Properties

Label 169.2.h.a.25.3
Level $169$
Weight $2$
Character 169.25
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 25.3
Character \(\chi\) \(=\) 169.25
Dual form 169.2.h.a.142.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68720 - 0.639871i) q^{2} +(0.0407127 + 0.0589826i) q^{3} +(0.940192 + 0.832938i) q^{4} +(0.654244 + 0.0794397i) q^{5} +(-0.0309493 - 0.125566i) q^{6} +(-0.153151 - 0.291806i) q^{7} +(0.623830 + 1.18861i) q^{8} +(1.06199 - 2.80025i) q^{9} +O(q^{10})\) \(q+(-1.68720 - 0.639871i) q^{2} +(0.0407127 + 0.0589826i) q^{3} +(0.940192 + 0.832938i) q^{4} +(0.654244 + 0.0794397i) q^{5} +(-0.0309493 - 0.125566i) q^{6} +(-0.153151 - 0.291806i) q^{7} +(0.623830 + 1.18861i) q^{8} +(1.06199 - 2.80025i) q^{9} +(-1.05301 - 0.552663i) q^{10} +(3.29754 - 1.25059i) q^{11} +(-0.0108510 + 0.0893661i) q^{12} +(-3.47540 - 0.959994i) q^{13} +(0.0716793 + 0.590332i) q^{14} +(0.0219505 + 0.0418232i) q^{15} +(-0.594779 - 4.89844i) q^{16} +(4.33713 - 2.27630i) q^{17} +(-3.58359 + 4.04504i) q^{18} -4.67024i q^{19} +(0.548947 + 0.619633i) q^{20} +(0.0109762 - 0.0209135i) q^{21} -6.36384 q^{22} +3.76934 q^{23} +(-0.0447094 + 0.0851866i) q^{24} +(-4.43298 - 1.09263i) q^{25} +(5.24943 + 3.84351i) q^{26} +(0.417162 - 0.102821i) q^{27} +(0.0990641 - 0.401919i) q^{28} +(1.37597 - 3.62813i) q^{29} +(-0.0102735 - 0.0846097i) q^{30} +(1.62148 + 6.57861i) q^{31} +(-1.48836 + 6.03852i) q^{32} +(0.208015 + 0.143583i) q^{33} +(-8.77415 + 1.06537i) q^{34} +(-0.0770175 - 0.203078i) q^{35} +(3.33091 - 1.74820i) q^{36} +(2.40265 + 9.74795i) q^{37} +(-2.98835 + 7.87963i) q^{38} +(-0.0848701 - 0.244072i) q^{39} +(0.313715 + 0.827197i) q^{40} +(-8.11133 + 5.59885i) q^{41} +(-0.0319010 + 0.0282618i) q^{42} +(2.63216 + 0.648770i) q^{43} +(4.14199 + 1.57085i) q^{44} +(0.917254 - 1.74768i) q^{45} +(-6.35963 - 2.41189i) q^{46} +(5.36429 + 6.05503i) q^{47} +(0.264708 - 0.234511i) q^{48} +(3.91476 - 5.67151i) q^{49} +(6.78019 + 4.68003i) q^{50} +(0.310838 + 0.163141i) q^{51} +(-2.46793 - 3.79737i) q^{52} +(-5.64437 + 2.96240i) q^{53} +(-0.769629 - 0.0934498i) q^{54} +(2.25675 - 0.556238i) q^{55} +(0.251302 - 0.364074i) q^{56} +(0.275463 - 0.190138i) q^{57} +(-4.64307 + 5.24095i) q^{58} +(4.72673 + 0.573928i) q^{59} +(-0.0141984 + 0.0576053i) q^{60} +(-4.77126 - 2.50415i) q^{61} +(1.47370 - 12.1370i) q^{62} +(-0.979773 + 0.118966i) q^{63} +(0.768897 - 1.11394i) q^{64} +(-2.19750 - 0.904155i) q^{65} +(-0.259089 - 0.375356i) q^{66} +(-7.79129 - 8.79455i) q^{67} +(5.97375 + 1.47240i) q^{68} +(0.153460 + 0.222325i) q^{69} +0.391916i q^{70} +(-1.05635 + 0.729146i) q^{71} +(3.99090 - 0.484583i) q^{72} +(-4.91959 + 1.86575i) q^{73} +(2.18367 - 17.9841i) q^{74} +(-0.116033 - 0.305953i) q^{75} +(3.89002 - 4.39092i) q^{76} +(-0.869954 - 0.770712i) q^{77} +(-0.0129817 + 0.466105i) q^{78} +(1.45245 - 1.28676i) q^{79} -3.25203i q^{80} +(-6.70201 - 5.93747i) q^{81} +(17.2680 - 4.25618i) q^{82} +(2.13161 + 1.47134i) q^{83} +(0.0277394 - 0.0105202i) q^{84} +(3.01837 - 1.14472i) q^{85} +(-4.02586 - 2.77885i) q^{86} +(0.270016 - 0.0665530i) q^{87} +(3.54357 + 3.13933i) q^{88} +3.65402i q^{89} +(-2.66588 + 2.36177i) q^{90} +(0.252131 + 1.16117i) q^{91} +(3.54390 + 3.13962i) q^{92} +(-0.322008 + 0.363472i) q^{93} +(-5.17620 - 13.6485i) q^{94} +(0.371002 - 3.05548i) q^{95} +(-0.416762 + 0.158057i) q^{96} +(-4.73020 + 0.574351i) q^{97} +(-10.2340 + 7.06403i) q^{98} -10.5621i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68720 0.639871i −1.19303 0.452457i −0.323449 0.946245i \(-0.604843\pi\)
−0.869582 + 0.493788i \(0.835612\pi\)
\(3\) 0.0407127 + 0.0589826i 0.0235055 + 0.0340536i 0.834560 0.550916i \(-0.185722\pi\)
−0.811055 + 0.584970i \(0.801106\pi\)
\(4\) 0.940192 + 0.832938i 0.470096 + 0.416469i
\(5\) 0.654244 + 0.0794397i 0.292587 + 0.0355265i 0.265514 0.964107i \(-0.414458\pi\)
0.0270729 + 0.999633i \(0.491381\pi\)
\(6\) −0.0309493 0.125566i −0.0126350 0.0512622i
\(7\) −0.153151 0.291806i −0.0578858 0.110292i 0.854794 0.518967i \(-0.173683\pi\)
−0.912680 + 0.408675i \(0.865991\pi\)
\(8\) 0.623830 + 1.18861i 0.220557 + 0.420237i
\(9\) 1.06199 2.80025i 0.353998 0.933415i
\(10\) −1.05301 0.552663i −0.332991 0.174767i
\(11\) 3.29754 1.25059i 0.994247 0.377068i 0.196791 0.980445i \(-0.436948\pi\)
0.797456 + 0.603377i \(0.206179\pi\)
\(12\) −0.0108510 + 0.0893661i −0.00313242 + 0.0257978i
\(13\) −3.47540 0.959994i −0.963903 0.266254i
\(14\) 0.0716793 + 0.590332i 0.0191571 + 0.157773i
\(15\) 0.0219505 + 0.0418232i 0.00566760 + 0.0107987i
\(16\) −0.594779 4.89844i −0.148695 1.22461i
\(17\) 4.33713 2.27630i 1.05191 0.552084i 0.152098 0.988365i \(-0.451397\pi\)
0.899810 + 0.436281i \(0.143705\pi\)
\(18\) −3.58359 + 4.04504i −0.844661 + 0.953425i
\(19\) 4.67024i 1.07143i −0.844400 0.535713i \(-0.820043\pi\)
0.844400 0.535713i \(-0.179957\pi\)
\(20\) 0.548947 + 0.619633i 0.122748 + 0.138554i
\(21\) 0.0109762 0.0209135i 0.00239521 0.00456369i
\(22\) −6.36384 −1.35678
\(23\) 3.76934 0.785961 0.392980 0.919547i \(-0.371444\pi\)
0.392980 + 0.919547i \(0.371444\pi\)
\(24\) −0.0447094 + 0.0851866i −0.00912626 + 0.0173886i
\(25\) −4.43298 1.09263i −0.886597 0.218526i
\(26\) 5.24943 + 3.84351i 1.02950 + 0.753775i
\(27\) 0.417162 0.102821i 0.0802829 0.0197879i
\(28\) 0.0990641 0.401919i 0.0187214 0.0759555i
\(29\) 1.37597 3.62813i 0.255511 0.673727i −0.744470 0.667655i \(-0.767298\pi\)
0.999982 0.00607198i \(-0.00193278\pi\)
\(30\) −0.0102735 0.0846097i −0.00187567 0.0154475i
\(31\) 1.62148 + 6.57861i 0.291227 + 1.18155i 0.916140 + 0.400859i \(0.131288\pi\)
−0.624913 + 0.780694i \(0.714866\pi\)
\(32\) −1.48836 + 6.03852i −0.263108 + 1.06747i
\(33\) 0.208015 + 0.143583i 0.0362108 + 0.0249945i
\(34\) −8.77415 + 1.06537i −1.50475 + 0.182710i
\(35\) −0.0770175 0.203078i −0.0130183 0.0343265i
\(36\) 3.33091 1.74820i 0.555151 0.291366i
\(37\) 2.40265 + 9.74795i 0.394994 + 1.60255i 0.745843 + 0.666121i \(0.232047\pi\)
−0.350850 + 0.936432i \(0.614107\pi\)
\(38\) −2.98835 + 7.87963i −0.484774 + 1.27825i
\(39\) −0.0848701 0.244072i −0.0135901 0.0390828i
\(40\) 0.313715 + 0.827197i 0.0496026 + 0.130791i
\(41\) −8.11133 + 5.59885i −1.26678 + 0.874393i −0.996096 0.0882764i \(-0.971864\pi\)
−0.270681 + 0.962669i \(0.587249\pi\)
