Properties

Label 169.2.h.a.25.1
Level $169$
Weight $2$
Character 169.25
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 25.1
Character \(\chi\) \(=\) 169.25
Dual form 169.2.h.a.142.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.49582 - 0.946540i) q^{2} +(-0.730291 - 1.05801i) q^{3} +(3.83616 + 3.39854i) q^{4} +(-0.453685 - 0.0550874i) q^{5} +(0.821227 + 3.33185i) q^{6} +(-1.38308 - 2.63524i) q^{7} +(-3.87657 - 7.38618i) q^{8} +(0.477757 - 1.25974i) q^{9} +O(q^{10})\) \(q+(-2.49582 - 0.946540i) q^{2} +(-0.730291 - 1.05801i) q^{3} +(3.83616 + 3.39854i) q^{4} +(-0.453685 - 0.0550874i) q^{5} +(0.821227 + 3.33185i) q^{6} +(-1.38308 - 2.63524i) q^{7} +(-3.87657 - 7.38618i) q^{8} +(0.477757 - 1.25974i) q^{9} +(1.08017 + 0.566920i) q^{10} +(-5.12585 + 1.94398i) q^{11} +(0.794175 - 6.54062i) q^{12} +(-0.193413 + 3.60036i) q^{13} +(0.957560 + 7.88622i) q^{14} +(0.273039 + 0.520233i) q^{15} +(1.44838 + 11.9285i) q^{16} +(2.13492 - 1.12049i) q^{17} +(-2.38479 + 2.69187i) q^{18} +3.91431i q^{19} +(-1.55319 - 1.75319i) q^{20} +(-1.77805 + 3.38780i) q^{21} +14.6333 q^{22} -6.60766 q^{23} +(-4.98362 + 9.49550i) q^{24} +(-4.65191 - 1.14659i) q^{25} +(3.89061 - 8.80278i) q^{26} +(-5.42638 + 1.33748i) q^{27} +(3.65025 - 14.8097i) q^{28} +(-0.456382 + 1.20338i) q^{29} +(-0.189036 - 1.55685i) q^{30} +(-0.138189 - 0.560653i) q^{31} +(3.68333 - 14.9439i) q^{32} +(5.80011 + 4.00353i) q^{33} +(-6.38896 + 0.775760i) q^{34} +(0.482314 + 1.27176i) q^{35} +(6.11404 - 3.20889i) q^{36} +(-1.50320 - 6.09874i) q^{37} +(3.70505 - 9.76943i) q^{38} +(3.95046 - 2.42468i) q^{39} +(1.35186 + 3.56455i) q^{40} +(2.05226 - 1.41657i) q^{41} +(7.64439 - 6.77234i) q^{42} +(3.08976 + 0.761558i) q^{43} +(-26.2703 - 9.96302i) q^{44} +(-0.286147 + 0.545208i) q^{45} +(16.4915 + 6.25442i) q^{46} +(0.310500 + 0.350483i) q^{47} +(11.5627 - 10.2437i) q^{48} +(-1.05511 + 1.52859i) q^{49} +(10.5250 + 7.26492i) q^{50} +(-2.74460 - 1.44048i) q^{51} +(-12.9779 + 13.1542i) q^{52} +(3.58647 - 1.88233i) q^{53} +(14.8092 + 1.79817i) q^{54} +(2.43261 - 0.599585i) q^{55} +(-14.1027 + 20.4313i) q^{56} +(4.14138 - 2.85859i) q^{57} +(2.27810 - 2.57144i) q^{58} +(-11.0972 - 1.34745i) q^{59} +(-0.720611 + 2.92363i) q^{60} +(-7.63210 - 4.00564i) q^{61} +(-0.185787 + 1.53009i) q^{62} +(-3.98049 + 0.483319i) q^{63} +(-9.68602 + 14.0326i) q^{64} +(0.286083 - 1.62278i) q^{65} +(-10.6865 - 15.4821i) q^{66} +(-7.64095 - 8.62485i) q^{67} +(11.9979 + 2.95722i) q^{68} +(4.82552 + 6.99097i) q^{69} -3.63061i q^{70} +(12.9346 - 8.92811i) q^{71} +(-11.1567 + 1.35467i) q^{72} +(2.41889 - 0.917363i) q^{73} +(-2.02097 + 16.6442i) q^{74} +(2.18414 + 5.75911i) q^{75} +(-13.3030 + 15.0159i) q^{76} +(12.2123 + 10.8192i) q^{77} +(-12.1547 + 2.31229i) q^{78} +(0.0369776 - 0.0327593i) q^{79} -5.49158i q^{80} +(2.35251 + 2.08414i) q^{81} +(-6.46292 + 1.59297i) q^{82} +(12.2157 + 8.43190i) q^{83} +(-18.3345 + 6.95335i) q^{84} +(-1.03031 + 0.390743i) q^{85} +(-6.99065 - 4.82530i) q^{86} +(1.60648 - 0.395962i) q^{87} +(34.2293 + 30.3245i) q^{88} -9.44591i q^{89} +(1.23023 - 1.08989i) q^{90} +(9.75531 - 4.46989i) q^{91} +(-25.3481 - 22.4564i) q^{92} +(-0.492258 + 0.555645i) q^{93} +(-0.443208 - 1.16864i) q^{94} +(0.215629 - 1.77587i) q^{95} +(-18.5006 + 7.01637i) q^{96} +(-2.67205 + 0.324445i) q^{97} +(4.08025 - 2.81639i) q^{98} +7.38600i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.49582 0.946540i −1.76481 0.669305i −0.999676 0.0254358i \(-0.991903\pi\)
−0.765136 0.643869i \(-0.777328\pi\)
\(3\) −0.730291 1.05801i −0.421634 0.610842i 0.553396 0.832919i \(-0.313332\pi\)
−0.975029 + 0.222077i \(0.928716\pi\)
\(4\) 3.83616 + 3.39854i 1.91808 + 1.69927i
\(5\) −0.453685 0.0550874i −0.202894 0.0246358i 0.0184585 0.999830i \(-0.494124\pi\)
−0.221353 + 0.975194i \(0.571047\pi\)
\(6\) 0.821227 + 3.33185i 0.335265 + 1.36022i
\(7\) −1.38308 2.63524i −0.522755 0.996026i −0.993508 0.113761i \(-0.963710\pi\)
0.470753 0.882265i \(-0.343982\pi\)
\(8\) −3.87657 7.38618i −1.37057 2.61141i
\(9\) 0.477757 1.25974i 0.159252 0.419914i
\(10\) 1.08017 + 0.566920i 0.341581 + 0.179276i
\(11\) −5.12585 + 1.94398i −1.54550 + 0.586132i −0.972394 0.233347i \(-0.925032\pi\)
−0.573109 + 0.819479i \(0.694263\pi\)
\(12\) 0.794175 6.54062i 0.229259 1.88811i
\(13\) −0.193413 + 3.60036i −0.0536432 + 0.998560i
\(14\) 0.957560 + 7.88622i 0.255919 + 2.10768i
\(15\) 0.273039 + 0.520233i 0.0704984 + 0.134324i
\(16\) 1.44838 + 11.9285i 0.362096 + 2.98213i
\(17\) 2.13492 1.12049i 0.517794 0.271759i −0.185518 0.982641i \(-0.559396\pi\)
0.703311 + 0.710882i \(0.251704\pi\)
\(18\) −2.38479 + 2.69187i −0.562101 + 0.634480i
\(19\) 3.91431i 0.898005i 0.893530 + 0.449003i \(0.148221\pi\)
−0.893530 + 0.449003i \(0.851779\pi\)
\(20\) −1.55319 1.75319i −0.347305 0.392026i
\(21\) −1.77805 + 3.38780i −0.388003 + 0.739278i
\(22\) 14.6333 3.11982
\(23\) −6.60766 −1.37779 −0.688897 0.724860i \(-0.741905\pi\)
−0.688897 + 0.724860i \(0.741905\pi\)
\(24\) −4.98362 + 9.49550i −1.01728 + 1.93826i
\(25\) −4.65191 1.14659i −0.930383 0.229319i
\(26\) 3.89061 8.80278i 0.763011 1.72637i
\(27\) −5.42638 + 1.33748i −1.04431 + 0.257399i
\(28\) 3.65025 14.8097i 0.689833 2.79876i
\(29\) −0.456382 + 1.20338i −0.0847481 + 0.223462i −0.970691 0.240333i \(-0.922743\pi\)
0.885942 + 0.463795i \(0.153513\pi\)
\(30\) −0.189036 1.55685i −0.0345131 0.284241i
\(31\) −0.138189 0.560653i −0.0248194 0.100696i 0.957226 0.289342i \(-0.0934364\pi\)
−0.982045 + 0.188646i \(0.939590\pi\)
\(32\) 3.68333 14.9439i 0.651127 2.64173i
\(33\) 5.80011 + 4.00353i 1.00967 + 0.696925i
\(34\) −6.38896 + 0.775760i −1.09570 + 0.133042i
\(35\) 0.482314 + 1.27176i 0.0815260 + 0.214966i
\(36\) 6.11404 3.20889i 1.01901 0.534816i
\(37\) −1.50320 6.09874i −0.247125 1.00263i −0.955075 0.296364i \(-0.904226\pi\)
0.707950 0.706263i \(-0.249620\pi\)
\(38\) 3.70505 9.76943i 0.601039 1.58481i
\(39\) 3.95046 2.42468i 0.632580 0.388259i
\(40\) 1.35186 + 3.56455i 0.213747 + 0.563605i
\(41\) 2.05226 1.41657i 0.320509 0.221232i −0.396936 0.917846i \(-0.629927\pi\)
