Properties

Label 169.2.h.a.25.4
Level $169$
Weight $2$
Character 169.25
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 25.4
Character \(\chi\) \(=\) 169.25
Dual form 169.2.h.a.142.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.52590 - 0.578696i) q^{2} +(-1.45490 - 2.10779i) q^{3} +(0.496446 + 0.439813i) q^{4} +(-3.46589 - 0.420835i) q^{5} +(1.00026 + 4.05821i) q^{6} +(0.131788 + 0.251102i) q^{7} +(1.01380 + 1.93163i) q^{8} +(-1.26222 + 3.32819i) q^{9} +O(q^{10})\) \(q+(-1.52590 - 0.578696i) q^{2} +(-1.45490 - 2.10779i) q^{3} +(0.496446 + 0.439813i) q^{4} +(-3.46589 - 0.420835i) q^{5} +(1.00026 + 4.05821i) q^{6} +(0.131788 + 0.251102i) q^{7} +(1.01380 + 1.93163i) q^{8} +(-1.26222 + 3.32819i) q^{9} +(5.04505 + 2.64785i) q^{10} +(3.17160 - 1.20283i) q^{11} +(0.204752 - 1.68629i) q^{12} +(1.72059 - 3.16853i) q^{13} +(-0.0557837 - 0.459420i) q^{14} +(4.15549 + 7.91763i) q^{15} +(-0.589014 - 4.85097i) q^{16} +(-5.24407 + 2.75230i) q^{17} +(3.85202 - 4.34804i) q^{18} +6.15812i q^{19} +(-1.53554 - 1.73326i) q^{20} +(0.337530 - 0.643110i) q^{21} -5.53561 q^{22} -7.85938 q^{23} +(2.59649 - 4.94720i) q^{24} +(6.98058 + 1.72056i) q^{25} +(-4.45905 + 3.83915i) q^{26} +(1.39133 - 0.342933i) q^{27} +(-0.0450120 + 0.182621i) q^{28} +(-0.328405 + 0.865932i) q^{29} +(-1.75895 - 14.4862i) q^{30} +(0.800199 + 3.24653i) q^{31} +(-0.864321 + 3.50669i) q^{32} +(-7.14968 - 4.93507i) q^{33} +(9.59464 - 1.16500i) q^{34} +(-0.351092 - 0.925752i) q^{35} +(-2.09040 + 1.09713i) q^{36} +(0.0881308 + 0.357561i) q^{37} +(3.56367 - 9.39664i) q^{38} +(-9.18187 + 0.983259i) q^{39} +(-2.70082 - 7.12147i) q^{40} +(-3.32971 + 2.29833i) q^{41} +(-0.887201 + 0.785991i) q^{42} +(-6.05675 - 1.49286i) q^{43} +(2.10355 + 0.797771i) q^{44} +(5.77533 - 11.0040i) q^{45} +(11.9926 + 4.54819i) q^{46} +(1.12029 + 1.26455i) q^{47} +(-9.36785 + 8.29919i) q^{48} +(3.93077 - 5.69470i) q^{49} +(-9.65596 - 6.66503i) q^{50} +(13.4309 + 7.04906i) q^{51} +(2.24774 - 0.816266i) q^{52} +(10.3302 - 5.42170i) q^{53} +(-2.32149 - 0.281879i) q^{54} +(-11.4986 + 2.83416i) q^{55} +(-0.351429 + 0.509133i) q^{56} +(12.9800 - 8.95945i) q^{57} +(1.00222 - 1.13128i) q^{58} +(-2.79572 - 0.339462i) q^{59} +(-1.41930 + 5.75832i) q^{60} +(-4.14978 - 2.17797i) q^{61} +(0.657736 - 5.41694i) q^{62} +(-1.00206 + 0.121672i) q^{63} +(-2.20364 + 3.19252i) q^{64} +(-7.29680 + 10.2577i) q^{65} +(8.05376 + 11.6679i) q^{66} +(2.12514 + 2.39879i) q^{67} +(-3.81389 - 0.940040i) q^{68} +(11.4346 + 16.5659i) q^{69} +1.61578i q^{70} +(-0.877468 + 0.605673i) q^{71} +(-7.70848 + 0.935979i) q^{72} +(-8.56965 + 3.25004i) q^{73} +(0.0724405 - 0.596601i) q^{74} +(-6.52948 - 17.2168i) q^{75} +(-2.70842 + 3.05717i) q^{76} +(0.720013 + 0.637876i) q^{77} +(14.5796 + 3.81316i) q^{78} +(-10.9025 + 9.65876i) q^{79} +17.0608i q^{80} +(5.24590 + 4.64746i) q^{81} +(6.41083 - 1.58013i) q^{82} +(-6.54622 - 4.51853i) q^{83} +(0.450413 - 0.170819i) q^{84} +(19.3336 - 7.33228i) q^{85} +(8.37806 + 5.78296i) q^{86} +(2.30300 - 0.567638i) q^{87} +(5.53879 + 4.90694i) q^{88} +4.56708i q^{89} +(-15.1805 + 13.4487i) q^{90} +(1.02238 + 0.0144676i) q^{91} +(-3.90176 - 3.45666i) q^{92} +(5.67879 - 6.41003i) q^{93} +(-0.977660 - 2.57788i) q^{94} +(2.59155 - 21.3434i) q^{95} +(8.64885 - 3.28008i) q^{96} +(-6.77197 + 0.822265i) q^{97} +(-9.29344 + 6.41480i) q^{98} +12.0739i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52590 0.578696i −1.07897 0.409200i −0.249859 0.968282i \(-0.580384\pi\)
−0.829112 + 0.559083i \(0.811153\pi\)
\(3\) −1.45490 2.10779i −0.839987 1.21693i −0.974134 0.225970i \(-0.927445\pi\)
0.134147 0.990961i \(-0.457171\pi\)
\(4\) 0.496446 + 0.439813i 0.248223 + 0.219906i
\(5\) −3.46589 0.420835i −1.54999 0.188203i −0.699671 0.714465i \(-0.746670\pi\)
−0.850322 + 0.526262i \(0.823593\pi\)
\(6\) 1.00026 + 4.05821i 0.408354 + 1.65676i
\(7\) 0.131788 + 0.251102i 0.0498113 + 0.0949076i 0.909089 0.416602i \(-0.136779\pi\)
−0.859278 + 0.511509i \(0.829087\pi\)
\(8\) 1.01380 + 1.93163i 0.358432 + 0.682935i
\(9\) −1.26222 + 3.32819i −0.420739 + 1.10940i
\(10\) 5.04505 + 2.64785i 1.59538 + 0.837323i
\(11\) 3.17160 1.20283i 0.956274 0.362667i 0.173403 0.984851i \(-0.444524\pi\)
0.782871 + 0.622184i \(0.213754\pi\)
\(12\) 0.204752 1.68629i 0.0591069 0.486789i
\(13\) 1.72059 3.16853i 0.477205 0.878792i
\(14\) −0.0557837 0.459420i −0.0149088 0.122785i
\(15\) 4.15549 + 7.91763i 1.07294 + 2.04432i
\(16\) −0.589014 4.85097i −0.147254 1.21274i
\(17\) −5.24407 + 2.75230i −1.27187 + 0.667531i −0.959307 0.282365i \(-0.908881\pi\)
−0.312566 + 0.949896i \(0.601189\pi\)
\(18\) 3.85202 4.34804i 0.907931 1.02484i
\(19\) 6.15812i 1.41277i 0.707829 + 0.706384i \(0.249675\pi\)
−0.707829 + 0.706384i \(0.750325\pi\)
\(20\) −1.53554 1.73326i −0.343357 0.387570i
\(21\) 0.337530 0.643110i 0.0736551 0.140338i
\(22\) −5.53561 −1.18020
\(23\) −7.85938 −1.63879 −0.819397 0.573226i \(-0.805692\pi\)
−0.819397 + 0.573226i \(0.805692\pi\)
\(24\) 2.59649 4.94720i 0.530007 1.00984i
\(25\) 6.98058 + 1.72056i 1.39612 + 0.344112i
\(26\) −4.45905 + 3.83915i −0.874492 + 0.752918i
\(27\) 1.39133 0.342933i 0.267763 0.0659975i
\(28\) −0.0450120 + 0.182621i −0.00850646 + 0.0345121i
\(29\) −0.328405 + 0.865932i −0.0609833 + 0.160800i −0.962045 0.272892i \(-0.912020\pi\)
0.901062 + 0.433691i \(0.142789\pi\)
\(30\) −1.75895 14.4862i −0.321139 2.64481i
\(31\) 0.800199 + 3.24653i 0.143720 + 0.583095i 0.997996 + 0.0632753i \(0.0201546\pi\)
−0.854276 + 0.519819i \(0.825999\pi\)
\(32\) −0.864321 + 3.50669i −0.152792 + 0.619901i
\(33\) −7.14968 4.93507i −1.24460 0.859085i
\(34\) 9.59464 1.16500i 1.64547 0.199796i
\(35\) −0.351092 0.925752i −0.0593453 0.156481i
\(36\) −2.09040 + 1.09713i −0.348401 + 0.182855i
\(37\) 0.0881308 + 0.357561i 0.0144886 + 0.0587826i 0.977741 0.209815i \(-0.0672861\pi\)
−0.963253 + 0.268597i \(0.913440\pi\)
\(38\) 3.56367 9.39664i 0.578104 1.52434i
\(39\) −9.18187 + 0.983259i −1.47028 + 0.157447i
\(40\) −2.70082 7.12147i −0.427037 1.12600i
\(41\) −3.32971 + 2.29833i −0.520014 + 0.358939i −0.798976 0.601362i \(-0.794625\pi\)
0.278963 + 0.960302i \(0.410009\pi\)
