Properties

Label 169.2.h.a.25.2
Level $169$
Weight $2$
Character 169.25
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 25.2
Character \(\chi\) \(=\) 169.25
Dual form 169.2.h.a.142.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.16507 - 0.821103i) q^{2} +(1.73033 + 2.50681i) q^{3} +(2.51629 + 2.22924i) q^{4} +(3.34407 + 0.406044i) q^{5} +(-1.68793 - 6.84821i) q^{6} +(-0.858950 - 1.63659i) q^{7} +(-1.46534 - 2.79198i) q^{8} +(-2.22627 + 5.87018i) q^{9} +O(q^{10})\) \(q+(-2.16507 - 0.821103i) q^{2} +(1.73033 + 2.50681i) q^{3} +(2.51629 + 2.22924i) q^{4} +(3.34407 + 0.406044i) q^{5} +(-1.68793 - 6.84821i) q^{6} +(-0.858950 - 1.63659i) q^{7} +(-1.46534 - 2.79198i) q^{8} +(-2.22627 + 5.87018i) q^{9} +(-6.90674 - 3.62494i) q^{10} +(-1.93228 + 0.732816i) q^{11} +(-1.23428 + 10.1652i) q^{12} +(2.73847 - 2.34537i) q^{13} +(0.515876 + 4.24862i) q^{14} +(4.76847 + 9.08555i) q^{15} +(0.0696450 + 0.573578i) q^{16} +(-3.92016 + 2.05746i) q^{17} +(9.64004 - 10.8814i) q^{18} -4.57866i q^{19} +(7.50950 + 8.47647i) q^{20} +(2.61637 - 4.98507i) q^{21} +4.78523 q^{22} +1.39775 q^{23} +(4.46345 - 8.50439i) q^{24} +(6.16322 + 1.51910i) q^{25} +(-7.85477 + 2.82932i) q^{26} +(-9.69515 + 2.38964i) q^{27} +(1.48699 - 6.03296i) q^{28} +(-0.913692 + 2.40921i) q^{29} +(-2.86389 - 23.5863i) q^{30} +(2.22313 + 9.01957i) q^{31} +(-1.18902 + 4.82404i) q^{32} +(-5.18051 - 3.57585i) q^{33} +(10.1768 - 1.23569i) q^{34} +(-2.20786 - 5.82165i) q^{35} +(-18.6880 + 9.80822i) q^{36} +(-2.00301 - 8.12654i) q^{37} +(-3.75955 + 9.91313i) q^{38} +(10.6179 + 2.80658i) q^{39} +(-3.76655 - 9.93157i) q^{40} +(0.588837 - 0.406445i) q^{41} +(-9.75787 + 8.64472i) q^{42} +(-6.47343 - 1.59556i) q^{43} +(-6.49580 - 2.46353i) q^{44} +(-9.82834 + 18.7263i) q^{45} +(-3.02623 - 1.14770i) q^{46} +(-7.62554 - 8.60746i) q^{47} +(-1.31735 + 1.16707i) q^{48} +(2.03581 - 2.94939i) q^{49} +(-12.0965 - 8.34959i) q^{50} +(-11.9408 - 6.26703i) q^{51} +(12.1192 + 0.203076i) q^{52} +(7.19974 - 3.77871i) q^{53} +(22.9528 + 2.78698i) q^{54} +(-6.75923 + 1.66600i) q^{55} +(-3.31067 + 4.79634i) q^{56} +(11.4779 - 7.92260i) q^{57} +(3.95641 - 4.46587i) q^{58} +(1.45491 + 0.176659i) q^{59} +(-8.25504 + 33.4920i) q^{60} +(6.10284 + 3.20302i) q^{61} +(2.59277 - 21.3534i) q^{62} +(11.5193 - 1.39870i) q^{63} +(7.19178 - 10.4191i) q^{64} +(10.1100 - 6.73115i) q^{65} +(8.28003 + 11.9957i) q^{66} +(-7.61458 - 8.59508i) q^{67} +(-14.4508 - 3.56181i) q^{68} +(2.41857 + 3.50390i) q^{69} +14.4172i q^{70} +(-8.04194 + 5.55095i) q^{71} +(19.6517 - 2.38615i) q^{72} +(0.244764 - 0.0928266i) q^{73} +(-2.33606 + 19.2392i) q^{74} +(6.85631 + 18.0786i) q^{75} +(10.2070 - 11.5213i) q^{76} +(2.85905 + 2.53290i) q^{77} +(-20.6839 - 14.7948i) q^{78} +(1.19014 - 1.05437i) q^{79} +1.94636i q^{80} +(-8.66837 - 7.67951i) q^{81} +(-1.60861 + 0.396486i) q^{82} +(3.10268 + 2.14162i) q^{83} +(17.6965 - 6.71139i) q^{84} +(-13.9447 + 5.28853i) q^{85} +(12.7053 + 8.76984i) q^{86} +(-7.62043 + 1.87827i) q^{87} +(4.87746 + 4.32105i) q^{88} +6.14905i q^{89} +(36.6553 - 32.4738i) q^{90} +(-6.19063 - 2.46721i) q^{91} +(3.51715 + 3.11592i) q^{92} +(-18.7637 + 21.1798i) q^{93} +(9.44223 + 24.8971i) q^{94} +(1.85914 - 15.3114i) q^{95} +(-14.1504 + 5.36652i) q^{96} +(7.57566 - 0.919851i) q^{97} +(-6.82942 + 4.71401i) q^{98} -12.9743i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.16507 0.821103i −1.53094 0.580607i −0.561830 0.827253i \(-0.689902\pi\)
−0.969106 + 0.246646i \(0.920672\pi\)
\(3\) 1.73033 + 2.50681i 0.999006 + 1.44731i 0.891454 + 0.453111i \(0.149686\pi\)
0.107552 + 0.994199i \(0.465699\pi\)
\(4\) 2.51629 + 2.22924i 1.25815 + 1.11462i
\(5\) 3.34407 + 0.406044i 1.49551 + 0.181588i 0.827038 0.562146i \(-0.190024\pi\)
0.668476 + 0.743734i \(0.266947\pi\)
\(6\) −1.68793 6.84821i −0.689095 2.79577i
\(7\) −0.858950 1.63659i −0.324653 0.618574i 0.667357 0.744738i \(-0.267426\pi\)
−0.992009 + 0.126164i \(0.959733\pi\)
\(8\) −1.46534 2.79198i −0.518077 0.987114i
\(9\) −2.22627 + 5.87018i −0.742089 + 1.95673i
\(10\) −6.90674 3.62494i −2.18410 1.14631i
\(11\) −1.93228 + 0.732816i −0.582604 + 0.220952i −0.628258 0.778005i \(-0.716232\pi\)
0.0456547 + 0.998957i \(0.485463\pi\)
\(12\) −1.23428 + 10.1652i −0.356306 + 2.93444i
\(13\) 2.73847 2.34537i 0.759516 0.650489i
\(14\) 0.515876 + 4.24862i 0.137874 + 1.13549i
\(15\) 4.76847 + 9.08555i 1.23121 + 2.34588i
\(16\) 0.0696450 + 0.573578i 0.0174112 + 0.143395i
\(17\) −3.92016 + 2.05746i −0.950778 + 0.499007i −0.867455 0.497516i \(-0.834246\pi\)
−0.0833228 + 0.996523i \(0.526553\pi\)
\(18\) 9.64004 10.8814i 2.27218 2.56476i
\(19\) 4.57866i 1.05042i −0.850973 0.525209i \(-0.823987\pi\)
0.850973 0.525209i \(-0.176013\pi\)
\(20\) 7.50950 + 8.47647i 1.67917 + 1.89540i
\(21\) 2.61637 4.98507i 0.570938 1.08783i
\(22\) 4.78523 1.02021
\(23\) 1.39775 0.291451 0.145726 0.989325i \(-0.453448\pi\)
0.145726 + 0.989325i \(0.453448\pi\)
\(24\) 4.46345 8.50439i 0.911097 1.73595i
\(25\) 6.16322 + 1.51910i 1.23264 + 0.303820i
\(26\) −7.85477 + 2.82932i −1.54045 + 0.554876i
\(27\) −9.69515 + 2.38964i −1.86583 + 0.459886i
\(28\) 1.48699 6.03296i 0.281015 1.14012i
\(29\) −0.913692 + 2.40921i −0.169668 + 0.447379i −0.992699 0.120618i \(-0.961512\pi\)
0.823031 + 0.567997i \(0.192282\pi\)
\(30\) −2.86389 23.5863i −0.522872 4.30624i
\(31\) 2.22313 + 9.01957i 0.399285 + 1.61996i 0.735047 + 0.678016i \(0.237160\pi\)
−0.335762 + 0.941947i \(0.608994\pi\)
\(32\) −1.18902 + 4.82404i −0.210191 + 0.852777i
\(33\) −5.18051 3.57585i −0.901811 0.622475i
\(34\) 10.1768 1.23569i 1.74531 0.211918i
\(35\) −2.20786 5.82165i −0.373197 0.984039i
\(36\) −18.6880 + 9.80822i −3.11467 + 1.63470i
\(37\) −2.00301 8.12654i −0.329293 1.33600i −0.869279 0.494321i \(-0.835417\pi\)
0.539986 0.841674i \(-0.318429\pi\)
\(38\) −3.75955 + 9.91313i −0.609880 + 1.60812i
\(39\) 10.6179 + 2.80658i 1.70022 + 0.449413i
\(40\) −3.76655 9.93157i −0.595543 1.57032i
\(41\) 0.588837 0.406445i 0.0919609 0.0634760i −0.521197 0.853436i \(-0.674514\pi\)
0.613158 + 0.789960i \(0.289899\pi\)