\(42\) −0.0319010 + 0.0282618i −0.00492244 + 0.00436090i
\(43\) 2.63216 + 0.648770i 0.401401 + 0.0989365i 0.434848 0.900504i \(-0.356802\pi\)
−0.0334467 + 0.999441i \(0.510648\pi\)
\(44\) 4.14199 + 1.57085i 0.624429 + 0.236815i
\(45\) 0.917254 1.74768i 0.136736 0.260529i
\(46\) −6.35963 2.41189i −0.937676 0.355614i
\(47\) 5.36429 + 6.05503i 0.782462 + 0.883217i 0.995590 0.0938070i \(-0.0299037\pi\)
−0.213128 + 0.977024i \(0.568365\pi\)
\(48\) 0.264708 0.234511i 0.0382073 0.0338487i
\(49\) 3.91476 5.67151i 0.559251 0.810215i
\(50\) 6.78019 + 4.68003i 0.958864 + 0.661856i
\(51\) 0.310838 + 0.163141i 0.0435261 + 0.0228442i
\(52\) −2.46793 3.79737i −0.342240 0.526601i
\(53\) −5.64437 + 2.96240i −0.775314 + 0.406916i −0.805476 0.592629i \(-0.798090\pi\)
0.0301615 + 0.999545i \(0.490398\pi\)
\(54\) −0.769629 0.0934498i −0.104733 0.0127169i
\(55\) 2.25675 0.556238i 0.304300 0.0750031i
\(56\) 0.251302 0.364074i 0.0335817 0.0486515i
\(57\) 0.275463 0.190138i 0.0364859 0.0251844i
\(58\) −4.64307 + 5.24095i −0.609666 + 0.688170i
\(59\) 4.72673 + 0.573928i 0.615367 + 0.0747191i 0.422285 0.906463i \(-0.361228\pi\)
0.193083 + 0.981182i \(0.438151\pi\)
\(60\) −0.0141984 + 0.0576053i −0.00183301 + 0.00743681i
\(61\) −4.77126 2.50415i −0.610897 0.320623i 0.130749 0.991416i \(-0.458262\pi\)
−0.741645 + 0.670792i \(0.765954\pi\)
\(62\) 1.47370 12.1370i 0.187160 1.54140i
\(63\) −0.979773 + 0.118966i −0.123440 + 0.0149883i
\(64\) 0.768897 1.11394i 0.0961122 0.139243i
\(65\) −2.19750 0.904155i −0.272566 0.112147i
\(66\) −0.259089 0.375356i −0.0318917 0.0462031i
\(67\) −7.79129 8.79455i −0.951858 1.07443i −0.997149 0.0754513i \(-0.975960\pi\)
0.0452919 0.998974i \(-0.485578\pi\)
\(68\) 5.97375 + 1.47240i 0.724424 + 0.178554i
\(69\) 0.153460 + 0.222325i 0.0184744 + 0.0267648i
\(70\) 0.391916i 0.0468429i
\(71\) −1.05635 + 0.729146i −0.125366 + 0.0865337i −0.629097 0.777326i \(-0.716575\pi\)
0.503732 + 0.863860i \(0.331960\pi\)
\(72\) 3.99090 0.484583i 0.470332 0.0571086i
\(73\) −4.91959 + 1.86575i −0.575794 + 0.218370i −0.625274 0.780405i \(-0.715013\pi\)
0.0494801 + 0.998775i \(0.484244\pi\)
\(74\) 2.18367 17.9841i 0.253847 2.09061i
\(75\) −0.116033 0.305953i −0.0133983 0.0353284i
\(76\) 3.89002 4.39092i 0.446215 0.503673i
\(77\) −0.869954 0.770712i −0.0991404 0.0878308i
\(78\) −0.0129817 + 0.466105i −0.00146988 + 0.0527759i
\(79\) 1.45245 1.28676i 0.163413 0.144771i −0.577453 0.816424i \(-0.695954\pi\)
0.740867 + 0.671652i \(0.234415\pi\)
\(80\) 3.25203i 0.363588i
\(81\) −6.70201 5.93747i −0.744668 0.659718i
\(82\) 17.2680 4.25618i 1.90693 0.470016i
\(83\) 2.13161 + 1.47134i 0.233975 + 0.161501i 0.679283 0.733876i \(-0.262291\pi\)
−0.445309 + 0.895377i \(0.646906\pi\)
\(84\) 0.0277394 0.0105202i 0.00302661 0.00114784i
\(85\) 3.01837 1.14472i 0.327388 0.124162i
\(86\) −4.02586 2.77885i −0.434120 0.299651i
\(87\) 0.270016 0.0665530i 0.0289488 0.00713523i
\(88\) 3.54357 + 3.13933i 0.377746 + 0.334654i
\(89\) 3.65402i 0.387325i 0.981068 + 0.193662i \(0.0620367\pi\)
−0.981068 + 0.193662i \(0.937963\pi\)
\(90\) −2.66588 + 2.36177i −0.281009 + 0.248952i
\(91\) 0.252131 + 1.16117i 0.0264305 + 0.121723i
\(92\) 3.54390 + 3.13962i 0.369477 + 0.327328i
\(93\) −0.322008 + 0.363472i −0.0333907 + 0.0376903i
\(94\) −5.17620 13.6485i −0.533884 1.40774i
\(95\) 0.371002 3.05548i 0.0380640 0.313485i
\(96\) −0.416762 + 0.158057i −0.0425356 + 0.0161316i
\(97\) −4.73020 + 0.574351i −0.480279 + 0.0583165i −0.357096 0.934068i \(-0.616233\pi\)
−0.123183 + 0.992384i \(0.539310\pi\)
\(98\) −10.2340 + 7.06403i −1.03379 + 0.713575i
\(99\) 10.5621i 1.06153i
\(100\) −3.25776 4.71968i −0.325776 0.471968i
\(101\) 9.31468 + 2.29586i 0.926846 + 0.228447i 0.673720 0.738987i \(-0.264695\pi\)
0.253125 + 0.967433i \(0.418541\pi\)
\(102\) −0.420058 0.474148i −0.0415919 0.0469476i
\(103\) 10.2787 + 14.8913i 1.01279 + 1.46728i 0.879322 + 0.476229i \(0.157997\pi\)
0.133470 + 0.991053i \(0.457388\pi\)
\(104\) −1.02700 4.72976i −0.100706 0.463792i
\(105\) 0.00884250 0.0128106i 0.000862939 0.00125018i
\(106\) 11.4187 1.38649i 1.10909 0.134667i
\(107\) 0.361820 2.97985i 0.0349784 0.288073i −0.964715 0.263298i \(-0.915190\pi\)
0.999693 0.0247755i \(-0.00788709\pi\)
\(108\) 0.477856 + 0.250798i 0.0459817 + 0.0241331i
\(109\) 2.02715 8.22449i 0.194166 0.787763i −0.790377 0.612621i \(-0.790115\pi\)
0.984543 0.175142i \(-0.0560386\pi\)
\(110\) −4.16351 0.505541i −0.396975 0.0482015i
\(111\) −0.477140 + 0.538580i −0.0452882 + 0.0511198i
\(112\) −1.33830 + 0.923763i −0.126458 + 0.0872874i
\(113\) −6.79111 + 9.83862i −0.638854 + 0.925540i −0.999976 0.00697911i \(-0.997778\pi\)
0.361122 + 0.932519i \(0.382394\pi\)
\(114\) −0.586425 + 0.144541i −0.0549237 + 0.0135375i
\(115\) 2.46607 + 0.299435i 0.229962 + 0.0279224i
\(116\) 4.31568 2.26505i 0.400701 0.210304i
\(117\) −6.37907 + 8.71247i −0.589745 + 0.805468i
\(118\) −7.60770 3.99283i −0.700345 0.367570i
\(119\) −1.32848 0.916980i −0.121781 0.0840594i
\(120\) −0.0360180 + 0.0521811i −0.00328798 + 0.00476346i
\(121\) 1.07619 0.953425i 0.0978358 0.0866750i
\(122\) 6.44774 + 7.27799i 0.583751 + 0.658919i
\(123\) −0.660468 0.250483i −0.0595524 0.0225853i
\(124\) −3.95507 + 7.53575i −0.355175 + 0.676730i
\(125\) −5.89457 2.23551i −0.527226 0.199950i
\(126\) 1.72920 + 0.426209i 0.154049 + 0.0379697i
\(127\) −8.50787 + 7.53732i −0.754952 + 0.668829i −0.950100 0.311945i \(-0.899020\pi\)
0.195149 + 0.980774i \(0.437481\pi\)
\(128\) 8.22660 5.67841i 0.727136 0.501906i
\(129\) 0.0688964 + 0.181665i 0.00606599 + 0.0159947i
\(130\) 3.12908 + 2.93161i 0.274439 + 0.257119i
\(131\) −5.04950 + 13.3144i −0.441177 + 1.16329i 0.511495 + 0.859286i \(0.329092\pi\)
−0.952672 + 0.304001i \(0.901677\pi\)
\(132\) 0.0759790 + 0.308259i 0.00661312 + 0.0268305i
\(133\) −1.36280 + 0.715254i −0.118170 + 0.0620203i
\(134\) 7.51810 + 19.8236i 0.649465 + 1.71250i
\(135\) 0.281094 0.0341310i 0.0241927 0.00293753i
\(136\) 5.41126 + 3.73512i 0.464012 + 0.320284i
\(137\) −0.316758 + 1.28514i −0.0270624 + 0.109797i −0.982920 0.184035i \(-0.941084\pi\)
0.955857 + 0.293831i \(0.0949303\pi\)
\(138\) −0.116658 0.473302i −0.00993062 0.0402901i
\(139\) 1.23304 + 10.1550i 0.104585 + 0.861337i 0.946717 + 0.322065i \(0.104377\pi\)
