0777413\pi\)
0.352200 + 0.935925i \(0.385434\pi\)
\(314\) −27.2665 12.9381i −1.53873 0.730139i
\(315\) 0.586341 + 1.01557i 0.0330366 + 0.0572210i
\(316\) 3.56341 6.17200i 0.200457 0.347202i
\(317\) 22.4860 15.5209i 1.26294 0.871743i 0.267171 0.963649i \(-0.413911\pi\)
0.995768 + 0.0919059i \(0.0292959\pi\)
\(318\) −0.904623 + 1.20383i −0.0507287 + 0.0675077i
\(319\) 12.5246 + 7.23109i 0.701244 + 0.404863i
\(320\) −14.7828 + 1.79496i −0.826385 + 0.100341i
\(321\) −2.12492 4.47817i −0.118601 0.249947i
\(322\) −0.540548 0.562770i −0.0301235 0.0313619i
\(323\) 0.669369 8.29162i 0.0372447 0.461358i
\(324\) 3.59417 0.885884i 0.199676 0.0492158i
\(325\) 2.23327 6.82084i 0.123880 0.378352i
\(326\) −44.1035 10.8705i −2.44267 0.602064i
\(327\) −5.72160 + 17.1383i −0.316405 + 0.947749i
\(328\) 3.93581 8.29454i 0.217319 0.457989i
\(329\) 4.30079 1.43581i 0.237110 0.0791590i
\(330\) −15.9600 11.0164i −0.878571 0.606434i
\(331\) −4.01561 + 1.90543i −0.220718 + 0.104732i −0.535841 0.844319i \(-0.680005\pi\)
0.315123 + 0.949051i \(0.397954\pi\)
\(332\) −0.699200 0.0281768i −0.0383736 0.00154640i
\(333\) −0.981022 + 3.98016i −0.0537597 + 0.218112i
\(334\) 14.9611 + 6.37434i 0.818637 + 0.348789i
\(335\) 19.2460 3.12777i 1.05152 0.170888i
\(336\) −1.23648 0.252429i −0.0674555 0.0137711i
\(337\) 4.36649 0.237858 0.118929 0.992903i \(-0.462054\pi\)
0.118929 + 0.992903i \(0.462054\pi\)
\(338\) −31.4318 + 4.18681i −1.70967 + 0.227732i
\(339\) −18.2660 −0.992075
\(340\) 10.5382 + 2.15139i 0.571514 + 0.116675i
\(341\) −19.9843 + 3.24776i −1.08221 + 0.175876i
\(342\) 23.6764 + 10.0876i 1.28027 + 0.545474i
\(343\) −1.12816 + 4.57713i −0.0609150 + 0.247142i
\(344\) −39.1664 1.57835i −2.11171 0.0850991i
\(345\) 1.48338 0.703872i 0.0798624 0.0378952i
\(346\) 2.56799 + 1.77255i 0.138056 + 0.0952930i
\(347\) 9.34227 3.11891i 0.501520 0.167432i −0.0546420 0.998506i \(-0.517402\pi\)
0.556162 + 0.831074i \(0.312274\pi\)
\(348\) −5.39094 + 11.3612i −0.288985 + 0.609022i
\(349\) 7.40819 22.1902i 0.396551 1.18782i −0.541316 0.840820i \(-0.682074\pi\)
0.937867 0.346996i \(-0.112798\pi\)
\(350\) 1.60059 + 0.394511i 0.0855553 + 0.0210875i
\(351\) −10.9426 14.3875i −0.584072 0.767950i
\(352\) 2.14905 0.529692i 0.114545 0.0282327i
\(353\) −0.414969 + 5.14031i −0.0220865 + 0.273591i 0.976282 + 0.216501i \(0.0694644\pi\)
−0.998369 + 0.0570903i \(0.981818\pi\)
\(354\) −19.1981 19.9873i −1.02037 1.06231i
\(355\) −2.24626 4.73388i −0.119219 0.251248i
\(356\) −38.1616 + 4.63365i −2.02256 + 0.245583i
\(357\) −0.463626 0.267675i −0.0245377 0.0141668i
\(358\) 25.8015 34.3355i 1.36365 1.81469i
\(359\) −12.8060 + 8.83937i −0.675877 + 0.466524i −0.855902 0.517138i \(-0.826997\pi\)
0.180025 + 0.983662i \(0.442382\pi\)
\(360\) −8.21275 + 14.2249i −0.432850 + 0.749718i
\(361\) 4.54114 + 7.86549i 0.239008 + 0.413973i
\(362\) 9.85079 + 4.67426i 0.517746 + 0.245674i
\(363\) 8.73192 + 4.58286i 0.458307 + 0.240538i
\(364\) −0.994558 4.73156i −0.0521290 0.248001i
\(365\) −16.8871 + 8.86305i −0.883913 + 0.463913i
\(366\) −6.58569 + 0.265394i −0.344239 + 0.0138724i
\(367\) −4.11116 + 20.1378i −0.214601 + 1.05118i 0.719587 + 0.694403i \(0.244331\pi\)
−0.934188 + 0.356782i \(0.883874\pi\)
\(368\) 0.970062 3.34904i 0.0505680 0.174581i
\(369\) 1.78631 + 3.40353i 0.0929916 + 0.177181i
\(370\) −4.65627 7.36331i −0.242068 0.382800i