\(42\) −9.75787 + 8.64472i −1.50567 + 1.33391i
\(43\) −6.47343 1.59556i −0.987189 0.243320i −0.287510 0.957778i \(-0.592827\pi\)
−0.699679 + 0.714458i \(0.746674\pi\)
\(44\) −6.49580 2.46353i −0.979279 0.371392i
\(45\) −9.82834 + 18.7263i −1.46512 + 2.79156i
\(46\) −3.02623 1.14770i −0.446193 0.169219i
\(47\) −7.62554 8.60746i −1.11230 1.25553i −0.963803 0.266614i \(-0.914095\pi\)
−0.148497 0.988913i \(-0.547443\pi\)
\(48\) −1.31735 + 1.16707i −0.190142 + 0.168451i
\(49\) 2.03581 2.94939i 0.290830 0.421341i
\(50\) −12.0965 8.34959i −1.71070 1.18081i
\(51\) −11.9408 6.26703i −1.67205 0.877560i
\(52\) 12.1192 + 0.203076i 1.68063 + 0.0281616i
\(53\) 7.19974 3.77871i 0.988960 0.519046i 0.108973 0.994045i \(-0.465244\pi\)
0.879987 + 0.474999i \(0.157551\pi\)
\(54\) 22.9528 + 2.78698i 3.12348 + 0.379259i
\(55\) −6.75923 + 1.66600i −0.911414 + 0.224643i
\(56\) −3.31067 + 4.79634i −0.442408 + 0.640938i
\(57\) 11.4779 7.92260i 1.52028 1.04937i
\(58\) 3.95641 4.46587i 0.519503 0.586397i
\(59\) 1.45491 + 0.176659i 0.189414 + 0.0229990i 0.214694 0.976681i \(-0.431125\pi\)
−0.0252800 + 0.999680i \(0.508048\pi\)
\(60\) −8.25504 + 33.4920i −1.06572 + 4.32380i
\(61\) 6.10284 + 3.20302i 0.781388 + 0.410104i 0.807733 0.589549i \(-0.200694\pi\)
−0.0263445 + 0.999653i \(0.508387\pi\)
\(62\) 2.59277 21.3534i 0.329283 2.71189i
\(63\) 11.5193 1.39870i 1.45130 0.176220i
\(64\) 7.19178 10.4191i 0.898972 1.30239i
\(65\) 10.1100 6.73115i 1.25399 0.834896i
\(66\) 8.28003 + 11.9957i 1.01920 + 1.47657i
\(67\) −7.61458 8.59508i −0.930269 1.05006i −0.998626 0.0523958i \(-0.983314\pi\)
0.0683574 0.997661i \(-0.478224\pi\)
\(68\) −14.4508 3.56181i −1.75242 0.431933i
\(69\) 2.41857 + 3.50390i 0.291161 + 0.421820i
\(70\) 14.4172i 1.72318i
\(71\) −8.04194 + 5.55095i −0.954403 + 0.658777i −0.940020 0.341120i \(-0.889194\pi\)
−0.0143832 + 0.999897i \(0.504578\pi\)
\(72\) 19.6517 2.38615i 2.31597 0.281210i
\(73\) 0.244764 0.0928266i 0.0286474 0.0108645i −0.340240 0.940339i \(-0.610508\pi\)
0.368887 + 0.929474i \(0.379739\pi\)
\(74\) −2.33606 + 19.2392i −0.271562 + 2.23651i
\(75\) 6.85631 + 18.0786i 0.791698 + 2.08754i
\(76\) 10.2070 11.5213i 1.17082 1.32158i
\(77\) 2.85905 + 2.53290i 0.325819 + 0.288651i
\(78\) −20.6839 14.7948i −2.34199 1.67518i
\(79\) 1.19014 1.05437i 0.133901 0.118626i −0.593514 0.804824i \(-0.702260\pi\)
0.727415 + 0.686197i \(0.240721\pi\)
\(80\) 1.94636i 0.217610i
\(81\) −8.66837 7.67951i −0.963152 0.853278i
\(82\) −1.60861 + 0.396486i −0.177641 + 0.0437845i
\(83\) 3.10268 + 2.14162i 0.340563 + 0.235074i 0.726054 0.687638i \(-0.241352\pi\)
−0.385491 + 0.922712i \(0.625968\pi\)
\(84\) 17.6965 6.71139i 1.93085 0.732273i
\(85\) −13.9447 + 5.28853i −1.51251 + 0.573621i
\(86\) 12.7053 + 8.76984i 1.37005 + 0.945676i
\(87\) −7.62043 + 1.87827i −0.816996 + 0.201371i
\(88\) 4.87746 + 4.32105i 0.519939 + 0.460626i
\(89\) 6.14905i 0.651798i 0.945405 + 0.325899i \(0.105667\pi\)
−0.945405 + 0.325899i \(0.894333\pi\)
\(90\) 36.6553 32.4738i 3.86381 3.42303i
\(91\) −6.19063 2.46721i −0.648954 0.258634i
\(92\) 3.51715 + 3.11592i 0.366688 + 0.324858i
\(93\) −18.7637 + 21.1798i −1.94570 + 2.19624i
\(94\) 9.44223 + 24.8971i 0.973891 + 2.56794i
\(95\) 1.85914 15.3114i 0.190743 1.57091i
\(96\) −14.1504 + 5.36652i −1.44421 + 0.547718i
\(97\) 7.57566 0.919851i 0.769191 0.0933968i 0.273473 0.961880i \(-0.411828\pi\)
0.495719 + 0.868483i \(0.334905\pi\)
\(98\) −6.82942 + 4.71401i −0.689876 + 0.476187i
\(99\) 12.9743i 1.30396i
\(100\) 12.1220 + 17.5618i 1.21220 + 1.75618i
\(101\) 9.42729 + 2.32362i 0.938051 + 0.231209i 0.678567 0.734539i \(-0.262601\pi\)
0.259484 + 0.965747i \(0.416448\pi\)
\(102\) 20.7068 + 23.3732i 2.05028 + 2.31429i
\(103\) −3.12891 4.53301i −0.308300 0.446650i 0.637954 0.770075i \(-0.279781\pi\)
−0.946254 + 0.323425i \(0.895166\pi\)
\(104\) −10.5610 4.20898i −1.03559 0.412725i
\(105\) 10.7735 15.6081i 1.05138 1.52319i
\(106\) −18.6906 + 2.26945i −1.81540 + 0.220429i
\(107\) 0.516489 4.25367i 0.0499309 0.411218i −0.946217 0.323532i \(-0.895130\pi\)
0.996148 0.0876860i \(-0.0279472\pi\)
\(108\) −29.7229 15.5998i −2.86009 1.50109i
\(109\) 1.93414 7.84710i 0.185257 0.751616i −0.802635 0.596471i \(-0.796569\pi\)
0.987892 0.155146i \(-0.0495846\pi\)
\(110\) 16.0022 + 1.94301i 1.52575 + 0.185259i
\(111\) 16.9059 19.0828i 1.60463 1.81126i
\(112\) 0.878892 0.606655i 0.0830475 0.0573235i
\(113\) 7.09717 10.2820i 0.667646 0.967252i −0.332066 0.943256i \(-0.607746\pi\)
0.999712 0.0239957i \(-0.00763879\pi\)
\(114\) −31.3556 + 7.72847i −2.93672 + 0.723838i
\(115\) 4.67418 + 0.567548i 0.435869 + 0.0529241i
\(116\) −7.66983 + 4.02544i −0.712126 + 0.373752i
\(117\) 7.67119 + 21.2968i 0.709201 + 1.96889i
\(118\) −3.00494 1.57711i −0.276627 0.145185i
\(119\) 6.73444 + 4.64845i 0.617345 + 0.426122i
\(120\) 18.3792 26.6269i 1.67779 2.43069i
\(121\) −5.03694 + 4.46234i −0.457904 + 0.405667i
\(122\) −10.5831 11.9458i −0.958146 1.08152i
\(123\) 2.03776 + 0.772822i 0.183739 + 0.0696830i
\(124\) −14.5128 + 27.6518i −1.30329 + 2.48320i
\(125\) 4.24481 + 1.60984i 0.379667 + 0.143989i
\(126\) −26.0887 6.43028i −2.32416 0.572855i
\(127\) −8.48458 + 7.51668i −0.752884 + 0.666997i −0.949600 0.313463i \(-0.898511\pi\)
0.196716 + 0.980461i \(0.436972\pi\)
\(128\) −15.9480 + 11.0081i −1.40962 + 0.972989i
\(129\) −7.20140 18.9885i −0.634048 1.67185i
\(130\) −27.4157 + 6.27208i −2.40452 + 0.550097i
\(131\) −2.16429 + 5.70676i −0.189095 + 0.498602i −0.995716 0.0924671i \(-0.970525\pi\)
0.806621 + 0.591069i \(0.201294\pi\)
\(132\) −5.06426 20.5465i −0.440787 1.78834i
\(133\) −7.49341 + 3.93284i −0.649761 + 0.341021i
\(134\) 9.42865 + 24.8613i 0.814511 + 2.14769i
\(135\) −33.3916 + 4.05447i −2.87389 + 0.348953i
\(136\) 11.4888 + 7.93011i 0.985152 + 0.680002i
\(137\) −0.243891 + 0.989504i −0.0208370 + 0.0845390i −0.980440 0.196819i \(-0.936939\pi\)
0.959603 + 0.281358i \(0.0907849\pi\)
\(138\) −2.35931 9.57208i −0.200838 0.814830i
\(139\) 1.18734 + 9.77861i 0.100709 + 0.829411i 0.952291 + 0.305190i \(0.0987201\pi\)