−0.842132 + 0.539271i \(0.818700\pi\)
\(140\) 0.0967404 0.255084i 0.00817606 0.0215585i
\(141\) −0.138746 + 0.562916i −0.0116846 + 0.0474061i
\(142\) 2.24884 0.554288i 0.188718 0.0465148i
\(143\) −12.6608 + 1.18069i −1.05875 + 0.0987343i
\(144\) −14.3485 3.53659i −1.19571 0.294716i
\(145\) 1.18844 2.26438i 0.0986944 0.188046i
\(146\) 9.49417 0.785743
\(147\) 0.493900 0.0407362
\(148\) −5.86048 + 11.1662i −0.481728 + 0.917856i
\(149\) 0.0468329 + 0.0528634i 0.00383670 + 0.00433074i 0.750426 0.660955i \(-0.229848\pi\)
−0.746589 + 0.665285i \(0.768310\pi\)
\(150\) 0.590450i 0.0482100i
\(151\) 10.5204 11.8751i 0.856136 0.966378i −0.143593 0.989637i \(-0.545866\pi\)
0.999729 + 0.0232586i \(0.00740412\pi\)
\(152\) 5.55109 2.91343i 0.450252 0.236311i
\(153\) −1.76820 14.5624i −0.142951 1.17730i
\(154\) 0.974631 + 1.85700i 0.0785380 + 0.149642i
\(155\) 0.538243 + 4.43283i 0.0432327 + 0.356053i
\(156\) 0.123503 0.300166i 0.00988811 0.0240325i
\(157\) 0.741200 6.10433i 0.0591542 0.487179i −0.932782 0.360441i \(-0.882626\pi\)
0.991936 0.126738i \(-0.0404506\pi\)
\(158\) −3.27393 + 1.24164i −0.260460 + 0.0987794i
\(159\) −0.404527 0.212312i −0.0320811 0.0168375i
\(160\) −1.45345 + 3.83243i −0.114905 + 0.302980i
\(161\) −0.577279 1.09991i −0.0454960 0.0866853i
\(162\) 7.50843 + 14.3061i 0.589918 + 1.12400i
\(163\) 3.66798 + 14.8816i 0.287299 + 1.16562i 0.920220 + 0.391400i \(0.128009\pi\)
−0.632922 + 0.774216i \(0.718145\pi\)
\(164\) −12.2897 1.49224i −0.959664 0.116524i
\(165\) 0.124687 + 0.110463i 0.00970684 + 0.00859951i
\(166\) −2.65499 3.84641i −0.206067 0.298539i
\(167\) −11.6004 4.39946i −0.897668 0.340441i −0.137756 0.990466i \(-0.543989\pi\)
−0.759912 + 0.650026i \(0.774758\pi\)
\(168\) 0.0317052 0.00244611
\(169\) 11.1568 + 6.67273i 0.858217 + 0.513287i
\(170\) −5.82507 −0.446763
\(171\) −13.0778 4.95976i −1.00009 0.379282i
\(172\) 1.93435 + 2.80239i 0.147493 + 0.213681i
\(173\) −12.2353 10.8395i −0.930233 0.824114i 0.0544417 0.998517i \(-0.482662\pi\)
−0.984674 + 0.174403i \(0.944201\pi\)
\(174\) −0.498157 0.0604872i −0.0377652 0.00458552i
\(175\) 0.360081 + 1.46091i 0.0272196 + 0.110434i
\(176\) −8.08727 15.4090i −0.609601 1.16150i
\(177\) 0.158586 + 0.302161i 0.0119201 + 0.0227118i
\(178\) 2.33810 6.16506i 0.175248 0.462091i
\(179\) 9.41774 + 4.94281i 0.703915 + 0.369443i 0.778391 0.627780i \(-0.216036\pi\)
−0.0744761 + 0.997223i \(0.523728\pi\)
\(180\) 2.31810 0.879141i 0.172781 0.0655273i
\(181\) −0.789062 + 6.49851i −0.0586505 + 0.483031i 0.933556 + 0.358430i \(0.116688\pi\)
−0.992207 + 0.124600i \(0.960235\pi\)
\(182\) 0.317601 2.12045i 0.0235422 0.157178i
\(183\) −0.0465497 0.383372i −0.00344106 0.0283396i
\(184\) 2.35142 + 4.48026i 0.173349 + 0.330289i
\(185\) 0.797549 + 6.56841i 0.0586370 + 0.482919i
\(186\) 0.775868 0.407207i 0.0568894 0.0298579i
\(187\) 11.4551 12.9302i 0.837683 0.945549i
\(188\) 10.1610i 0.741068i
\(189\) −0.0938928 0.105983i −0.00682969 0.00770913i
\(190\) −2.58107 + 4.91781i −0.187250 + 0.356776i
\(191\) 24.9792 1.80743 0.903714 0.428137i \(-0.140830\pi\)
0.903714 + 0.428137i \(0.140830\pi\)
\(192\) 0.0970069 0.00700087
\(193\) −8.18622 + 15.5975i −0.589257 + 1.12274i 0.390133 + 0.920758i \(0.372429\pi\)
−0.979390 + 0.201977i \(0.935263\pi\)
\(194\) 8.34832 + 2.05768i 0.599374 + 0.147732i
\(195\) −0.0361368 0.166425i −0.00258781 0.0119179i
\(196\) 8.40464 2.07156i 0.600331 0.147968i
\(197\) 4.27098 17.3280i 0.304294 1.23457i −0.597310 0.802010i \(-0.703764\pi\)
0.901605 0.432561i \(-0.142390\pi\)
\(198\) −6.75835 + 17.8203i −0.480295 + 1.26643i
\(199\) −2.62956 21.6564i −0.186405 1.53518i −0.722706 0.691155i \(-0.757102\pi\)
0.536302 0.844026i \(-0.319821\pi\)
\(200\) −1.46672 5.95070i −0.103712 0.420778i
\(201\) 0.201520 0.817600i 0.0142141 0.0576691i
\(202\) −14.2467 9.83378i −1.00239 0.691902i
\(203\) −1.26944 + 0.154138i −0.0890973 + 0.0108184i
\(204\) 0.156362 + 0.412292i 0.0109475 + 0.0288662i
\(205\) −5.75156 + 3.01865i −0.401706 + 0.210832i
\(206\) −7.81375 31.7016i −0.544410 2.20876i
\(207\) 4.00301 10.5551i 0.278228 0.733628i
\(208\) −2.63538 + 17.5950i −0.182731 + 1.22000i
\(209\) −5.84057 15.4003i −0.404001 1.06526i
\(210\) −0.0231162 + 0.0159559i −0.00159517 + 0.00110107i
\(211\) 8.84842 7.83902i 0.609151 0.539660i −0.301167 0.953571i \(-0.597376\pi\)
0.910317 + 0.413911i \(0.135838\pi\)
\(212\) −7.77429 1.91619i −0.533940 0.131604i
\(213\) −0.0860138 0.0326207i −0.00589357 0.00223514i
\(214\) −2.51718 + 4.79609i −0.172071 + 0.327854i
\(215\) 1.67054 + 0.633552i 0.113930 + 0.0432079i
\(216\) 0.382452 + 0.431699i 0.0260226 + 0.0293734i
\(217\) 1.67134 1.48068i 0.113458 0.100515i
\(218\) −8.68283 + 12.5793i −0.588076 + 0.851975i
\(219\) −0.310337 0.214210i −0.0209706 0.0144750i
\(220\) 2.58509 + 1.35676i 0.174287 + 0.0914726i
\(221\) −17.2585 + 3.74744i −1.16093 + 0.252080i
\(222\) 1.14965 0.603385i 0.0771597 0.0404965i
\(223\) 16.0740 + 1.95174i 1.07640 + 0.130698i 0.639483 0.768806i \(-0.279149\pi\)
0.436913 + 0.899504i \(0.356072\pi\)
\(224\) 1.99002 0.490495i 0.132964 0.0327726i
\(225\) −7.76744 + 11.2531i −0.517829 + 0.750205i
\(226\) 17.7534 12.2543i 1.18094 0.815144i
\(227\) 3.74017 4.22178i 0.248244 0.280209i −0.611160 0.791507i \(-0.709297\pi\)
0.859404 + 0.511298i \(0.170835\pi\)
\(228\) 0.417361 + 0.0506768i 0.0276404 + 0.00335615i
\(229\) −2.00761 + 8.14520i −0.132667 + 0.538250i 0.866565 + 0.499064i \(0.166323\pi\)
−0.999232 + 0.0391860i \(0.987524\pi\)
\(230\) −3.96915 2.08317i −0.261718 0.137360i
\(231\) 0.0100404 0.0826899i 0.000660608 0.00544059i
\(232\) 5.17080 0.627849i 0.339480 0.0412203i
\(233\) 4.14167 6.00025i 0.271330 0.393089i −0.663505 0.748172i \(-0.730932\pi\)
0.934835 + 0.355083i \(0.115547\pi\)
\(234\) 16.3376 10.6179i 1.06802 0.694114i
\(235\) 3.02855 + 4.38761i 0.197561 + 0.286216i
\(236\) 3.96598 + 4.47667i 0.258164 + 0.291406i
\(237\) 0.135029 + 0.0332817i 0.00877109 + 0.00216188i
\(238\) 1.65466 + 2.39718i 0.107255 + 0.155386i
\(239\) 15.3967i 0.995929i 0.867197 + 0.497964i \(0.165919\pi\)
−0.867197 + 0.497964i \(0.834081\pi\)
\(240\) 0.191813 0.132399i 0.0123815 0.00854631i
\(241\) −21.5486 + 2.61647i −1.38806 + 0.168542i −0.780215 0.625511i \(-0.784890\pi\)