\(371\) 0.0334727 0.205966i 0.00173782 0.0106932i
\(372\) −4.21313 17.0933i −0.218441 0.886249i
\(373\) −4.07676 19.9693i −0.211087 1.03397i −0.937839 0.347071i \(-0.887176\pi\)
0.726752 0.686900i \(-0.241029\pi\)
\(374\) −17.4134 1.40575i −0.900425 0.0726898i
\(375\) −6.51052 + 10.2956i −0.336202 + 0.531660i
\(376\) 47.5369 + 42.1140i 2.45153 + 2.17186i
\(377\) −11.4218 0.393984i −0.588250 0.0202912i
\(378\) 3.10768 2.75317i 0.159842 0.141608i
\(379\) −0.267056 1.64326i −0.0137177 0.0844086i 0.979289 0.202469i \(-0.0648965\pi\)
−0.993006 + 0.118060i \(0.962332\pi\)
\(380\) −33.4037 + 14.2320i −1.71357 + 0.730084i
\(381\) 8.63542 5.46071i 0.442406 0.279761i
\(382\) −8.39573 + 9.47682i −0.429563 + 0.484876i
\(383\) 1.00261 + 12.4196i 0.0512312 + 0.634612i 0.970519 + 0.241025i \(0.0774837\pi\)
−0.919288 + 0.393586i \(0.871234\pi\)
\(384\) 6.35155 + 19.0252i 0.324126 + 0.970877i
\(385\) 2.66772 + 0.323920i 0.135960 + 0.0165085i
\(386\) 29.8528 + 22.4329i 1.51947 + 1.14181i
\(387\) 10.3792 12.7122i 0.527605 0.646199i
\(388\) −32.4823 26.5210i −1.64904 1.34640i
\(389\) 2.21151 + 3.20392i 0.112128 + 0.162445i 0.875030 0.484069i \(-0.160842\pi\)
−0.762902 + 0.646514i \(0.776226\pi\)
\(390\) 15.2237 + 1.75901i 0.770881 + 0.0890709i
\(391\) 0.840227 1.21728i 0.0424921 0.0615604i
\(392\) −31.4480 + 9.10904i −1.58837 + 0.460076i
\(393\) 15.9616 + 10.0935i 0.805157 + 0.509150i
\(394\) −55.2230 8.97461i −2.78209 0.452134i
\(395\) −2.92683 1.11000i −0.147265 0.0558502i
\(396\) 14.0636 33.0086i 0.706724 1.65874i
\(397\) 25.6458 + 24.6331i 1.28713 + 1.23630i 0.956224 + 0.292636i \(0.0945325\pi\)
0.330902 + 0.943665i \(0.392647\pi\)
\(398\) 17.8724 34.0531i 0.895864 1.70693i
\(399\) 1.80140 0.145424i 0.0901826 0.00728029i
\(400\) 2.04934 + 7.07514i 0.102467 + 0.353757i
\(401\) −15.6820 + 15.0627i −0.783119 + 0.752196i −0.973296 0.229553i \(-0.926273\pi\)
0.190177 + 0.981750i \(0.439094\pi\)
\(402\) −9.76540 25.7492i −0.487054 1.28426i
\(403\) 12.7348 9.68555i 0.634364 0.482472i
\(404\) 21.7202 57.2714i 1.08062 2.84936i
\(405\) −0.637291 1.49578i −0.0316673 0.0743258i
\(406\) −0.105698 2.62286i −0.00524569 0.130170i
\(407\) 5.94113 + 7.27656i 0.294491 + 0.360686i
\(408\) 7.49853i 0.371232i
\(409\) −19.8733 + 16.2260i −0.982669 + 0.802324i −0.980268 0.197673i \(-0.936662\pi\)
−0.00240102 + 0.999997i \(0.500764\pi\)
\(410\) −7.84656 2.27278i −0.387514 0.112245i
\(411\) −12.5435 14.1587i −0.618724 0.698395i
\(412\) 5.28913 5.50656i 0.260577 0.271289i
\(413\) 3.64273 + 1.21612i 0.179247 + 0.0598415i
\(414\) 2.74900 + 3.65826i 0.135106 + 0.179793i
\(415\) 0.0370473 + 0.305112i 0.00181858 + 0.0149774i
\(416\) −1.30246 + 1.16742i −0.0638584 + 0.0572377i
\(417\) 0.0851650 0.701397i 0.00417055 0.0343476i
\(418\) 51.0748 29.4881i 2.49815 1.44231i
\(419\) 10.8901 8.18341i 0.532018 0.399786i −0.300501 0.953781i \(-0.597154\pi\)
0.832520 + 0.553996i \(0.186898\pi\)
\(420\) −0.0940895 + 2.33481i −0.00459110 + 0.113927i
\(421\) −1.03569 + 0.392784i −0.0504762 + 0.0191431i −0.379714 0.925104i \(-0.623978\pi\)
0.329238 + 0.944247i \(0.393208\pi\)
\(422\) 36.8602 7.52507i 1.79433 0.366315i
\(423\) −26.0520 + 5.31855i −1.26669 + 0.258597i
\(424\) 2.73284 1.03643i 0.132718 0.0503334i
\(425\) −0.125820 + 3.12220i −0.00610319 + 0.151449i
\(426\) −5.91624 + 4.44577i −0.286643 + 0.215398i