−0.851583 + 0.524220i \(0.824357\pi\)
\(140\) 7.42224 19.5708i 0.627294 1.65404i
\(141\) 8.38261 34.0096i 0.705943 2.86412i
\(142\) 21.9693 5.41494i 1.84362 0.454411i
\(143\) −3.57276 + 6.53870i −0.298770 + 0.546794i
\(144\) −3.52206 0.868109i −0.293505 0.0723424i
\(145\) −4.03369 + 7.68556i −0.334980 + 0.638251i
\(146\) −0.606151 −0.0501654
\(147\) 10.9162 0.900352
\(148\) 13.0759 24.9140i 1.07483 2.04792i
\(149\) −4.50145 5.08109i −0.368773 0.416259i 0.534606 0.845101i \(-0.320460\pi\)
−0.903379 + 0.428843i \(0.858922\pi\)
\(150\) 44.7712i 3.65555i
\(151\) −0.747919 + 0.844227i −0.0608648 + 0.0687022i −0.778155 0.628073i \(-0.783844\pi\)
0.717290 + 0.696775i \(0.245382\pi\)
\(152\) −12.7835 + 6.70932i −1.03688 + 0.544197i
\(153\) −3.35033 27.5925i −0.270858 2.23072i
\(154\) −4.11027 7.83147i −0.331215 0.631078i
\(155\) 3.77195 + 31.0648i 0.302970 + 2.49518i
\(156\) 20.4611 + 30.7320i 1.63820 + 2.46053i
\(157\) −1.62352 + 13.3709i −0.129571 + 1.06712i 0.772345 + 0.635204i \(0.219084\pi\)
−0.901916 + 0.431912i \(0.857839\pi\)
\(158\) −3.44248 + 1.30556i −0.273869 + 0.103865i
\(159\) 21.9304 + 11.5100i 1.73920 + 0.912801i
\(160\) −5.93493 + 15.6491i −0.469197 + 1.23717i
\(161\) −1.20060 2.28755i −0.0946204 0.180284i
\(162\) 12.4620 + 23.7443i 0.979104 + 1.86553i
\(163\) 3.11100 + 12.6218i 0.243672 + 0.988617i 0.957532 + 0.288328i \(0.0930993\pi\)
−0.713860 + 0.700289i \(0.753055\pi\)
\(164\) 2.38775 + 0.289925i 0.186452 + 0.0226394i
\(165\) −15.8720 14.0614i −1.23564 1.09468i
\(166\) −4.95902 7.18438i −0.384894 0.557616i
\(167\) −13.8833 5.26524i −1.07432 0.407437i −0.246914 0.969037i \(-0.579417\pi\)
−0.827409 + 0.561600i \(0.810186\pi\)
\(168\) −17.7521 −1.36960
\(169\) 1.99847 12.8455i 0.153728 0.988113i
\(170\) 34.5337 2.64861
\(171\) 26.8776 + 10.1933i 2.05538 + 0.779503i
\(172\) −12.7322 18.4457i −0.970819 1.40647i
\(173\) −0.277251 0.245623i −0.0210790 0.0186744i 0.652517 0.757774i \(-0.273713\pi\)
−0.673596 + 0.739099i \(0.735251\pi\)
\(174\) 18.0410 + 2.19057i 1.36769 + 0.166067i
\(175\) −2.80776 11.3915i −0.212246 0.861118i
\(176\) −0.554901 1.05727i −0.0418272 0.0796951i
\(177\) 2.07463 + 3.95288i 0.155939 + 0.297117i
\(178\) 5.04900 13.3131i 0.378438 0.997860i
\(179\) −7.99509 4.19615i −0.597581 0.313635i 0.138675 0.990338i \(-0.455716\pi\)
−0.736256 + 0.676703i \(0.763408\pi\)
\(180\) −66.4766 + 25.2112i −4.95487 + 1.87913i
\(181\) −0.683663 + 5.63047i −0.0508163 + 0.418510i 0.944996 + 0.327083i \(0.106066\pi\)
−0.995812 + 0.0914265i \(0.970857\pi\)
\(182\) 11.3773 + 10.4248i 0.843342 + 0.772739i
\(183\) 2.53055 + 20.8410i 0.187064 + 1.54061i
\(184\) −2.04818 3.90249i −0.150994 0.287695i
\(185\) −3.39848 27.9890i −0.249862 2.05779i
\(186\) 58.0154 30.4488i 4.25390 2.23262i
\(187\) 6.06709 6.84833i 0.443670 0.500800i
\(188\) 38.6581i 2.81943i
\(189\) 12.2385 + 13.8144i 0.890221 + 1.00485i
\(190\) −16.5974 + 31.6236i −1.20410 + 2.29422i
\(191\) 13.3904 0.968892 0.484446 0.874821i \(-0.339021\pi\)
0.484446 + 0.874821i \(0.339021\pi\)
\(192\) 38.5629 2.78304
\(193\) −9.10029 + 17.3392i −0.655053 + 1.24810i 0.300640 + 0.953738i \(0.402800\pi\)
−0.955694 + 0.294362i \(0.904893\pi\)
\(194\) −17.1571 4.22885i −1.23181 0.303614i
\(195\) 34.3673 + 13.6967i 2.46109 + 0.980843i
\(196\) 11.6976 2.88320i 0.835543 0.205943i
\(197\) 0.959595 3.89323i 0.0683683 0.277381i −0.926801 0.375552i \(-0.877453\pi\)
0.995170 + 0.0981711i \(0.0312992\pi\)
\(198\) −10.6532 + 28.0902i −0.757090 + 1.99628i
\(199\) 2.03290 + 16.7424i 0.144108 + 1.18684i 0.867871 + 0.496789i \(0.165488\pi\)
−0.723763 + 0.690049i \(0.757589\pi\)
\(200\) −4.78995 19.4336i −0.338701 1.37416i
\(201\) 8.37055 33.9607i 0.590413 2.39540i
\(202\) −18.5028 12.7716i −1.30185 0.898605i
\(203\) 4.72771 0.574048i 0.331820 0.0402903i
\(204\) −16.0759 42.3887i −1.12554 2.96780i
\(205\) 2.13415 1.12009i 0.149055 0.0782302i
\(206\) 3.05224 + 12.3834i 0.212660 + 0.862794i
\(207\) −3.11177 + 8.20505i −0.216283 + 0.570290i
\(208\) 1.53597 + 1.40738i 0.106501 + 0.0975846i
\(209\) 3.35532 + 8.84725i 0.232092 + 0.611977i
\(210\) −36.1411 + 24.9464i −2.49398 + 1.72147i
\(211\) 5.00731 4.43609i 0.344717 0.305393i −0.472944 0.881093i \(-0.656809\pi\)
0.817661 + 0.575700i \(0.195270\pi\)
\(212\) 26.5403 + 6.54160i 1.82280 + 0.449279i
\(213\) −27.8304 10.5547i −1.90691 0.723195i
\(214\) −4.61093 + 8.78540i −0.315197 + 0.600558i
\(215\) −20.9997 7.96415i −1.43217 0.543150i
\(216\) 20.8785 + 23.5670i 1.42061 + 1.60353i
\(217\) 12.8518 11.3857i 0.872438 0.772913i
\(218\) −10.6308 + 15.4014i −0.720010 + 1.04311i
\(219\) 0.656221 + 0.452957i 0.0443433 + 0.0306080i
\(220\) −20.7221 10.8758i −1.39709 0.733247i
\(221\) −5.90974 + 14.8285i −0.397532 + 0.997474i
\(222\) −52.2713 + 27.4341i −3.50822 + 1.84126i
\(223\) 16.2096 + 1.96820i 1.08548 + 0.131801i 0.643665 0.765307i \(-0.277413\pi\)
0.441811 + 0.897108i \(0.354336\pi\)
\(224\) 8.91629 2.19767i 0.595745 0.146838i
\(225\) −22.6384 + 32.7973i −1.50922 + 2.18649i
\(226\) −23.8085 + 16.4338i −1.58372 + 1.09316i
\(227\) −8.25925 + 9.32277i −0.548186 + 0.618774i −0.955671 0.294438i \(-0.904867\pi\)
0.407485 + 0.913212i \(0.366406\pi\)
\(228\) 46.5431 + 5.65135i 3.08239 + 0.374270i
\(229\) −3.55544 + 14.4250i −0.234950 + 0.953231i 0.728436 + 0.685114i \(0.240248\pi\)
−0.963386 + 0.268117i \(0.913599\pi\)
\(230\) −9.65390 5.06676i −0.636559 0.334092i
\(231\) −1.40241 + 11.5499i −0.0922716 + 0.759925i
\(232\) 8.06533 0.979309i 0.529515 0.0642948i
\(233\) −0.359362 + 0.520626i −0.0235426 + 0.0341073i −0.834578 0.550889i \(-0.814289\pi\)
0.811036 + 0.584996i \(0.198904\pi\)
\(234\) 0.878174 52.4078i 0.0574080 3.42600i
\(235\) −22.0054 31.8803i −1.43547 2.07964i
\(236\) 3.26718 + 3.68788i 0.212675 + 0.240061i
\(237\) 4.70245 + 1.15905i 0.305457 + 0.0752884i
\(238\) −10.7637 15.5939i −0.697705 1.01080i
\(239\) 0.277805i 0.0179697i 0.999960 + 0.00898487i \(0.00286001\pi\)
−0.999960 + 0.00898487i \(0.997140\pi\)
\(240\) −4.87917 + 3.36785i −0.314949 + 0.217394i
\(241\) 13.0651 1.58639i 0.841599 0.102189i 0.311628 0.950204i \(-0.399126\pi\)
