Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,2,Mod(4,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(78))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.k (of order \(78\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.34947179416\) |
Analytic rank: | \(0\) |
Dimension: | \(360\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{78})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{78}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.81837 | − | 0.113576i | 0.467697 | − | 1.61468i | 5.93678 | + | 0.479267i | 1.59753 | + | 0.605865i | −1.50153 | + | 4.49764i | 1.15667 | + | 2.71481i | −11.0774 | − | 1.34504i | 0.147123 | + | 0.0930351i | −4.43363 | − | 1.88899i |
4.2 | −2.41817 | − | 0.0974488i | −0.437408 | + | 1.51011i | 3.84452 | + | 0.310362i | −2.71784 | − | 1.03074i | 1.20488 | − | 3.60907i | −0.958962 | − | 2.25077i | −4.46148 | − | 0.541722i | 0.446473 | + | 0.282332i | 6.47174 | + | 2.75735i |
4.3 | −2.00062 | − | 0.0806224i | −0.731230 | + | 2.52450i | 2.00248 | + | 0.161657i | 3.39858 | + | 1.28891i | 1.66645 | − | 4.99162i | 0.132610 | + | 0.311247i | −0.0178867 | − | 0.00217183i | −3.30283 | − | 2.08858i | −6.69537 | − | 2.85263i |
4.4 | −1.59712 | − | 0.0643616i | 0.883856 | − | 3.05143i | 0.553124 | + | 0.0446528i | −1.36888 | − | 0.519147i | −1.60802 | + | 4.81660i | −0.861700 | − | 2.02248i | 2.29299 | + | 0.278419i | −5.99443 | − | 3.79065i | 2.15285 | + | 0.917242i |
4.5 | −1.55556 | − | 0.0626871i | 0.386039 | − | 1.33276i | 0.422335 | + | 0.0340944i | 1.77605 | + | 0.673567i | −0.684055 | + | 2.04899i | −0.0926507 | − | 0.217459i | 2.43612 | + | 0.295798i | 0.908347 | + | 0.574404i | −2.72054 | − | 1.15911i |
4.6 | −1.34677 | − | 0.0542729i | 0.0769569 | − | 0.265686i | −0.182676 | − | 0.0147471i | −2.82623 | − | 1.07185i | −0.118063 | + | 0.353641i | 1.59063 | + | 3.73334i | 2.92129 | + | 0.354709i | 2.47090 | + | 1.56250i | 3.74810 | + | 1.59692i |
4.7 | −0.522698 | − | 0.0210640i | −0.684753 | + | 2.36404i | −1.72074 | − | 0.138913i | −1.25186 | − | 0.474767i | 0.407715 | − | 1.22126i | −0.851571 | − | 1.99871i | 1.93512 | + | 0.234966i | −2.58423 | − | 1.63417i | 0.644343 | + | 0.274529i |
4.8 | −0.0643979 | − | 0.00259515i | −0.109583 | + | 0.378323i | −1.98937 | − | 0.160599i | 1.64339 | + | 0.623256i | 0.00803870 | − | 0.0240788i | 0.909238 | + | 2.13406i | 0.255655 | + | 0.0310422i | 2.40445 | + | 1.52048i | −0.104214 | − | 0.0444013i |
4.9 | 0.397859 | + | 0.0160332i | 0.320025 | − | 1.10485i | −1.83548 | − | 0.148175i | −2.52701 | − | 0.958369i | 0.145039 | − | 0.434446i | −1.61420 | − | 3.78868i | −1.51844 | − | 0.184373i | 1.41728 | + | 0.896235i | −0.990029 | − | 0.421812i |
4.10 | 0.596805 | + | 0.0240504i | 0.703900 | − | 2.43014i | −1.63792 | − | 0.132226i | 3.70001 | + | 1.40323i | 0.478537 | − | 1.43339i | −0.324840 | − | 0.762428i | −2.16021 | − | 0.262296i | −2.87456 | − | 1.81776i | 2.17443 | + | 0.926440i |