0.717446 + 0.696615i \(0.245311\pi\)
\(42\) 7.64439 6.77234i 1.17956 1.04499i
\(43\) 3.08976 + 0.761558i 0.471184 + 0.116137i 0.467756 0.883858i \(-0.345063\pi\)
0.00342838 + 0.999994i \(0.498909\pi\)
\(44\) −26.2703 9.96302i −3.96040 1.50198i
\(45\) −0.286147 + 0.545208i −0.0426563 + 0.0812747i
\(46\) 16.4915 + 6.25442i 2.43155 + 0.922164i
\(47\) 0.310500 + 0.350483i 0.0452912 + 0.0511231i 0.770720 0.637174i \(-0.219897\pi\)
−0.725429 + 0.688297i \(0.758358\pi\)
\(48\) 11.5627 10.2437i 1.66894 1.47855i
\(49\) −1.05511 + 1.52859i −0.150730 + 0.218371i
\(50\) 10.5250 + 7.26492i 1.48847 + 1.02741i
\(51\) −2.74460 1.44048i −0.384321 0.201707i
\(52\) −12.9779 + 13.1542i −1.79972 + 1.82417i
\(53\) 3.58647 1.88233i 0.492640 0.258557i −0.200060 0.979784i \(-0.564114\pi\)
0.692699 + 0.721226i \(0.256421\pi\)
\(54\) 14.8092 + 1.79817i 2.01528 + 0.244700i
\(55\) 2.43261 0.599585i 0.328013 0.0808481i
\(56\) −14.1027 + 20.4313i −1.88456 + 2.73025i
\(57\) 4.14138 2.85859i 0.548539 0.378629i
\(58\) 2.27810 2.57144i 0.299129 0.337647i
\(59\) −11.0972 1.34745i −1.44474 0.175423i −0.639690 0.768633i \(-0.720937\pi\)
−0.805048 + 0.593210i \(0.797860\pi\)
\(60\) −0.720611 + 2.92363i −0.0930305 + 0.377440i
\(61\) −7.63210 4.00564i −0.977191 0.512869i −0.101028 0.994884i \(-0.532213\pi\)
−0.876163 + 0.482014i \(0.839905\pi\)
\(62\) −0.185787 + 1.53009i −0.0235949 + 0.194322i
\(63\) −3.98049 + 0.483319i −0.501495 + 0.0608925i
\(64\) −9.68602 + 14.0326i −1.21075 + 1.75408i
\(65\) 0.286083 1.62278i 0.0354842 0.201281i
\(66\) −10.6865 15.4821i −1.31542 1.90572i
\(67\) −7.64095 8.62485i −0.933491 1.05369i −0.998442 0.0558051i \(-0.982227\pi\)
0.0649506 0.997888i \(-0.479311\pi\)
\(68\) 11.9979 + 2.95722i 1.45496 + 0.358616i
\(69\) 4.82552 + 6.99097i 0.580924 + 0.841613i
\(70\) 3.63061i 0.433941i
\(71\) 12.9346 8.92811i 1.53505 1.05957i 0.562529 0.826778i \(-0.309829\pi\)
0.972526 0.232794i \(-0.0747869\pi\)
\(72\) −11.1567 + 1.35467i −1.31483 + 0.159650i
\(73\) 2.41889 0.917363i 0.283109 0.107369i −0.208963 0.977924i \(-0.567009\pi\)
0.492072 + 0.870554i \(0.336240\pi\)
\(74\) −2.02097 + 16.6442i −0.234933 + 1.93485i
\(75\) 2.18414 + 5.75911i 0.252203 + 0.665005i
\(76\) −13.3030 + 15.0159i −1.52596 + 1.72245i
\(77\) 12.2123 + 10.8192i 1.39172 + 1.23296i
\(78\) −12.1547 + 2.31229i −1.37625 + 0.261815i
\(79\) 0.0369776 0.0327593i 0.00416030 0.00368571i −0.661040 0.750351i \(-0.729885\pi\)
0.665200 + 0.746665i \(0.268346\pi\)
\(80\) 5.49158i 0.613978i
\(81\) 2.35251 + 2.08414i 0.261390 + 0.231571i
\(82\) −6.46292 + 1.59297i −0.713710 + 0.175914i
\(83\) 12.2157 + 8.43190i 1.34085 + 0.925522i 0.999894 0.0145577i \(-0.00463403\pi\)
0.340956 + 0.940079i \(0.389249\pi\)
\(84\) −18.3345 + 6.95335i −2.00046 + 0.758673i
\(85\) −1.03031 + 0.390743i −0.111752 + 0.0423821i
\(86\) −6.99065 4.82530i −0.753821 0.520325i
\(87\) 1.60648 0.395962i 0.172233 0.0424516i
\(88\) 34.2293 + 30.3245i 3.64885 + 3.23260i
\(89\) 9.44591i 1.00126i −0.865660 0.500632i \(-0.833101\pi\)
0.865660 0.500632i \(-0.166899\pi\)
\(90\) 1.23023 1.08989i 0.129678 0.114885i
\(91\) 9.75531 4.46989i 1.02263 0.468572i
\(92\) −25.3481 22.4564i −2.64272 2.34125i
\(93\) −0.492258 + 0.555645i −0.0510448 + 0.0576177i
\(94\) −0.443208 1.16864i −0.0457134 0.120536i
\(95\) 0.215629 1.77587i 0.0221231 0.182200i
\(96\) −18.5006 + 7.01637i −1.88821 + 0.716105i
\(97\) −2.67205 + 0.324445i −0.271305 + 0.0329424i −0.255059 0.966926i \(-0.582095\pi\)
−0.0162467 + 0.999868i \(0.505172\pi\)
\(98\) 4.08025 2.81639i 0.412167 0.284499i
\(99\) 7.38600i 0.742321i
\(100\) −13.9488 20.2083i −1.39488 2.02083i
\(101\) 8.94644 + 2.20510i 0.890204 + 0.219416i 0.657790 0.753201i \(-0.271491\pi\)
0.232414 + 0.972617i \(0.425338\pi\)
\(102\) 5.48656 + 6.19305i 0.543250 + 0.613203i
\(103\) −10.9433 15.8541i −1.07827 1.56215i −0.798413 0.602110i \(-0.794327\pi\)
−0.279862 0.960040i \(-0.590289\pi\)
\(104\) 27.3427 12.5284i 2.68117 1.22852i
\(105\) 0.993302 1.43905i 0.0969363 0.140437i
\(106\) −10.7329 + 1.30321i −1.04247 + 0.126579i
\(107\) 0.903609 7.44189i 0.0873552 0.719435i −0.881565 0.472062i \(-0.843510\pi\)
0.968920 0.247373i \(-0.0795671\pi\)
\(108\) −25.3620 13.3110i −2.44046 1.28085i
\(109\) −1.00394 + 4.07314i −0.0961600 + 0.390136i −0.999225 0.0393679i \(-0.987466\pi\)
0.903065 + 0.429504i \(0.141312\pi\)
\(110\) −6.63890 0.806108i −0.632994 0.0768594i
\(111\) −5.35474 + 6.04425i −0.508250 + 0.573695i
\(112\) 29.4312 20.3149i 2.78099 1.91958i
\(113\) −10.7712 + 15.6048i −1.01327 + 1.46797i −0.134389 + 0.990929i \(0.542907\pi\)
−0.878880 + 0.477044i \(0.841708\pi\)
\(114\) −13.0419 + 3.21454i −1.22149 + 0.301069i
\(115\) 2.99780 + 0.363999i 0.279546 + 0.0339431i
\(116\) −5.84050 + 3.06533i −0.542277 + 0.284609i
\(117\) 4.44312 + 1.96375i 0.410766 + 0.181548i
\(118\) 26.4213 + 13.8670i 2.43228 + 1.27656i
\(119\) −5.90552 4.07629i −0.541358 0.373672i
\(120\) 2.78408 4.03343i 0.254150 0.368200i
\(121\) 14.2617 12.6348i 1.29652 1.14861i
\(122\) 15.2569 + 17.2214i 1.38129 + 1.55916i
\(123\) −2.99749 1.13680i −0.270275 0.102502i
\(124\) 1.37529 2.62040i 0.123505 0.235319i
\(125\) 4.18394 + 1.58676i 0.374223 + 0.141924i
\(126\) 10.3921 + 2.56142i 0.925800 + 0.228189i
\(127\) −12.8446 + 11.3793i −1.13978 + 1.00975i −0.139967 + 0.990156i \(0.544700\pi\)
−0.999808 + 0.0195964i \(0.993762\pi\)
\(128\) 12.1238 8.36842i 1.07160 0.739671i
\(129\) −1.45069 3.82516i −0.127726 0.336786i
\(130\) −2.25003 + 3.77937i −0.197341 + 0.331473i
\(131\) 2.05190 5.41041i 0.179275 0.472710i −0.815013 0.579443i \(-0.803270\pi\)
0.994288 + 0.106734i \(0.0340393\pi\)
\(132\) 8.64401 + 35.0701i 0.752364 + 3.05246i
\(133\) 10.3151 5.41380i 0.894436 0.469436i
\(134\) 10.9067 + 28.7586i 0.942194 + 2.48436i
\(135\) 2.53555 0.307871i 0.218225 0.0264973i
\(136\) −16.5523 11.4252i −1.41935 0.979705i
\(137\) −4.33811 + 17.6004i −0.370630 + 1.50370i 0.429051 + 0.903280i \(0.358848\pi\)
−0.799681 + 0.600425i \(0.794998\pi\)
\(138\) −5.42639 22.0157i −0.461925 1.87410i