\(42\) −0.887201 + 0.785991i −0.136898 + 0.121281i
\(43\) −6.05675 1.49286i −0.923646 0.227658i −0.251312 0.967906i \(-0.580862\pi\)
−0.672334 + 0.740248i \(0.734708\pi\)
\(44\) 2.10355 + 0.797771i 0.317122 + 0.120269i
\(45\) 5.77533 11.0040i 0.860935 1.64037i
\(46\) 11.9926 + 4.54819i 1.76821 + 0.670594i
\(47\) 1.12029 + 1.26455i 0.163411 + 0.184453i 0.824513 0.565843i \(-0.191449\pi\)
−0.661101 + 0.750296i \(0.729911\pi\)
\(48\) −9.36785 + 8.29919i −1.35213 + 1.19789i
\(49\) 3.93077 5.69470i 0.561538 0.813529i
\(50\) −9.65596 6.66503i −1.36556 0.942577i
\(51\) 13.4309 + 7.04906i 1.88070 + 0.987066i
\(52\) 2.24774 0.816266i 0.311705 0.113196i
\(53\) 10.3302 5.42170i 1.41896 0.744727i 0.431427 0.902148i \(-0.358010\pi\)
0.987532 + 0.157421i \(0.0503178\pi\)
\(54\) −2.32149 0.281879i −0.315914 0.0383589i
\(55\) −11.4986 + 2.83416i −1.55047 + 0.382157i
\(56\) −0.351429 + 0.509133i −0.0469617 + 0.0680358i
\(57\) 12.9800 8.95945i 1.71924 1.18671i
\(58\) 1.00222 1.13128i 0.131598 0.148544i
\(59\) −2.79572 0.339462i −0.363971 0.0441941i −0.0634917 0.997982i \(-0.520224\pi\)
−0.300480 + 0.953788i \(0.597147\pi\)
\(60\) −1.41930 + 5.75832i −0.183231 + 0.743395i
\(61\) −4.14978 2.17797i −0.531324 0.278861i 0.177651 0.984094i \(-0.443150\pi\)
−0.708976 + 0.705233i \(0.750842\pi\)
\(62\) 0.657736 5.41694i 0.0835325 0.687952i
\(63\) −1.00206 + 0.121672i −0.126248 + 0.0153293i
\(64\) −2.20364 + 3.19252i −0.275455 + 0.399065i
\(65\) −7.29680 + 10.2577i −0.905057 + 1.27231i
\(66\) 8.05376 + 11.6679i 0.991349 + 1.43622i
\(67\) 2.12514 + 2.39879i 0.259628 + 0.293059i 0.863842 0.503763i \(-0.168051\pi\)
−0.604214 + 0.796822i \(0.706513\pi\)
\(68\) −3.81389 0.940040i −0.462502 0.113997i
\(69\) 11.4346 + 16.5659i 1.37657 + 1.99430i
\(70\) 1.61578i 0.193122i
\(71\) −0.877468 + 0.605673i −0.104136 + 0.0718801i −0.618995 0.785395i \(-0.712460\pi\)
0.514859 + 0.857275i \(0.327844\pi\)
\(72\) −7.70848 + 0.935979i −0.908453 + 0.110306i
\(73\) −8.56965 + 3.25004i −1.00300 + 0.380388i −0.800785 0.598952i \(-0.795584\pi\)
−0.202217 + 0.979341i \(0.564815\pi\)
\(74\) 0.0724405 0.596601i 0.00842103 0.0693535i
\(75\) −6.52948 17.2168i −0.753960 1.98803i
\(76\) −2.70842 + 3.05717i −0.310677 + 0.350682i
\(77\) 0.720013 + 0.637876i 0.0820531 + 0.0726927i
\(78\) 14.5796 + 3.81316i 1.65081 + 0.431755i
\(79\) −10.9025 + 9.65876i −1.22663 + 1.08670i −0.233175 + 0.972435i \(0.574912\pi\)
−0.993451 + 0.114261i \(0.963550\pi\)
\(80\) 17.0608i 1.90746i
\(81\) 5.24590 + 4.64746i 0.582877 + 0.516384i
\(82\) 6.41083 1.58013i 0.707957 0.174496i
\(83\) −6.54622 4.51853i −0.718542 0.495973i 0.151807 0.988410i \(-0.451491\pi\)
−0.870348 + 0.492437i \(0.836106\pi\)
\(84\) 0.450413 0.170819i 0.0491441 0.0186379i
\(85\) 19.3336 7.33228i 2.09703 0.795297i
\(86\) 8.37806 + 5.78296i 0.903429 + 0.623592i
\(87\) 2.30300 0.567638i 0.246907 0.0608572i
\(88\) 5.53879 + 4.90694i 0.590437 + 0.523082i
\(89\) 4.56708i 0.484110i 0.970263 + 0.242055i \(0.0778214\pi\)
−0.970263 + 0.242055i \(0.922179\pi\)
\(90\) −15.1805 + 13.4487i −1.60016 + 1.41762i
\(91\) 1.02238 + 0.0144676i 0.107174 + 0.00151662i
\(92\) −3.90176 3.45666i −0.406786 0.360381i
\(93\) 5.67879 6.41003i 0.588864 0.664690i
\(94\) −0.977660 2.57788i −0.100838 0.265888i
\(95\) 2.59155 21.3434i 0.265888 2.18978i
\(96\) 8.64885 3.28008i 0.882720 0.334771i
\(97\) −6.77197 + 0.822265i −0.687589 + 0.0834884i −0.456872 0.889532i \(-0.651030\pi\)
−0.230717 + 0.973021i \(0.574107\pi\)
\(98\) −9.29344 + 6.41480i −0.938779 + 0.647993i
\(99\) 12.0739i 1.21348i
\(100\) 2.70876 + 3.92431i 0.270876 + 0.392431i
\(101\) −14.1879 3.49700i −1.41175 0.347964i −0.541550 0.840669i \(-0.682162\pi\)
−0.870197 + 0.492705i \(0.836008\pi\)
\(102\) −16.4148 18.5285i −1.62531 1.83460i
\(103\) −8.79920 12.7478i −0.867011 1.25608i −0.965358 0.260930i \(-0.915971\pi\)
0.0983467 0.995152i \(-0.468645\pi\)
\(104\) 7.86476 + 0.111294i 0.771203 + 0.0109133i
\(105\) −1.44049 + 2.08690i −0.140577 + 0.203661i
\(106\) −18.9003 + 2.29491i −1.83576 + 0.222901i
\(107\) −1.02135 + 8.41159i −0.0987378 + 0.813179i 0.856256 + 0.516552i \(0.172785\pi\)
−0.954994 + 0.296627i \(0.904138\pi\)
\(108\) 0.841549 + 0.441679i 0.0809781 + 0.0425006i
\(109\) 2.86021 11.6043i 0.273959 1.11149i −0.659182 0.751983i \(-0.729097\pi\)
0.933141 0.359511i \(-0.117056\pi\)
\(110\) 19.1858 + 2.32958i 1.82929 + 0.222117i
\(111\) 0.625440 0.705976i 0.0593642 0.0670083i
\(112\) 1.14046 0.787204i 0.107763 0.0743838i
\(113\) 8.11531 11.7571i 0.763424 1.10601i −0.227786 0.973711i \(-0.573149\pi\)
0.991210 0.132299i \(-0.0422360\pi\)
\(114\) −24.9909 + 6.15971i −2.34061 + 0.576909i
\(115\) 27.2398 + 3.30750i 2.54012 + 0.308426i
\(116\) −0.543883 + 0.285452i −0.0504983 + 0.0265036i
\(117\) 8.37372 + 9.72582i 0.774151 + 0.899153i
\(118\) 4.06953 + 2.13585i 0.374630 + 0.196621i
\(119\) −1.38221 0.954074i −0.126707 0.0874598i
\(120\) −11.0811 + 16.0538i −1.01156 + 1.46550i
\(121\) 0.378646 0.335451i 0.0344224 0.0304956i
\(122\) 5.07174 + 5.72481i 0.459174 + 0.518300i
\(123\) 9.68880 + 3.67448i 0.873610 + 0.331316i
\(124\) −1.03061 + 1.96367i −0.0925517 + 0.176342i
\(125\) −7.14754 2.71071i −0.639296 0.242453i
\(126\) 1.59945 + 0.394229i 0.142490 + 0.0351207i
\(127\) −7.46403 + 6.61255i −0.662325 + 0.586769i −0.925854 0.377883i \(-0.876652\pi\)
0.263528 + 0.964652i \(0.415114\pi\)
\(128\) 11.1547 7.69950i 0.985941 0.680546i
\(129\) 5.66535 + 14.9383i 0.498806 + 1.31524i
\(130\) 17.0702 11.4295i 1.49716 1.00244i
\(131\) −0.466992 + 1.23136i −0.0408013 + 0.107584i −0.953868 0.300226i \(-0.902938\pi\)
0.913067 + 0.407810i \(0.133707\pi\)
\(132\) −1.37892 5.59451i −0.120020 0.486940i
\(133\) −1.54631 + 0.811568i −0.134082 + 0.0703719i
\(134\) −1.85458 4.89011i −0.160211 0.422442i
\(135\) −4.96653 + 0.603046i −0.427451 + 0.0519020i
\(136\) −10.6329 7.33933i −0.911760 0.629342i
\(137\) 1.50598 6.10999i 0.128664 0.522011i −0.870871 0.491512i \(-0.836444\pi\)
0.999535 0.0304989i \(-0.00970960\pi\)
\(138\) −7.86141 31.8950i −0.669208 2.71508i
\(139\) 0.239299 + 1.97081i 0.0202971 + 0.167162i 0.999333 0.0365279i \(-0.0116298\pi\)