4.11 | 1.10078 | + | 0.0443599i | −0.581947 | + | 2.00912i | −0.783766 | − | 0.0632721i | 1.05138 | + | 0.398737i | −0.729720 | + | 2.18578i | 1.23850 | + | 2.90687i | −3.04723 | − | 0.370001i | −1.16231 | − | 0.735002i | 1.13965 | + | 0.485561i |
4.12 | 1.69738 | + | 0.0684019i | 0.785283 | − | 2.71111i | 0.882895 | + | 0.0712746i | −1.38138 | − | 0.523888i | 1.51837 | − | 4.54806i | 1.73151 | + | 4.06400i | −1.87901 | − | 0.228153i | −4.19788 | − | 2.65458i | −2.30888 | − | 0.983724i |
4.13 | 1.95970 | + | 0.0789734i | 0.177516 | − | 0.612858i | 1.84069 | + | 0.148596i | 0.0713672 | + | 0.0270660i | 0.396279 | − | 1.18700i | −0.605333 | − | 1.42077i | −0.298517 | − | 0.0362466i | 2.19149 | + | 1.38581i | 0.137721 | + | 0.0586775i |
4.14 | 1.99581 | + | 0.0804286i | −0.751408 | + | 2.59416i | 1.98329 | + | 0.160108i | 1.41011 | + | 0.534785i | −1.70832 | + | 5.11703i | −1.63799 | − | 3.84451i | −0.0203394 | − | 0.00246965i | −3.62949 | − | 2.29515i | 2.77131 | + | 1.18074i |
4.15 | 2.57861 | + | 0.103914i | −0.381537 | + | 1.31722i | 4.64490 | + | 0.374975i | −3.32428 | − | 1.26073i | −1.12071 | + | 3.35694i | 0.633807 | + | 1.48760i | 6.81465 | + | 0.827448i | 0.946076 | + | 0.598262i | −8.44101 | − | 3.59638i |
10.1 | −2.60774 | − | 0.532374i | −2.66189 | + | 0.432599i | 4.67692 | + | 1.99265i | −0.498005 | + | 2.02048i | 7.17182 | + | 0.289014i | 1.97372 | − | 0.936542i | −6.75456 | − | 4.66233i | 4.05291 | − | 1.35306i | 2.37432 | − | 5.00377i |
10.2 | −2.52063 | − | 0.514590i | 2.70717 | − | 0.439959i | 4.24882 | + | 1.81025i | 0.847165 | − | 3.43708i | −7.05019 | − | 0.284113i | 0.693293 | − | 0.328971i | −5.54370 | − | 3.82654i | 4.28962 | − | 1.43209i | −3.90408 | + | 8.22767i |
10.3 | −1.99584 | − | 0.407454i | 1.34046 | − | 0.217845i | 1.97740 | + | 0.842491i | −0.647035 | + | 2.62512i | −2.76410 | − | 0.111389i | −3.12689 | + | 1.48373i | −0.250449 | − | 0.172873i | −1.09624 | + | 0.365979i | 2.36099 | − | 4.97569i |
10.4 | −1.98141 | − | 0.404507i | −0.359410 | + | 0.0584099i | 1.92239 | + | 0.819053i | 0.199530 | − | 0.809524i | 0.735766 | + | 0.0296503i | 0.512743 | − | 0.243300i | −0.149120 | − | 0.102930i | −2.71985 | + | 0.908018i | −0.722808 | + | 1.52328i |
10.5 | −1.44039 | − | 0.294058i | −2.46995 | + | 0.401407i | 0.148295 | + | 0.0631826i | 0.720721 | − | 2.92408i | 3.67574 | + | 0.148127i | −2.39377 | + | 1.13586i | 2.22471 | + | 1.53561i | 3.09394 | − | 1.03291i | −1.89797 | + | 3.99988i |
See next 80 embeddings (of 360 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.k | even | 78 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.2.k.a | ✓ | 360 |
169.k | even | 78 | 1 | inner | 169.2.k.a | ✓ | 360 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.2.k.a | ✓ | 360 | 1.a | even | 1 | 1 | trivial |
169.2.k.a | ✓ | 360 | 169.k | even | 78 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(169, [\chi])\).