\(427\) 0.790971 0.456667i 0.0382778 0.0220997i
\(428\) −2.34927 + 19.3480i −0.113556 + 0.935219i
\(429\) −16.5242 + 0.0957808i −0.797795 + 0.00462434i
\(430\) 4.20408 + 34.6237i 0.202739 + 1.66971i
\(431\) 1.09540 + 1.45771i 0.0527633 + 0.0702153i 0.825053 0.565055i \(-0.191145\pi\)
−0.772290 + 0.635270i \(0.780889\pi\)
\(432\) 17.5968 + 5.87468i 0.846628 + 0.282646i
\(433\) −15.8363 + 16.4873i −0.761042 + 0.792328i −0.983171 0.182689i \(-0.941520\pi\)
0.222129 + 0.975017i \(0.428699\pi\)
\(434\) 2.43690 + 2.75069i 0.116975 + 0.132037i
\(435\) 5.30527 + 1.53669i 0.254368 + 0.0736786i
\(436\) 55.0314 44.9318i 2.63553 2.15184i
\(437\) 4.99323i 0.238858i
\(438\) 17.0356 + 20.8648i 0.813992 + 0.996959i
\(439\) −0.587592 14.5809i −0.0280442 0.695910i −0.950668 0.310209i \(-0.899601\pi\)
0.922624 0.385701i \(-0.126040\pi\)
\(440\) 14.7539 + 34.6286i 0.703364 + 1.65086i
\(441\) 4.86080 12.8169i 0.231467 0.610327i
\(442\) 12.6692 5.48481i 0.602611 0.260886i
\(443\) 7.59694 + 20.0315i 0.360941 + 0.951724i 0.985338 + 0.170616i \(0.0545758\pi\)
−0.624396 + 0.781108i \(0.714655\pi\)
\(444\) −5.89098 + 5.65837i −0.279574 + 0.268534i
\(445\) 4.69755 + 16.2178i 0.222685 + 0.768799i
\(446\) −53.0437 + 4.28213i −2.51169 + 0.202765i
\(447\) 8.57778 16.3436i 0.405715 0.773025i
\(448\) −2.10191 2.01891i −0.0993060 0.0953847i
\(449\) 5.58179 13.1009i 0.263421 0.618272i −0.734775 0.678311i \(-0.762712\pi\)
0.998196 + 0.0600392i \(0.0191226\pi\)
\(450\) −9.03900 3.42804i −0.426103 0.161599i
\(451\) 8.69441 + 1.41298i 0.409404 + 0.0665346i
\(452\) 60.7038 + 38.3868i 2.85527 + 1.80556i
\(453\) 18.5593 5.37576i 0.871991 0.252575i
\(454\) −7.72770 + 11.1955i −0.362679 + 0.525431i
\(455\) −1.98122 + 0.764541i −0.0928809 + 0.0358422i
\(456\) 14.3799 + 20.8329i 0.673401 + 0.975590i
\(457\) −1.15957 0.946757i −0.0542423 0.0442874i 0.604936 0.796274i \(-0.293198\pi\)
−0.659179 + 0.751986i \(0.729096\pi\)
\(458\) −10.7023 + 13.1079i −0.500085 + 0.612492i
\(459\) 6.29146 + 4.72773i 0.293660 + 0.220671i
\(460\) −6.40895 0.778187i −0.298819 0.0362832i
\(461\) −4.39246 13.1570i −0.204577 0.612783i −0.999978 0.00669887i \(-0.997868\pi\)
0.795401 0.606084i \(-0.207261\pi\)
\(462\) −0.305407 3.78315i −0.0142088 0.176008i
\(463\) 19.1495 21.6154i 0.889954 1.00455i −0.109989 0.993933i \(-0.535082\pi\)
0.999944 0.0106182i \(-0.00337993\pi\)
\(464\) 9.91343 6.26887i 0.460219 0.291025i
\(465\) −7.11369 + 3.03086i −0.329890 + 0.140553i
\(466\) −0.716015 4.40582i −0.0331688 0.204096i
\(467\) 16.1281 14.2882i 0.746318 0.661180i −0.201682 0.979451i \(-0.564641\pi\)
0.948000 + 0.318271i \(0.103102\pi\)
\(468\) 2.44528 + 28.2478i 0.113033 + 1.30576i
\(469\) 2.85640 + 2.53055i 0.131896 + 0.116850i
\(470\) 30.2022 47.7609i 1.39312 2.20305i
\(471\) 12.3882 + 1.00008i 0.570819 + 0.0460813i
\(472\) 10.7596 + 52.7042i 0.495252 + 2.42591i
\(473\) −9.00017 36.5151i −0.413828 1.67897i
\(474\) −0.709183 + 4.36378i −0.0325739 + 0.200435i
\(475\) −5.63788 8.91559i −0.258684 0.409076i
\(476\) 0.978248 + 1.86390i 0.0448379 + 0.0854315i
\(477\) −0.340450 + 1.17537i −0.0155881 + 0.0538165i
\(478\) −10.0102 + 49.0330i −0.457854 + 2.24272i
\(479\) −26.2823 + 1.05914i −1.20087 + 0.0483935i −0.632620 0.774462i \(-0.718021\pi\)
−0.568251 + 0.822855i \(0.692380\pi\)
\(480\) 0.748493 0.392839i 0.0341639 0.0179306i