−0.979036 + 0.203689i \(0.934707\pi\)
\(140\) 0.232860 0.614001i 0.0196802 0.0518925i
\(141\) 1.03549 4.20113i 0.0872037 0.353799i
\(142\) 1.68943 0.416406i 0.141773 0.0349440i
\(143\) 1.64582 12.1189i 0.137631 1.01343i
\(144\) 16.8884 + 4.16262i 1.40737 + 0.346885i
\(145\) 1.50263 2.86302i 0.124787 0.237761i
\(146\) 14.9572 1.23786
\(147\) −17.7221 −1.46169
\(148\) −0.113508 + 0.216271i −0.00933026 + 0.0177773i
\(149\) −1.82208 2.05671i −0.149271 0.168492i 0.669119 0.743155i \(-0.266672\pi\)
−0.818390 + 0.574663i \(0.805133\pi\)
\(150\) 30.0497i 2.45354i
\(151\) −5.41180 + 6.10866i −0.440406 + 0.497116i −0.926239 0.376936i \(-0.876978\pi\)
0.485833 + 0.874051i \(0.338516\pi\)
\(152\) −11.8952 + 6.24309i −0.964829 + 0.506381i
\(153\) −2.54103 20.9273i −0.205430 1.69187i
\(154\) −0.729529 1.39000i −0.0587871 0.112009i
\(155\) −1.40715 11.5889i −0.113025 0.930842i
\(156\) −4.99075 3.55017i −0.399580 0.284241i
\(157\) −0.279690 + 2.30346i −0.0223217 + 0.183836i −0.999605 0.0281009i \(-0.991054\pi\)
0.977283 + 0.211937i \(0.0679771\pi\)
\(158\) 22.2255 8.42904i 1.76817 0.670578i
\(159\) −26.4572 13.8858i −2.09819 1.10121i
\(160\) 4.47138 11.7901i 0.353494 0.932086i
\(161\) −1.03578 1.97350i −0.0816305 0.155534i
\(162\) −5.31522 10.1273i −0.417603 0.795677i
\(163\) 3.95081 + 16.0291i 0.309452 + 1.25549i 0.895443 + 0.445177i \(0.146859\pi\)
−0.585991 + 0.810318i \(0.699295\pi\)
\(164\) −2.66386 0.323451i −0.208012 0.0252573i
\(165\) 22.7031 + 20.1132i 1.76744 + 1.56581i
\(166\) 7.37400 + 10.6831i 0.572333 + 0.829168i
\(167\) −9.84628 3.73420i −0.761928 0.288961i −0.0571276 0.998367i \(-0.518194\pi\)
−0.704800 + 0.709406i \(0.748963\pi\)
\(168\) 1.58444 0.122242
\(169\) −7.07915 10.9035i −0.544550 0.838728i
\(170\) −33.7442 −2.58807
\(171\) −20.4954 7.77288i −1.56732 0.594407i
\(172\) −2.35027 3.40496i −0.179207 0.259626i
\(173\) −2.28685 2.02597i −0.173866 0.154032i 0.571702 0.820461i \(-0.306283\pi\)
−0.745568 + 0.666430i \(0.767822\pi\)
\(174\) −3.84262 0.466579i −0.291309 0.0353713i
\(175\) 0.487924 + 1.97959i 0.0368836 + 0.149643i
\(176\) −7.70301 14.6769i −0.580636 1.10631i
\(177\) 3.35198 + 6.38666i 0.251950 + 0.480051i
\(178\) 2.64295 6.96889i 0.198098 0.522340i
\(179\) 21.0811 + 11.0642i 1.57568 + 0.826979i 0.999956 + 0.00933213i \(0.00297055\pi\)
0.575720 + 0.817647i \(0.304722\pi\)
\(180\) 7.70682 2.92281i 0.574433 0.217854i
\(181\) 2.83259 23.3285i 0.210545 1.73399i −0.378244 0.925706i \(-0.623472\pi\)
0.588788 0.808287i \(-0.299605\pi\)
\(182\) −1.55167 0.613721i −0.115017 0.0454920i
\(183\) 1.44681 + 11.9156i 0.106951 + 0.880825i
\(184\) −7.96783 15.1814i −0.587396 1.11919i
\(185\) −0.154977 1.27635i −0.0113942 0.0938394i
\(186\) −12.3747 + 6.49475i −0.907357 + 0.476218i
\(187\) −13.3216 + 15.0369i −0.974168 + 1.09961i
\(188\) 1.12050i 0.0817208i
\(189\) 0.269473 + 0.304172i 0.0196013 + 0.0221253i
\(190\) −16.3057 + 31.0680i −1.18294 + 2.25391i
\(191\) 5.98448 0.433022 0.216511 0.976280i \(-0.430532\pi\)
0.216511 + 0.976280i \(0.430532\pi\)
\(192\) 9.93523 0.717014
\(193\) −6.49469 + 12.3746i −0.467498 + 0.890743i 0.531546 + 0.847029i \(0.321611\pi\)
−0.999044 + 0.0437136i \(0.986081\pi\)
\(194\) 10.8092 + 2.66422i 0.776052 + 0.191280i
\(195\) 32.2371 + 0.456186i 2.30855 + 0.0326682i
\(196\) 4.45602 1.09831i 0.318287 0.0784507i
\(197\) −0.579622 + 2.35162i −0.0412963 + 0.167546i −0.987969 0.154650i \(-0.950575\pi\)
0.946673 + 0.322196i \(0.104421\pi\)
\(198\) 6.98714 18.4236i 0.496554 1.30931i
\(199\) −1.12764 9.28692i −0.0799360 0.658332i −0.976515 0.215449i \(-0.930879\pi\)
0.896579 0.442884i \(-0.146044\pi\)
\(200\) 3.75342 + 15.2282i 0.265407 + 1.07680i
\(201\) 1.96427 7.96935i 0.138549 0.562115i
\(202\) 19.6255 + 13.5465i 1.38085 + 0.953129i
\(203\) −0.260717 + 0.0316568i −0.0182988 + 0.00222187i
\(204\) 3.56743 + 9.40654i 0.249770 + 0.658589i
\(205\) 12.5076 6.56451i 0.873571 0.458486i
\(206\) 6.04954 + 24.5439i 0.421491 + 1.71006i
\(207\) 9.92025 26.1575i 0.689505 1.81807i
\(208\) −16.3839 6.48021i −1.13602 0.449322i
\(209\) 7.40717 + 19.5311i 0.512365 + 1.35099i
\(210\) 3.40571 2.35079i 0.235017 0.162220i
\(211\) 0.350252 0.310296i 0.0241123 0.0213616i −0.650980 0.759094i \(-0.725642\pi\)
0.675093 + 0.737733i \(0.264104\pi\)
\(212\) 7.51291 + 1.85176i 0.515988 + 0.127180i
\(213\) 2.55326 + 0.968323i 0.174946 + 0.0663484i
\(214\) 6.42623 12.2442i 0.439288 0.836993i
\(215\) 20.3638 + 7.72297i 1.38880 + 0.526702i
\(216\) 2.07295 + 2.33988i 0.141047 + 0.159209i
\(217\) −0.709754 + 0.628787i −0.0481812 + 0.0426848i
\(218\) −11.0798 + 16.0518i −0.750416 + 1.08717i
\(219\) 19.3184 + 13.3345i 1.30542 + 0.901063i
\(220\) −6.95494 3.65023i −0.468902 0.246099i
\(221\) −0.302145 + 21.3516i −0.0203245 + 1.43626i
\(222\) −1.36290 + 0.715306i −0.0914720 + 0.0480082i
\(223\) 4.02681 + 0.488944i 0.269655 + 0.0327421i 0.254247 0.967139i \(-0.418172\pi\)
0.0154079 + 0.999881i \(0.495095\pi\)
\(224\) −0.994443 + 0.245108i −0.0664440 + 0.0163770i
\(225\) −14.5374 + 21.0610i −0.969158 + 1.40407i
\(226\) −19.1869 + 13.2437i −1.27629 + 0.880960i
\(227\) −16.3352 + 18.4386i −1.08420 + 1.22381i −0.111011 + 0.993819i \(0.535409\pi\)
−0.973192 + 0.229993i \(0.926130\pi\)
\(228\) 10.3843 + 1.26089i 0.687720 + 0.0835043i
\(229\) 0.900746 3.65447i 0.0595230 0.241494i −0.933643 0.358205i \(-0.883389\pi\)
0.993166 + 0.116711i \(0.0372351\pi\)
\(230\) −39.6510 20.8104i −2.61451 1.37220i
\(231\) 0.296959 2.44568i 0.0195385 0.160914i
\(232\) −2.00560 + 0.243524i −0.131674 + 0.0159881i
\(233\) 3.62008 5.24460i 0.237160 0.343585i −0.686274 0.727343i \(-0.740755\pi\)
0.923434 + 0.383758i \(0.125370\pi\)
\(234\) −7.14913 19.6864i −0.467353 1.28694i
\(235\) −3.35064 4.85425i −0.218572 0.316656i
\(236\) −1.23862 1.39812i −0.0806275 0.0910096i
\(237\) 36.2207 + 8.92759i 2.35278 + 0.579909i
\(238\) 1.55700 + 2.25570i 0.100925 + 0.146215i
\(239\) 18.9309i 1.22454i −0.790649 0.612270i \(-0.790257\pi\)
0.790649 0.612270i \(-0.209743\pi\)
\(240\) 35.9605 24.8218i 2.32124 1.60224i
\(241\) −23.5770 + 2.86276i −1.51873 + 0.184407i −0.837001 0.547201i \(-0.815693\pi\)