\(139\) −0.369898 3.04638i −0.0313743 0.258391i −0.999953 0.00968396i \(-0.996917\pi\)
0.968579 0.248707i \(-0.0800056\pi\)
\(140\) −2.47189 + 6.51784i −0.208913 + 0.550858i
\(141\) 0.144058 0.584466i 0.0121319 0.0492210i
\(142\) −40.7333 + 10.0398i −3.41826 + 0.842525i
\(143\) −6.00762 18.8309i −0.502382 1.57472i
\(144\) 15.7188 + 3.87434i 1.30990 + 0.322862i
\(145\) 0.273345 0.520816i 0.0227001 0.0432514i
\(146\) −6.90543 −0.571497
\(147\) 2.38780 0.196943
\(148\) 14.9603 28.5045i 1.22973 2.34305i
\(149\) 2.73114 + 3.08282i 0.223743 + 0.252554i 0.849654 0.527341i \(-0.176811\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(150\) 16.4411i 1.34241i
\(151\) 8.86535 10.0069i 0.721452 0.814351i −0.267348 0.963600i \(-0.586147\pi\)
0.988800 + 0.149249i \(0.0476857\pi\)
\(152\) 28.9118 15.1741i 2.34506 1.23078i
\(153\) −0.391557 3.22476i −0.0316555 0.260707i
\(154\) −20.2390 38.5621i −1.63090 3.10742i
\(155\) 0.0318092 + 0.261973i 0.00255498 + 0.0210421i
\(156\) 23.3950 + 4.12436i 1.87310 + 0.330213i
\(157\) 0.226237 1.86323i 0.0180557 0.148702i −0.980893 0.194549i \(-0.937676\pi\)
0.998948 + 0.0458471i \(0.0145987\pi\)
\(158\) −0.123297 + 0.0467605i −0.00980901 + 0.00372007i
\(159\) −4.61068 2.41987i −0.365651 0.191908i
\(160\) −2.49429 + 6.57690i −0.197191 + 0.519950i
\(161\) 9.13892 + 17.4128i 0.720248 + 1.37232i
\(162\) −3.89872 7.42839i −0.306313 0.583630i
\(163\) 1.07606 + 4.36576i 0.0842839 + 0.341953i 0.997911 0.0645994i \(-0.0205770\pi\)
−0.913627 + 0.406553i \(0.866731\pi\)
\(164\) 12.6871 + 1.54049i 0.990696 + 0.120292i
\(165\) −2.41088 2.13585i −0.187687 0.166276i
\(166\) −22.5071 32.6072i −1.74689 2.53081i
\(167\) −16.1199 6.11346i −1.24739 0.473074i −0.359509 0.933142i \(-0.617056\pi\)
−0.887884 + 0.460068i \(0.847825\pi\)
\(168\) 31.9156 2.46234
\(169\) −12.9252 1.39271i −0.994245 0.107132i
\(170\) 2.94131 0.225588
\(171\) 4.93102 + 1.87009i 0.377085 + 0.143009i
\(172\) 9.26465 + 13.4222i 0.706423 + 1.02343i
\(173\) −13.3981 11.8697i −1.01864 0.902436i −0.0233837 0.999727i \(-0.507444\pi\)
−0.995256 + 0.0972905i \(0.968982\pi\)
\(174\) −4.38428 0.532348i −0.332371 0.0403572i
\(175\) 3.41242 + 13.8447i 0.257955 + 1.04656i
\(176\) −30.6130 58.3282i −2.30754 4.39665i
\(177\) 6.67860 + 12.7250i 0.501994 + 0.956470i
\(178\) −8.94094 + 23.5753i −0.670151 + 1.76704i
\(179\) 7.30421 + 3.83354i 0.545942 + 0.286532i 0.715060 0.699063i \(-0.246399\pi\)
−0.169118 + 0.985596i \(0.554092\pi\)
\(180\) −2.95062 + 1.11902i −0.219926 + 0.0834070i
\(181\) 0.339809 2.79858i 0.0252578 0.208017i −0.974616 0.223882i \(-0.928127\pi\)
0.999874 + 0.0158648i \(0.00505014\pi\)
\(182\) −28.5784 + 1.92226i −2.11837 + 0.142488i
\(183\) 1.33566 + 11.0001i 0.0987345 + 0.813152i
\(184\) 25.6150 + 48.8054i 1.88837 + 3.59798i
\(185\) 0.346018 + 2.84971i 0.0254398 + 0.209515i
\(186\) 1.75453 0.920848i 0.128648 0.0675198i
\(187\) −8.76506 + 9.89371i −0.640965 + 0.723500i
\(188\) 2.39976i 0.175020i
\(189\) 11.0297 + 12.4499i 0.802292 + 0.905600i
\(190\) −2.21910 + 4.22814i −0.160990 + 0.306742i
\(191\) −8.57427 −0.620412 −0.310206 0.950669i \(-0.600398\pi\)
−0.310206 + 0.950669i \(0.600398\pi\)
\(192\) 21.9202 1.58196
\(193\) 1.91203 3.64306i 0.137631 0.262234i −0.806879 0.590717i \(-0.798845\pi\)
0.944510 + 0.328483i \(0.106537\pi\)
\(194\) 6.97605 + 1.71944i 0.500851 + 0.123449i
\(195\) −1.92583 + 0.882420i −0.137912 + 0.0631914i
\(196\) −9.24258 + 2.27809i −0.660184 + 0.162721i
\(197\) 0.786065 3.18919i 0.0560048 0.227221i −0.936270 0.351282i \(-0.885746\pi\)
0.992275 + 0.124061i \(0.0395920\pi\)
\(198\) 6.99114 18.4341i 0.496839 1.31006i
\(199\) −0.992879 8.17709i −0.0703833 0.579659i −0.984649 0.174544i \(-0.944155\pi\)
0.914266 0.405114i \(-0.132768\pi\)
\(200\) 9.56450 + 38.8047i 0.676313 + 2.74391i
\(201\) −3.54505 + 14.3828i −0.250049 + 1.01449i
\(202\) −20.2415 13.9717i −1.42419 0.983045i
\(203\) 3.80241 0.461696i 0.266877 0.0324047i
\(204\) −5.63321 14.8535i −0.394403 1.03996i
\(205\) −1.00912 + 0.529625i −0.0704797 + 0.0369906i
\(206\) 12.3060 + 49.9273i 0.857397 + 3.47860i
\(207\) −3.15686 + 8.32394i −0.219417 + 0.578554i
\(208\) −43.2271 + 2.90757i −2.99726 + 0.201604i
\(209\) −7.60935 20.0642i −0.526349 1.38787i
\(210\) −3.84122 + 2.65140i −0.265069 + 0.182964i
\(211\) 0.283911 0.251523i 0.0195452 0.0173156i −0.653294 0.757105i \(-0.726613\pi\)
0.672839 + 0.739789i \(0.265075\pi\)
\(212\) 20.1555 + 4.96787i 1.38428 + 0.341195i
\(213\) −18.8920 7.16481i −1.29446 0.490924i
\(214\) −9.29929 + 17.7183i −0.635687 + 1.21120i
\(215\) −1.35983 0.515715i −0.0927395 0.0351714i
\(216\) 30.9146 + 34.8954i 2.10347 + 2.37433i
\(217\) −1.28633 + 1.13959i −0.0873217 + 0.0773602i
\(218\) 6.36105 9.21557i 0.430825 0.624157i
\(219\) −2.73707 1.88926i −0.184954 0.127664i
\(220\) 11.3696 + 5.96724i 0.766539 + 0.402311i
\(221\) 3.62125 + 7.90319i 0.243592 + 0.531626i
\(222\) 19.0856 10.0169i 1.28094 0.672290i
\(223\) 27.8171 + 3.37761i 1.86277 + 0.226181i 0.973094 0.230410i \(-0.0740069\pi\)
0.889676 + 0.456592i \(0.150930\pi\)
\(224\) −44.4750 + 10.9621i −2.97161 + 0.732436i
\(225\) −3.66689 + 5.31241i −0.244460 + 0.354161i
\(226\) 41.6535 28.7513i 2.77075 1.91251i
\(227\) 2.25084 2.54068i 0.149394 0.168631i −0.669050 0.743218i \(-0.733299\pi\)
0.818444 + 0.574587i \(0.194837\pi\)
\(228\) 25.6020 + 3.10865i 1.69554 + 0.205875i
\(229\) −3.41030 + 13.8361i −0.225359 + 0.914317i 0.743903 + 0.668287i \(0.232972\pi\)
−0.969262 + 0.246030i \(0.920874\pi\)
\(230\) −7.13743 3.74601i −0.470628 0.247005i
\(231\) 2.52823 20.8219i 0.166345 1.36998i
\(232\) 10.6576 1.29407i 0.699705 0.0849596i
\(233\) −5.42573 + 7.86053i −0.355452 + 0.514961i −0.959395 0.282067i \(-0.908980\pi\)
0.603943 + 0.797027i \(0.293595\pi\)
\(234\) −9.23046 9.10675i −0.603414 0.595327i
\(235\) −0.121562 0.176113i −0.00792985 0.0114884i
\(236\) −37.9915 42.8835i −2.47303 2.79148i
\(237\) −0.0616640 0.0151988i −0.00400551 0.000987269i
\(238\) 10.8808 + 15.7635i 0.705294 + 1.02180i