−0.607849 + 0.794053i \(0.707967\pi\)
\(242\) −2.42583 + 0.919994i −0.155938 + 0.0591395i
\(243\) 0.232714 1.91657i 0.0149286 0.122948i
\(244\) −2.40010 6.32854i −0.153651 0.405143i
\(245\) 3.01175 3.39956i 0.192414 0.217190i
\(246\) 0.954067 + 0.845229i 0.0608291 + 0.0538899i
\(247\) −4.48340 + 16.2309i −0.285272 + 1.03275i
\(248\) −6.80786 + 6.03124i −0.432300 + 0.382984i
\(249\) 0.185630i 0.0117638i
\(250\) 8.51488 + 7.54353i 0.538528 + 0.477095i
\(251\) −8.36831 + 2.06260i −0.528203 + 0.130190i −0.494394 0.869238i \(-0.664610\pi\)
−0.0338091 + 0.999428i \(0.510764\pi\)
\(252\) −1.02027 0.704239i −0.0642707 0.0443629i
\(253\) 12.4295 4.71391i 0.781439 0.296361i
\(254\) 19.1774 7.27303i 1.20330 0.456350i
\(255\) 0.190404 + 0.131427i 0.0119236 + 0.00823026i
\(256\) −20.1418 + 4.96451i −1.25886 + 0.310282i
\(257\) 17.2091 + 15.2459i 1.07347 + 0.951015i 0.998932 0.0462033i \(-0.0147122\pi\)
0.0745415 + 0.997218i \(0.476251\pi\)
\(258\) 0.350590i 0.0218268i
\(259\) 2.47654 2.19402i 0.153885 0.136330i
\(260\) −1.31297 2.68046i −0.0814268 0.166235i
\(261\) −8.69839 7.70611i −0.538417 0.476996i
\(262\) 17.0390 19.2331i 1.05268 1.18823i
\(263\) 3.22143 + 8.49420i 0.198642 + 0.523775i 0.996912 0.0785241i \(-0.0250208\pi\)
−0.798271 + 0.602299i \(0.794252\pi\)
\(264\) −0.0408973 + 0.336820i −0.00251706 + 0.0207298i
\(265\) −3.92813 + 1.48974i −0.241303 + 0.0915142i
\(266\) 2.75699 0.334759i 0.169042 0.0205254i
\(267\) −0.215523 + 0.148765i −0.0131898 + 0.00910426i
\(268\) 14.7582i 0.901502i
\(269\) 6.52433 + 9.45212i 0.397795 + 0.576306i 0.969787 0.243953i \(-0.0784444\pi\)
−0.571992 + 0.820259i \(0.693829\pi\)
\(270\) −0.496102 0.122278i −0.0301918 0.00744161i
\(271\) 14.5947 + 16.4740i 0.886564 + 1.00072i 0.999974 + 0.00717530i \(0.00228399\pi\)
−0.113411 + 0.993548i \(0.536178\pi\)
\(272\) −13.7300 19.8913i −0.832501 1.20609i
\(273\) −0.0582236 + 0.0621455i −0.00352385 + 0.00376122i
\(274\) 1.35676 1.96560i 0.0819646 0.118746i
\(275\) −15.9844 + 1.94086i −0.963896 + 0.117038i
\(276\) −0.0409011 + 0.336851i −0.00246196 + 0.0202760i
\(277\) −26.3640 13.8369i −1.58406 0.831379i −0.999804 0.0198090i \(-0.993694\pi\)
−0.584256 0.811570i \(-0.698614\pi\)
\(278\) 4.41751 17.9225i 0.264944 1.07492i
\(279\) 20.1437 + 2.44589i 1.20597 + 0.146432i
\(280\) 0.193335 0.218230i 0.0115540 0.0130417i
\(281\) 22.8197 15.7513i 1.36131 0.939643i 0.361333 0.932437i \(-0.382322\pi\)
0.999974 0.00720608i \(-0.00229379\pi\)
\(282\) 0.594287 0.860973i 0.0353893 0.0512702i
\(283\) −17.0550 + 4.20369i −1.01382 + 0.249883i −0.711020 0.703172i \(-0.751766\pi\)
−0.302796 + 0.953055i \(0.597920\pi\)
\(284\) −1.60051 0.194337i −0.0949725 0.0115318i
\(285\) 0.195324 0.102514i 0.0115700 0.00607241i
\(286\) 22.1169 + 6.10925i 1.30780 + 0.361247i
\(287\) 2.87604 + 1.50946i 0.169767 + 0.0891006i
\(288\) 15.3287 + 10.5806i 0.903253 + 0.623470i
\(289\) 3.97205 5.75450i 0.233650 0.338500i
\(290\) −3.45404 + 3.06002i −0.202828 + 0.179690i
\(291\) −0.226456 0.255616i −0.0132751 0.0149845i
\(292\) −6.17941 2.34354i −0.361623 0.137145i
\(293\) −4.89485 + 9.32635i −0.285960 + 0.544851i −0.985486 0.169756i \(-0.945702\pi\)
0.699526 + 0.714607i \(0.253394\pi\)
\(294\) −0.833309 0.316033i −0.0485996 0.0184314i
\(295\) 3.04684 + 0.750979i 0.177394 + 0.0437237i
\(296\) −10.0876 + 8.93688i −0.586333 + 0.519445i
\(297\) 1.24702 0.860758i 0.0723596 0.0499462i
\(298\) −0.0451907 0.119158i −0.00261783 0.00690265i
\(299\) −13.1000 3.61854i −0.757590 0.209266i
\(300\) 0.145747 0.384302i 0.00841468 0.0221877i
\(301\) −0.213805 0.867440i −0.0123235 0.0499984i
\(302\) −25.3485 + 13.3039i −1.45864 + 0.765555i
\(303\) 0.243810 + 0.642875i 0.0140065 + 0.0369322i
\(304\) −22.8769 + 2.77776i −1.31208 + 0.159315i
\(305\) −2.92264 2.01735i −0.167350 0.115513i
\(306\) −6.33478 + 25.7012i −0.362135 + 1.46924i
\(307\) −7.01209 28.4492i −0.400201 1.62368i −0.732683 0.680570i \(-0.761732\pi\)
0.332483 0.943109i \(-0.392114\pi\)
\(308\) −0.175969 1.44923i −0.0100268 0.0825778i
\(309\) −0.459852 + 1.21253i −0.0261600 + 0.0689784i
\(310\) 1.92831 7.82348i 0.109521 0.444344i
\(311\) −8.53462 + 2.10359i −0.483954 + 0.119284i −0.473742 0.880664i \(-0.657097\pi\)
−0.0102124 + 0.999948i \(0.503251\pi\)
\(312\) 0.237162 0.253137i 0.0134266 0.0143310i
\(313\) 18.3809 + 4.53050i 1.03895 + 0.256079i 0.721659 0.692249i \(-0.243380\pi\)
0.317293 + 0.948327i \(0.397226\pi\)
\(314\) −5.15654 + 9.82496i −0.291000 + 0.554455i
\(315\) −0.650462 −0.0366494
\(316\) 2.43737 0.137113
\(317\) 10.2424 19.5153i 0.575271 1.09609i −0.407835 0.913055i \(-0.633716\pi\)
0.983107 0.183033i \(-0.0585914\pi\)
\(318\) 0.546667 + 0.617059i 0.0306555 + 0.0346030i
\(319\) 13.6847i 0.766196i
\(320\) 0.591538 0.667708i 0.0330680 0.0373260i
\(321\) 0.190490 0.0999769i 0.0106321 0.00558016i
\(322\) 0.270183 + 2.22516i 0.0150567 + 0.124003i
\(323\) −10.6309 20.2554i −0.591517 1.12704i
\(324\) −1.35564 11.1647i −0.0753135 0.620262i
\(325\) 14.3575 + 8.05297i 0.796409 + 0.446699i
\(326\) 3.33367 27.4553i 0.184635 1.52061i
\(327\) 0.567632 0.215275i 0.0313901 0.0119047i
\(328\) −11.7149 6.14847i −0.646849 0.339492i
\(329\) 0.945344 2.49267i 0.0521185 0.137425i
\(330\) −0.139690 0.266156i −0.00768966 0.0146514i
\(331\) −10.0418 19.1331i −0.551949 1.05165i −0.988393 0.151919i \(-0.951455\pi\)
0.436444 0.899731i \(-0.356238\pi\)
\(332\) 0.778585 + 3.15885i 0.0427304 + 0.173364i
\(333\) 29.8483 + 3.62423i 1.63567 + 0.198607i
\(334\) 16.7572 + 14.8456i 0.916911 + 0.812313i
\(335\) −4.39877 6.37272i −0.240331 0.348179i
\(336\) −0.108972 0.0413276i −0.00594490 0.00225460i
\(337\) 4.82536 0.262854 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(338\) −14.5541 18.3972i −0.791640 1.00067i
\(339\) −0.856791 −0.0465345
\(340\) 3.79133 + 1.43786i 0.205614 + 0.0779789i
\(341\) 13.5741 + 19.6654i 0.735077 + 1.06494i
\(342\) 18.8913 + 16.7362i 1.02152 + 0.904992i
\(343\) −4.54459 0.551813i −0.245385 0.0297951i
\(344\) 0.870888 + 3.53333i 0.0469551 + 0.190505i
\(345\) 0.0827389 + 0.157646i 0.00445451 + 0.00848736i
\(346\) 13.7075 + 26.1175i 0.736921 + 1.40408i
\(347\) 1.10386 2.91065i 0.0592585 0.156252i −0.902117 0.431491i \(-0.857988\pi\)
0.961376 + 0.275239i \(0.0887570\pi\)