−0.681726 + 0.731608i \(0.738770\pi\)
\(242\) −0.771899 + 0.292743i −0.0496195 + 0.0188182i
\(243\) 2.68177 22.0864i 0.172036 1.41684i
\(244\) −1.10224 2.90637i −0.0705637 0.186061i
\(245\) −16.0201 + 18.0830i −1.02349 + 1.15528i
\(246\) −12.6577 11.2137i −0.807025 0.714962i
\(247\) 19.5122 + 10.5956i 1.24153 + 0.674181i
\(248\) −5.45987 + 4.83702i −0.346702 + 0.307151i
\(249\) 20.3721i 1.29103i
\(250\) 9.33773 + 8.27250i 0.590570 + 0.523199i
\(251\) 6.49939 1.60196i 0.410238 0.101115i −0.0287954 0.999585i \(-0.509167\pi\)
0.439033 + 0.898471i \(0.355321\pi\)
\(252\) −0.550982 0.380315i −0.0347086 0.0239576i
\(253\) −24.9268 + 9.45350i −1.56714 + 0.594337i
\(254\) 15.2160 5.77066i 0.954736 0.362083i
\(255\) −43.5834 30.0834i −2.72930 1.88390i
\(256\) −13.9435 + 3.43677i −0.871471 + 0.214798i
\(257\) 12.6077 + 11.1694i 0.786446 + 0.696730i 0.957469 0.288537i \(-0.0931688\pi\)
−0.171023 + 0.985267i \(0.554707\pi\)
\(258\) 26.0728i 1.62322i
\(259\) −0.0781695 + 0.0692521i −0.00485722 + 0.00430312i
\(260\) −8.13393 + 1.88316i −0.504445 + 0.116789i
\(261\) −2.46747 2.18599i −0.152733 0.135309i
\(262\) 1.42516 1.60867i 0.0880468 0.0993843i
\(263\) −4.89012 12.8942i −0.301538 0.795090i −0.997063 0.0765881i \(-0.975597\pi\)
0.695525 0.718502i \(-0.255172\pi\)
\(264\) 2.28440 18.8137i 0.140595 1.15790i
\(265\) −38.0849 + 14.4437i −2.33954 + 0.887269i
\(266\) 2.82916 0.343523i 0.173467 0.0210627i
\(267\) 9.62644 6.64465i 0.589128 0.406646i
\(268\) 2.12554i 0.129838i
\(269\) −7.79679 11.2956i −0.475379 0.688705i 0.509789 0.860300i \(-0.329723\pi\)
−0.985168 + 0.171595i \(0.945108\pi\)
\(270\) 7.92739 + 1.95393i 0.482446 + 0.118912i
\(271\) −12.3655 13.9578i −0.751152 0.847876i 0.241307 0.970449i \(-0.422424\pi\)
−0.992459 + 0.122573i \(0.960885\pi\)
\(272\) 16.4401 + 23.8177i 0.996830 + 1.44416i
\(273\) −1.45696 2.17600i −0.0881794 0.131698i
\(274\) −5.83378 + 8.45169i −0.352432 + 0.510586i
\(275\) 24.2092 2.93953i 1.45987 0.177260i
\(276\) −1.60923 + 13.2532i −0.0968640 + 0.797747i
\(277\) −3.66752 1.92486i −0.220360 0.115654i 0.350932 0.936401i \(-0.385865\pi\)
−0.571291 + 0.820747i \(0.693557\pi\)
\(278\) 0.775352 3.14572i 0.0465025 0.188668i
\(279\) −11.8151 1.43462i −0.707353 0.0858882i
\(280\) 1.43228 1.61671i 0.0855949 0.0966167i
\(281\) 23.0601 15.9172i 1.37565 0.949542i 0.375911 0.926656i \(-0.377330\pi\)
0.999738 0.0228864i \(-0.00728559\pi\)
\(282\) −4.01122 + 5.81126i −0.238865 + 0.346055i
\(283\) 12.2647 3.02297i 0.729060 0.179697i 0.142721 0.989763i \(-0.454415\pi\)
0.586339 + 0.810066i \(0.300569\pi\)
\(284\) −0.701998 0.0852380i −0.0416559 0.00505795i
\(285\) −48.7577 + 25.5900i −2.88816 + 1.51582i
\(286\) −9.52450 + 17.5397i −0.563196 + 1.03715i
\(287\) −1.01593 0.533203i −0.0599686 0.0314740i
\(288\) −10.5800 7.30283i −0.623431 0.430323i
\(289\) 10.2680 14.8758i 0.604000 0.875044i
\(290\) −3.94968 + 3.49911i −0.231933 + 0.205475i
\(291\) 11.5857 + 13.0775i 0.679166 + 0.766620i
\(292\) −5.68378 2.15557i −0.332618 0.126145i
\(293\) 6.31230 12.0271i 0.368768 0.702630i −0.628395 0.777894i \(-0.716288\pi\)
0.997164 + 0.0752647i \(0.0239802\pi\)
\(294\) 27.0421 + 10.2557i 1.57713 + 0.598125i
\(295\) 9.54679 + 2.35307i 0.555836 + 0.137001i
\(296\) −0.601329 + 0.532731i −0.0349515 + 0.0309643i
\(297\) 4.00027 2.76119i 0.232119 0.160220i
\(298\) 1.59010 + 4.19275i 0.0921120 + 0.242879i
\(299\) −13.5228 + 24.9027i −0.782042 + 1.44016i
\(300\) 4.33065 11.4190i 0.250030 0.659275i
\(301\) −0.423351 1.71760i −0.0244015 0.0990009i
\(302\) 11.7929 6.18939i 0.678605 0.356159i
\(303\) 13.2710 + 34.9928i 0.762400 + 2.01028i
\(304\) 29.8728 3.62722i 1.71332 0.208035i
\(305\) 13.4661 + 9.29498i 0.771067 + 0.532229i
\(306\) −8.23318 + 33.4033i −0.470659 + 1.90954i
\(307\) −0.0191960 0.0778814i −0.00109558 0.00444492i 0.970391 0.241537i \(-0.0776517\pi\)
−0.971487 + 0.237093i \(0.923806\pi\)
\(308\) 0.0769016 + 0.633342i 0.00438188 + 0.0360880i
\(309\) −14.0678 + 37.0937i −0.800288 + 2.11019i
\(310\) −4.55928 + 18.4977i −0.258950 + 1.05060i
\(311\) 17.8831 4.40778i 1.01406 0.249942i 0.302934 0.953011i \(-0.402034\pi\)
0.711122 + 0.703069i \(0.248188\pi\)
\(312\) −11.2079 16.7392i −0.634520 0.947669i
\(313\) −2.32514 0.573095i −0.131425 0.0323932i 0.173055 0.984912i \(-0.444636\pi\)
−0.304479 + 0.952519i \(0.598482\pi\)
\(314\) 1.75978 3.35298i 0.0993101 0.189220i
\(315\) 3.52424 0.198568
\(316\) −9.66054 −0.543448
\(317\) 6.00869 11.4486i 0.337482 0.643018i −0.656283 0.754515i \(-0.727872\pi\)
0.993765 + 0.111497i \(0.0355646\pi\)
\(318\) 32.3352 + 36.4989i 1.81327 + 2.04676i
\(319\) 3.14141i 0.175885i
\(320\) 8.98109 10.1376i 0.502058 0.566707i
\(321\) 19.2158 10.0852i 1.07252 0.562903i
\(322\) 0.438426 + 3.61076i 0.0244325 + 0.201220i
\(323\) −16.9490 32.2936i −0.943066 1.79686i
\(324\) 0.560292 + 4.61442i 0.0311274 + 0.256357i
\(325\) 17.4624 19.1578i 0.968637 1.06268i
\(326\) 3.24743 26.7450i 0.179859 1.48127i
\(327\) −28.6208 + 10.8544i −1.58273 + 0.600252i
\(328\) −7.81519 4.10173i −0.431522 0.226480i
\(329\) −0.169889 + 0.447960i −0.00936628 + 0.0246969i
\(330\) −23.0032 43.8289i −1.26628 2.41270i
\(331\) −9.62062 18.3306i −0.528797 1.00754i −0.992580 0.121590i \(-0.961201\pi\)
0.463783 0.885949i \(-0.346492\pi\)
\(332\) −1.26254 5.12232i −0.0692908 0.281124i
\(333\) −1.30127 0.158003i −0.0713092 0.00865851i
\(334\) 12.8634 + 11.3960i 0.703855 + 0.623561i
\(335\) −6.35602 9.20828i −0.347266 0.503102i
\(336\) −3.31852 1.25855i −0.181040 0.0686594i
\(337\) −10.9815 −0.598201 −0.299101 0.954222i \(-0.596687\pi\)
−0.299101 + 0.954222i \(0.596687\pi\)
\(338\) 4.49225 + 20.7342i 0.244346 + 1.12779i
\(339\) −36.5883 −1.98721
\(340\) 12.8229 + 4.86310i 0.695421 + 0.263738i
\(341\) 6.44294 + 9.33421i 0.348905 + 0.505476i
\(342\) 26.7757 + 23.7212i 1.44786 + 1.28270i
\(343\) 3.91860 + 0.475804i 0.211584 + 0.0256910i
\(344\) −3.25668 13.2129i −0.175588 0.712390i
\(345\) −32.6596 62.2277i −1.75833 3.35023i
\(346\) 2.31707 + 4.41480i 0.124566 + 0.237341i
\(347\) −3.35106 + 8.83601i −0.179894 + 0.474342i −0.994384 0.105837i \(-0.966248\pi\)