\(481\) −6.84613 2.87009i −0.312157 0.130865i
\(482\) −14.5821 7.65326i −0.664195 0.348597i
\(483\) 0.290317 + 0.137757i 0.0132099 + 0.00626818i
\(484\) −19.3879 33.5808i −0.881266 1.52640i
\(485\) −9.20916 + 15.9507i −0.418166 + 0.724285i
\(486\) −32.0816 + 22.1443i −1.45525 + 1.00449i
\(487\) 3.83525 5.10379i 0.173792 0.231275i −0.704139 0.710062i \(-0.748667\pi\)
0.877931 + 0.478787i \(0.158923\pi\)
\(488\) 11.0790 + 6.39644i 0.501521 + 0.289553i
\(489\) 18.5694 2.25473i 0.839737 0.101962i
\(490\) 12.4888 + 26.3195i 0.564185 + 1.18899i
\(491\) −13.9537 14.5274i −0.629723 0.655611i 0.327537 0.944838i \(-0.393781\pi\)
−0.957261 + 0.289227i \(0.906602\pi\)
\(492\) −0.616313 + 7.63440i −0.0277855 + 0.344185i
\(493\) 4.83110 1.19076i 0.217582 0.0536291i
\(494\) −24.6801 + 39.5339i −1.11041 + 1.77871i
\(495\) −15.3012 3.77140i −0.687737 0.169512i
\(496\) −5.19983 + 15.5754i −0.233479 + 0.699355i
\(497\) 0.439623 0.926486i 0.0197198 0.0415586i
\(498\) 0.411753 0.137463i 0.0184511 0.00615987i
\(499\) −23.7559 16.3975i −1.06346 0.734054i −0.0981539 0.995171i \(-0.531294\pi\)
−0.965307 + 0.261117i \(0.915909\pi\)
\(500\) 43.2730 20.5333i 1.93523 0.918277i
\(501\) −6.69159 0.269662i −0.298958 0.0120476i
\(502\) 11.5714 46.9470i 0.516456 2.09535i
\(503\) 2.19330 + 0.934478i 0.0977944 + 0.0416663i 0.440310 0.897846i \(-0.354869\pi\)
−0.342515 + 0.939512i \(0.611279\pi\)
\(504\) −3.17307 + 0.515674i −0.141340 + 0.0229699i
\(505\) −26.3594 5.38131i −1.17298 0.239465i
\(506\) 10.4864 0.466176
\(507\) 11.4914 6.20209i 0.510349 0.275445i
\(508\) −40.1741 −1.78244
\(509\) 6.60174 + 1.34776i 0.292617 + 0.0597382i 0.344092 0.938936i \(-0.388187\pi\)
−0.0514744 + 0.998674i \(0.516392\pi\)
\(510\) −6.58568 + 1.07028i −0.291619 + 0.0473927i
\(511\) −3.43391 1.46305i −0.151907 0.0647216i
\(512\) 8.85232 35.9153i 0.391221 1.58725i
\(513\) −26.5457 1.06976i −1.17202 0.0472309i
\(514\) −31.8317 + 15.1043i −1.40404 + 0.666223i
\(515\) −2.75993 1.90504i −0.121617 0.0839462i
\(516\) 31.0183 10.3554i 1.36551 0.455873i
\(517\) −26.1211 + 55.0491i −1.14881 + 2.42106i
\(518\) 0.539938 1.61731i 0.0237235 0.0710606i
\(519\) −1.24764 0.307516i −0.0547654 0.0134985i
\(520\) −23.1493 18.6782i −1.01516 0.819095i
\(521\) −19.0415 + 4.69331i −0.834224 + 0.205618i −0.633219 0.773972i \(-0.718267\pi\)
−0.201005 + 0.979590i \(0.564421\pi\)
\(522\) −1.23867 + 15.3437i −0.0542152 + 0.671576i
\(523\) −14.0686 14.6470i −0.615179 0.640469i 0.338617 0.940924i \(-0.390041\pi\)
−0.953796 + 0.300455i \(0.902861\pi\)
\(524\) −31.8336 67.0878i −1.39066 2.93075i
\(525\) −0.673915 + 0.0818281i −0.0294121 + 0.00357127i
\(526\) 35.5077 + 20.5004i 1.54821 + 0.893859i
\(527\) −4.18463 + 5.56873i −0.182285 + 0.242577i
\(528\) 13.9571 9.63392i 0.607407 0.419263i
\(529\) 11.0561 19.1497i 0.480699 0.832596i
\(530\) −1.30032 2.25222i −0.0564823 0.0978301i
\(531\) −20.3466 9.65456i −0.882965 0.418972i
\(532\) −6.29222 3.30241i −0.272802 0.143178i
\(533\) −6.58967 + 2.24249i −0.285430 + 0.0971331i
\(534\) 21.1154 11.0822i 0.913753 0.479575i
\(535\) 8.55351 0.344695i 0.369800 0.0149024i
\(536\) −10.6917 + 52.3713i −0.461810 + 2.26210i
\(537\) −4.92080 + 16.9886i −0.212348 + 0.733111i
\(538\) 0.574769 + 1.09513i 0.0247801 + 0.0472145i
\(539\) −16.7889 26.5495i −0.723147 1.14357i
\(540\) 5.51017 33.9054i 0.237120 1.45906i