\(348\) 0.309301 + 0.162334i 0.0165803 + 0.00870201i
\(349\) −27.3443 + 10.3703i −1.46371 + 0.555112i −0.952552 0.304376i \(-0.901552\pi\)
−0.511157 + 0.859487i \(0.670783\pi\)
\(350\) 0.327263 2.69525i 0.0174929 0.144067i
\(351\) −1.54851 0.0431282i −0.0826535 0.00230201i
\(352\) 2.64380 + 21.7736i 0.140915 + 1.16054i
\(353\) 0.0347175 + 0.0661486i 0.00184782 + 0.00352074i 0.886378 0.462962i \(-0.153213\pi\)
−0.884530 + 0.466483i \(0.845521\pi\)
\(354\) −0.0742229 0.611280i −0.00394490 0.0324892i
\(355\) −0.749034 + 0.393124i −0.0397546 + 0.0208648i
\(356\) −3.04357 + 3.43548i −0.161309 + 0.182080i
\(357\) 0.115690i 0.00612294i
\(358\) −12.7269 14.3657i −0.672636 0.759249i
\(359\) −14.2617 + 27.1734i −0.752703 + 1.43416i 0.143102 + 0.989708i \(0.454292\pi\)
−0.895805 + 0.444448i \(0.853400\pi\)
\(360\) 2.64952 0.139642
\(361\) −2.81112 −0.147954
\(362\) 5.48952 10.4594i 0.288523 0.549734i
\(363\) 0.100050 + 0.0246602i 0.00525127 + 0.00129432i
\(364\) −0.730127 + 1.30173i −0.0382691 + 0.0682291i
\(365\) −3.36683 + 0.829848i −0.176228 + 0.0434362i
\(366\) −0.166770 + 0.676611i −0.00871719 + 0.0353670i
\(367\) −5.66750 + 14.9440i −0.295841 + 0.780069i 0.701861 + 0.712314i \(0.252353\pi\)
−0.997702 + 0.0677552i \(0.978416\pi\)
\(368\) −2.24192 18.4639i −0.116868 0.962496i
\(369\) 7.06397 + 28.6597i 0.367736 + 1.49196i
\(370\) 2.85731 11.5926i 0.148544 0.602668i
\(371\) 1.72889 + 1.19336i 0.0897594 + 0.0619564i
\(372\) −0.605499 + 0.0735209i −0.0313937 + 0.00381188i
\(373\) 0.145322 + 0.383181i 0.00752447 + 0.0198404i 0.938726 0.344665i \(-0.112007\pi\)
−0.931201 + 0.364505i \(0.881238\pi\)
\(374\) −27.6008 + 14.4860i −1.42720 + 0.749054i
\(375\) −0.108127 0.438690i −0.00558368 0.0226539i
\(376\) −3.85066 + 10.1534i −0.198583 + 0.523619i
\(377\) −8.26503 + 11.2883i −0.425671 + 0.581377i
\(378\) 0.0906005 + 0.238894i 0.00465999 + 0.0122874i
\(379\) −13.5587 + 9.35891i −0.696465 + 0.480735i −0.862937 0.505311i \(-0.831378\pi\)
0.166472 + 0.986046i \(0.446762\pi\)
\(380\) 2.89383 2.56371i 0.148451 0.131516i
\(381\) −0.790949 0.194951i −0.0405215 0.00998766i
\(382\) −42.1449 15.9834i −2.15632 0.817784i
\(383\) −1.57355 + 2.99815i −0.0804047 + 0.153198i −0.922339 0.386382i \(-0.873725\pi\)
0.841934 + 0.539580i \(0.181417\pi\)
\(384\) 0.669855 + 0.254042i 0.0341834 + 0.0129640i
\(385\) −0.507937 0.573343i −0.0258869 0.0292202i
\(386\) 23.7922 21.0781i 1.21099 1.07285i
\(387\) 4.61205 6.68171i 0.234444 0.339651i
\(388\) −4.92570 3.39996i −0.250064 0.172607i
\(389\) 22.9003 + 12.0190i 1.16109 + 0.609389i 0.931444 0.363885i \(-0.118550\pi\)
0.229649 + 0.973273i \(0.426242\pi\)
\(390\) −0.0455204 + 0.303915i −0.00230501 + 0.0153893i
\(391\) 16.3481 8.58014i 0.826759 0.433916i
\(392\) 9.18334 + 1.11506i 0.463829 + 0.0563190i
\(393\) −0.990898 + 0.244235i −0.0499842 + 0.0123200i
\(394\) −18.2937 + 26.5030i −0.921624 + 1.33520i
\(395\) 1.05248 0.726471i 0.0529558 0.0365527i
\(396\) 8.79753 9.93036i 0.442093 0.499019i
\(397\) 24.5311 + 2.97862i 1.23118 + 0.149493i 0.710154 0.704047i \(-0.248625\pi\)
0.521028 + 0.853539i \(0.325549\pi\)
\(398\) −9.42070 + 38.2213i −0.472217 + 1.91586i
\(399\) −0.0976708 0.0512616i −0.00488966 0.00256629i
\(400\) −2.71555 + 22.3646i −0.135778 + 1.11823i
\(401\) −6.52706 + 0.792528i −0.325946 + 0.0395770i −0.281874 0.959451i \(-0.590956\pi\)
−0.0440716 + 0.999028i \(0.514033\pi\)
\(402\) −0.863164 + 1.25051i −0.0430507 + 0.0623697i
\(403\) 0.680128 24.4199i 0.0338796 1.21644i
\(404\) 6.84528 + 9.91710i 0.340565 + 0.493394i
\(405\) −3.91309 4.41696i −0.194443 0.219481i
\(406\) 2.24043 + 0.552217i 0.111191 + 0.0274061i
\(407\) 20.1136 + 29.1395i 0.996993 + 1.44439i
\(408\) 0.471237i 0.0233297i
\(409\) 5.90260 4.07427i 0.291865 0.201460i −0.413130 0.910672i \(-0.635565\pi\)
0.704995 + 0.709212i \(0.250949\pi\)
\(410\) 11.6356 1.41282i 0.574641 0.0697740i
\(411\) −0.0886967 + 0.0336382i −0.00437508 + 0.00165925i
\(412\) −2.73955 + 22.5622i −0.134968 + 1.11156i
\(413\) −0.556429 1.46718i −0.0273801 0.0721954i
\(414\) −13.5078 + 15.2471i −0.663870 + 0.749355i
\(415\) 1.27771 + 1.13195i 0.0627204 + 0.0555654i
\(416\) 10.9696 19.5575i 0.537829 0.958883i
\(417\) −0.548768 + 0.486166i −0.0268733 + 0.0238076i
\(418\) 29.7206i 1.45368i
\(419\) −0.597549 0.529382i −0.0291922 0.0258620i 0.648400 0.761299i \(-0.275438\pi\)
−0.677593 + 0.735437i \(0.736977\pi\)
\(420\) 0.0189840 0.00467915i 0.000926327 0.000228319i
\(421\) −6.34030 4.37639i −0.309007 0.213292i 0.403461 0.914997i \(-0.367807\pi\)
−0.712468 + 0.701705i \(0.752423\pi\)
\(422\) −19.9450 + 7.56415i −0.970909 + 0.368217i
\(423\) 22.6524 8.59093i 1.10140 0.417705i
\(424\) −7.04226 4.86092i −0.342002 0.236067i
\(425\) −21.7136 + 5.35192i −1.05326 + 0.259606i
\(426\) 0.124250 + 0.110075i 0.00601991 + 0.00533317i
\(427\) 1.77579i 0.0859367i
\(428\) 2.82221 2.50026i 0.136417 0.120855i
\(429\) −0.585098 0.698700i −0.0282488 0.0337336i
\(430\) −2.41314 2.13786i −0.116372 0.103097i
\(431\) −15.5599 + 17.5635i −0.749495 + 0.846005i −0.992273 0.124077i \(-0.960403\pi\)
0.242778 + 0.970082i \(0.421941\pi\)
\(432\) −0.751783 1.98229i −0.0361702 0.0953729i
\(433\) 4.26993 35.1660i 0.205200 1.68997i −0.418428 0.908250i \(-0.637419\pi\)
0.623628 0.781721i \(-0.285658\pi\)
\(434\) −3.76734 + 1.42876i −0.180838 + 0.0685828i
\(435\) 0.181943 0.0220919i 0.00872352 0.00105923i
\(436\) 8.75640 6.04411i 0.419356 0.289460i
\(437\) 17.6037i 0.842099i
\(438\) 0.386534 + 0.559991i 0.0184693 + 0.0267574i
\(439\) 15.2356 + 3.75523i 0.727154 + 0.179227i 0.585481 0.810686i \(-0.300906\pi\)
0.141673 + 0.989914i \(0.454752\pi\)
\(440\) 2.06898 + 2.33539i 0.0986345 + 0.111335i
\(441\) −11.7242 16.9854i −0.558294 0.808828i
\(442\) 31.5164 + 4.72053i 1.49908 + 0.224533i
\(443\) 3.60396 5.22124i 0.171229 0.248068i −0.727969 0.685610i \(-0.759535\pi\)
0.899198 + 0.437542i \(0.144151\pi\)
\(444\) −0.897207 + 0.108941i −0.0425796 + 0.00517010i
\(445\) −0.290274 + 2.39062i −0.0137603 + 0.113326i
\(446\) −25.8712 13.5783i −1.22504 0.642950i
\(447\) −0.00121132 + 0.00491453i −5.72936e−5 + 0.000232449i
\(448\) −0.442812 0.0537671i −0.0209209 0.00254026i
\(449\) 23.9249 27.0056i 1.12909 1.27447i 0.171864 0.985121i \(-0.445021\pi\)
0.957222 0.289354i \(-0.0934405\pi\)