\(239\) 10.2917i 0.665716i −0.942977 0.332858i \(-0.891987\pi\)
0.942977 0.332858i \(-0.108013\pi\)
\(240\) −5.81014 + 4.01045i −0.375043 + 0.258874i
\(241\) 0.175972 0.0213669i 0.0113353 0.00137636i −0.114867 0.993381i \(-0.536644\pi\)
0.126202 + 0.992005i \(0.459721\pi\)
\(242\) −47.5540 + 18.0348i −3.05688 + 1.15932i
\(243\) −1.53393 + 12.6331i −0.0984019 + 0.810412i
\(244\) −15.6647 41.3043i −1.00283 2.64424i
\(245\) 0.562895 0.635377i 0.0359621 0.0405928i
\(246\) 6.40518 + 5.67450i 0.408380 + 0.361793i
\(247\) −14.0929 0.757080i −0.896712 0.0481718i
\(248\) −3.60539 + 3.19410i −0.228942 + 0.202825i
\(249\) 19.0821i 1.20928i
\(250\) −8.94042 7.92053i −0.565442 0.500938i
\(251\) 3.74625 0.923368i 0.236461 0.0582825i −0.119304 0.992858i \(-0.538066\pi\)
0.355765 + 0.934575i \(0.384220\pi\)
\(252\) −16.9124 11.6738i −1.06538 0.735379i
\(253\) 33.8699 12.8452i 2.12938 0.807569i
\(254\) 42.8288 16.2428i 2.68732 1.01917i
\(255\) 1.16583 + 0.804716i 0.0730073 + 0.0503933i
\(256\) −5.06890 + 1.24937i −0.316806 + 0.0780857i
\(257\) −5.63611 4.99315i −0.351571 0.311464i 0.468791 0.883309i \(-0.344690\pi\)
−0.820362 + 0.571844i \(0.806228\pi\)
\(258\) 10.9200i 0.679852i
\(259\) −13.9926 + 12.3963i −0.869456 + 0.770271i
\(260\) 6.61254 5.25297i 0.410092 0.325775i
\(261\) 1.29791 + 1.14985i 0.0803386 + 0.0711738i
\(262\) −10.2423 + 11.5612i −0.632774 + 0.714254i
\(263\) 4.92003 + 12.9731i 0.303382 + 0.799953i 0.996838 + 0.0794546i \(0.0253179\pi\)
−0.693456 + 0.720499i \(0.743913\pi\)
\(264\) 7.08626 58.3606i 0.436129 3.59185i
\(265\) −1.73082 + 0.656414i −0.106324 + 0.0403232i
\(266\) −30.8691 + 3.74819i −1.89271 + 0.229816i
\(267\) −9.99386 + 6.89826i −0.611614 + 0.422167i
\(268\) 59.0545i 3.60733i
\(269\) −9.90703 14.3528i −0.604042 0.875106i 0.395008 0.918678i \(-0.370742\pi\)
−0.999050 + 0.0435713i \(0.986126\pi\)
\(270\) −6.61968 1.63161i −0.402861 0.0992963i
\(271\) 1.00843 + 1.13829i 0.0612580 + 0.0691459i 0.778341 0.627842i \(-0.216062\pi\)
−0.717083 + 0.696988i \(0.754523\pi\)
\(272\) 16.4580 + 23.8435i 0.997912 + 1.44572i
\(273\) −11.8534 7.05688i −0.717400 0.427102i
\(274\) 27.4867 39.8213i 1.66053 2.40569i
\(275\) 26.0740 3.16595i 1.57232 0.190914i
\(276\) −5.24764 + 43.2182i −0.315871 + 2.60143i
\(277\) 20.8902 + 10.9640i 1.25517 + 0.658765i 0.955419 0.295252i \(-0.0954037\pi\)
0.299752 + 0.954017i \(0.403096\pi\)
\(278\) −1.96033 + 7.95335i −0.117573 + 0.477011i
\(279\) −0.772298 0.0937740i −0.0462363 0.00561410i
\(280\) 7.52371 8.49252i 0.449628 0.507525i
\(281\) −18.8614 + 13.0191i −1.12518 + 0.776653i −0.977196 0.212338i \(-0.931892\pi\)
−0.147979 + 0.988990i \(0.547277\pi\)
\(282\) −0.912764 + 1.32237i −0.0543543 + 0.0787458i
\(283\) −13.5156 + 3.33128i −0.803416 + 0.198024i −0.619581 0.784933i \(-0.712697\pi\)
−0.183835 + 0.982957i \(0.558851\pi\)
\(284\) 79.9618 + 9.70912i 4.74486 + 0.576131i
\(285\) −2.03635 + 1.06876i −0.120623 + 0.0633079i
\(286\) −2.83027 + 52.6850i −0.167357 + 3.11533i
\(287\) −6.57145 3.44896i −0.387900 0.203586i
\(288\) −17.0657 11.7796i −1.00560 0.694118i
\(289\) −6.35473 + 9.20641i −0.373808 + 0.541554i
\(290\) −1.17519 + 1.04113i −0.0690097 + 0.0611373i
\(291\) 2.29464 + 2.59011i 0.134514 + 0.151835i
\(292\) 12.3969 + 4.70154i 0.725476 + 0.275137i
\(293\) 12.3575 23.5453i 0.721934 1.37553i −0.196717 0.980460i \(-0.563028\pi\)
0.918651 0.395070i \(-0.129280\pi\)
\(294\) −5.95953 2.26015i −0.347567 0.131815i
\(295\) 4.96043 + 1.22264i 0.288807 + 0.0711846i
\(296\) −39.2191 + 34.7451i −2.27956 + 2.01952i
\(297\) 25.2148 17.4045i 1.46311 1.00991i
\(298\) −3.89842 10.2793i −0.225829 0.595463i
\(299\) 1.27801 23.7900i 0.0739092 1.37581i
\(300\) −11.1939 + 29.5158i −0.646278 + 1.70410i
\(301\) −2.26650 9.19555i −0.130639 0.530023i
\(302\) −31.5983 + 16.5840i −1.81828 + 0.954305i
\(303\) −4.20049 11.0758i −0.241312 0.636287i
\(304\) −46.6920 + 5.66943i −2.67797 + 0.325164i
\(305\) 3.24191 + 2.23773i 0.185631 + 0.128132i
\(306\) −2.07511 + 8.41906i −0.118626 + 0.481286i
\(307\) 4.03925 + 16.3879i 0.230532 + 0.935305i 0.966165 + 0.257925i \(0.0830386\pi\)
−0.735633 + 0.677380i \(0.763115\pi\)
\(308\) 10.0790 + 83.0081i 0.574305 + 4.72983i
\(309\) −8.78199 + 23.1562i −0.499590 + 1.31731i
\(310\) 0.168577 0.683945i 0.00957455 0.0388455i
\(311\) 22.4409 5.53118i 1.27251 0.313645i 0.455480 0.890246i \(-0.349468\pi\)
0.817026 + 0.576601i \(0.195621\pi\)
\(312\) −33.2233 19.7794i −1.88090 1.11979i
\(313\) −1.95856 0.482741i −0.110704 0.0272862i 0.183574 0.983006i \(-0.441233\pi\)
−0.294279 + 0.955720i \(0.595079\pi\)
\(314\) −2.32827 + 4.43615i −0.131392 + 0.250346i
\(315\) 1.83251 0.103251
\(316\) 0.253186 0.0142428
\(317\) 5.30516 10.1081i 0.297968 0.567730i −0.689737 0.724060i \(-0.742274\pi\)
0.987705 + 0.156330i \(0.0499663\pi\)
\(318\) 9.21693 + 10.4038i 0.516860 + 0.583414i
\(319\) 7.05556i 0.395035i
\(320\) 5.16742 5.83282i 0.288868 0.326064i
\(321\) −8.53348 + 4.47872i −0.476293 + 0.249978i
\(322\) −6.32724 52.1095i −0.352603 2.90395i
\(323\) 4.38595 + 8.35674i 0.244041 + 0.464981i
\(324\) 1.94157 + 15.9902i 0.107865 + 0.888346i
\(325\) 5.02789 16.5268i 0.278897 0.916742i
\(326\) 1.44671 11.9147i 0.0801257 0.659895i
\(327\) 5.04259 1.91240i 0.278856 0.105756i
\(328\) −18.4188 9.66693i −1.01701 0.533767i
\(329\) 0.494158 1.30299i 0.0272438 0.0718360i
\(330\) 3.99546 + 7.61271i 0.219943 + 0.419066i
\(331\) 6.16095 + 11.7387i 0.338637 + 0.645218i 0.993913 0.110172i \(-0.0351400\pi\)
−0.655276 + 0.755389i \(0.727448\pi\)
\(332\) 18.2053 + 73.8618i 0.999146 + 4.05369i
\(333\) −8.40099 1.02007i −0.460372 0.0558992i
\(334\) 34.4457 + 30.5162i 1.88478 + 1.66977i
\(335\) 2.99147 + 4.33389i 0.163441 + 0.236786i
\(336\) −42.9867 16.3027i −2.34512 0.889386i
\(337\) 10.8960 0.593541 0.296771 0.954949i \(-0.404090\pi\)
0.296771 + 0.954949i \(0.404090\pi\)
\(338\) 30.9407 + 15.7102i 1.68295 + 0.854521i
\(339\) 24.3761 1.32393
\(340\) −5.28038 2.00258i −0.286369 0.108605i
\(341\) 1.79823 + 2.60519i 0.0973798 + 0.141079i
\(342\) −10.5368 9.33482i −0.569767 0.504769i