\(541\) 9.42081 + 38.2217i 0.405032 + 1.64328i 0.719851 + 0.694129i \(0.244210\pi\)
−0.314818 + 0.949152i \(0.601944\pi\)
\(542\) 2.29412 + 11.2374i 0.0985410 + 0.482686i
\(543\) −4.47560 0.361308i −0.192067 0.0155052i
\(544\) 0.406998 0.643615i 0.0174499 0.0275948i
\(545\) −23.3567 20.6922i −1.00049 0.886358i
\(546\) 1.61769 + 2.52565i 0.0692309 + 0.108088i
\(547\) 12.6425 11.2002i 0.540553 0.478888i −0.348107 0.937455i \(-0.613176\pi\)
0.888660 + 0.458567i \(0.151637\pi\)
\(548\) 11.9310 + 73.4143i 0.509666 + 3.13610i
\(549\) −4.92744 + 2.09939i −0.210298 + 0.0895996i
\(550\) −18.7238 + 11.8402i −0.798386 + 0.504869i
\(551\) −11.1386 + 12.5729i −0.474519 + 0.535621i
\(552\) 0.362179 + 4.48639i 0.0154153 + 0.190953i
\(553\) −0.194001 0.581104i −0.00824976 0.0247111i
\(554\) 39.2330 + 4.76375i 1.66685 + 0.202392i
\(555\) 2.86815 + 2.15527i 0.121746 + 0.0914862i
\(556\) −1.75704 + 2.15199i −0.0745152 + 0.0912645i
\(557\) 15.8732 + 12.9601i 0.672570 + 0.549136i 0.906021 0.423232i \(-0.139105\pi\)
−0.233451 + 0.972368i \(0.575002\pi\)
\(558\) −12.2421 17.7357i −0.518247 0.750811i
\(559\) 19.8361 + 22.1305i 0.838977 + 0.936022i
\(560\) 1.23809 1.79368i 0.0523188 0.0757969i
\(561\) 6.91026 2.00158i 0.291752 0.0845069i
\(562\) 61.6002 + 38.9536i 2.59845 + 1.64316i
\(563\) 23.9488 + 3.89205i 1.00932 + 0.164030i 0.642520 0.766269i \(-0.277889\pi\)
0.366800 + 0.930300i \(0.380453\pi\)
\(564\) −49.5393 18.7878i −2.08598 0.791108i
\(565\) 12.3650 29.0217i 0.520199 1.22095i
\(566\) −47.6397 45.7586i −2.00245 1.92338i
\(567\) 0.147878 0.281759i 0.00621031 0.0118327i
\(568\) 14.3173 1.15582i 0.600743 0.0484970i
\(569\) 4.92162 + 16.9914i 0.206325 + 0.712316i 0.995209 + 0.0977738i \(0.0311722\pi\)
−0.788884 + 0.614542i \(0.789341\pi\)
\(570\) 16.2443 15.6029i 0.680399 0.653532i
\(571\) 4.91547 + 12.9610i 0.205706 + 0.542402i 0.997674 0.0681600i \(-0.0217128\pi\)
−0.791968 + 0.610562i \(0.790944\pi\)
\(572\) 55.1163 + 34.4079i 2.30453 + 1.43867i
\(573\) 1.84886 4.87505i 0.0772373 0.203658i
\(574\) −0.626677 1.47087i −0.0261570 0.0613927i
\(575\) −0.0755236 1.87410i −0.00314955 0.0781553i
\(576\) 10.8092 + 13.2389i 0.450383 + 0.551619i
\(577\) 6.14654i 0.255884i 0.991782 + 0.127942i \(0.0408371\pi\)
−0.991782 + 0.127942i \(0.959163\pi\)
\(578\) 27.4642 22.4238i 1.14236 0.932707i
\(579\) −14.7706 4.27836i −0.613846 0.177803i
\(580\) −14.4017 16.2561i −0.597997 0.674999i
\(581\) −0.0416696 + 0.0433826i −0.00172875 + 0.00179981i
\(582\) 24.6745 + 8.23757i 1.02279 + 0.341458i
\(583\) 1.68460 + 2.24179i 0.0697688 + 0.0928454i
\(584\) −6.30185 51.9004i −0.260772 2.14765i
\(585\) 12.0741 3.05034i 0.499202 0.126116i
\(586\) 0.413977 3.40941i 0.0171013 0.140841i
\(587\) 10.6315 6.13810i 0.438809 0.253346i −0.264283 0.964445i \(-0.585135\pi\)
0.703092 + 0.711099i \(0.251802\pi\)
\(588\) 21.8360 16.4087i 0.900502 0.676683i
\(589\) 0.946867 23.4963i 0.0390150 0.968146i
\(590\) 44.7524 16.9724i 1.84243 0.698741i
\(591\) 22.5740 4.60852i 0.928572 0.189569i
\(592\) 7.46474 1.52394i 0.306799 0.0626335i
\(593\) 29.5052 11.1899i 1.21163 0.459512i 0.335712 0.941965i \(-0.391023\pi\)
0.875922 + 0.482452i \(0.160254\pi\)
\(594\) −2.24661 + 55.7491i −0.0921796 + 2.28741i
\(595\) 0.739137 0.555426i 0.0303017 0.0227702i
\(596\) −62.8534 + 36.2884i −2.57457 + 1.48643i
\(597\) −1.90899 + 15.7219i −0.0781298 + 0.643456i