\(450\) 20.3058 14.0160i 0.957222 0.660723i
\(451\) −19.7456 + 28.6064i −0.929783 + 1.34702i
\(452\) −14.5799 + 3.59362i −0.685781 + 0.169030i
\(453\) 1.12873 + 0.137053i 0.0530326 + 0.00643932i
\(454\) −9.01182 + 4.72977i −0.422946 + 0.221979i
\(455\) 0.0727126 + 0.779716i 0.00340882 + 0.0365536i
\(456\) 0.397842 + 0.208803i 0.0186306 + 0.00977811i
\(457\) 9.67187 + 6.67601i 0.452431 + 0.312291i 0.772399 0.635138i \(-0.219057\pi\)
−0.319968 + 0.947428i \(0.603672\pi\)
\(458\) 8.59912 12.4580i 0.401810 0.582123i
\(459\) 1.57523 1.39554i 0.0735256 0.0651380i
\(460\) 2.06917 + 2.33561i 0.0964754 + 0.108898i
\(461\) −1.41283 0.535814i −0.0658019 0.0249554i 0.321484 0.946915i \(-0.395818\pi\)
−0.387286 + 0.921960i \(0.626587\pi\)
\(462\) −0.0698510 + 0.133090i −0.00324976 + 0.00619190i
\(463\) −4.09867 1.55442i −0.190481 0.0722401i 0.257520 0.966273i \(-0.417095\pi\)
−0.448001 + 0.894033i \(0.647864\pi\)
\(464\) −18.5906 4.58217i −0.863047 0.212722i
\(465\) −0.239546 + 0.212219i −0.0111087 + 0.00984144i
\(466\) −10.8272 + 7.47349i −0.501561 + 0.346203i
\(467\) −6.05640 15.9694i −0.280257 0.738977i −0.999043 0.0437453i \(-0.986071\pi\)
0.718786 0.695232i \(-0.244698\pi\)
\(468\) −13.2545 + 2.87803i −0.612689 + 0.133037i
\(469\) −1.37305 + 3.62044i −0.0634016 + 0.167176i
\(470\) −2.30227 9.34066i −0.106196 0.430852i
\(471\) 0.390225 0.204806i 0.0179806 0.00943696i
\(472\) 2.26650 + 5.97626i 0.104324 + 0.275080i
\(473\) 9.49102 1.15242i 0.436397 0.0529882i
\(474\) −0.206526 0.142554i −0.00948603 0.00654774i
\(475\) −5.10285 + 20.7031i −0.234135 + 0.949923i
\(476\) −0.485235 1.96867i −0.0222407 0.0902340i
\(477\) 2.30115 + 18.9517i 0.105362 + 0.867738i
\(478\) 9.85189 25.9773i 0.450615 1.18817i
\(479\) −0.537860 + 2.18218i −0.0245755 + 0.0997066i −0.981949 0.189147i \(-0.939428\pi\)
0.957373 + 0.288853i \(0.0932740\pi\)
\(480\) −0.285221 + 0.0703005i −0.0130185 + 0.00320877i
\(481\) 1.00779 36.1846i 0.0459513 1.64987i
\(482\) 38.0309 + 9.37379i 1.73226 + 0.426964i
\(483\) 0.0413731 0.0788298i 0.00188254 0.00358688i
\(484\) 1.80597 0.0820897
\(485\) −3.14034 −0.142595
\(486\) −1.61900 + 3.08474i −0.0734392 + 0.139927i
\(487\) −22.0288 24.8653i −0.998219 1.12676i −0.991931 0.126776i \(-0.959537\pi\)
−0.00628722 0.999980i \(-0.502001\pi\)
\(488\) 7.23332i 0.327437i
\(489\) −0.728421 + 0.822217i −0.0329403 + 0.0371819i
\(490\) −7.25671 + 3.80862i −0.327825 + 0.172056i
\(491\) −4.38877 36.1448i −0.198062 1.63119i −0.664959 0.746879i \(-0.731551\pi\)
0.466897 0.884312i \(-0.345372\pi\)
\(492\) −0.412331 0.785631i −0.0185893 0.0354190i
\(493\) −2.29097 18.8678i −0.103180 0.849763i
\(494\) 17.9501 24.5161i 0.807614 1.10303i
\(495\) 0.839046 6.91017i 0.0377123 0.310589i
\(496\) 31.2605 11.8556i 1.40364 0.532330i
\(497\) 0.374550 + 0.196579i 0.0168009 + 0.00881778i
\(498\) 0.118779 0.313196i 0.00532263 0.0140346i
\(499\) −6.95200 13.2459i −0.311214 0.592969i 0.678737 0.734382i \(-0.262528\pi\)
−0.989951 + 0.141413i \(0.954836\pi\)
\(500\) −3.67998 7.01162i −0.164574 0.313569i
\(501\) −0.212793 0.863337i −0.00950691 0.0385710i
\(502\) 15.4388 + 1.87461i 0.689068 + 0.0836681i
\(503\) 20.8999 + 18.5157i 0.931881 + 0.825575i 0.984919 0.173018i \(-0.0553518\pi\)
−0.0530374 + 0.998593i \(0.516890\pi\)
\(504\) −0.752616 1.09035i −0.0335242 0.0485682i
\(505\) 5.91170 + 2.24201i 0.263067 + 0.0997682i
\(506\) −23.9874 −1.06637
\(507\) 0.0606499 + 0.929723i 0.00269356 + 0.0412904i
\(508\) −14.2771 −0.633446
\(509\) −5.28161 2.00305i −0.234103 0.0887837i 0.234764 0.972052i \(-0.424568\pi\)
−0.468867 + 0.883269i \(0.655338\pi\)
\(510\) −0.237155 0.343578i −0.0105014 0.0152139i
\(511\) 1.29788 + 1.14982i 0.0574148 + 0.0508650i
\(512\) 17.3136 + 2.10225i 0.765158 + 0.0929070i
\(513\) −0.480199 1.94825i −0.0212013 0.0860172i
\(514\) −19.2798 36.7345i −0.850394 1.62029i
\(515\) 5.54183 + 10.5591i 0.244202 + 0.465288i
\(516\) −0.0865396 + 0.228186i −0.00380969 + 0.0100453i
\(517\) 25.2614 + 13.2582i 1.11099 + 0.583094i
\(518\) −5.58231 + 2.11709i −0.245272 + 0.0930196i
\(519\) 0.141211 1.16298i 0.00619847 0.0510490i
\(520\) −0.296179 3.17601i −0.0129883 0.139277i
\(521\) 5.24338 + 43.1831i 0.229717 + 1.89189i 0.415959 + 0.909383i \(0.363446\pi\)
−0.186243 + 0.982504i \(0.559631\pi\)
\(522\) 9.74503 + 18.5676i 0.426528 + 0.812682i
\(523\) −4.38425 36.1076i −0.191710 1.57887i −0.697736 0.716355i \(-0.745809\pi\)
0.506026 0.862518i \(-0.331114\pi\)
\(524\) −15.8376 + 8.31221i −0.691869 + 0.363121i
\(525\) −0.0715082 + 0.0807160i −0.00312087 + 0.00352274i
\(526\) 16.3927i 0.714757i
\(527\) 22.0075 + 24.8413i 0.958660 + 1.08210i
\(528\) 0.579608 1.10435i 0.0252242 0.0480607i
\(529\) −8.79211 −0.382266
\(530\) 7.58079 0.329289
\(531\) 6.62689 12.6265i 0.287583 0.547943i
\(532\) −1.87706 0.462653i −0.0813807 0.0200586i
\(533\) 33.5650 11.6714i 1.45386 0.505545i
\(534\) 0.458821 0.113089i 0.0198551 0.00489385i
\(535\) 0.473437 1.92081i 0.0204685 0.0830438i
\(536\) 5.59284 14.7471i 0.241574 0.636978i
\(537\) 0.0918821 + 0.756718i 0.00396501 + 0.0326548i
\(538\) −4.95972 20.1224i −0.213829 0.867537i
\(539\) 5.81634 23.5978i 0.250527 1.01643i
\(540\) 0.292711 + 0.202044i 0.0125963 + 0.00869459i
\(541\) −12.9920 + 1.57751i −0.558570 + 0.0678227i −0.394953 0.918701i \(-0.629239\pi\)
−0.163617 + 0.986524i \(0.552316\pi\)
\(542\) −14.0829 37.1336i −0.604914 1.59503i
\(543\) −0.415424 + 0.218031i −0.0178275 + 0.00935661i
\(544\) 7.29027 + 29.5778i 0.312568 + 1.26814i
\(545\) 1.97961 5.21979i 0.0847970 0.223591i
\(546\) 0.138000 0.0675964i 0.00590586 0.00289286i
\(547\) −7.21929 19.0357i −0.308674 0.813907i −0.996147 0.0876973i \(-0.972049\pi\)
0.687473 0.726210i \(-0.258720\pi\)
\(548\) −1.36825 + 0.944436i −0.0584488 + 0.0403443i
\(549\) −12.0793 + 10.7013i −0.515531 + 0.456721i
\(550\) 28.2108 + 6.95334i 1.20291 + 0.296491i
\(551\) −16.9442 6.42610i −0.721849 0.273761i
\(552\) −0.168525 + 0.321097i −0.00717288 + 0.0136668i
\(553\) −0.597927 0.226764i −0.0254265 0.00964298i
\(554\) 35.6276 + 40.2152i 1.51367 + 1.70858i
\(555\) −0.354951 + 0.314459i −0.0150668 + 0.0133480i
\(556\) −7.29919 + 10.5747i −0.309555 + 0.448467i
\(557\) −12.5398 8.65558i −0.531327 0.366749i 0.271990 0.962300i \(-0.412318\pi\)