0.529971 + 0.848016i \(0.322203\pi\)
\(242\) 14.5694 5.52543i 0.936554 0.355188i
\(243\) 0.641179 5.28058i 0.0411316 0.338749i
\(244\) 8.21624 + 21.6644i 0.525991 + 1.38692i
\(245\) 8.00548 9.03632i 0.511451 0.577309i
\(246\) −3.77733 3.34643i −0.240834 0.213360i
\(247\) −10.7387 12.5385i −0.683285 0.797809i
\(248\) 21.9248 19.4237i 1.39223 1.23341i
\(249\) 11.4835i 0.727740i
\(250\) −7.86846 6.97085i −0.497645 0.440875i
\(251\) −3.79803 + 0.936131i −0.239730 + 0.0590881i −0.357350 0.933971i \(-0.616320\pi\)
0.117620 + 0.993059i \(0.462473\pi\)
\(252\) 32.1041 + 22.1599i 2.02237 + 1.39594i
\(253\) −2.70084 + 1.02429i −0.169800 + 0.0643968i
\(254\) 24.5417 9.30742i 1.53988 0.584000i
\(255\) −37.3863 25.8059i −2.34122 1.61603i
\(256\) 18.9828 4.67884i 1.18643 0.292428i
\(257\) −6.01646 5.33012i −0.375296 0.332484i 0.454298 0.890850i \(-0.349890\pi\)
−0.829595 + 0.558366i \(0.811428\pi\)
\(258\) 47.0246i 2.92762i
\(259\) −11.5793 + 10.2584i −0.719506 + 0.637426i
\(260\) 40.4450 + 5.60003i 2.50829 + 0.347299i
\(261\) −12.1084 10.7271i −0.749489 0.663990i
\(262\) 9.37167 10.5784i 0.578984 0.653538i
\(263\) −0.542947 1.43163i −0.0334796 0.0882784i 0.917234 0.398349i \(-0.130417\pi\)
−0.950714 + 0.310070i \(0.899647\pi\)
\(264\) −2.39247 + 19.7037i −0.147246 + 1.21268i
\(265\) 25.6107 9.71287i 1.57326 0.596657i
\(266\) 19.4530 2.36202i 1.19274 0.144825i
\(267\) −15.4145 + 10.6399i −0.943354 + 0.651150i
\(268\) 38.6025i 2.35802i
\(269\) −16.4421 23.8204i −1.00249 1.45236i −0.888501 0.458875i \(-0.848253\pi\)
−0.113989 0.993482i \(-0.536363\pi\)
\(270\) 75.6242 + 18.6397i 4.60234 + 1.13437i
\(271\) 8.66506 + 9.78083i 0.526365 + 0.594143i 0.950217 0.311588i \(-0.100861\pi\)
−0.423852 + 0.905731i \(0.639322\pi\)
\(272\) −1.45313 2.10522i −0.0881090 0.127648i
\(273\) −4.52699 19.7878i −0.273986 1.19761i
\(274\) 1.34052 1.94209i 0.0809841 0.117326i
\(275\) −13.0223 + 1.58119i −0.785273 + 0.0953494i
\(276\) −1.72522 + 14.2084i −0.103846 + 0.855247i
\(277\) −3.72267 1.95381i −0.223674 0.117393i 0.349165 0.937061i \(-0.386465\pi\)
−0.572838 + 0.819668i \(0.694158\pi\)
\(278\) 5.45857 22.1463i 0.327383 1.32825i
\(279\) −57.8958 7.02982i −3.46613 0.420865i
\(280\) −13.0187 + 14.6950i −0.778013 + 0.878195i
\(281\) −24.1010 + 16.6357i −1.43774 + 0.992403i −0.442320 + 0.896857i \(0.645844\pi\)
−0.995425 + 0.0955460i \(0.969540\pi\)
\(282\) −46.0743 + 66.7501i −2.74368 + 3.97491i
\(283\) 17.5908 4.33573i 1.04566 0.257732i 0.321174 0.947020i \(-0.395923\pi\)
0.724488 + 0.689288i \(0.242076\pi\)
\(284\) −32.6103 3.95961i −1.93507 0.234960i
\(285\) 41.5997 21.8332i 2.46415 1.29329i
\(286\) 13.1042 11.2231i 0.774869 0.663638i
\(287\) −1.17097 0.614570i −0.0691199 0.0362769i
\(288\) −25.6709 17.7193i −1.51267 1.04412i
\(289\) 1.47740 2.14038i 0.0869057 0.125905i
\(290\) 15.0439 13.3277i 0.883406 0.782630i
\(291\) 15.4143 + 17.3991i 0.903601 + 1.01995i
\(292\) 0.822831 + 0.312058i 0.0481525 + 0.0182618i
\(293\) −5.07770 + 9.67474i −0.296642 + 0.565205i −0.987468 0.157816i \(-0.949555\pi\)
0.690826 + 0.723021i \(0.257247\pi\)
\(294\) −23.6343 8.96331i −1.37838 0.522751i
\(295\) 4.79360 + 1.18152i 0.279094 + 0.0687906i
\(296\) −19.7540 + 17.5005i −1.14818 + 1.01720i
\(297\) 16.9825 11.7222i 0.985427 0.680191i
\(298\) 5.57386 + 14.6971i 0.322885 + 0.851378i
\(299\) 3.82770 3.27824i 0.221362 0.189586i
\(300\) −23.0491 + 60.7755i −1.33074 + 3.50887i
\(301\) 2.94908 + 11.9649i 0.169982 + 0.689644i
\(302\) 2.31249 1.21369i 0.133069 0.0698400i
\(303\) 10.4874 + 27.6531i 0.602488 + 1.58863i
\(304\) 2.62622 0.318881i 0.150624 0.0182891i
\(305\) 19.1078 + 13.1891i 1.09411 + 0.755207i
\(306\) −15.4025 + 62.4906i −0.880505 + 3.57235i
\(307\) 0.266609 + 1.08168i 0.0152162 + 0.0617346i 0.978059 0.208327i \(-0.0668020\pi\)
−0.962843 + 0.270062i \(0.912956\pi\)
\(308\) 1.54777 + 12.7470i 0.0881924 + 0.726330i
\(309\) 5.94936 15.6872i 0.338448 0.892413i
\(310\) 17.3408 70.3545i 0.984893 3.99587i
\(311\) 2.66411 0.656644i 0.151068 0.0372348i −0.163057 0.986617i \(-0.552135\pi\)
0.314124 + 0.949382i \(0.398289\pi\)
\(312\) −7.72292 33.7575i −0.437224 1.91114i
\(313\) −11.1607 2.75086i −0.630839 0.155488i −0.0890840 0.996024i \(-0.528394\pi\)
−0.541755 + 0.840536i \(0.682240\pi\)
\(314\) 14.4939 27.6159i 0.817940 1.55845i
\(315\) 39.0894 2.20244
\(316\) 5.34519 0.300691
\(317\) −13.7688 + 26.2343i −0.773335 + 1.47347i 0.104512 + 0.994524i \(0.466672\pi\)
−0.877846 + 0.478943i \(0.841020\pi\)
\(318\) −38.0301 42.9271i −2.13262 2.40723i
\(319\) 5.32483i 0.298133i
\(320\) 28.2804 31.9220i 1.58092 1.78449i
\(321\) 11.5569 6.06551i 0.645041 0.338544i
\(322\) 0.721066 + 5.93851i 0.0401834 + 0.330940i
\(323\) 9.42040 + 17.9491i 0.524165 + 0.998713i
\(324\) −4.69269 38.6478i −0.260705 2.14710i
\(325\) 20.4407 10.2950i 1.13384 0.571066i
\(326\) 3.62828 29.8815i 0.200952 1.65499i
\(327\) 23.0179 8.72955i 1.27289 0.482745i
\(328\) −1.99763 1.04844i −0.110301 0.0578904i
\(329\) −7.53694 + 19.8733i −0.415525 + 1.09565i
\(330\) 22.8182 + 43.4765i 1.25610 + 2.39330i
\(331\) −8.14000 15.5095i −0.447415 0.852478i −0.999821 0.0189028i \(-0.993983\pi\)
0.552407 0.833575i \(-0.313710\pi\)
\(332\) 3.03305 + 12.3056i 0.166460 + 0.675356i
\(333\) 52.1635 + 6.33380i 2.85854 + 0.347090i
\(334\) 25.7350 + 22.7992i 1.40816 + 1.24752i
\(335\) −21.9737 31.8344i −1.20055 1.73930i
\(336\) 3.04155 + 1.15351i 0.165930 + 0.0629289i
\(337\) 22.1846 1.20847 0.604235 0.796806i \(-0.293479\pi\)
0.604235 + 0.796806i \(0.293479\pi\)
\(338\) −14.8743 + 26.1704i −0.809054 + 1.42348i
\(339\) 38.0556 2.06690
\(340\) −46.8784 17.7786i −2.54234 0.964181i
\(341\) −10.9054 15.7992i −0.590560 0.855573i
\(342\) −49.8221 44.1385i −2.69407 2.38674i
\(343\) −19.4194 2.35794i −1.04855 0.127317i
\(344\) 5.03104 + 20.4117i 0.271255 + 1.10053i
\(345\) 6.66513 + 12.6993i 0.358838 + 0.683709i
\(346\) 0.398586 + 0.759443i 0.0214281 + 0.0408279i
\(347\) 7.45499 19.6572i 0.400205 1.05525i −0.571821 0.820379i \(-0.693763\pi\)
0.972026 0.234875i \(-0.0754681\pi\)