0.814489 + 0.580178i \(0.197017\pi\)
\(348\) 1.39297 + 0.731086i 0.0746709 + 0.0391903i
\(349\) 28.4068 10.7733i 1.52058 0.576681i 0.553883 0.832595i \(-0.313146\pi\)
0.966700 + 0.255914i \(0.0823763\pi\)
\(350\) 0.401057 3.30300i 0.0214374 0.176553i
\(351\) 1.30732 4.99853i 0.0697796 0.266802i
\(352\) 1.47667 + 12.1615i 0.0787066 + 0.648207i
\(353\) 14.3893 + 27.4166i 0.765868 + 1.45924i 0.884619 + 0.466315i \(0.154419\pi\)
−0.118751 + 0.992924i \(0.537889\pi\)
\(354\) −1.41883 11.6851i −0.0754102 0.621059i
\(355\) 3.29610 1.72993i 0.174939 0.0918149i
\(356\) −2.00866 + 2.26731i −0.106459 + 0.120167i
\(357\) 4.30150i 0.227659i
\(358\) −25.7648 29.0824i −1.36171 1.53705i
\(359\) −3.92571 + 7.47981i −0.207191 + 0.394769i −0.966771 0.255645i \(-0.917712\pi\)
0.759580 + 0.650414i \(0.225405\pi\)
\(360\) 27.1106 1.42886
\(361\) −18.9224 −0.995915
\(362\) −17.8223 + 33.9576i −0.936721 + 1.78477i
\(363\) −1.25795 0.310058i −0.0660254 0.0162738i
\(364\) 0.501192 + 0.456837i 0.0262696 + 0.0239448i
\(365\) 31.0692 7.65787i 1.62624 0.400831i
\(366\) 4.68781 19.0192i 0.245036 0.994149i
\(367\) −7.28741 + 19.2153i −0.380400 + 1.00303i 0.598937 + 0.800796i \(0.295590\pi\)
−0.979337 + 0.202236i \(0.935179\pi\)
\(368\) 4.62929 + 38.1256i 0.241318 + 1.98743i
\(369\) −3.44648 13.9829i −0.179417 0.727922i
\(370\) −0.502141 + 2.03727i −0.0261051 + 0.105913i
\(371\) 2.72279 + 1.87941i 0.141360 + 0.0975741i
\(372\) 5.63843 0.684629i 0.292339 0.0354964i
\(373\) −11.8381 31.2145i −0.612954 1.61623i −0.776804 0.629742i \(-0.783161\pi\)
0.163850 0.986485i \(-0.447609\pi\)
\(374\) 29.0291 15.2356i 1.50106 0.787816i
\(375\) 4.68537 + 19.0093i 0.241952 + 0.981636i
\(376\) −1.30689 + 3.44599i −0.0673978 + 0.177713i
\(377\) 2.17868 + 2.53047i 0.112208 + 0.130326i
\(378\) −0.235164 0.620078i −0.0120956 0.0318933i
\(379\) −16.1186 + 11.1259i −0.827958 + 0.571498i −0.904942 0.425534i \(-0.860086\pi\)
0.0769847 + 0.997032i \(0.475471\pi\)
\(380\) 10.6736 9.45602i 0.547546 0.485084i
\(381\) 24.7973 + 6.11198i 1.27040 + 0.313126i
\(382\) −9.13169 3.46319i −0.467218 0.177192i
\(383\) −3.50290 + 6.67421i −0.178990 + 0.341036i −0.958377 0.285506i \(-0.907838\pi\)
0.779387 + 0.626543i \(0.215531\pi\)
\(384\) −32.4578 12.3096i −1.65636 0.628173i
\(385\) −2.22705 2.51382i −0.113501 0.128116i
\(386\) 17.0713 15.1239i 0.868908 0.769786i
\(387\) 12.6134 18.2737i 0.641178 0.928906i
\(388\) −3.72356 2.57019i −0.189035 0.130481i
\(389\) −30.9760 16.2574i −1.57054 0.824285i −0.999995 0.00302042i \(-0.999039\pi\)
−0.570548 0.821264i \(-0.693269\pi\)
\(390\) −48.9265 19.3516i −2.47749 0.979906i
\(391\) 41.2151 21.6314i 2.08434 1.09395i
\(392\) 14.9851 + 1.81952i 0.756861 + 0.0918995i
\(393\) 3.27487 0.807182i 0.165195 0.0407169i
\(394\) 2.24531 3.25290i 0.113117 0.163879i
\(395\) 41.8516 28.8881i 2.10578 1.45352i
\(396\) −5.31027 + 5.99406i −0.266851 + 0.301213i
\(397\) 17.0072 + 2.06505i 0.853567 + 0.103642i 0.535612 0.844464i \(-0.320081\pi\)
0.317955 + 0.948106i \(0.397004\pi\)
\(398\) −3.65365 + 14.8234i −0.183141 + 0.743031i
\(399\) 3.96035 + 2.07855i 0.198265 + 0.104058i
\(400\) 4.23472 34.8760i 0.211736 1.74380i
\(401\) −39.1398 + 4.75243i −1.95455 + 0.237325i −0.998447 0.0557158i \(-0.982256\pi\)
−0.956100 + 0.293041i \(0.905333\pi\)
\(402\) −7.60910 + 11.0237i −0.379507 + 0.549811i
\(403\) 11.6636 + 3.05050i 0.581003 + 0.151956i
\(404\) −5.50549 7.97608i −0.273908 0.396825i
\(405\) −16.2259 18.3152i −0.806271 0.910092i
\(406\) 0.416147 + 0.102571i 0.0206530 + 0.00509051i
\(407\) 0.709601 + 1.02803i 0.0351736 + 0.0509578i
\(408\) 33.0898i 1.63819i
\(409\) −0.142311 + 0.0982305i −0.00703685 + 0.00485718i −0.571578 0.820548i \(-0.693669\pi\)
0.564541 + 0.825405i \(0.309053\pi\)
\(410\) −22.8842 + 2.77864i −1.13017 + 0.137227i
\(411\) −15.0696 + 5.71514i −0.743328 + 0.281907i
\(412\) 1.23834 10.1986i 0.0610084 0.502450i
\(413\) −0.283204 0.746747i −0.0139355 0.0367450i
\(414\) −30.2745 + 34.1729i −1.48791 + 1.67950i
\(415\) 20.7869 + 18.4156i 1.02039 + 0.903987i
\(416\) 9.62390 + 8.77219i 0.471850 + 0.430092i
\(417\) 3.80588 3.37172i 0.186375 0.165114i
\(418\) 34.0889i 1.66734i
\(419\) −10.3046 9.12906i −0.503411 0.445984i 0.372799 0.927912i \(-0.378398\pi\)
−0.876211 + 0.481928i \(0.839937\pi\)
\(420\) −1.63297 + 0.402491i −0.0796808 + 0.0196396i
\(421\) −0.748453 0.516620i −0.0364774 0.0251785i 0.549687 0.835371i \(-0.314747\pi\)
−0.586164 + 0.810192i \(0.699363\pi\)
\(422\) −0.714014 + 0.270790i −0.0347577 + 0.0131818i
\(423\) −5.62272 + 2.13242i −0.273386 + 0.103682i
\(424\) 20.9454 + 14.4576i 1.01720 + 0.702123i
\(425\) −41.3422 + 10.1899i −2.00539 + 0.494284i
\(426\) −3.33564 2.95512i −0.161612 0.143176i
\(427\) 1.32905i 0.0643171i
\(428\) −4.20657 + 3.72670i −0.203332 + 0.180137i
\(429\) −27.9386 + 14.1627i −1.34889 + 0.683784i
\(430\) −26.6038 23.5689i −1.28295 1.13659i
\(431\) −22.3509 + 25.2289i −1.07660 + 1.21523i −0.101187 + 0.994867i \(0.532264\pi\)
−0.975417 + 0.220367i \(0.929274\pi\)
\(432\) −2.48307 6.54733i −0.119467 0.315008i
\(433\) −3.61256 + 29.7521i −0.173609 + 1.42980i 0.601957 + 0.798529i \(0.294388\pi\)
−0.775565 + 0.631267i \(0.782535\pi\)
\(434\) 1.44689 0.548731i 0.0694527 0.0263400i
\(435\) −8.22082 + 0.998188i −0.394158 + 0.0478595i
\(436\) 6.52368 4.50297i 0.312427 0.215653i
\(437\) 48.3990i 2.31524i
\(438\) −21.7612 31.5265i −1.03979 1.50640i
\(439\) 37.3593 + 9.20824i 1.78306 + 0.439485i 0.986321 0.164837i \(-0.0527097\pi\)
0.796740 + 0.604322i \(0.206556\pi\)
\(440\) −17.1318 19.3378i −0.816728 0.921895i
\(441\) 13.9916 + 20.2703i 0.666266 + 0.965253i
\(442\) 12.8171 32.4054i 0.609647 1.54137i
\(443\) −5.44942 + 7.89485i −0.258910 + 0.375096i −0.930784 0.365570i \(-0.880874\pi\)
0.671874 + 0.740665i \(0.265490\pi\)
\(444\) 0.620995 0.0754024i 0.0294711 0.00357844i
\(445\) 1.92199 15.8290i 0.0911110 0.750367i
\(446\) −5.86154 3.07638i −0.277552 0.145671i
\(447\) −1.68415 + 6.83286i −0.0796575 + 0.323183i
\(448\) −1.09206 0.132600i −0.0515951 0.00626478i
\(449\) 3.92994 4.43598i 0.185465 0.209347i −0.648423 0.761280i \(-0.724571\pi\)