−0.803317 + 0.595552i \(0.796934\pi\)
\(558\) −32.4215 17.0161i −1.37251 0.720349i
\(559\) −8.52500 4.78160i −0.360569 0.202240i
\(560\) −0.948960 + 0.498053i −0.0401009 + 0.0210466i
\(561\) 1.22903 + 0.149231i 0.0518895 + 0.00630053i
\(562\) −48.5802 + 11.9739i −2.04923 + 0.505090i
\(563\) −20.2500 + 29.3372i −0.853436 + 1.23642i 0.116532 + 0.993187i \(0.462822\pi\)
−0.969969 + 0.243229i \(0.921793\pi\)
\(564\) −0.599322 + 0.413682i −0.0252360 + 0.0174192i
\(565\) −5.22462 + 5.89738i −0.219801 + 0.248105i
\(566\) 31.4651 + 3.82055i 1.32258 + 0.160590i
\(567\) −0.706163 + 2.86502i −0.0296561 + 0.120319i
\(568\) −1.52565 0.800724i −0.0640149 0.0335976i
\(569\) 5.24552 43.2007i 0.219903 1.81107i −0.296839 0.954927i \(-0.595933\pi\)
0.516743 0.856141i \(-0.327144\pi\)
\(570\) −0.395147 + 0.0479796i −0.0165509 + 0.00200964i
\(571\) −9.07445 + 13.1466i −0.379754 + 0.550168i −0.965526 0.260308i \(-0.916176\pi\)
0.585772 + 0.810476i \(0.300791\pi\)
\(572\) −12.8871 9.43562i −0.538836 0.394523i
\(573\) 1.01697 + 1.47333i 0.0424845 + 0.0615494i
\(574\) −3.88659 4.38706i −0.162223 0.183112i
\(575\) −16.7094 4.11850i −0.696830 0.171753i
\(576\) −2.30274 3.33610i −0.0959476 0.139004i
\(577\) 9.17968i 0.382155i 0.981575 + 0.191078i \(0.0611982\pi\)
−0.981575 + 0.191078i \(0.938802\pi\)
\(578\) −10.3838 + 7.16741i −0.431908 + 0.298125i
\(579\) −1.25327 + 0.152174i −0.0520839 + 0.00632414i
\(580\) 3.00345 1.13906i 0.124711 0.0472968i
\(581\) 0.102887 0.847355i 0.00426849 0.0351542i
\(582\) 0.218516 + 0.576179i 0.00905777 + 0.0238834i
\(583\) −14.9078 + 16.8274i −0.617419 + 0.696922i
\(584\) −5.28663 4.68355i −0.218762 0.193807i
\(585\) −4.86559 + 5.19333i −0.201167 + 0.214718i
\(586\) 14.2263 12.6034i 0.587681 0.520640i
\(587\) 22.2638i 0.918924i 0.888197 + 0.459462i \(0.151958\pi\)
−0.888197 + 0.459462i \(0.848042\pi\)
\(588\) 0.464361 + 0.411388i 0.0191499 + 0.0169654i
\(589\) 30.7237 7.57270i 1.26595 0.312028i
\(590\) −4.66011 3.21664i −0.191854 0.132427i
\(591\) 1.19593 0.453558i 0.0491942 0.0186569i
\(592\) 46.3207 17.5671i 1.90377 0.722005i
\(593\) 9.13330 + 6.30426i 0.375060 + 0.258885i 0.740650 0.671891i \(-0.234518\pi\)
−0.365591 + 0.930776i \(0.619133\pi\)
\(594\) −2.65475 + 0.654338i −0.108926 + 0.0268478i
\(595\) −0.796303 0.705463i −0.0326452 0.0289212i
\(596\) 0.0887106i 0.00363373i
\(597\) 1.17029 1.03679i 0.0478969 0.0424330i
\(598\) 19.7869 + 14.4875i 0.809145 + 0.592437i
\(599\) 20.9579 + 18.5671i 0.856315 + 0.758629i 0.972081 0.234647i \(-0.0753935\pi\)
−0.115765 + 0.993277i \(0.536932\pi\)
\(600\) 0.291273 0.328780i 0.0118912 0.0134224i
\(601\) 9.65153 + 25.4490i 0.393694 + 1.03809i 0.974568 + 0.224092i \(0.0719418\pi\)
−0.580874 + 0.813994i \(0.697289\pi\)
\(602\) −0.194318 + 1.60035i −0.00791981 + 0.0652255i
\(603\) −32.9012 + 12.4778i −1.33984 + 0.508134i
\(604\) 19.7824 2.40201i 0.804933 0.0977365i
\(605\) 0.779834 0.538280i 0.0317048 0.0218842i
\(606\) 1.24067i 0.0503986i
\(607\) −21.2694 30.8140i −0.863298 1.25070i −0.966661 0.256060i \(-0.917576\pi\)
0.103363 0.994644i \(-0.467040\pi\)
\(608\) 28.2013 + 6.95100i 1.14371 + 0.281900i
\(609\) −0.0607739 0.0685995i −0.00246268 0.00277979i
\(610\) 3.64024 + 5.27379i 0.147389 + 0.213530i
\(611\) −12.8303 26.1934i −0.519057 1.05967i
\(612\) 10.4672 15.1643i 0.423110 0.612980i
\(613\) −6.70832 + 0.814538i −0.270947 + 0.0328989i −0.254882 0.966972i \(-0.582037\pi\)
−0.0160643 + 0.999871i \(0.505114\pi\)
\(614\) −6.37299 + 52.4863i −0.257193 + 2.11817i
\(615\) −0.412210 0.216344i −0.0166219 0.00872384i
\(616\) 0.373371 1.51483i 0.0150436 0.0610341i
\(617\) −44.1267 5.35795i −1.77648 0.215703i −0.834413 0.551140i \(-0.814193\pi\)
−0.942063 + 0.335437i \(0.891116\pi\)
\(618\) 1.55172 1.75153i 0.0624195 0.0704571i
\(619\) −5.52087 + 3.81078i −0.221902 + 0.153168i −0.673830 0.738886i \(-0.735352\pi\)
0.451927 + 0.892055i \(0.350737\pi\)
\(620\) −3.18622 + 4.61603i −0.127962 + 0.185384i
\(621\) 1.57242 0.387568i 0.0630992 0.0155526i
\(622\) 15.7457 + 1.91187i 0.631343 + 0.0766589i
\(623\) 1.06626 0.559618i 0.0427189 0.0224206i
\(624\) −1.14509 + 0.560900i −0.0458404 + 0.0224540i
\(625\) 16.5345 + 8.67799i 0.661381 + 0.347120i
\(626\) −28.1134 19.4053i −1.12364 0.775591i
\(627\) 0.670564 0.971480i 0.0267798 0.0387972i
\(628\) 5.78140 5.12187i 0.230703 0.204385i
\(629\) 32.6099 + 36.8090i 1.30024 + 1.46767i
\(630\) 1.09746 + 0.416212i 0.0437239 + 0.0165823i
\(631\) −13.1080 + 24.9751i −0.521820 + 0.994244i 0.471826 + 0.881692i \(0.343595\pi\)
−0.993646 + 0.112553i \(0.964097\pi\)
\(632\) 2.43553 + 0.923675i 0.0968802 + 0.0367418i
\(633\) 0.822609 + 0.202755i 0.0326958 + 0.00805878i
\(634\) −29.7683 + 26.3724i −1.18225 + 1.04738i
\(635\) −6.16499 + 4.25538i −0.244650 + 0.168870i
\(636\) −0.203491 0.536560i −0.00806893 0.0212760i
\(637\) −19.0500 + 15.9526i −0.754787 + 0.632066i
\(638\) −8.75645 + 23.0889i −0.346671 + 0.914097i
\(639\) 0.919951 + 3.73239i 0.0363927 + 0.147651i
\(640\) 5.83330 3.06155i 0.230581 0.121018i
\(641\) 7.65645 + 20.1884i 0.302411 + 0.797393i 0.996958 + 0.0779453i \(0.0248360\pi\)
−0.694546 + 0.719448i \(0.744395\pi\)
\(642\) −0.385367 + 0.0467921i −0.0152092 + 0.00184674i
\(643\) −7.88819 5.44482i −0.311080 0.214723i 0.402287 0.915513i \(-0.368215\pi\)
−0.713367 + 0.700791i \(0.752831\pi\)
\(644\) 0.373406 1.51497i 0.0147143 0.0596981i
\(645\) 0.0306437 + 0.124326i 0.00120659 + 0.00489534i
\(646\) 4.97555 + 40.9774i 0.195761 + 1.61223i
\(647\) −11.8038 + 31.1241i −0.464056 + 1.22361i 0.475041 + 0.879963i \(0.342433\pi\)
−0.939097 + 0.343651i \(0.888336\pi\)
\(648\) 2.87641 11.6700i 0.112996 0.458443i
\(649\) 16.3043 4.01866i 0.640001 0.157746i
\(650\) −19.0711 22.7739i −0.748030 0.893267i
\(651\) 0.155379 + 0.0382975i 0.00608979 + 0.00150100i
\(652\) −8.94683 + 17.0468i −0.350385 + 0.667602i
\(653\) 31.3330 1.22616 0.613078 0.790022i \(-0.289931\pi\)
0.613078 + 0.790022i \(0.289931\pi\)
\(654\) −1.09546 −0.0428358
\(655\) −4.36130 + 8.30977i −0.170410 + 0.324689i
\(656\) 32.2501 + 36.4028i 1.25915 + 1.42129i
\(657\) 15.7575i 0.614757i
\(658\) −3.18997 + 3.60073i −0.124358 + 0.140371i
\(659\) −3.29907 + 1.73148i −0.128513 + 0.0674490i −0.527755 0.849397i \(-0.676966\pi\)