\(348\) −23.3624 12.2615i −1.25235 0.657286i
\(349\) 11.2056 4.24974i 0.599824 0.227483i −0.0359563 0.999353i \(-0.511448\pi\)
0.635780 + 0.771870i \(0.280678\pi\)
\(350\) −3.27461 + 26.9689i −0.175036 + 1.44155i
\(351\) −20.9453 + 29.2827i −1.11798 + 1.56299i
\(352\) −1.23762 10.1927i −0.0659653 0.543273i
\(353\) 8.25458 + 15.7278i 0.439347 + 0.837105i 0.999959 + 0.00902714i \(0.00287347\pi\)
−0.560612 + 0.828078i \(0.689434\pi\)
\(354\) −1.24600 10.2617i −0.0662242 0.545405i
\(355\) −29.1468 + 15.2974i −1.54695 + 0.811901i
\(356\) −13.7077 + 15.4728i −0.726508 + 0.820058i
\(357\) 24.9253i 1.31919i
\(358\) 13.8645 + 15.6497i 0.732759 + 0.827114i
\(359\) −10.8059 + 20.5889i −0.570313 + 1.08664i 0.414011 + 0.910272i \(0.364128\pi\)
−0.984324 + 0.176369i \(0.943565\pi\)
\(360\) 66.6855 3.51463
\(361\) −1.96417 −0.103377
\(362\) 6.10337 11.6290i 0.320786 0.611207i
\(363\) −19.9018 4.90536i −1.04458 0.257465i
\(364\) −10.0774 20.0086i −0.528201 1.04874i
\(365\) 0.856199 0.211034i 0.0448155 0.0110460i
\(366\) 11.6337 47.2000i 0.608106 2.46718i
\(367\) −5.87707 + 15.4966i −0.306780 + 0.808913i 0.689622 + 0.724169i \(0.257777\pi\)
−0.996403 + 0.0847442i \(0.972993\pi\)
\(368\) 0.0973463 + 0.801719i 0.00507453 + 0.0417925i
\(369\) 1.07500 + 4.36143i 0.0559621 + 0.227047i
\(370\) −15.6239 + 63.3887i −0.812249 + 3.29542i
\(371\) −12.3684 8.53731i −0.642137 0.443235i
\(372\) −94.4298 + 11.4659i −4.89596 + 0.594477i
\(373\) 12.7459 + 33.6082i 0.659958 + 1.74017i 0.672339 + 0.740243i \(0.265290\pi\)
−0.0123812 + 0.999923i \(0.503941\pi\)
\(374\) −18.7589 + 9.84541i −0.969997 + 0.509094i
\(375\) 3.30934 + 13.4265i 0.170893 + 0.693342i
\(376\) −12.8578 + 33.9032i −0.663091 + 1.74843i
\(377\) 3.14837 + 8.74050i 0.162149 + 0.450159i
\(378\) −15.1542 39.9583i −0.779446 2.05523i
\(379\) 6.95767 4.80253i 0.357392 0.246690i −0.375816 0.926694i \(-0.622638\pi\)
0.733208 + 0.680005i \(0.238022\pi\)
\(380\) 38.8109 34.3835i 1.99096 1.76383i
\(381\) −33.5240 8.26293i −1.71749 0.423323i
\(382\) −28.9911 10.9949i −1.48331 0.562546i
\(383\) 14.7831 28.1668i 0.755379 1.43926i −0.138226 0.990401i \(-0.544140\pi\)
0.893605 0.448854i \(-0.148168\pi\)
\(384\) −55.1906 20.9310i −2.81643 1.06813i
\(385\) 8.53240 + 9.63109i 0.434851 + 0.490846i
\(386\) 33.9400 30.0682i 1.72750 1.53043i
\(387\) 23.7778 34.4481i 1.20869 1.75109i
\(388\) 21.1132 + 14.5734i 1.07186 + 0.739850i
\(389\) −33.1525 17.3998i −1.68090 0.882204i −0.986726 0.162396i \(-0.948078\pi\)
−0.694174 0.719808i \(-0.744230\pi\)
\(390\) −63.1612 57.8734i −3.19829 2.93054i
\(391\) −5.47940 + 2.87581i −0.277105 + 0.145436i
\(392\) −11.2178 1.36209i −0.566584 0.0687957i
\(393\) −18.0507 + 4.44910i −0.910539 + 0.224428i
\(394\) −5.27433 + 7.64119i −0.265717 + 0.384957i
\(395\) 4.40803 3.04265i 0.221792 0.153092i
\(396\) 28.9228 32.6471i 1.45342 1.64058i
\(397\) 22.2104 + 2.69683i 1.11471 + 0.135350i 0.657100 0.753803i \(-0.271783\pi\)
0.457609 + 0.889153i \(0.348706\pi\)
\(398\) 9.34587 37.9177i 0.468466 1.90064i
\(399\) −22.8250 11.9795i −1.14268 0.599724i
\(400\) −0.442084 + 3.64089i −0.0221042 + 0.182044i
\(401\) 15.9900 1.94154i 0.798505 0.0969560i 0.288894 0.957361i \(-0.406713\pi\)
0.509611 + 0.860405i \(0.329789\pi\)
\(402\) −46.0080 + 66.6541i −2.29467 + 3.32441i
\(403\) 27.2422 + 19.4858i 1.35703 + 0.970657i
\(404\) 18.5419 + 26.8626i 0.922496 + 1.33647i
\(405\) −25.8694 29.2005i −1.28546 1.45099i
\(406\) −10.7072 2.63908i −0.531388 0.130975i
\(407\) 9.82564 + 14.2349i 0.487039 + 0.705597i
\(408\) 42.5219i 2.10515i
\(409\) −12.1667 + 8.39809i −0.601606 + 0.415259i −0.829564 0.558412i \(-0.811411\pi\)
0.227957 + 0.973671i \(0.426795\pi\)
\(410\) −5.54028 + 0.672712i −0.273615 + 0.0332229i
\(411\) −2.90251 + 1.10078i −0.143171 + 0.0542974i
\(412\) 2.23191 18.3815i 0.109959 0.905590i
\(413\) −0.960580 2.53284i −0.0472671 0.124633i
\(414\) 13.4744 15.2094i 0.662229 0.747502i
\(415\) 9.50597 + 8.42156i 0.466630 + 0.413398i
\(416\) 8.05806 + 15.9992i 0.395079 + 0.784424i
\(417\) −22.4587 + 19.8966i −1.09981 + 0.974343i
\(418\) 21.9100i 1.07165i
\(419\) 4.56830 + 4.04716i 0.223176 + 0.197717i 0.767300 0.641288i \(-0.221600\pi\)
−0.544124 + 0.839005i \(0.683138\pi\)
\(420\) 61.9034 15.2578i 3.02058 0.744505i
\(421\) −29.1945 20.1515i −1.42285 0.982123i −0.997006 0.0773269i \(-0.975361\pi\)
−0.425845 0.904796i \(-0.640023\pi\)
\(422\) −14.4837 + 5.49293i −0.705053 + 0.267391i
\(423\) 67.5039 25.6008i 3.28215 1.24476i
\(424\) −21.1002 14.5644i −1.02472 0.707310i
\(425\) −27.2863 + 6.72546i −1.32358 + 0.326233i
\(426\) 51.5883 + 45.7033i 2.49946 + 2.21433i
\(427\) 12.7391i 0.616488i
\(428\) 10.7821 9.55211i 0.521172 0.461719i
\(429\) −22.5734 + 2.35786i −1.08985 + 0.113838i
\(430\) 38.9265 + 34.4859i 1.87720 + 1.66306i
\(431\) 8.46212 9.55176i 0.407606 0.460092i −0.508480 0.861074i \(-0.669792\pi\)
0.916086 + 0.400982i \(0.131331\pi\)
\(432\) −2.04586 5.39450i −0.0984316 0.259543i
\(433\) 0.458235 3.77390i 0.0220214 0.181362i −0.977548 0.210714i \(-0.932421\pi\)
0.999569 + 0.0293516i \(0.00934424\pi\)
\(434\) −37.1739 + 14.0982i −1.78440 + 0.676735i
\(435\) −26.2459 + 3.18683i −1.25839 + 0.152797i
\(436\) 22.3600 15.4340i 1.07085 0.739153i
\(437\) 6.39983i 0.306145i
\(438\) −1.04884 1.51951i −0.0501155 0.0726049i
\(439\) −18.5950 4.58325i −0.887489 0.218746i −0.230884 0.972981i \(-0.574162\pi\)
−0.656605 + 0.754235i \(0.728008\pi\)
\(440\) 14.5560 + 16.4304i 0.693931 + 0.783286i
\(441\) 12.7812 + 18.5167i 0.608627 + 0.881748i
\(442\) 24.9707 27.2522i 1.18774 1.29626i
\(443\) 2.91397 4.22162i 0.138447 0.200575i −0.747627 0.664119i \(-0.768807\pi\)
0.886074 + 0.463544i \(0.153422\pi\)
\(444\) 85.0803 10.3306i 4.03773 0.490269i
\(445\) −2.49678 + 20.5628i −0.118359 + 0.974772i
\(446\) −33.4789 17.5711i −1.58527 0.832014i
\(447\) 4.94835 20.0763i 0.234049 0.949574i
\(448\) −23.2292 2.82053i −1.09748 0.133258i
\(449\) −8.35101 + 9.42634i −0.394108 + 0.444856i −0.911753 0.410739i \(-0.865271\pi\)
0.517644 + 0.855596i \(0.326809\pi\)