0.833888 + 0.551933i \(0.186110\pi\)
\(450\) 34.3704 23.7242i 1.62024 1.11837i
\(451\) −7.79602 + 11.2945i −0.367100 + 0.531836i
\(452\) 9.19971 2.26753i 0.432718 0.106655i
\(453\) 20.7494 + 2.51943i 0.974891 + 0.118373i
\(454\) 35.5961 18.6823i 1.67061 0.876802i
\(455\) −3.53736 0.480395i −0.165834 0.0225213i
\(456\) 30.4655 + 15.9895i 1.42668 + 0.748777i
\(457\) 10.4070 + 7.18345i 0.486820 + 0.336028i 0.786060 0.618150i \(-0.212118\pi\)
−0.299240 + 0.954178i \(0.596733\pi\)
\(458\) −3.48927 + 5.05508i −0.163043 + 0.236208i
\(459\) −6.35240 + 5.62773i −0.296505 + 0.262680i
\(460\) 12.0684 + 13.6224i 0.562691 + 0.635147i
\(461\) −14.2004 5.38550i −0.661379 0.250828i 0.000997050 1.00000i \(-0.499683\pi\)
−0.662376 + 0.749172i \(0.730452\pi\)
\(462\) −1.86843 + 3.56000i −0.0869274 + 0.165626i
\(463\) 8.62303 + 3.27028i 0.400746 + 0.151983i 0.546740 0.837303i \(-0.315869\pi\)
−0.145994 + 0.989286i \(0.546638\pi\)
\(464\) 4.39405 + 1.08303i 0.203988 + 0.0502786i
\(465\) −22.3796 + 19.8266i −1.03783 + 0.919438i
\(466\) −8.55889 + 5.90778i −0.396483 + 0.273673i
\(467\) −1.86972 4.93005i −0.0865203 0.228135i 0.884772 0.466024i \(-0.154314\pi\)
−0.971292 + 0.237889i \(0.923545\pi\)
\(468\) −0.120442 + 8.51122i −0.00556743 + 0.393431i
\(469\) −0.322271 + 0.849760i −0.0148811 + 0.0392383i
\(470\) 2.30360 + 9.34608i 0.106257 + 0.431102i
\(471\) 5.26212 2.76177i 0.242466 0.127256i
\(472\) −2.17858 5.74444i −0.100277 0.264409i
\(473\) −21.0053 + 2.55050i −0.965823 + 0.117272i
\(474\) −50.1026 34.5833i −2.30129 1.58846i
\(475\) −10.5954 + 42.9872i −0.486151 + 1.97239i
\(476\) −0.266581 1.08156i −0.0122187 0.0495733i
\(477\) 5.00552 + 41.2242i 0.229187 + 1.88753i
\(478\) −10.9552 + 28.8866i −0.501081 + 1.32124i
\(479\) −5.96736 + 24.2105i −0.272656 + 1.10621i 0.661672 + 0.749793i \(0.269847\pi\)
−0.934328 + 0.356415i \(0.883999\pi\)
\(480\) −31.3563 + 7.72864i −1.43121 + 0.352763i
\(481\) 1.28458 + 0.335970i 0.0585717 + 0.0153189i
\(482\) 37.6327 + 9.27562i 1.71412 + 0.422493i
\(483\) −2.65278 + 5.05445i −0.120706 + 0.229985i
\(484\) 0.335513 0.0152506
\(485\) 23.8169 1.08147
\(486\) −16.8734 + 32.1496i −0.765394 + 1.45834i
\(487\) 11.5509 + 13.0383i 0.523422 + 0.590822i 0.949462 0.313883i \(-0.101630\pi\)
−0.426039 + 0.904705i \(0.640091\pi\)
\(488\) 10.2239i 0.462813i
\(489\) 28.0379 31.6482i 1.26792 1.43118i
\(490\) 34.9096 18.3220i 1.57706 0.827703i
\(491\) −0.927102 7.63537i −0.0418395 0.344579i −0.998563 0.0535822i \(-0.982936\pi\)
0.956724 0.290997i \(-0.0939870\pi\)
\(492\) 3.19388 + 6.08544i 0.143991 + 0.274353i
\(493\) −0.661128 5.44488i −0.0297757 0.245225i
\(494\) −23.6419 27.4594i −1.06370 1.23545i
\(495\) 5.08114 41.8470i 0.228380 1.88088i
\(496\) 15.2775 5.79399i 0.685980 0.260158i
\(497\) −0.267726 0.140513i −0.0120091 0.00630288i
\(498\) 11.7892 31.0856i 0.528288 1.39298i
\(499\) 17.0790 + 32.5413i 0.764560 + 1.45675i 0.885772 + 0.464121i \(0.153630\pi\)
−0.121211 + 0.992627i \(0.538678\pi\)
\(500\) −2.35617 4.48930i −0.105371 0.200768i
\(501\) 6.45446 + 26.1868i 0.288364 + 1.16994i
\(502\) −10.8444 1.31675i −0.484011 0.0587696i
\(503\) 27.5117 + 24.3732i 1.22668 + 1.08675i 0.993443 + 0.114329i \(0.0364717\pi\)
0.233242 + 0.972419i \(0.425067\pi\)
\(504\) −1.25091 1.81226i −0.0557201 0.0807246i
\(505\) 47.7020 + 18.0910i 2.12271 + 0.805037i
\(506\) 43.5064 1.93410
\(507\) −12.6827 + 30.7848i −0.563260 + 1.36720i
\(508\) −6.61377 −0.293439
\(509\) −18.8546 7.15061i −0.835716 0.316945i −0.100634 0.994924i \(-0.532087\pi\)
−0.735082 + 0.677978i \(0.762856\pi\)
\(510\) 49.0945 + 71.1257i 2.17394 + 3.14950i
\(511\) −1.94547 1.72354i −0.0860626 0.0762448i
\(512\) −3.64496 0.442578i −0.161086 0.0195594i
\(513\) 2.11182 + 8.56800i 0.0932392 + 0.378287i
\(514\) −12.7743 24.3394i −0.563450 1.07356i
\(515\) 25.1323 + 47.8856i 1.10746 + 2.11009i
\(516\) −3.75751 + 9.90775i −0.165415 + 0.436164i
\(517\) 5.07416 + 2.66313i 0.223161 + 0.117124i
\(518\) 0.159354 0.0604351i 0.00700163 0.00265537i
\(519\) −0.943178 + 7.76777i −0.0414009 + 0.340967i
\(520\) −27.2116 3.69550i −1.19331 0.162058i
\(521\) −3.99686 32.9171i −0.175106 1.44213i −0.769857 0.638216i \(-0.779673\pi\)
0.594751 0.803910i \(-0.297251\pi\)
\(522\) 2.50008 + 4.76351i 0.109426 + 0.208493i
\(523\) 1.92350 + 15.8415i 0.0841089 + 0.692699i 0.972384 + 0.233387i \(0.0749810\pi\)
−0.888275 + 0.459312i \(0.848096\pi\)
\(524\) −0.773403 + 0.405913i −0.0337862 + 0.0177324i
\(525\) 3.46267 3.90854i 0.151123 0.170583i
\(526\) 22.5051i 0.981268i
\(527\) −13.1317 14.8227i −0.572027 0.645685i
\(528\) −19.7286 + 37.5897i −0.858576 + 1.63588i
\(529\) 38.7699 1.68565
\(530\) 66.4721 2.88736
\(531\) 4.65860 8.87621i 0.202166 0.385195i
\(532\) −1.12460 0.277189i −0.0487576 0.0120177i
\(533\) 1.55327 + 14.5048i 0.0672797 + 0.628272i
\(534\) −18.5342 + 4.56826i −0.802052 + 0.197688i
\(535\) 7.07979 28.7238i 0.306086 1.24184i
\(536\) −2.47911 + 6.53689i −0.107081 + 0.282350i
\(537\) −7.34990 60.5319i −0.317172 2.61214i
\(538\) 5.36037 + 21.7479i 0.231102 + 0.937617i
\(539\) 5.61708 22.7894i 0.241945 0.981608i
\(540\) −2.73084 1.88496i −0.117517 0.0811160i
\(541\) −33.1322 + 4.02298i −1.42447 + 0.172962i −0.796199 0.605035i \(-0.793159\pi\)
−0.628268 + 0.777997i \(0.716236\pi\)
\(542\) 10.7912 + 28.4540i 0.463521 + 1.22220i
\(543\) −53.2926 + 27.9701i −2.28701 + 1.20031i
\(544\) −5.11889 20.7682i −0.219471 0.890428i
\(545\) −14.7967 + 39.0157i −0.633821 + 1.67125i
\(546\) 0.963928 + 4.16349i 0.0412523 + 0.178181i
\(547\) −15.7957 41.6500i −0.675377 1.78082i −0.623034 0.782195i \(-0.714100\pi\)
−0.0523431 0.998629i \(-0.516669\pi\)
\(548\) 3.43488 2.37093i 0.146731 0.101281i
\(549\) 12.4866 11.0622i 0.532916 0.472123i
\(550\) −38.6418 9.52434i −1.64769 0.406119i
\(551\) −5.33251 2.02236i −0.227173 0.0861552i
\(552\) −20.4068 + 38.8820i −0.868572 + 1.65493i
\(553\) −3.86215 1.46472i −0.164236 0.0622863i
\(554\) 4.48234 + 5.05951i 0.190436 + 0.214958i
\(555\) −2.46481 + 2.18363i −0.104625 + 0.0926899i
\(556\) −0.747986 + 1.08365i −0.0317217 + 0.0459568i
\(557\) −7.42352 5.12409i −0.314545 0.217115i 0.400323 0.916374i \(-0.368898\pi\)