\(598\) −7.31508 + 3.89349i −0.299136 + 0.159217i
\(599\) −2.59295 21.3549i −0.105945 0.872537i −0.944679 0.327996i \(-0.893627\pi\)
0.838734 0.544541i \(-0.183296\pi\)
\(600\) −5.71229 7.60167i −0.233203 0.310337i
\(601\) 34.4438 + 11.4990i 1.40499 + 0.469055i 0.915276 0.402828i \(-0.131973\pi\)
0.489715 + 0.871883i \(0.337101\pi\)
\(602\) −4.72862 + 4.92301i −0.192724 + 0.200647i
\(603\) −14.8398 16.7507i −0.604324 0.682141i
\(604\) −72.9757 21.1377i −2.96934 0.860080i
\(605\) −13.1924 + 10.7713i −0.536347 + 0.437914i
\(606\) 37.9968i 1.54351i
\(607\) −27.4560 33.6275i −1.11441 1.36490i −0.923639 0.383263i \(-0.874800\pi\)
−0.190766 0.981636i \(-0.561097\pi\)
\(608\) 0.103512 + 2.56863i 0.00419798 + 0.104172i
\(609\) 0.423713 + 0.994492i 0.0171697 + 0.0402988i
\(610\) 4.03644 10.6432i 0.163431 0.430931i
\(611\) −2.21767 48.0997i −0.0897175 1.94590i
\(612\) −4.37736 11.5422i −0.176944 0.466564i
\(613\) −8.84526 + 8.49598i −0.357257 + 0.343150i −0.849768 0.527156i \(-0.823258\pi\)
0.492512 + 0.870306i \(0.336079\pi\)
\(614\) 7.37969 + 25.4776i 0.297820 + 1.02819i
\(615\) 3.35319 0.270698i 0.135214 0.0109156i
\(616\) −3.42352 + 6.52297i −0.137938 + 0.262818i
\(617\) 7.39737 + 7.10527i 0.297807 + 0.286047i 0.826702 0.562640i \(-0.190214\pi\)
−0.528895 + 0.848687i \(0.677394\pi\)
\(618\) −1.85653 + 4.35743i −0.0746804 + 0.175281i
\(619\) −12.6175 4.78517i −0.507139 0.192332i 0.0877467 0.996143i \(-0.472033\pi\)
−0.594886 + 0.803810i \(0.702803\pi\)
\(620\) 30.0105 + 4.87719i 1.20525 + 0.195872i
\(621\) −3.99255 2.52473i −0.160215 0.101314i
\(622\) −20.9647 + 6.07249i −0.840607 + 0.243485i
\(623\) −1.87718 + 2.71957i −0.0752077 + 0.108957i
\(624\) −6.15923 + 11.9026i −0.246567 + 0.476485i
\(625\) −6.29682 9.12252i −0.251873 0.364901i
\(626\) 49.9269 + 40.7640i 1.99548 + 1.62926i
\(627\) −15.3601 + 18.8127i −0.613424 + 0.751308i
\(628\) −39.0683 29.3579i −1.55899 1.17151i
\(629\) 3.20839 + 0.389569i 0.127927 + 0.0155331i
\(630\) 0.905795 + 2.71319i 0.0360877 + 0.108096i
\(631\) −1.67627 20.7643i −0.0667313 0.826615i −0.940395 0.340085i \(-0.889544\pi\)
0.873664 0.486530i \(-0.161738\pi\)
\(632\) 5.69026 6.42298i 0.226347 0.255492i
\(633\) −13.0941 + 8.28019i −0.520443 + 0.329108i
\(634\) 61.3118 26.1225i 2.43500 1.03746i
\(635\) 2.83051 + 17.4168i 0.112325 + 0.691165i
\(636\) −1.82511 + 1.61691i −0.0723705 + 0.0641147i
\(637\) 21.5691 + 12.2868i 0.854600 + 0.486821i
\(638\) 26.4045 + 23.3923i 1.04536 + 0.926111i
\(639\) −3.21416 + 5.08279i −0.127150 + 0.201072i
\(640\) −34.5275 2.78735i −1.36482 0.110180i
\(641\) −9.42232 46.1536i −0.372159 1.82296i −0.545520 0.838098i \(-0.683668\pi\)
0.173360 0.984858i \(-0.444537\pi\)
\(642\) −2.89343 11.7391i −0.114195 0.463306i
\(643\) −6.58997 + 40.5497i −0.259883 + 1.59912i 0.448823 + 0.893621i \(0.351843\pi\)
−0.708706 + 0.705504i \(0.750721\pi\)
\(644\) −0.675314 1.06792i −0.0266111 0.0420821i
\(645\) −6.67486 12.7179i −0.262822 0.500766i
\(646\) 5.64521 19.4895i 0.222108 0.766805i
\(647\) −3.85049 + 18.8610i −0.151378 + 0.741501i 0.831247 + 0.555903i \(0.187627\pi\)
−0.982626 + 0.185598i \(0.940578\pi\)
\(648\) 4.45345 0.179468i 0.174948 0.00705016i
\(649\) −45.6975 + 23.9839i −1.79378 + 0.941449i
\(650\) 8.66518 15.2115i 0.339876 0.596643i
\(651\) −1.34000 0.703287i −0.0525188 0.0275640i
\(652\) −66.4503 31.5311i −2.60240 1.23485i