\(343\) −15.1935 1.84483i −0.820374 0.0996114i
\(344\) −6.35267 25.7738i −0.342513 1.38963i
\(345\) −1.80415 3.43752i −0.0971323 0.185070i
\(346\) 22.2042 + 42.3065i 1.19370 + 2.27441i
\(347\) 1.69228 4.46217i 0.0908462 0.239542i −0.881890 0.471455i \(-0.843729\pi\)
0.972737 + 0.231913i \(0.0744984\pi\)
\(348\) 7.50841 + 3.94072i 0.402493 + 0.211245i
\(349\) −28.7780 + 10.9140i −1.54045 + 0.584216i −0.971266 0.237995i \(-0.923510\pi\)
−0.569184 + 0.822210i \(0.692741\pi\)
\(350\) 4.58780 37.7839i 0.245228 2.01964i
\(351\) −3.76588 19.7956i −0.201008 1.05661i
\(352\) 10.1703 + 83.7604i 0.542081 + 4.46444i
\(353\) 1.16277 + 2.21546i 0.0618878 + 0.117917i 0.914435 0.404733i \(-0.132636\pi\)
−0.852547 + 0.522650i \(0.824943\pi\)
\(354\) −4.62386 38.0809i −0.245755 2.02398i
\(355\) −6.36006 + 3.33802i −0.337557 + 0.177164i
\(356\) 32.1024 36.2361i 1.70142 1.92051i
\(357\) 9.22496i 0.488237i
\(358\) −14.6014 16.4816i −0.771707 0.871078i
\(359\) −1.37723 + 2.62409i −0.0726874 + 0.138494i −0.919088 0.394053i \(-0.871073\pi\)
0.846400 + 0.532547i \(0.178765\pi\)
\(360\) 5.13627 0.270705
\(361\) 3.67815 0.193587
\(362\) −3.49707 + 6.66311i −0.183802 + 0.350206i
\(363\) −23.7829 5.86195i −1.24828 0.307673i
\(364\) 52.6141 + 16.0066i 2.75773 + 0.838974i
\(365\) −1.14795 + 0.282944i −0.0600864 + 0.0148100i
\(366\) 7.07849 28.7186i 0.369999 1.50114i
\(367\) 7.41132 19.5421i 0.386868 1.02009i −0.590218 0.807244i \(-0.700958\pi\)
0.977086 0.212843i \(-0.0682724\pi\)
\(368\) −9.57044 78.8197i −0.498894 4.10876i
\(369\) −0.804034 3.26209i −0.0418563 0.169818i
\(370\) 1.83377 7.43990i 0.0953332 0.386782i
\(371\) −9.92075 6.84780i −0.515060 0.355520i
\(372\) −3.77677 + 0.458582i −0.195816 + 0.0237764i
\(373\) −6.02908 15.8974i −0.312174 0.823135i −0.995651 0.0931632i \(-0.970302\pi\)
0.683477 0.729972i \(-0.260467\pi\)
\(374\) 31.2408 16.3964i 1.61542 0.847840i
\(375\) −1.37669 5.58543i −0.0710918 0.288431i
\(376\) 1.38505 3.65208i 0.0714286 0.188342i
\(377\) −4.24434 1.87589i −0.218594 0.0966133i
\(378\) −15.7438 41.5129i −0.809772 2.13519i
\(379\) −25.8245 + 17.8254i −1.32652 + 0.915628i −0.999567 0.0294144i \(-0.990636\pi\)
−0.326948 + 0.945042i \(0.606020\pi\)
\(380\) 6.86255 6.07969i 0.352041 0.311881i
\(381\) 21.4197 + 5.27949i 1.09737 + 0.270476i
\(382\) 21.3998 + 8.11589i 1.09491 + 0.415245i
\(383\) 4.47328 8.52313i 0.228574 0.435512i −0.743976 0.668207i \(-0.767062\pi\)
0.972550 + 0.232695i \(0.0747544\pi\)
\(384\) −17.7077 6.71566i −0.903644 0.342707i
\(385\) −4.94454 5.58124i −0.251997 0.284446i
\(386\) −8.22039 + 7.28263i −0.418407 + 0.370676i
\(387\) 2.43552 3.52846i 0.123805 0.179362i
\(388\) −11.3531 7.83645i −0.576364 0.397835i
\(389\) −5.70274 2.99303i −0.289140 0.151753i 0.313917 0.949450i \(-0.398359\pi\)
−0.603057 + 0.797698i \(0.706051\pi\)
\(390\) 5.64178 0.379482i 0.285683 0.0192158i
\(391\) −14.1068 + 7.40383i −0.713412 + 0.374428i
\(392\) 15.3807 + 1.86755i 0.776842 + 0.0943257i
\(393\) −7.22274 + 1.78025i −0.364339 + 0.0898015i
\(394\) −4.98058 + 7.21561i −0.250918 + 0.363517i
\(395\) −0.0185808 + 0.0128254i −0.000934902 + 0.000645316i
\(396\) −25.1016 + 28.3339i −1.26140 + 1.42383i
\(397\) −7.92668 0.962474i −0.397829 0.0483052i −0.0808223 0.996729i \(-0.525755\pi\)
−0.317007 + 0.948423i \(0.602678\pi\)
\(398\) −5.26190 + 21.3484i −0.263755 + 1.07010i
\(399\) −13.2609 6.95986i −0.663876 0.348429i
\(400\) 6.93941 57.1512i 0.346970 2.85756i
\(401\) 0.0941903 0.0114368i 0.00470364 0.000571125i −0.118185 0.992992i \(-0.537707\pi\)
0.122888 + 0.992421i \(0.460784\pi\)
\(402\) 22.4618 32.5415i 1.12029 1.62302i
\(403\) 2.04528 0.389091i 0.101883 0.0193820i
\(404\) 26.8259 + 38.8640i 1.33464 + 1.93356i
\(405\) −0.952490 1.07514i −0.0473296 0.0534241i
\(406\) −9.92715 2.44682i −0.492676 0.121434i
\(407\) 19.5610 + 28.3390i 0.969604 + 1.40471i
\(408\) 25.8562i 1.28007i
\(409\) −7.86527 + 5.42901i −0.388913 + 0.268447i −0.746436 0.665457i \(-0.768237\pi\)
0.357523 + 0.933904i \(0.383621\pi\)
\(410\) 3.01988 0.366680i 0.149141 0.0181090i
\(411\) 21.7895 8.26366i 1.07480 0.407616i
\(412\) 11.9006 98.0102i 0.586300 4.82861i
\(413\) 11.7975 + 31.1075i 0.580518 + 1.53070i
\(414\) 15.7579 17.7870i 0.774458 0.874183i
\(415\) −5.07760 4.49836i −0.249250 0.220816i
\(416\) 53.0909 + 16.1517i 2.60299 + 0.791900i
\(417\) −2.95297 + 2.61610i −0.144607 + 0.128111i
\(418\) 57.2792i 2.80162i
\(419\) 15.7021 + 13.9108i 0.767096 + 0.679588i 0.952997 0.302981i \(-0.0979818\pi\)
−0.185901 + 0.982569i \(0.559520\pi\)
\(420\) 8.70113 2.14464i 0.424572 0.104648i
\(421\) 13.1724 + 9.09223i 0.641982 + 0.443128i 0.844066 0.536240i \(-0.180156\pi\)
−0.202083 + 0.979368i \(0.564771\pi\)
\(422\) −0.946668 + 0.359024i −0.0460831 + 0.0174770i
\(423\) 0.589861 0.223705i 0.0286800 0.0108769i
\(424\) −27.8064 19.1934i −1.35040 0.932112i
\(425\) −11.2162 + 2.76454i −0.544066 + 0.134100i
\(426\) 40.3694 + 35.7641i 1.95590 + 1.73278i
\(427\) 25.6525i 1.24141i
\(428\) 28.7580 25.4774i 1.39007 1.23149i
\(429\) −15.5360 + 20.1082i −0.750083 + 0.970831i
\(430\) 2.90574 + 2.57426i 0.140127 + 0.124142i
\(431\) 1.78530 2.01518i 0.0859948 0.0970680i −0.703938 0.710261i \(-0.748577\pi\)
0.789933 + 0.613193i \(0.210115\pi\)
\(432\) −23.8137 62.7915i −1.14574 3.02106i
\(433\) 3.98786 32.8430i 0.191644 1.57833i −0.506414 0.862290i \(-0.669029\pi\)
0.698058 0.716041i \(-0.254048\pi\)
\(434\) 4.28911 1.62665i 0.205884 0.0780815i
\(435\) −0.750649 + 0.0911453i −0.0359909 + 0.00437008i
\(436\) −17.6940 + 12.2133i −0.847391 + 0.584912i
\(437\) 25.8645i 1.23727i
\(438\) 5.04297 + 7.30600i 0.240962 + 0.349094i
\(439\) 7.42428 + 1.82992i 0.354341 + 0.0873373i 0.412468 0.910972i \(-0.364667\pi\)
−0.0581271 + 0.998309i \(0.518513\pi\)
\(440\) −13.8588 15.6434i −0.660694 0.745769i
\(441\) 1.42155 + 2.05946i 0.0676926 + 0.0980697i
\(442\) −1.55731 23.1526i −0.0740736 1.10126i
\(443\) −10.3546 + 15.0012i −0.491961 + 0.712729i −0.987807 0.155682i \(-0.950243\pi\)
0.495846 + 0.868410i \(0.334858\pi\)