−0.714868 + 0.699259i \(0.753513\pi\)
\(558\) 17.1984 + 9.02643i 0.728068 + 0.382119i
\(559\) −15.1513 + 16.6224i −0.640833 + 0.703053i
\(560\) −4.28400 + 2.24842i −0.181032 + 0.0950129i
\(561\) 51.0762 + 6.20177i 2.15644 + 0.261839i
\(562\) −44.3985 + 10.9432i −1.87284 + 0.461613i
\(563\) −4.26768 + 6.18281i −0.179861 + 0.260574i −0.902536 0.430614i \(-0.858297\pi\)
0.722675 + 0.691188i \(0.242912\pi\)
\(564\) 2.36177 1.63021i 0.0994486 0.0686444i
\(565\) −33.0745 + 37.3334i −1.39146 + 1.57063i
\(566\) −20.4640 2.48478i −0.860167 0.104443i
\(567\) −0.475637 + 1.92973i −0.0199749 + 0.0810412i
\(568\) −2.05951 1.08092i −0.0864153 0.0453542i
\(569\) 0.399552 3.29061i 0.0167501 0.137950i −0.981935 0.189220i \(-0.939404\pi\)
0.998685 + 0.0512706i \(0.0163271\pi\)
\(570\) 89.2080 10.8318i 3.73651 0.453695i
\(571\) 5.59256 8.10222i 0.234041 0.339067i −0.688312 0.725415i \(-0.741648\pi\)
0.922353 + 0.386347i \(0.126263\pi\)
\(572\) 6.14710 5.29252i 0.257023 0.221291i
\(573\) −8.70683 12.6140i −0.363733 0.526958i
\(574\) 1.24165 + 1.40153i 0.0518253 + 0.0584986i
\(575\) −54.8631 13.5225i −2.28795 0.563929i
\(576\) −7.84386 11.3638i −0.326827 0.473491i
\(577\) 7.52437i 0.313244i 0.987659 + 0.156622i \(0.0500604\pi\)
−0.987659 + 0.156622i \(0.949940\pi\)
\(578\) −24.2764 + 16.7568i −1.00977 + 0.696991i
\(579\) 35.5321 4.31438i 1.47667 0.179300i
\(580\) 2.00517 0.760460i 0.0832601 0.0315764i
\(581\) 0.271895 2.23926i 0.0112801 0.0929001i
\(582\) −10.1106 26.6596i −0.419099 1.10507i
\(583\) 26.2418 29.6209i 1.08683 1.22677i
\(584\) −14.9658 13.2585i −0.619288 0.548642i
\(585\) −24.9294 37.2326i −1.03071 1.53938i
\(586\) −16.5919 + 14.6992i −0.685406 + 0.607217i
\(587\) 28.1651i 1.16250i −0.813726 0.581248i \(-0.802565\pi\)
0.813726 0.581248i \(-0.197435\pi\)
\(588\) −8.79806 7.79441i −0.362826 0.321436i
\(589\) −19.9925 + 4.92772i −0.823778 + 0.203043i
\(590\) −13.2057 9.11523i −0.543670 0.375268i
\(591\) 5.80000 2.19965i 0.238580 0.0904815i
\(592\) 1.68260 0.638128i 0.0691546 0.0262269i
\(593\) 25.4983 + 17.6002i 1.04709 + 0.722754i 0.961842 0.273606i \(-0.0882163\pi\)
0.0852481 + 0.996360i \(0.472832\pi\)
\(594\) −7.70188 + 1.89834i −0.316012 + 0.0778900i
\(595\) 4.38910 + 3.88840i 0.179935 + 0.159409i
\(596\) 1.82242i 0.0746491i
\(597\) −17.9343 + 15.8884i −0.734000 + 0.650267i
\(598\) 35.0454 30.1733i 1.43311 1.23388i
\(599\) −5.35973 4.74831i −0.218993 0.194011i 0.546493 0.837464i \(-0.315963\pi\)
−0.765485 + 0.643453i \(0.777501\pi\)
\(600\) 26.6370 30.0670i 1.08745 1.22748i
\(601\) 2.47018 + 6.51334i 0.100761 + 0.265685i 0.975912 0.218165i \(-0.0700072\pi\)
−0.875151 + 0.483850i \(0.839238\pi\)
\(602\) −0.347980 + 2.86587i −0.0141826 + 0.116804i
\(603\) −10.6660 + 4.04509i −0.434354 + 0.164729i
\(604\) −5.37333 + 0.652441i −0.218638 + 0.0265474i
\(605\) −1.45352 + 1.00329i −0.0590938 + 0.0407895i
\(606\) 61.0752i 2.48101i
\(607\) −6.40415 9.27801i −0.259936 0.376583i 0.671187 0.741289i \(-0.265785\pi\)
−0.931123 + 0.364706i \(0.881170\pi\)
\(608\) −21.5946 5.32259i −0.875776 0.215859i
\(609\) 0.446043 + 0.503479i 0.0180746 + 0.0204020i
\(610\) −15.1689 21.9759i −0.614171 0.889780i
\(611\) 5.93432 1.37391i 0.240077 0.0555825i
\(612\) 7.94260 11.5068i 0.321060 0.465136i
\(613\) 32.3681 3.93020i 1.30733 0.158739i 0.562950 0.826491i \(-0.309666\pi\)
0.744384 + 0.667752i \(0.232743\pi\)
\(614\) −0.0157785 + 0.129947i −0.000636768 + 0.00524425i
\(615\) −32.0340 16.8127i −1.29173 0.677954i
\(616\) −0.502193 + 2.03748i −0.0202339 + 0.0820924i
\(617\) 23.6755 + 2.87473i 0.953141 + 0.115732i 0.582309 0.812968i \(-0.302149\pi\)
0.370832 + 0.928700i \(0.379073\pi\)
\(618\) 42.9319 48.4601i 1.72697 1.94935i
\(619\) −0.666403 + 0.459985i −0.0267850 + 0.0184883i −0.581382 0.813631i \(-0.697488\pi\)
0.554597 + 0.832119i \(0.312872\pi\)
\(620\) 4.39837 6.37213i 0.176643 0.255911i
\(621\) −10.9350 + 2.69524i −0.438808 + 0.108156i
\(622\) −29.8385 3.62304i −1.19641 0.145271i
\(623\) −1.14680 + 0.601888i −0.0459457 + 0.0241141i
\(624\) 10.1780 + 43.9618i 0.407446 + 1.75988i
\(625\) −8.19809 4.30269i −0.327923 0.172107i
\(626\) 3.21627 + 2.22003i 0.128548 + 0.0887302i
\(627\) 30.3907 44.0285i 1.21369 1.75833i
\(628\) −1.15194 + 1.02053i −0.0459674 + 0.0407236i
\(629\) −1.44628 1.63251i −0.0576669 0.0650924i
\(630\) −5.37762 2.03946i −0.214249 0.0812541i
\(631\) −8.92606 + 17.0072i −0.355341 + 0.677046i −0.995860 0.0908964i \(-0.971027\pi\)
0.640519 + 0.767942i \(0.278719\pi\)
\(632\) −29.7101 11.2676i −1.18180 0.448199i
\(633\) −1.16362 0.286806i −0.0462497 0.0113995i
\(634\) −15.7939 + 13.9922i −0.627255 + 0.555700i
\(635\) 28.6523 19.7773i 1.13703 0.784836i
\(636\) −7.02740 18.5297i −0.278655 0.734752i
\(637\) −11.2806 22.2530i −0.446953 0.881696i
\(638\) 1.81792 4.79346i 0.0719721 0.189775i
\(639\) −0.908240 3.68488i −0.0359294 0.145771i
\(640\) −41.9010 + 21.9914i −1.65628 + 0.869285i
\(641\) 10.7201 + 28.2666i 0.423418 + 1.11646i 0.961798 + 0.273760i \(0.0882673\pi\)
−0.538380 + 0.842702i \(0.680963\pi\)
\(642\) −35.1576 + 4.26890i −1.38756 + 0.168480i
\(643\) −2.69124 1.85763i −0.106132 0.0732578i 0.513816 0.857900i \(-0.328231\pi\)
−0.619949 + 0.784642i \(0.712847\pi\)
\(644\) 0.353766 1.43529i 0.0139403 0.0565582i
\(645\) −13.3489 54.1587i −0.525613 2.13250i
\(646\) 7.17421 + 59.0849i 0.282265 + 2.32466i
\(647\) 12.6448 33.3415i 0.497117 1.31079i −0.418310 0.908305i \(-0.637377\pi\)
0.915427 0.402485i \(-0.131854\pi\)
\(648\) −3.65890 + 14.8447i −0.143735 + 0.583156i
\(649\) −9.27522 + 2.28614i −0.364084 + 0.0897387i
\(650\) −37.7323 + 19.1274i −1.47998 + 0.750239i
\(651\) 2.35797 + 0.581187i 0.0924161 + 0.0227785i
\(652\) −5.08843 + 9.69519i −0.199278 + 0.379693i
\(653\) 21.1172 0.826380 0.413190 0.910645i \(-0.364415\pi\)
0.413190 + 0.910645i \(0.364415\pi\)
\(654\) 49.9538 1.95335
\(655\) 2.13674 4.07122i 0.0834894 0.159076i
\(656\) 13.1104 + 14.7986i 0.511875 + 0.577787i
\(657\) 32.6237i 1.27277i
\(658\) 0.518465 0.585227i 0.0202119 0.0228145i
\(659\) 7.40928 3.88869i 0.288624 0.151482i −0.314197 0.949358i \(-0.601735\pi\)