0.399241 + 0.916846i \(0.369274\pi\)
\(660\) 0.0252208 + 0.207712i 0.000981720 + 0.00808519i
\(661\) 7.00117 + 13.3396i 0.272314 + 0.518851i 0.982757 0.184904i \(-0.0591975\pi\)
−0.710443 + 0.703755i \(0.751505\pi\)
\(662\) 4.69987 + 38.7069i 0.182666 + 1.50439i
\(663\) −0.923674 0.865382i −0.0358725 0.0336086i
\(664\) −0.419090 + 3.45152i −0.0162639 + 0.133945i
\(665\) −0.948425 + 0.359690i −0.0367783 + 0.0139482i
\(666\) −48.0410 25.2139i −1.86155 0.977017i
\(667\) 5.18649 13.6756i 0.200822 0.529523i
\(668\) −7.24215 13.7988i −0.280207 0.533890i
\(669\) 0.539298 + 1.02755i 0.0208505 + 0.0397273i
\(670\) 3.34389 + 13.5667i 0.129186 + 0.524128i
\(671\) −18.8651 2.29064i −0.728279 0.0884291i
\(672\) 0.109950 + 0.0974070i 0.00424140 + 0.00375755i
\(673\) 2.19947 + 3.18648i 0.0847832 + 0.122830i 0.863081 0.505066i \(-0.168532\pi\)
−0.778298 + 0.627896i \(0.783916\pi\)
\(674\) −8.14136 3.08761i −0.313593 0.118930i
\(675\) −1.96162 −0.0755027
\(676\) 4.93159 + 15.5666i 0.189677 + 0.598715i
\(677\) 7.14945 0.274776 0.137388 0.990517i \(-0.456129\pi\)
0.137388 + 0.990517i \(0.456129\pi\)
\(678\) 1.44558 + 0.548236i 0.0555172 + 0.0210549i
\(679\) 0.892036 + 1.29234i 0.0342332 + 0.0495954i
\(680\) 3.24357 + 2.87355i 0.124385 + 0.110196i
\(681\) 0.401284 + 0.0487247i 0.0153772 + 0.00186713i
\(682\) −10.3188 41.8652i −0.395129 1.60310i
\(683\) −20.0208 38.1464i −0.766075 1.45963i −0.884435 0.466663i \(-0.845456\pi\)
0.118361 0.992971i \(-0.462236\pi\)
\(684\) −8.16449 15.5561i −0.312177 0.594804i
\(685\) −0.309328 + 0.815630i −0.0118188 + 0.0311636i
\(686\) 7.31454 + 3.83897i 0.279271 + 0.146573i
\(687\) −0.562160 + 0.213199i −0.0214477 + 0.00813405i
\(688\) 1.61241 13.2794i 0.0614725 0.506271i
\(689\) 22.4603 4.87695i 0.855671 0.185797i
\(690\) −0.0387242 0.318922i −0.00147420 0.0121412i
\(691\) 17.1746 + 32.7235i 0.653354 + 1.24486i 0.956448 + 0.291902i \(0.0942880\pi\)
−0.303094 + 0.952961i \(0.598020\pi\)
\(692\) −2.47488 20.3825i −0.0940809 0.774826i
\(693\) −3.08207 + 1.61759i −0.117078 + 0.0614473i
\(694\) −3.72488 + 4.20452i −0.141394 + 0.159601i
\(695\) 6.74181i 0.255731i
\(696\) 0.247549 + 0.279426i 0.00938334 + 0.0105916i
\(697\) −22.4352 + 42.7467i −0.849795 + 1.61915i
\(698\) 52.7711 1.99742
\(699\) 0.522528 0.0197638
\(700\) −0.878299 + 1.67346i −0.0331966 + 0.0632508i
\(701\) −18.8590 4.64832i −0.712293 0.175565i −0.133512 0.991047i \(-0.542625\pi\)
−0.578782 + 0.815483i \(0.696472\pi\)
\(702\) 2.58506 + 1.06361i 0.0975667 + 0.0401435i
\(703\) 45.5252 11.2210i 1.71702 0.423207i
\(704\) 1.14239 4.63484i 0.0430553 0.174682i
\(705\) −0.135492 + 0.357263i −0.00510292 + 0.0134553i
\(706\) −0.0162488 0.133821i −0.000611531 0.00503641i
\(707\) −0.756611 3.06969i −0.0284553 0.115448i
\(708\) −0.102579 + 0.416181i −0.00385517 + 0.0156411i
\(709\) −42.2805 29.1841i −1.58788 1.09603i −0.943523 0.331308i \(-0.892510\pi\)
−0.644356 0.764725i \(-0.722875\pi\)
\(710\) 1.51532 0.183993i 0.0568690 0.00690514i
\(711\) −2.06075 5.43374i −0.0772840 0.203781i
\(712\) −4.34319 + 2.27948i −0.162768 + 0.0854273i
\(713\) 6.11191 + 24.7970i 0.228893 + 0.928654i
\(714\) −0.0740264 + 0.195192i −0.00277037 + 0.00730486i
\(715\) −8.37708 0.233313i −0.313285 0.00872542i
\(716\) 4.73743 + 12.4916i 0.177046 + 0.466832i
\(717\) −0.908136 + 0.626841i −0.0339150 + 0.0234098i
\(718\) 41.4498 36.7213i 1.54689 1.37043i
\(719\) −42.9134 10.5772i −1.60040 0.394463i −0.664656 0.747149i \(-0.731422\pi\)
−0.935742 + 0.352686i \(0.885268\pi\)
\(720\) −9.10648 3.45363i −0.339378 0.128709i
\(721\) 2.77116 5.28001i 0.103203 0.196638i
\(722\) 4.74293 + 1.79876i 0.176514 + 0.0669428i
\(723\) −1.03163 1.16447i −0.0383666 0.0433069i
\(724\) −6.15472 + 5.45261i −0.228739 + 0.202645i
\(725\) −10.0639 + 14.5800i −0.373763 + 0.541489i
\(726\) −0.153026 0.105626i −0.00567931 0.00392015i
\(727\) −18.2408 9.57350i −0.676513 0.355062i 0.0912202 0.995831i \(-0.470923\pi\)
−0.767734 + 0.640769i \(0.778616\pi\)
\(728\) −1.22289 + 1.02405i −0.0453231 + 0.0379540i
\(729\) −23.6621 + 12.4188i −0.876373 + 0.459956i
\(730\) 6.21151 + 0.754214i 0.229898 + 0.0279147i
\(731\) 12.8928 3.17780i 0.476858 0.117535i
\(732\) 0.275559 0.399216i 0.0101850 0.0147554i
\(733\) 5.84606 4.03524i 0.215929 0.149045i −0.455191 0.890394i \(-0.650429\pi\)
0.671120 + 0.741349i \(0.265814\pi\)
\(734\) 19.1244 21.5870i 0.705896 0.796792i
\(735\) 0.323132 + 0.0392353i 0.0119189 + 0.00144721i
\(736\) −5.61013 + 22.7612i −0.206792 + 0.838989i
\(737\) −36.6905 19.2567i −1.35151 0.709329i
\(738\) 6.42014 52.8746i 0.236329 1.94634i
\(739\) 11.1160 1.34973i 0.408909 0.0496505i 0.0865020 0.996252i \(-0.472431\pi\)
0.322407 + 0.946601i \(0.395508\pi\)
\(740\) −4.72122 + 6.83987i −0.173556 + 0.251439i
\(741\) −1.13987 + 0.396364i −0.0418743 + 0.0145608i
\(742\) −2.15338 3.11971i −0.0790531 0.114528i
\(743\) −17.4377 19.6832i −0.639729 0.722105i 0.335810 0.941930i \(-0.390990\pi\)
−0.975539 + 0.219825i \(0.929451\pi\)
\(744\) −0.632904 0.155997i −0.0232034 0.00571912i
\(745\) 0.0264407 + 0.0383060i 0.000968712 + 0.00140342i
\(746\) 0.739491i 0.0270747i
\(747\) 6.38388 4.40648i 0.233574 0.161225i
\(748\) 21.5401 2.61544i 0.787583 0.0956299i
\(749\) −0.924951 + 0.350788i −0.0337970 + 0.0128175i
\(750\) −0.0982725 + 0.809347i −0.00358840 + 0.0295532i
\(751\) −6.03822 15.9215i −0.220338 0.580983i 0.778578 0.627548i \(-0.215942\pi\)
−0.998915 + 0.0465658i \(0.985172\pi\)
\(752\) 26.4697 29.8781i 0.965250 1.08954i
\(753\) −0.462354 0.409610i −0.0168491 0.0149270i
\(754\) 21.1678 13.7571i 0.770887 0.501003i
\(755\) 7.82625 6.93345i 0.284826 0.252334i
\(756\) 0.177851i 0.00646839i
\(757\) 3.27955 + 2.90543i 0.119197 + 0.105600i 0.720616 0.693335i \(-0.243859\pi\)
−0.601419 + 0.798934i \(0.705398\pi\)
\(758\) 28.8648 7.11453i 1.04842 0.258411i
\(759\) 0.784079 + 0.541211i 0.0284603 + 0.0196447i
\(760\) 3.86321 1.46512i 0.140133 0.0531456i
\(761\) 23.5689 8.93852i 0.854373 0.324021i 0.111755 0.993736i \(-0.464353\pi\)
0.742618 + 0.669715i \(0.233584\pi\)
\(762\) 1.20975 + 0.835027i 0.0438245 + 0.0302499i
\(763\) −2.71041 + 0.668057i −0.0981236 + 0.0241853i
\(764\) 23.4852 + 20.8061i 0.849665 + 0.752737i
\(765\) 9.66787i 0.349542i
\(766\) 4.57333 4.05161i 0.165241 0.146391i