\(444\) −41.0833 + 4.98842i −1.94973 + 0.236740i
\(445\) −0.520350 + 4.28547i −0.0246670 + 0.203151i
\(446\) −66.2294 34.7599i −3.13605 1.64593i
\(447\) 1.26712 5.14092i 0.0599329 0.243157i
\(448\) 50.3758 + 6.11673i 2.38003 + 0.288988i
\(449\) −11.2326 + 12.6789i −0.530097 + 0.598356i −0.951169 0.308671i \(-0.900116\pi\)
0.421072 + 0.907027i \(0.361654\pi\)
\(450\) 14.1803 9.78797i 0.668467 0.461409i
\(451\) −7.76580 + 11.2507i −0.365677 + 0.529775i
\(452\) −94.3535 + 23.2561i −4.43802 + 1.09387i
\(453\) −17.0617 2.07166i −0.801628 0.0973352i
\(454\) −8.02256 + 4.21056i −0.376517 + 0.197612i
\(455\) −4.67207 + 1.49053i −0.219030 + 0.0698771i
\(456\) −37.1684 19.5075i −1.74057 0.913520i
\(457\) 12.5212 + 8.64273i 0.585715 + 0.404290i 0.823739 0.566969i \(-0.191884\pi\)
−0.238024 + 0.971259i \(0.576500\pi\)
\(458\) 21.6079 31.3045i 1.00967 1.46276i
\(459\) −10.0862 + 8.93562i −0.470785 + 0.417079i
\(460\) 10.2630 + 11.5845i 0.478514 + 0.540131i
\(461\) 14.2695 + 5.41171i 0.664597 + 0.252048i 0.663754 0.747951i \(-0.268962\pi\)
0.000843429 1.00000i \(0.499732\pi\)
\(462\) −26.0187 + 49.5746i −1.21050 + 2.30642i
\(463\) −4.54780 1.72475i −0.211354 0.0801561i 0.246656 0.969103i \(-0.420668\pi\)
−0.458010 + 0.888947i \(0.651438\pi\)
\(464\) −15.0156 3.70101i −0.697081 0.171815i
\(465\) 0.253939 0.224971i 0.0117762 0.0104328i
\(466\) 20.9820 14.4828i 0.971971 0.670903i
\(467\) 7.91217 + 20.8627i 0.366131 + 0.965409i 0.983848 + 0.179008i \(0.0572889\pi\)
−0.617716 + 0.786401i \(0.711942\pi\)
\(468\) 10.3706 + 22.6334i 0.479383 + 1.04623i
\(469\) −12.1605 + 32.0646i −0.561519 + 1.48060i
\(470\) 0.136699 + 0.554611i 0.00630547 + 0.0255823i
\(471\) −2.13653 + 1.12134i −0.0984463 + 0.0516686i
\(472\) 33.0667 + 87.1897i 1.52202 + 4.01323i
\(473\) −17.3181 + 2.10280i −0.796288 + 0.0966869i
\(474\) 0.139516 + 0.0963009i 0.00640818 + 0.00442325i
\(475\) 4.48813 18.2090i 0.205929 0.835488i
\(476\) −8.80110 35.7075i −0.403398 1.63665i
\(477\) −0.657782 5.41732i −0.0301177 0.248042i
\(478\) −9.74152 + 25.6863i −0.445567 + 1.17486i
\(479\) 5.27108 21.3856i 0.240842 0.977133i −0.718644 0.695378i \(-0.755237\pi\)
0.959486 0.281756i \(-0.0909167\pi\)
\(480\) 8.77998 2.16407i 0.400749 0.0987759i
\(481\) 22.2484 4.23250i 1.01444 0.192985i
\(482\) −0.459419 0.113237i −0.0209260 0.00515779i
\(483\) 11.7488 22.3854i 0.534588 1.01857i
\(484\) 97.6500 4.43864
\(485\) 1.23014 0.0558578
\(486\) 15.7861 30.0780i 0.716074 1.36436i
\(487\) −19.6748 22.2083i −0.891552 1.00635i −0.999925 0.0122437i \(-0.996103\pi\)
0.108373 0.994110i \(-0.465436\pi\)
\(488\) 71.9002i 3.25477i
\(489\) 3.83318 4.32676i 0.173342 0.195663i
\(490\) −2.00630 + 1.05299i −0.0906352 + 0.0475690i
\(491\) −2.05997 16.9654i −0.0929651 0.765636i −0.962409 0.271605i \(-0.912446\pi\)
0.869444 0.494032i \(-0.164477\pi\)
\(492\) −7.63541 14.5481i −0.344231 0.655877i
\(493\) 0.374040 + 3.08049i 0.0168459 + 0.138738i
\(494\) 34.4568 + 15.2291i 1.55029 + 0.685188i
\(495\) 0.406875 3.35092i 0.0182877 0.150613i
\(496\) 6.48761 2.46043i 0.291302 0.110476i
\(497\) −41.4173 21.7375i −1.85782 0.975058i
\(498\) −18.0620 + 47.6255i −0.809376 + 2.13415i
\(499\) 7.45853 + 14.2111i 0.333890 + 0.636174i 0.993294 0.115615i \(-0.0368837\pi\)
−0.659404 + 0.751789i \(0.729191\pi\)
\(500\) 10.6576 + 20.3064i 0.476622 + 0.908128i
\(501\) 5.30410 + 21.5196i 0.236970 + 0.961423i
\(502\) −10.2240 1.24142i −0.456318 0.0554071i
\(503\) 6.85346 + 6.07164i 0.305581 + 0.270721i 0.801951 0.597390i \(-0.203796\pi\)
−0.496370 + 0.868111i \(0.665334\pi\)
\(504\) 19.0005 + 27.5270i 0.846350 + 1.22615i
\(505\) −3.93740 1.49326i −0.175212 0.0664491i
\(506\) −96.6917 −4.29847
\(507\) 7.96564 + 14.6920i 0.353766 + 0.652496i
\(508\) −87.9472 −3.90203
\(509\) −25.7665 9.77194i −1.14208 0.433133i −0.290249 0.956951i \(-0.593738\pi\)
−0.851830 + 0.523818i \(0.824507\pi\)
\(510\) −2.14801 3.11193i −0.0951156 0.137799i
\(511\) −5.76298 5.10555i −0.254939 0.225856i
\(512\) −15.4145 1.87165i −0.681229 0.0827162i
\(513\) −5.23532 21.2405i −0.231145 0.937793i
\(514\) 9.34049 + 17.7968i 0.411991 + 0.784984i
\(515\) 4.09145 + 7.79561i 0.180291 + 0.343515i
\(516\) 7.43488 19.6042i 0.327302 0.863025i
\(517\) −2.27291 1.19292i −0.0999625 0.0524644i
\(518\) 46.6566 17.6945i 2.04997 0.777452i
\(519\) −2.77372 + 22.8436i −0.121753 + 1.00272i
\(520\) −13.0951 + 4.17774i −0.574260 + 0.183206i
\(521\) −5.48686 45.1884i −0.240384 1.97974i −0.195227 0.980758i \(-0.562544\pi\)
−0.0451571 0.998980i \(-0.514379\pi\)
\(522\) −2.15097 4.09834i −0.0941455 0.179379i
\(523\) 3.62389 + 29.8454i 0.158461 + 1.30505i 0.827351 + 0.561686i \(0.189847\pi\)
−0.668889 + 0.743362i \(0.733230\pi\)
\(524\) 26.2589 13.7817i 1.14713 0.602058i
\(525\) 12.1558 13.7210i 0.530522 0.598835i
\(526\) 37.0355i 1.61482i
\(527\) −0.923228 1.04211i −0.0402165 0.0453950i
\(528\) −39.3554 + 74.9854i −1.71272 + 3.26332i
\(529\) 20.6612 0.898314
\(530\) 4.94114 0.214630
\(531\) −6.99922 + 13.3359i −0.303740 + 0.578728i
\(532\) 57.9696 + 14.2882i 2.51330 + 0.619473i
\(533\) 4.70324 + 7.66286i 0.203720 + 0.331915i
\(534\) 31.4724 7.75724i 1.36194 0.335689i
\(535\) −0.819908 + 3.32650i −0.0354477 + 0.143817i
\(536\) −34.0841 + 89.8723i −1.47221 + 3.88189i
\(537\) −1.27827 10.5275i −0.0551615 0.454296i
\(538\) 11.1407 + 45.1995i 0.480308 + 1.94869i
\(539\) 2.43680 9.88647i 0.104960 0.425840i
\(540\) 10.7731 + 7.43612i 0.463600 + 0.320000i
\(541\) −14.0875 + 1.71053i −0.605670 + 0.0735416i −0.417626 0.908619i \(-0.637138\pi\)
−0.188044 + 0.982161i \(0.560215\pi\)
\(542\) −1.43944 3.79548i −0.0618291 0.163030i
\(543\) −3.20908 + 1.68426i −0.137715 + 0.0722784i
\(544\) −8.88086 36.0311i −0.380764 1.54482i
\(545\) 0.679852 1.79262i 0.0291216 0.0767875i
\(546\) 22.9043 + 28.8324i 0.980215 + 1.23391i
\(547\) 3.14710 + 8.29823i 0.134560 + 0.354807i 0.985313 0.170760i \(-0.0546224\pi\)
−0.850752 + 0.525567i \(0.823853\pi\)
\(548\) −76.4575 + 52.7748i −3.26610 + 2.25443i
\(549\) −8.69235 + 7.70075i −0.370981 + 0.328660i