0.602822 + 0.797876i \(0.294043\pi\)
\(660\) 2.42483 + 19.9703i 0.0943864 + 0.777342i
\(661\) 5.39333 + 10.2761i 0.209776 + 0.399695i 0.967497 0.252884i \(-0.0813792\pi\)
−0.757720 + 0.652579i \(0.773687\pi\)
\(662\) 4.07224 + 33.5379i 0.158272 + 1.30349i
\(663\) 45.4441 30.4275i 1.76490 1.18171i
\(664\) 2.09159 17.2258i 0.0811694 0.668490i
\(665\) 5.70089 2.16206i 0.221071 0.0838412i
\(666\) 1.89417 + 0.994136i 0.0733975 + 0.0385220i
\(667\) 2.58106 6.80569i 0.0999390 0.263517i
\(668\) −3.24580 6.18435i −0.125584 0.239280i
\(669\) −4.82802 9.19903i −0.186662 0.355655i
\(670\) 4.36982 + 17.7291i 0.168821 + 0.684934i
\(671\) −15.7812 1.91618i −0.609225 0.0739733i
\(672\) 1.96345 + 1.73947i 0.0757418 + 0.0671014i
\(673\) 12.2999 + 17.8195i 0.474126 + 0.686890i 0.984959 0.172790i \(-0.0552782\pi\)
−0.510833 + 0.859680i \(0.670663\pi\)
\(674\) 16.7566 + 6.35495i 0.645442 + 0.244784i
\(675\) 10.3024 0.396538
\(676\) 1.28107 8.52648i 0.0492719 0.327942i
\(677\) −29.4125 −1.13042 −0.565208 0.824948i \(-0.691204\pi\)
−0.565208 + 0.824948i \(0.691204\pi\)
\(678\) 55.8300 + 21.1735i 2.14414 + 0.813164i
\(679\) −1.09894 1.59209i −0.0421734 0.0610987i
\(680\) 33.7637 + 29.9120i 1.29478 + 1.14707i
\(681\) 62.6307 + 7.60474i 2.40001 + 0.291414i
\(682\) −4.42959 17.9715i −0.169618 0.688166i
\(683\) −12.4366 23.6960i −0.475875 0.906703i −0.998532 0.0541606i \(-0.982752\pi\)
0.522658 0.852543i \(-0.324941\pi\)
\(684\) −6.75625 12.8730i −0.258332 0.492210i
\(685\) −7.79085 + 20.5428i −0.297673 + 0.784899i
\(686\) −5.70403 2.99370i −0.217781 0.114300i
\(687\) −9.01334 + 3.41831i −0.343880 + 0.130417i
\(688\) −3.67428 + 30.2604i −0.140081 + 1.15367i
\(689\) 0.595189 42.0600i 0.0226749 1.60236i
\(690\) 13.8242 + 113.853i 0.526280 + 4.33431i
\(691\) −9.82793 18.7256i −0.373872 0.712354i 0.623725 0.781644i \(-0.285619\pi\)
−0.997597 + 0.0692907i \(0.977926\pi\)
\(692\) −0.244248 2.01157i −0.00928493 0.0764683i
\(693\) −3.03179 + 1.59121i −0.115168 + 0.0604449i
\(694\) 10.2267 11.5436i 0.388201 0.438188i
\(695\) 6.93130i 0.262919i
\(696\) 3.43124 + 3.87307i 0.130061 + 0.146808i
\(697\) 11.1355 21.2170i 0.421788 0.803650i
\(698\) −49.5803 −1.87664
\(699\) −16.3214 −0.617330
\(700\) −0.628420 + 1.19735i −0.0237520 + 0.0452557i
\(701\) −42.8776 10.5684i −1.61946 0.399162i −0.677674 0.735363i \(-0.737012\pi\)
−0.941790 + 0.336201i \(0.890858\pi\)
\(702\) −4.88746 + 6.87069i −0.184465 + 0.259318i
\(703\) −2.20190 + 0.542720i −0.0830462 + 0.0204691i
\(704\) −3.14900 + 12.7760i −0.118683 + 0.481514i
\(705\) −5.35687 + 14.1249i −0.201751 + 0.531974i
\(706\) −6.09076 50.1619i −0.229229 1.88787i
\(707\) −0.991695 4.02346i −0.0372965 0.151318i
\(708\) −1.14486 + 4.64487i −0.0430264 + 0.174565i
\(709\) −8.90160 6.14433i −0.334307 0.230755i 0.389071 0.921208i \(-0.372796\pi\)
−0.723378 + 0.690453i \(0.757411\pi\)
\(710\) −6.03060 + 0.732247i −0.226324 + 0.0274808i
\(711\) −18.3849 48.4771i −0.689489 1.81803i
\(712\) −8.82192 + 4.63010i −0.330615 + 0.173520i
\(713\) −6.28907 25.5157i −0.235527 0.955572i
\(714\) 2.48926 6.56363i 0.0931581 0.245638i
\(715\) −10.8043 + 41.3101i −0.404058 + 1.54491i
\(716\) 5.59945 + 14.7645i 0.209261 + 0.551776i
\(717\) −39.9023 + 27.5426i −1.49018 + 1.02860i
\(718\) 10.3188 9.14162i 0.385092 0.341162i
\(719\) 5.84984 + 1.44186i 0.218162 + 0.0537722i 0.346882 0.937909i \(-0.387241\pi\)
−0.128719 + 0.991681i \(0.541087\pi\)
\(720\) −56.7816 21.5344i −2.11613 0.802541i
\(721\) 2.04137 3.88951i 0.0760247 0.144853i
\(722\) 28.8736 + 10.9503i 1.07456 + 0.407528i
\(723\) 40.3363 + 45.5302i 1.50012 + 1.69329i
\(724\) 11.6664 10.3355i 0.433578 0.384117i
\(725\) −3.78235 + 5.47967i −0.140473 + 0.203510i
\(726\) 1.74008 + 1.20109i 0.0645803 + 0.0445765i
\(727\) −1.06332 0.558071i −0.0394362 0.0206977i 0.444890 0.895585i \(-0.353243\pi\)
−0.484326 + 0.874888i \(0.660935\pi\)
\(728\) 1.00854 + 1.98952i 0.0373789 + 0.0737366i
\(729\) −31.8382 + 16.7100i −1.17919 + 0.618887i
\(730\) −51.8399 6.29451i −1.91868 0.232970i
\(731\) 35.8708 8.84136i 1.32673 0.327009i
\(732\) −4.52236 + 6.55177i −0.167151 + 0.242160i
\(733\) −12.9638 + 8.94830i −0.478831 + 0.330513i −0.782911 0.622133i \(-0.786266\pi\)
0.304081 + 0.952646i \(0.401651\pi\)
\(734\) 22.2397 25.1034i 0.820881 0.926583i
\(735\) 61.4229 + 7.45809i 2.26562 + 0.275096i
\(736\) 6.79303 27.5604i 0.250394 1.01589i
\(737\) 9.62545 + 5.05183i 0.354558 + 0.186086i
\(738\) −2.83289 + 23.3309i −0.104280 + 0.858824i
\(739\) 16.5014 2.00364i 0.607016 0.0737050i 0.188743 0.982027i \(-0.439559\pi\)
0.418273 + 0.908322i \(0.362636\pi\)
\(740\) 0.484419 0.701802i 0.0178076 0.0257988i
\(741\) −6.05502 56.5430i −0.222437 2.07716i
\(742\) −3.06709 4.44345i −0.112597 0.163124i
\(743\) 14.6194 + 16.5019i 0.536334 + 0.605396i 0.952741 0.303782i \(-0.0982495\pi\)
−0.416408 + 0.909178i \(0.636711\pi\)
\(744\) 18.1390 + 4.47086i 0.665007 + 0.163910i
\(745\) 5.44960 + 7.89511i 0.199658 + 0.289255i
\(746\) 54.4808i 1.99468i
\(747\) 23.3013 16.0837i 0.852550 0.588473i
\(748\) −13.2269 + 1.60603i −0.483622 + 0.0587223i
\(749\) −2.24677 + 0.852086i −0.0820951 + 0.0311346i
\(750\) 3.85122 31.7176i 0.140627 1.15816i
\(751\) −13.1273 34.6139i −0.479022 1.26308i −0.929014 0.370045i \(-0.879342\pi\)
0.449991 0.893033i \(-0.351427\pi\)
\(752\) 5.47442 6.17934i 0.199631 0.225337i
\(753\) −12.8326 11.3687i −0.467644 0.414297i
\(754\) −1.86007 5.12203i −0.0677396 0.186533i
\(755\) 21.3274 18.8945i 0.776185 0.687640i
\(756\) 0.269523i 0.00980244i
\(757\) 7.96363 + 7.05516i 0.289443 + 0.256424i 0.795331 0.606175i \(-0.207297\pi\)
−0.505888 + 0.862599i \(0.668835\pi\)
\(758\) 31.0338 7.64915i 1.12720 0.277830i
\(759\) 56.1920 + 38.7866i 2.03964 + 1.40786i
\(760\) 43.8548 16.6319i 1.59078 0.603304i
\(761\) −12.2857 + 4.65934i −0.445355 + 0.168901i −0.567079 0.823663i \(-0.691927\pi\)
0.121725 + 0.992564i \(0.461158\pi\)
\(762\) −34.3011 23.6763i −1.24260 0.857702i
\(763\) 3.29081 0.811112i 0.119135 0.0293642i
\(764\) 2.97097 + 2.63205i 0.107486 + 0.0952243i
\(765\) 73.6010i 2.66105i
\(766\) 9.20739 8.15704i 0.332677 0.294726i
\(767\) −5.88587 +