\(653\) −15.2878 26.4793i −0.598259 1.03621i −0.993078 0.117456i \(-0.962526\pi\)
0.394819 0.918759i \(-0.370807\pi\)
\(654\) −22.0358 + 38.1671i −0.861668 + 1.49245i
\(655\) −26.8419 + 18.5277i −1.04880 + 0.723935i
\(656\) 4.29165 5.71115i 0.167561 0.222983i
\(657\) 18.9563 + 10.9444i 0.739557 + 0.426983i
\(658\) 10.9790 1.33309i 0.428005 0.0519692i
\(659\) 6.81435 + 14.3609i 0.265449 + 0.559423i 0.991785 0.127918i \(-0.0408293\pi\)
−0.726335 + 0.687341i \(0.758778\pi\)
\(660\) −21.7528 22.6471i −0.846727 0.881536i
\(661\) 0.103302 1.27963i 0.00401799 0.0497717i −0.994438 0.105327i \(-0.966411\pi\)
0.998456 + 0.0555556i \(0.0176930\pi\)
\(662\) −10.5266 + 2.59456i −0.409126 + 0.100841i
\(663\) −4.07729 + 3.96198i −0.158349 + 0.153871i
\(664\) −0.818070 0.201636i −0.0317473 0.00782500i
\(665\) −0.988381 + 2.96056i −0.0383278 + 0.114806i
\(666\) −4.28646 + 9.03353i −0.166097 + 0.350042i
\(667\) −2.83295 + 0.945777i −0.109692 + 0.0366206i
\(668\) 21.6716 + 14.9588i 0.838498 + 0.578773i
\(669\) 19.7990 9.39476i 0.765475 0.363222i
\(670\) 47.5219 + 1.91507i 1.83593 + 0.0739854i
\(671\) −2.93733 + 11.9172i −0.113394 + 0.460059i
\(672\) 0.152202 + 0.0648472i 0.00587131 + 0.00250153i
\(673\) 30.6971 4.98876i 1.18328 0.192302i 0.463242 0.886232i \(-0.346686\pi\)
0.720043 + 0.693929i \(0.244122\pi\)
\(674\) 10.4355 + 2.13041i 0.401959 + 0.0820604i
\(675\) 9.97953 0.384112
\(676\) −51.2234 3.53802i −1.97013 0.136078i
\(677\) 4.96266 0.190731 0.0953653 0.995442i \(-0.469598\pi\)
0.0953653 + 0.995442i \(0.469598\pi\)
\(678\) −43.6539 8.91201i −1.67652 0.342264i
\(679\) −3.55804 + 0.578237i −0.136545 + 0.0221907i
\(680\) 11.9139 + 5.07604i 0.456878 + 0.194657i
\(681\) 1.34066 5.43927i 0.0513742 0.208433i
\(682\) −49.3449 1.98853i −1.88951 0.0761448i
\(683\) 6.10108 2.89500i 0.233452 0.110774i −0.308374 0.951265i \(-0.599785\pi\)
0.541825 + 0.840491i \(0.317733\pi\)
\(684\) 34.2959 + 23.6727i 1.31134 + 0.905149i
\(685\) 30.9869 10.3450i 1.18395 0.395260i
\(686\) −4.92937 + 10.3884i −0.188204 + 0.396632i
\(687\) 2.20675 6.61002i 0.0841927 0.252188i
\(688\) −29.6148 7.29939i −1.12905 0.278286i
\(689\) −2.00750 0.938351i −0.0764795 0.0357483i
\(690\) 3.88854 0.958438i 0.148034 0.0364871i
\(691\) 2.09409 25.9399i 0.0796628 0.986801i −0.826241 0.563317i \(-0.809525\pi\)
0.905904 0.423484i \(-0.139193\pi\)
\(692\) 3.50005 + 3.64394i 0.133052 + 0.138522i
\(693\) −1.32221 2.78649i −0.0502265 0.105850i
\(694\) 23.8488 2.89577i 0.905287 0.109922i
\(695\) 1.05675 + 0.610116i 0.0400849 + 0.0231430i
\(696\) −9.09599 + 12.1046i −0.344783 + 0.458822i
\(697\) 2.49409 1.72154i 0.0944703 0.0652081i
\(698\) 28.5314 49.4179i 1.07993 1.87049i
\(699\) 0.919079 + 1.59189i 0.0347627 + 0.0602108i
\(700\) 2.41160 + 1.14432i 0.0911498 + 0.0432511i
\(701\) 12.3851 + 6.50021i 0.467779 + 0.245509i 0.682107 0.731252i \(-0.261064\pi\)
−0.214328 + 0.976762i \(0.568756\pi\)
\(702\) −19.1320 39.7236i −0.722089 1.49927i
\(703\) −9.66084 + 5.07040i −0.364365 + 0.191234i
\(704\) 39.1342 1.57705i 1.47493 0.0594375i
\(705\) −4.65478 + 22.8006i −0.175309 + 0.858722i
\(706\) −3.49969 + 12.0823i −0.131713 + 0.454725i
\(707\) −2.44691 4.66219i −0.0920255 0.175340i
\(708\) −23.9844 37.9284i −0.901390 1.42543i
\(709\) −5.04798 + 31.0615i −0.189581 + 1.16654i 0.701492 + 0.712678i \(0.252518\pi\)