\(550\) −68.0727 16.7784i −2.90263 0.715434i
\(551\) −4.71041 1.78642i −0.200670 0.0761042i
\(552\) 32.9301 62.7431i 1.40160 2.67052i
\(553\) −0.137471 0.0521360i −0.00584588 0.00221705i
\(554\) −41.7603 47.1377i −1.77423 2.00269i
\(555\) 2.76233 2.44721i 0.117254 0.103878i
\(556\) 8.93428 12.9435i 0.378898 0.548929i
\(557\) −12.1351 8.37627i −0.514182 0.354914i 0.282545 0.959254i \(-0.408821\pi\)
−0.796726 + 0.604340i \(0.793437\pi\)
\(558\) 1.83876 + 0.965055i 0.0778408 + 0.0408540i
\(559\) −3.33948 + 10.9770i −0.141245 + 0.464276i
\(560\) −14.4716 + 7.59529i −0.611538 + 0.320960i
\(561\) 16.8687 + 2.04823i 0.712196 + 0.0864762i
\(562\) 59.3977 14.6402i 2.50554 0.617561i
\(563\) −23.7713 + 34.4387i −1.00184 + 1.45142i −0.112784 + 0.993620i \(0.535977\pi\)
−0.889057 + 0.457797i \(0.848639\pi\)
\(564\) 2.53897 1.75252i 0.106910 0.0737945i
\(565\) 5.74636 6.48629i 0.241751 0.272880i
\(566\) 36.8856 + 4.47872i 1.55042 + 0.188255i
\(567\) 2.23850 9.08196i 0.0940082 0.381406i
\(568\) −116.086 60.9269i −4.87088 2.55644i
\(569\) 1.18727 9.77804i 0.0497729 0.409917i −0.946434 0.322898i \(-0.895343\pi\)
0.996207 0.0870187i \(-0.0277340\pi\)
\(570\) 6.09400 0.739946i 0.255250 0.0309929i
\(571\) 8.31147 12.0412i 0.347824 0.503910i −0.609555 0.792744i \(-0.708652\pi\)
0.957379 + 0.288833i \(0.0932673\pi\)
\(572\) 40.9515 92.6556i 1.71227 3.87413i
\(573\) 6.26171 + 9.07165i 0.261587 + 0.378974i
\(574\) 13.1366 + 14.8281i 0.548310 + 0.618914i
\(575\) 30.7383 + 7.57631i 1.28188 + 0.315954i
\(576\) 13.0499 + 18.9061i 0.543746 + 0.787752i
\(577\) 31.7349i 1.32114i 0.750764 + 0.660570i \(0.229686\pi\)
−0.750764 + 0.660570i \(0.770314\pi\)
\(578\) 24.5745 16.9626i 1.02216 0.705549i
\(579\) −5.25073 + 0.637554i −0.218213 + 0.0264958i
\(580\) 2.81861 1.06896i 0.117036 0.0443861i
\(581\) 5.32476 43.8533i 0.220908 1.81934i
\(582\) −3.27536 8.63642i −0.135768 0.357991i
\(583\) −14.7245 + 16.6206i −0.609828 + 0.688353i
\(584\) −16.1528 14.3101i −0.668407 0.592157i
\(585\) −1.90760 1.13568i −0.0788695 0.0469547i
\(586\) −53.1287 + 47.0679i −2.19473 + 1.94436i
\(587\) 14.9090i 0.615362i −0.951490 0.307681i \(-0.900447\pi\)
0.951490 0.307681i \(-0.0995529\pi\)
\(588\) 9.16001 + 8.11506i 0.377752 + 0.334659i
\(589\) 2.19457 0.540914i 0.0904258 0.0222880i
\(590\) −11.2231 7.74672i −0.462046 0.318927i
\(591\) −3.94825 + 1.49737i −0.162409 + 0.0615937i
\(592\) 70.5717 26.7643i 2.90048 1.10001i
\(593\) 10.3100 + 7.11651i 0.423383 + 0.292240i 0.760642 0.649172i \(-0.224884\pi\)
−0.337259 + 0.941412i \(0.609500\pi\)
\(594\) −79.4056 + 19.5717i −3.25805 + 0.803038i
\(595\) 2.45470 + 2.17467i 0.100633 + 0.0891528i
\(596\) 21.1081i 0.864621i
\(597\) −7.92635 + 7.02213i −0.324404 + 0.287397i
\(598\) −25.7078 + 58.1658i −1.05127 + 2.37858i
\(599\) 13.0416 + 11.5539i 0.532867 + 0.472079i 0.886124 0.463447i \(-0.153388\pi\)
−0.353258 + 0.935526i \(0.614926\pi\)
\(600\) 34.0709 38.4580i 1.39094 1.57004i
\(601\) −1.89569 4.99852i −0.0773268 0.203894i 0.890778 0.454438i \(-0.150160\pi\)
−0.968105 + 0.250544i \(0.919391\pi\)
\(602\) −3.04718 + 25.0958i −0.124194 + 1.02283i
\(603\) −14.5156 + 5.50504i −0.591121 + 0.224183i
\(604\) 68.0179 8.25886i 2.76761 0.336048i
\(605\) −7.16634 + 4.94657i −0.291353 + 0.201106i
\(606\) 31.6191i 1.28444i
\(607\) 13.5377 + 19.6128i 0.549480 + 0.796060i 0.995070 0.0991778i \(-0.0316213\pi\)
−0.445589 + 0.895237i \(0.647006\pi\)
\(608\) 58.4950 + 14.4177i 2.37228 + 0.584715i
\(609\) −3.26534 3.68581i −0.132318 0.149357i
\(610\) −5.97313 8.65358i −0.241845 0.350373i
\(611\) −1.32192 + 1.05013i −0.0534791 + 0.0424835i
\(612\) 9.45743 13.7015i 0.382294 0.553848i
\(613\) 18.2193 2.21223i 0.735872 0.0893511i 0.255984 0.966681i \(-0.417600\pi\)
0.479888 + 0.877330i \(0.340677\pi\)
\(614\) 5.43054 44.7245i 0.219159 1.80493i
\(615\) 1.29730 + 0.680873i 0.0523120 + 0.0274555i
\(616\) 32.5704 132.143i 1.31230 5.32421i
\(617\) −0.0650685 0.00790075i −0.00261956 0.000318072i 0.119227 0.992867i \(-0.461958\pi\)
−0.121846 + 0.992549i \(0.538882\pi\)
\(618\) 43.8365 49.4812i 1.76336 1.99043i
\(619\) 15.2797 10.5468i 0.614144 0.423913i −0.219969 0.975507i \(-0.570596\pi\)
0.834113 + 0.551594i \(0.185980\pi\)
\(620\) −0.768300 + 1.11307i −0.0308557 + 0.0447022i
\(621\) 35.8557 8.83763i 1.43884 0.354642i
\(622\) −61.2439 7.43636i −2.45566 0.298171i
\(623\) −24.8922 + 13.0644i −0.997286 + 0.523416i
\(624\) 34.6446 + 43.6113i 1.38689 + 1.74585i
\(625\) 19.4009 + 10.1824i 0.776037 + 0.407295i
\(626\) 4.43128 + 3.05869i 0.177110 + 0.122250i
\(627\) −15.6711 + 22.7034i −0.625842 + 0.906688i
\(628\) 7.20016 6.37878i 0.287317 0.254541i
\(629\) −10.0428 11.3360i −0.400433 0.451995i
\(630\) −4.57363 1.73455i −0.182218 0.0691061i
\(631\) −0.352379 + 0.671402i −0.0140280 + 0.0267281i −0.892369 0.451306i \(-0.850958\pi\)
0.878341 + 0.478034i \(0.158651\pi\)
\(632\) −0.385312 0.146130i −0.0153269 0.00581272i
\(633\) −0.473451 0.116695i −0.0188180 0.00463822i
\(634\) −22.8085 + 20.2066i −0.905841 + 0.802506i
\(635\) 6.45427 4.45506i 0.256130 0.176794i
\(636\) −9.46329 24.9526i −0.375244 0.989437i
\(637\) −5.29942 4.09443i −0.209971 0.162227i
\(638\) −6.67837 + 17.6094i −0.264399 + 0.697163i
\(639\) −5.06751 20.5597i −0.200468 0.813330i
\(640\) −5.96136 + 3.12876i −0.235644 + 0.123675i
\(641\) −6.03947 15.9248i −0.238545 0.628990i 0.761266 0.648439i \(-0.224578\pi\)
−0.999811 + 0.0194490i \(0.993809\pi\)
\(642\) 25.5373 3.10079i 1.00788 0.122379i
\(643\) 26.9743 + 18.6190i 1.06376 + 0.734261i 0.965369 0.260887i \(-0.0840150\pi\)
0.0983912 + 0.995148i \(0.468630\pi\)
\(644\) −24.1196 + 97.8572i −0.950447 + 3.85612i
\(645\) 0.447439 + 1.81533i 0.0176179 + 0.0714786i
\(646\) −3.03657 25.0084i −0.119472 0.983942i
\(647\) 9.41125 24.8154i 0.369995 0.975596i −0.612692 0.790322i \(-0.709913\pi\)
0.982687 0.185274i \(-0.0593173\pi\)
\(648\) 6.27419 25.4554i 0.246473 0.999982i
\(649\) 59.5022 14.6660i 2.33567 0.575690i
\(650\) −28.1920 + 36.4888i −1.10578 + 1.43121i
\(651\) 2.14509 + 0.528717i 0.0840726 + 0.0207220i