\(450\) 75.9436 52.4201i 3.58002 2.47111i
\(451\) −0.839947 + 1.21687i −0.0395516 + 0.0573003i
\(452\) 40.7797 10.0513i 1.91812 0.472773i
\(453\) −3.41047 0.414106i −0.160238 0.0194564i
\(454\) 25.5368 13.4027i 1.19850 0.629022i
\(455\) −19.7001 10.7642i −0.923555 0.504633i
\(456\) −38.9387 20.4366i −1.82347 0.957033i
\(457\) −22.0844 15.2438i −1.03307 0.713074i −0.0742900 0.997237i \(-0.523669\pi\)
−0.958776 + 0.284163i \(0.908284\pi\)
\(458\) 19.5422 28.3118i 0.913147 1.32292i
\(459\) 33.0899 29.3151i 1.54451 1.36831i
\(460\) 10.4964 + 11.8480i 0.489397 + 0.552415i
\(461\) 29.7565 + 11.2852i 1.38590 + 0.525603i 0.931026 0.364953i \(-0.118915\pi\)
0.454874 + 0.890556i \(0.349684\pi\)
\(462\) 12.5199 23.8547i 0.582480 1.10982i
\(463\) 15.1736 + 5.75459i 0.705178 + 0.267439i 0.681015 0.732269i \(-0.261539\pi\)
0.0241627 + 0.999708i \(0.492308\pi\)
\(464\) −1.44550 0.356285i −0.0671058 0.0165401i
\(465\) −71.3469 + 63.2079i −3.30863 + 2.93119i
\(466\) 1.20553 0.832118i 0.0558451 0.0385471i
\(467\) −6.46120 17.0368i −0.298989 0.788368i −0.997359 0.0726316i \(-0.976860\pi\)
0.698370 0.715737i \(-0.253909\pi\)
\(468\) −28.1727 + 70.6898i −1.30228 + 3.26764i
\(469\) −7.52611 + 19.8447i −0.347523 + 0.916344i
\(470\) 21.4662 + 87.0916i 0.990160 + 4.01724i
\(471\) −36.3276 + 19.0662i −1.67389 + 0.878525i
\(472\) −1.63872 4.32096i −0.0754283 0.198888i
\(473\) 13.6777 1.66077i 0.628902 0.0763625i
\(474\) −9.22943 6.37062i −0.423922 0.292612i
\(475\) 6.95544 28.2193i 0.319138 1.29479i
\(476\) 6.58331 + 26.7095i 0.301746 + 1.22423i
\(477\) 6.15320 + 50.6762i 0.281736 + 2.32030i
\(478\) 0.228107 0.601468i 0.0104334 0.0275105i
\(479\) −7.16464 + 29.0681i −0.327361 + 1.32816i 0.544648 + 0.838665i \(0.316663\pi\)
−0.872009 + 0.489490i \(0.837183\pi\)
\(480\) −49.4988 + 12.2004i −2.25930 + 0.556868i
\(481\) −24.5450 17.5565i −1.11915 0.800508i
\(482\) −29.5895 7.29316i −1.34777 0.332194i
\(483\) 3.65703 6.96789i 0.166401 0.317050i
\(484\) −22.6221 −1.02828
\(485\) 25.7070 1.16730
\(486\) −5.72409 + 10.9064i −0.259650 + 0.494722i
\(487\) 16.0548 + 18.1221i 0.727511 + 0.821190i 0.989599 0.143854i \(-0.0459495\pi\)
−0.262088 + 0.965044i \(0.584411\pi\)
\(488\) 21.7325i 0.983785i
\(489\) −26.2575 + 29.6386i −1.18740 + 1.34030i
\(490\) −24.7522 + 12.9909i −1.11819 + 0.586871i
\(491\) 2.80642 + 23.1130i 0.126652 + 1.04307i 0.907998 + 0.418975i \(0.137611\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(492\) 3.40481 + 6.48732i 0.153501 + 0.292471i
\(493\) −1.37503 11.3244i −0.0619280 0.510023i
\(494\) 12.9545 + 35.9644i 0.582852 + 1.61811i
\(495\) 5.26812 43.3869i 0.236784 1.95009i
\(496\) −5.01860 + 1.90330i −0.225342 + 0.0854609i
\(497\) 15.9923 + 8.39339i 0.717352 + 0.376495i
\(498\) 9.42917 24.8627i 0.422531 1.11412i
\(499\) 8.63303 + 16.4489i 0.386468 + 0.736353i 0.998516 0.0544681i \(-0.0173463\pi\)
−0.612048 + 0.790821i \(0.709654\pi\)
\(500\) 7.09246 + 13.5136i 0.317184 + 0.604344i
\(501\) −10.8237 43.9135i −0.483567 1.96191i
\(502\) 8.99166 + 1.09179i 0.401318 + 0.0487288i
\(503\) −0.486660 0.431143i −0.0216991 0.0192237i 0.652203 0.758044i \(-0.273845\pi\)
−0.673903 + 0.738820i \(0.735383\pi\)
\(504\) −20.7850 30.1122i −0.925835 1.34130i
\(505\) 30.5820 + 11.5982i 1.36088 + 0.516115i
\(506\) 6.68856 0.297343
\(507\) 35.6592 17.2171i 1.58368 0.764638i
\(508\) −38.1062 −1.69069
\(509\) 4.54629 + 1.72418i 0.201511 + 0.0764229i 0.453295 0.891360i \(-0.350248\pi\)
−0.251785 + 0.967783i \(0.581018\pi\)
\(510\) 59.7546 + 86.5695i 2.64598 + 3.83336i
\(511\) −0.362159 0.320845i −0.0160210 0.0141933i
\(512\) −6.46693 0.785227i −0.285801 0.0347025i
\(513\) 10.9414 + 44.3908i 0.483073 + 1.95990i
\(514\) 8.64948 + 16.4802i 0.381512 + 0.726911i
\(515\) −8.62269 16.4292i −0.379961 0.723955i
\(516\) 24.2092 63.8344i 1.06575 2.81015i
\(517\) 21.0424 + 11.0439i 0.925442 + 0.485709i
\(518\) 33.4933 12.7023i 1.47161 0.558108i
\(519\) 0.135996 1.12003i 0.00596955 0.0491637i
\(520\) −33.6078 18.3634i −1.47380 0.805287i
\(521\) 2.99478 + 24.6643i 0.131204 + 1.08056i 0.898409 + 0.439159i \(0.144724\pi\)
−0.767205 + 0.641402i \(0.778353\pi\)
\(522\) 17.4074 + 33.1671i 0.761903 + 1.45168i
\(523\) −1.07738 8.87306i −0.0471107 0.387992i −0.997124 0.0757831i \(-0.975854\pi\)
0.950014 0.312208i \(-0.101069\pi\)
\(524\) −18.1677 + 9.53517i −0.793661 + 0.416546i
\(525\) 23.6981 26.7496i 1.03427 1.16745i
\(526\) 3.54540i 0.154587i
\(527\) −27.2724 30.7842i −1.18800 1.34098i
\(528\) 1.69023 3.22047i 0.0735579 0.140153i
\(529\) −21.0463 −0.915056
\(530\) −63.4243 −2.75498
\(531\) −4.27605 + 8.14732i −0.185565 + 0.353564i
\(532\) −27.6229 6.80843i −1.19760 0.295183i
\(533\) 0.659250 2.49408i 0.0285553 0.108031i
\(534\) 42.1099 10.3792i 1.82228 0.449151i
\(535\) 3.45435 14.0149i 0.149345 0.605915i
\(536\) −12.8393 + 33.8545i −0.554574 + 1.46229i
\(537\) −3.31517 27.3029i −0.143060 1.17821i
\(538\) 16.0392 + 65.0735i 0.691498 + 2.80552i
\(539\) −1.77240 + 7.19091i −0.0763426 + 0.309734i
\(540\) −93.0614 64.2356i −4.00472 2.76426i
\(541\) −17.7415 + 2.15420i −0.762765 + 0.0926164i −0.492669 0.870217i \(-0.663979\pi\)
−0.270096 + 0.962833i \(0.587055\pi\)
\(542\) −10.7294 28.2911i −0.460867 1.21521i
\(543\) −15.2975 + 8.02875i −0.656479 + 0.344547i
\(544\) −5.26411 21.3573i −0.225697 0.915688i
\(545\) 9.65416 25.4559i 0.413539 1.09041i
\(546\) −6.44659 + 46.5592i −0.275889 + 1.99255i
\(547\) −16.1000 42.4523i −0.688387 1.81513i −0.569100 0.822268i \(-0.692708\pi\)
−0.119287 0.992860i \(-0.538061\pi\)
\(548\) −2.81955 + 1.94619i −0.120445 + 0.0831372i
\(549\) −32.3888 + 28.6940i −1.38232 + 1.22463i
\(550\) 29.4925 + 7.26924i 1.25756 + 0.309961i
\(551\) 11.0310 + 4.18349i 0.469935 + 0.178223i
\(552\) 6.23879 11.8870i 0.265540 0.505945i
\(553\) −2.74785 1.04212i −0.116850 0.0443155i
\(554\) 6.45556 + 7.28682i 0.274271 + 0.309587i
\(555\) 64.2828 56.9496i 2.72865 2.41738i
\(556\) −18.8112 + 27.2527i −0.797772 + 1.15577i
\(557\) 25.3051 + 17.4668i 1.07221 + 0.740094i 0.967108 0.254367i \(-0.0818672\pi\)
0.105103 + 0.994461i \(0.466483\pi\)