−0.891073 + 0.453861i \(0.850046\pi\)
\(710\) −3.05865 12.4094i −0.114789 0.465718i
\(711\) 0.718620 + 3.52003i 0.0269503 + 0.132011i
\(712\) −46.1357 3.72446i −1.72901 0.139580i
\(713\) 2.23470 3.53390i 0.0836903 0.132346i
\(714\) −0.977419 0.865918i −0.0365790 0.0324062i
\(715\) 11.0337 26.3190i 0.412636 0.984275i
\(716\) 52.0555 46.1172i 1.94541 1.72348i
\(717\) −3.30587 20.3418i −0.123460 0.759680i
\(718\) −34.9178 + 14.8771i −1.30312 + 0.555208i
\(719\) −7.26163 + 4.59198i −0.270813 + 0.171252i −0.662969 0.748647i \(-0.730704\pi\)
0.392156 + 0.919899i \(0.371729\pi\)
\(720\) −8.47542 + 9.56677i −0.315860 + 0.356533i
\(721\) −0.0528133 0.654211i −0.00196687 0.0243641i
\(722\) 7.01528 + 21.0133i 0.261082 + 0.782035i
\(723\) 6.73240 + 0.817461i 0.250380 + 0.0304017i
\(724\) 14.1145 + 10.6064i 0.524563 + 0.394183i
\(725\) 3.99045 4.88742i 0.148202 0.181514i
\(726\) 18.6324 + 15.2129i 0.691513 + 0.564603i
\(727\) −7.25304 10.5078i −0.269001 0.389715i 0.665083 0.746770i \(-0.268396\pi\)
−0.934083 + 0.357055i \(0.883781\pi\)
\(728\) −0.0337433 5.82141i −0.00125061 0.215756i
\(729\) 7.52200 10.8975i 0.278593 0.403611i
\(730\) −44.6828 + 12.9425i −1.65378 + 0.479024i
\(731\) −10.9359 6.91542i −0.404478 0.255776i
\(732\) −10.5343 1.71199i −0.389359 0.0632769i
\(733\) 11.5867 + 4.39426i 0.427965 + 0.162306i 0.559176 0.829049i \(-0.311118\pi\)
−0.131212 + 0.991354i \(0.541887\pi\)
\(734\) −19.6505 + 46.1214i −0.725313 + 1.70237i
\(735\) −8.65219 8.31055i −0.319141 0.306539i
\(736\) −0.212421 + 0.404735i −0.00782995 + 0.0149187i
\(737\) −51.1167 + 4.12657i −1.88291 + 0.152004i
\(738\) 2.60851 + 9.00562i 0.0960206 + 0.331502i
\(739\) 1.66262 1.59697i 0.0611604 0.0587453i −0.661521 0.749926i \(-0.730089\pi\)
0.722682 + 0.691181i \(0.242909\pi\)
\(740\) −5.00237 13.1902i −0.183891 0.484880i
\(741\) 3.72991 18.8265i 0.137022 0.691607i
\(742\) 0.180487 0.475905i 0.00662589 0.0174710i
\(743\) 13.8369 + 32.4764i 0.507626 + 1.19144i 0.954868 + 0.297029i \(0.0959959\pi\)
−0.447242 + 0.894413i \(0.647594\pi\)
\(744\) −0.853522 21.1799i −0.0312916 0.776494i
\(745\) 20.1606 + 24.6923i 0.738628 + 0.904655i
\(746\) 49.7136i 1.82014i
\(747\) 0.273245 0.223098i 0.00999751 0.00816271i
\(748\) −27.1714 7.87029i −0.993484 0.287766i
\(749\) 1.11099 + 1.25405i 0.0405949 + 0.0458221i
\(750\) −20.5827 + 21.4288i −0.751573 + 0.782470i
\(751\) −21.5957 7.20971i −0.788039 0.263086i −0.105966 0.994370i \(-0.533793\pi\)
−0.682073 + 0.731284i \(0.738922\pi\)
\(752\) 29.6872 + 39.5065i 1.08258 + 1.44065i
\(753\) 2.40010 + 19.7666i 0.0874644 + 0.720334i
\(754\) −27.1046 6.51426i −0.987090 0.237235i
\(755\) −4.02231 + 33.1267i −0.146387 + 1.20560i
\(756\) 5.82213 3.36141i 0.211749 0.122253i
\(757\) −20.9484 + 15.7417i −0.761382 + 0.572142i −0.908948 0.416911i \(-0.863113\pi\)
0.147565 + 0.989052i \(0.452856\pi\)
\(758\) 0.163512 4.05752i 0.00593904 0.147376i
\(759\) −4.03775 + 1.53132i −0.146561 + 0.0555833i
\(760\) −42.8344 + 8.74470i −1.55377 + 0.317203i
\(761\) 7.41782 1.51436i 0.268896 0.0548955i −0.0636857 0.997970i \(-0.520286\pi\)
0.332581 + 0.943075i \(0.392080\pi\)
\(762\) 23.3020 8.83729i 0.844144 0.320141i
\(763\) 0.245908 6.10215i 0.00890247 0.220913i
\(764\) −16.3895 + 12.3159i −0.592950 + 0.445573i
\(765\) −4.69550 + 2.71095i −0.169766 + 0.0980145i
\(766\) −3.66339 + 30.1707i −0.132364