\(558\) 119.576 + 62.7585i 5.06207 + 2.65678i
\(559\) −21.4695 + 10.8132i −0.908062 + 0.457350i
\(560\) 3.18540 1.67183i 0.134608 0.0706477i
\(561\) 27.6656 + 3.35921i 1.16804 + 0.141826i
\(562\) 65.8399 16.2281i 2.77729 0.684541i
\(563\) 9.77971 14.1683i 0.412165 0.597125i −0.560835 0.827928i \(-0.689520\pi\)
0.973001 + 0.230803i \(0.0741352\pi\)
\(564\) 96.9087 66.8912i 4.08059 2.81663i
\(565\) 27.9084 31.5021i 1.17411 1.32530i
\(566\) −41.6453 5.05665i −1.75048 0.212547i
\(567\) −5.12253 + 20.7829i −0.215126 + 0.872800i
\(568\) 27.2824 + 14.3189i 1.14474 + 0.600807i
\(569\) 3.13526 25.8212i 0.131437 1.08248i −0.766466 0.642285i \(-0.777986\pi\)
0.897902 0.440195i \(-0.145091\pi\)
\(570\) −107.994 + 13.1128i −4.52335 + 0.549234i
\(571\) 24.4519 35.4248i 1.02328 1.48248i 0.154057 0.988062i \(-0.450766\pi\)
0.869224 0.494418i \(-0.164619\pi\)
\(572\) −23.5665 + 8.48875i −0.985364 + 0.354932i
\(573\) 23.1697 + 33.5671i 0.967929 + 1.40229i
\(574\) 2.03060 + 2.29207i 0.0847555 + 0.0956692i
\(575\) 8.61465 + 2.12332i 0.359256 + 0.0885486i
\(576\) 45.1512 + 65.4127i 1.88130 + 2.72553i
\(577\) 22.5192i 0.937485i −0.883335 0.468742i \(-0.844707\pi\)
0.883335 0.468742i \(-0.155293\pi\)
\(578\) −4.95613 + 3.42097i −0.206148 + 0.142294i
\(579\) −59.2126 + 7.18971i −2.46079 + 0.298794i
\(580\) −27.2829 + 10.3471i −1.13286 + 0.429638i
\(581\) 0.839920 6.91736i 0.0348458 0.286981i
\(582\) −19.0865 50.3270i −0.791162 2.08612i
\(583\) −11.1428 + 12.5776i −0.461487 + 0.520911i
\(584\) −0.617833 0.547352i −0.0255661 0.0226496i
\(585\) 17.0056 + 74.3327i 0.703094 + 3.07328i
\(586\) 18.9375 16.7772i 0.782302 0.693059i
\(587\) 29.3340i 1.21075i 0.795942 + 0.605373i \(0.206976\pi\)
−0.795942 + 0.605373i \(0.793024\pi\)
\(588\) 27.4684 + 24.3348i 1.13278 + 1.00355i
\(589\) 41.2976 10.1789i 1.70164 0.419416i
\(590\) −9.40834 6.49411i −0.387335 0.267358i
\(591\) 11.4200 4.33104i 0.469757 0.178155i
\(592\) 4.52171 1.71486i 0.185841 0.0704802i
\(593\) −4.44503 3.06818i −0.182535 0.125995i 0.473293 0.880905i \(-0.343065\pi\)
−0.655829 + 0.754910i \(0.727681\pi\)
\(594\) −46.3935 + 11.4350i −1.90355 + 0.469183i
\(595\) 20.6330 + 18.2792i 0.845869 + 0.749374i
\(596\) 22.8203i 0.934757i
\(597\) −38.4525 + 34.0660i −1.57376 + 1.39423i
\(598\) −10.9790 + 3.95469i −0.448965 + 0.161719i
\(599\) −34.3595 30.4398i −1.40389 1.24374i −0.932185 0.361982i \(-0.882100\pi\)
−0.471705 0.881756i \(-0.656361\pi\)
\(600\) 40.4282 45.6340i 1.65048 1.86300i
\(601\) −8.27891 21.8297i −0.337704 0.890452i −0.991062 0.133403i \(-0.957410\pi\)
0.653358 0.757049i \(-0.273360\pi\)
\(602\) 3.43943 28.3263i 0.140181 1.15449i
\(603\) 67.4068 25.5640i 2.74502 1.04105i
\(604\) −3.76397 + 0.457029i −0.153154 + 0.0185962i
\(605\) −18.6558 + 12.8772i −0.758466 + 0.523531i
\(606\) 68.4822i 2.78190i
\(607\) 21.2810 + 30.8308i 0.863768 + 1.25138i 0.966498 + 0.256674i \(0.0826268\pi\)
−0.102730 + 0.994709i \(0.532758\pi\)
\(608\) 22.0876 + 5.44411i 0.895772 + 0.220788i
\(609\) 9.61952 + 10.8582i 0.389803 + 0.439996i
\(610\) −30.5400 44.2448i −1.23653 1.79142i
\(611\) −41.0700 5.68657i −1.66152 0.230054i
\(612\) 53.0799 76.8995i 2.14563 3.10848i
\(613\) −32.4927 + 3.94533i −1.31237 + 0.159350i −0.746632 0.665237i \(-0.768331\pi\)
−0.565735 + 0.824587i \(0.691407\pi\)
\(614\) 0.310940 2.56082i 0.0125485 0.103346i
\(615\) 6.50063 + 3.41179i 0.262131 + 0.137577i
\(616\) 2.88231 11.6940i 0.116131 0.471164i
\(617\) 15.7933 + 1.91765i 0.635813 + 0.0772016i 0.432095 0.901828i \(-0.357774\pi\)
0.203718 + 0.979030i \(0.434698\pi\)
\(618\) −25.7616 + 29.0788i −1.03628 + 1.16972i
\(619\) 32.1818 22.2135i 1.29350 0.892836i 0.295453 0.955357i \(-0.404529\pi\)
0.998044 + 0.0625210i \(0.0199140\pi\)
\(620\) −59.7596 + 86.5767i −2.40000 + 3.47700i
\(621\) −13.5514 + 3.34012i −0.543799 + 0.134034i
\(622\) −6.30715 0.765827i −0.252894 0.0307069i
\(623\) 10.0635 5.28172i 0.403185 0.211608i
\(624\) −0.870312 + 6.28564i −0.0348403 + 0.251627i
\(625\) −14.5617 7.64255i −0.582467 0.305702i
\(626\) 21.9049 + 15.1199i 0.875497 + 0.604312i
\(627\) −16.3726 + 23.7198i −0.653859 + 0.947278i
\(628\) −33.8923 + 30.0259i −1.35245 + 1.19817i
\(629\) 24.5721 + 27.7362i 0.979755 + 1.10591i
\(630\) −84.6314 32.0964i −3.37179 1.27875i
\(631\) 4.51343 8.59962i 0.179677 0.342346i −0.778915 0.627130i \(-0.784230\pi\)
0.958592 + 0.284784i \(0.0919219\pi\)
\(632\) −4.68775 1.77783i −0.186469 0.0707182i
\(633\) 19.7847 + 4.87650i 0.786373 + 0.193824i
\(634\) 51.3515 45.4935i 2.03943 1.80678i
\(635\) −31.4251 + 21.6912i −1.24707 + 0.860789i
\(636\) 29.5249 + 77.8508i 1.17074 + 3.08699i
\(637\) −1.34238 12.8515i −0.0531871 0.509197i
\(638\) −4.37223 + 11.5286i −0.173098 + 0.456422i
\(639\) −14.6816 59.5656i −0.580795 2.35638i
\(640\) −57.8010 + 30.3363i −2.28479 + 1.19915i
\(641\) −10.5061 27.7024i −0.414967 1.09418i −0.965738 0.259521i \(-0.916435\pi\)
0.550771 0.834657i \(-0.314334\pi\)
\(642\) −30.0018 + 3.64288i −1.18408 + 0.143773i
\(643\) −20.6930 14.2833i −0.816051 0.563279i 0.0853067 0.996355i \(-0.472813\pi\)
−0.901358 + 0.433075i \(0.857428\pi\)
\(644\) 2.07844 8.43257i 0.0819021 0.332290i
\(645\) −16.3718 66.4231i −0.644639 2.61541i
\(646\) −5.65779 46.5961i −0.222603 1.83330i
\(647\) −0.715508 + 1.88664i −0.0281295 + 0.0741715i −0.948345 0.317240i \(-0.897244\pi\)
0.920216 + 0.391412i \(0.128013\pi\)
\(648\) −8.73888 + 35.4550i −0.343296 + 1.39280i
\(649\) −2.94076 + 0.724831i −0.115435 + 0.0284521i
\(650\) −52.7088 + 5.50558i −2.06741 + 0.215947i
\(651\) 50.7797 + 12.5161i 1.99022 + 0.490544i
\(652\) −20.3089 + 38.6954i −0.795358 + 1.51543i
\(653\) −9.72617 −0.380614 −0.190307 0.981725i \(-0.560948\pi\)
−0.190307 + 0.981725i \(0.560948\pi\)
\(654\) −57.0033 −2.22900
\(655\) −9.55473 + 18.2050i −0.373334 + 0.711329i
\(656\) 0.274137 + 0.309437i 0.0107033 + 0.0120815i
\(657\) 1.64346i 0.0641176i
\(658\) 32.6360 36.8384i 1.27228 1.43611i
\(659\) 21.5325 11.3011i 0.838785 0.440229i 0.0101039 0.999949i \(-0.496784\pi\)
0.828682 + 0.559720i \(0.189091\pi\)
\(660\) −8.59246 70.7653i −0.334461 2.75453i
\(661\) −9.28679 17.6945i −0.361214 0.688236i 0.635245 0.772310i \(-0.280899\pi\)
−0.996459 + 0.0840743i \(0.973207\pi\)
\(662\) 4.88880 + 40.2629i 0.190008 + 1.56486i
\(663\) −47.3981 + 10.8436i −1.84079 + 0.421130i
\(664\) 1.43288 11.8008i 0.0556065 0.457961i
\(665\) −26.6554 + 10.1091i −1.03365 + 0.392012i
\(666\) −107.737 56.5447i −4.17472 2.19106i
\(667\) −1.27711 + 3.36747i −0.0494500 + 0.130389i
\(668\) −23.1970 44.1982i −0.897518 1.71008i
\(669\) 23.1141 + 44.0402i 0.893641 + 1.70269i
\(670\) 21.4353 + 86.9664i 0.828117 + 3.35980i
\(671\) −14.1396 1.71686i −0.545853 0.0662786i
\(672\) 20.9373 + 18.5488i 0.807672 + 0.715535i
\(673\) −20.3233 29.4434i −0.783405 1.13496i −0.987748 0.156058i \(-0.950121\pi\)
0.204343 0.978899i \(-0.434494\pi\)
\(674\) −48.0311 18.2158i −1.85009 0.701646i
\(675\) −63.3835 −2.43963
\(676\) 33.6644 27.8679i 1.29478 1.07184i
\(677\) 31.9603 1.22833 0.614167 0.789176i \(-0.289492\pi\)
0.614167 + 0.789176i \(0.289492\pi\)
\(678\) −82.3930 31.2475i −3.16428 1.20005i
\(679\) −8.01253 11.6082i −0.307493 0.445480i
\(680\) 35.1992 + 31.1838i 1.34983 + 1.19584i
\(681\) −37.6617 4.57296i −1.44320 0.175236i
\(682\) 10.6382 + 43.1608i 0.407357 + 1.65271i
\(683\) −20.6747 39.3924i −0.791096 1.50731i −0.860347 0.509709i \(-0.829753\pi\)
0.0692509 0.997599i \(-0.477939\pi\)
\(684\) 44.9085 + 85.5661i 1.71712 + 3.27170i
\(685\) −1.21737 + 3.20994i −0.0465133 + 0.122646i
\(686\) 40.1082 + 21.0504i 1.53134 + 0.803709i
\(687\) −42.3129 + 16.0472i −1.61434 + 0.612238i
\(688\) 0.464335 3.82414i 0.0177026 0.145794i
\(689\) 10.8538 27.2340i 0.413497 1.03753i
\(690\) −4.00300 32.9677i −0.152392 1.25506i
\(691\) 17.9646 + 34.2286i 0.683404 + 1.30212i 0.941831 + 0.336087i \(0.109104\pi\)
−0.258427 + 0.966031i \(0.583204\pi\)
\(692\) −0.150092 1.23612i −0.00570565 0.0469902i
\(693\) −21.2336 + 11.1442i −0.806597 + 0.423335i
\(694\) −32.2811 + 36.4379i −1.22538 + 1.38316i
\(695\) 33.1825i 1.25868i
\(696\) 16.4106 + 18.5238i 0.622043 + 0.702142i
\(697\) −1.47209 + 2.80483i −0.0557594 + 0.106241i
\(698\) −27.7504 −1.05037
\(699\) −1.92693 −0.0728831
\(700\) 18.3293 34.9236i 0.692783 1.31999i
\(701\) 19.3782 + 4.77629i 0.731903 + 0.180398i 0.587618 0.809138i \(-0.300066\pi\)
0.144285 + 0.989536i \(0.453912\pi\)
\(702\) 69.3921 46.2008i 2.61904 1.74374i
\(703\) −37.2087 + 9.17112i −1.40335 + 0.345895i
\(704\) −6.26123 + 25.4028i −0.235979 + 0.957405i
\(705\) 41.8414 110.327i 1.57584 4.15514i
\(706\) −4.95761 40.8296i −0.186582 1.53664i
\(707\) −4.29476 17.4245i −0.161521 0.655316i
\(708\) −3.59154 + 14.5715i −0.134978 + 0.547629i
\(709\) 34.8508 + 24.0558i 1.30885 + 0.903433i 0.998880 0.0473136i \(-0.0150660\pi\)
0.309969 + 0.950747i \(0.399681\pi\)
\(710\) 75.6655 9.18745i 2.83967 0.344799i
\(711\) 3.53979 + 9.33365i 0.132752 + 0.350039i
\(712\) 17.1680 9.01047i 0.643399 0.337682i
\(713\) 3.10737 + 12.6071i 0.116372 + 0.472140i
\(714\) 20.4662 53.9651i 0.765930 2.01959i
\(715\) −14.6026 + 20.4152i −0.546105 + 0.763485i
\(716\) −10.7638 28.3817i −0.402261 1.06067i
\(717\) −0.696407 + 0.480695i −0.0260078 + 0.0179519i
\(718\) 40.3011 35.7037i 1.50402 1.33245i
\(719\) 30.3642 + 7.48411i 1.13239 + 0.279110i 0.760610 0.649209i \(-0.224900\pi\)
0.371784 + 0.928319i \(0.378746\pi\)
\(720\) −11.4255 4.33313i −0.425804 0.161486i
\(721\) −4.73111 + 9.01437i −0.176196 + 0.335713i
\(722\) 4.25255 + 1.61278i 0.158264 + 0.0600215i
\(723\) 26.5838 + 30.0069i 0.988662 + 1.11597i
\(724\) −14.2720 + 12.6439i −0.530414 + 0.469906i
\(725\) −9.29112 + 13.4605i −0.345063 + 0.499911i
\(726\) 39.0610 + 26.9619i 1.44969 + 1.00065i
\(727\) 35.0735 + 18.4080i 1.30080 + 0.682714i 0.965747 0.259484i \(-0.0835524\pi\)
0.335056 + 0.942198i \(0.391245\pi\)
\(728\) 2.18300 + 20.8994i 0.0809075 + 0.774584i
\(729\) −16.4160 + 8.61580i −0.608001 + 0.319104i
\(730\) −2.02701 0.246124i −0.0750230 0.00910944i
\(731\) 28.6596 7.06397i 1.06002 0.261270i
\(732\) −40.0919 + 58.0832i −1.48184 + 2.14682i
\(733\) −34.3868 + 23.7355i −1.27011 + 0.876691i −0.996371 0.0851136i \(-0.972875\pi\)
−0.273736 + 0.961805i \(0.588259\pi\)
\(734\) 25.4485 28.7254i 0.939322 1.06028i
\(735\) 36.5045 + 4.43245i 1.34649 + 0.163493i
\(736\) −1.66195 + 6.74280i −0.0612603 + 0.248543i
\(737\) 21.0121 + 11.0280i 0.773991 + 0.406222i
\(738\) 1.25374 10.3255i 0.0461509 0.380087i
\(739\) 45.6033 5.53724i 1.67754 0.203691i 0.774300 0.632819i \(-0.218102\pi\)
0.903244 + 0.429128i \(0.141179\pi\)
\(740\) 53.8428 78.0047i 1.97930 2.86751i
\(741\) 12.8504 48.6157i 0.472071 1.78594i
\(742\) 19.7685 + 28.6396i 0.725724 + 1.05139i
\(743\) −16.8186 18.9843i −0.617015 0.696466i 0.354065 0.935221i \(-0.384799\pi\)
−0.971080 + 0.238755i \(0.923261\pi\)
\(744\) 86.6288 + 21.3521i 3.17596 + 0.782805i
\(745\) −12.9900 18.8193i −0.475917 0.689486i
\(746\) 83.2298i 3.04726i
\(747\) −19.4791 + 13.4455i −0.712703 + 0.491943i
\(748\) 30.5332 3.70740i 1.11640 0.135556i
\(749\) −7.40516 + 2.80841i −0.270579 + 0.102617i
\(750\) 3.85960 31.7866i 0.140933 1.16068i
\(751\) 9.42080 + 24.8406i 0.343770 + 0.906447i 0.989714 + 0.143062i \(0.0456948\pi\)
−0.645944 + 0.763385i \(0.723536\pi\)
\(752\) 4.40597 4.97331i 0.160669 0.181358i
\(753\) −8.91855 7.90115i −0.325010 0.287934i
\(754\) 0.360415 21.5089i 0.0131255 0.783309i
\(755\) −2.84389 + 2.51946i −0.103500 + 0.0916927i
\(756\) 62.0438i 2.25651i
\(757\) 9.13049 + 8.08891i 0.331853 + 0.293996i 0.812551 0.582890i \(-0.198078\pi\)
−0.480698 + 0.876886i \(0.659617\pi\)
\(758\) −19.0072 + 4.68486i −0.690373 + 0.170162i
\(759\) −7.24106 4.99814i −0.262834 0.181421i
\(760\) −45.4733 + 17.2458i −1.64949 + 0.625569i
\(761\) 35.8941 13.6128i 1.30116 0.493464i 0.395888 0.918299i \(-0.370437\pi\)
0.905271 + 0.424835i \(0.139668\pi\)
\(762\) 65.7972 + 45.4165i 2.38358 + 1.64527i
\(763\) −14.5038 + 3.57487i −0.525074 + 0.129419i
\(764\) 33.6941 + 29.8504i 1.21901 + 1.07995i
\(765\) 93.6316i 3.38526i
\(766\) −55.1342 + 48.8446i −1.99208 + 1.76483i
\(767\) 4.39857 2.92854i 0.158823 0.105743i
\(768\)