\(652\) −10.7093 + 20.4048i −0.419408 + 0.799115i
\(653\) −7.60195 −0.297487 −0.148744 0.988876i \(-0.547523\pi\)
−0.148744 + 0.988876i \(0.547523\pi\)
\(654\) −14.3956 −0.562911
\(655\) −1.22896 + 2.34159i −0.0480195 + 0.0914934i
\(656\) 19.8701 + 22.4287i 0.775797 + 0.875693i
\(657\) 3.48545i 0.135980i
\(658\) −2.46666 + 2.78428i −0.0961604 + 0.108543i
\(659\) −13.1679 + 6.91105i −0.512949 + 0.269216i −0.701276 0.712890i \(-0.747386\pi\)
0.188327 + 0.982106i \(0.439694\pi\)
\(660\) −1.98974 16.3870i −0.0774505 0.637862i
\(661\) −14.0054 26.6851i −0.544748 1.03793i −0.989805 0.142428i \(-0.954509\pi\)
0.445058 0.895502i \(-0.353183\pi\)
\(662\) −4.26547 35.1293i −0.165782 1.36534i
\(663\) 5.71708 9.60294i 0.222033 0.372947i
\(664\) 14.9245 122.914i 0.579183 4.77000i
\(665\) −4.97806 + 1.88793i −0.193041 + 0.0732108i
\(666\) 20.0018 + 10.4978i 0.775056 + 0.406781i
\(667\) 3.01562 7.95154i 0.116765 0.307885i
\(668\) −41.0616 78.2363i −1.58872 3.02705i
\(669\) −16.7410 31.8974i −0.647245 1.23322i
\(670\) −3.36397 13.6482i −0.129961 0.527274i
\(671\) 46.9079 + 5.69565i 1.81086 + 0.219878i
\(672\) 44.0776 + 39.0494i 1.70033 + 1.50636i
\(673\) 4.43476 + 6.42485i 0.170947 + 0.247660i 0.899088 0.437768i \(-0.144231\pi\)
−0.728141 + 0.685428i \(0.759615\pi\)
\(674\) −27.1944 10.3135i −1.04749 0.397260i
\(675\) 26.7766 1.03063
\(676\) −44.8499 49.2695i −1.72500 1.89498i
\(677\) −5.03499 −0.193511 −0.0967553 0.995308i \(-0.530846\pi\)
−0.0967553 + 0.995308i \(0.530846\pi\)
\(678\) −60.8383 23.0729i −2.33648 0.886111i
\(679\) 4.55064 + 6.59274i 0.174638 + 0.253006i
\(680\) 6.88015 + 6.09528i 0.263842 + 0.233743i
\(681\) −4.33183 0.525980i −0.165996 0.0201556i
\(682\) −2.02215 8.20419i −0.0774322 0.314155i
\(683\) 0.683929 + 1.30312i 0.0261698 + 0.0498624i 0.898190 0.439608i \(-0.144883\pi\)
−0.872020 + 0.489470i \(0.837190\pi\)
\(684\) 12.5606 + 23.9323i 0.480267 + 0.915073i
\(685\) 2.93770 7.74607i 0.112244 0.295962i
\(686\) 36.1742 + 18.9857i 1.38114 + 0.724876i
\(687\) 17.1292 6.49627i 0.653522 0.247848i
\(688\) −4.60910 + 37.9593i −0.175720 + 1.44719i
\(689\) 6.08338 + 13.2767i 0.231758 + 0.505800i
\(690\) 1.24909 + 10.2871i 0.0475519 + 0.391625i
\(691\) −12.6598 24.1213i −0.481602 0.917616i −0.998117 0.0613378i \(-0.980463\pi\)
0.516515 0.856278i \(-0.327229\pi\)
\(692\) −11.0577 91.0682i −0.420350 3.46189i
\(693\) 19.4638 10.2154i 0.739370 0.388052i
\(694\) −8.44725 + 9.53497i −0.320653 + 0.361943i
\(695\) 1.40248i 0.0531990i
\(696\) −9.15227 10.3308i −0.346916 0.391587i
\(697\) 2.79415 5.32381i 0.105836 0.201654i
\(698\) 82.1553 3.10962
\(699\) 12.2789 0.464430
\(700\) −33.9613 + 64.7079i −1.28362 + 2.44573i
\(701\) 15.0336 + 3.70546i 0.567813 + 0.139953i 0.512763 0.858530i \(-0.328622\pi\)
0.0550501 + 0.998484i \(0.482468\pi\)
\(702\) −9.33836 + 52.9708i −0.352454 + 1.99926i
\(703\) 23.8724 5.88401i 0.900364 0.221920i
\(704\) 22.3700 90.7586i 0.843100 3.42059i
\(705\) −0.0975537 + 0.257228i −0.00367409 + 0.00968777i
\(706\) −0.805029 6.63001i −0.0302977 0.249524i
\(707\) −6.56267 26.6258i −0.246815 1.00137i
\(708\) −17.6263 + 71.5127i −0.662437 + 2.68761i
\(709\) −19.8337 13.6902i −0.744871 0.514147i 0.134132 0.990963i \(-0.457175\pi\)
−0.879003 + 0.476816i \(0.841791\pi\)
\(710\) 19.0332 2.31104i 0.714301 0.0867319i
\(711\) −0.0236019 0.0622331i −0.000885141 0.00233392i
\(712\) −69.7692 + 36.6177i −2.61471 + 1.37231i
\(713\) 0.913104 + 3.70461i 0.0341960 + 0.138739i
\(714\) 8.73180 23.0239i 0.326779 0.861646i
\(715\) 1.68822 + 8.87425i 0.0631360 + 0.331878i
\(716\) 14.9917 + 39.5298i 0.560265 + 1.47730i
\(717\) −10.8887 + 7.51594i −0.406647 + 0.280688i
\(718\) 5.92113 5.24566i 0.220975 0.195766i
\(719\) −7.88978 1.94466i −0.294239 0.0725235i 0.0894328 0.995993i \(-0.471495\pi\)
−0.383672 + 0.923469i \(0.625341\pi\)
\(720\) −6.91797 2.62364i −0.257818 0.0977773i
\(721\) −26.6439 + 50.7656i −0.992269 + 1.89061i
\(722\) −9.18001 3.48152i −0.341645 0.129569i
\(723\) −0.151117 0.170576i −0.00562010 0.00634378i
\(724\) 10.8147 9.58096i 0.401924 0.356073i
\(725\) 3.50284 5.07474i 0.130092 0.188471i
\(726\) 53.8092 + 37.1418i 1.99705 + 1.37846i
\(727\) 14.1873 + 7.44606i 0.526177 + 0.276159i 0.706825 0.707389i \(-0.250127\pi\)
−0.180647 + 0.983548i \(0.557819\pi\)
\(728\) −70.8325 54.7266i −2.62523 2.02830i
\(729\) 22.8349 11.9847i 0.845736 0.443877i
\(730\) 3.13289 + 0.380402i 0.115953 + 0.0140793i
\(731\) 7.44971 1.83619i 0.275537 0.0679139i
\(732\) −32.2606 + 46.7375i −1.19239 + 1.72747i
\(733\) −22.9858 + 15.8660i −0.849000 + 0.586022i −0.911164 0.412043i \(-0.864815\pi\)
0.0621641 + 0.998066i \(0.480200\pi\)
\(734\) −36.9947 + 41.7584i −1.36550 + 1.54133i
\(735\) −1.08331 0.131538i −0.0399586 0.00485185i
\(736\) −24.3382 + 98.7440i −0.897119 + 3.63975i
\(737\) 55.9329 + 29.3559i 2.06032 + 1.08134i
\(738\) −1.08098 + 8.90265i −0.0397914 + 0.327711i
\(739\) −7.29417 + 0.885672i −0.268320 + 0.0325800i −0.253591 0.967312i \(-0.581612\pi\)
−0.0147293 + 0.999892i \(0.504689\pi\)
\(740\) −8.35750 + 12.1079i −0.307228 + 0.445096i
\(741\) 9.49094 + 15.4633i 0.348659 + 0.568060i
\(742\) 18.2787 + 26.4813i 0.671032 + 0.972158i
\(743\) 15.3024 + 17.2728i 0.561389 + 0.633677i 0.958840 0.283946i \(-0.0916437\pi\)
−0.397451 + 0.917623i \(0.630105\pi\)
\(744\) 6.01236 + 1.48191i 0.220424 + 0.0543296i
\(745\) −1.06925 1.54908i −0.0391744 0.0567539i
\(746\) 45.3838i 1.66162i
\(747\) 16.4582 11.3602i 0.602172 0.415650i
\(748\) −67.2484 + 8.16544i −2.45885 + 0.298558i
\(749\) −20.8609 + 7.91150i −0.762241 + 0.289080i
\(750\) −1.85088 + 15.2433i −0.0675844 + 0.556608i
\(751\) 2.41004 + 6.35477i 0.0879438 + 0.231889i 0.971772 0.235924i \(-0.0758115\pi\)
−0.883828 + 0.467812i \(0.845042\pi\)
\(752\) −3.73101 + 4.21145i −0.136056 + 0.153576i
\(753\) −3.71278 3.28924i −0.135301 0.119867i
\(754\) 8.81750 + 8.69932i 0.321114 + 0.316811i
\(755\) −4.57333 + 4.05162i −0.166441 + 0.147454i
\(756\) 85.2449i 3.10033i
\(757\) −36.9408 32.7267i −1.34263 1.18947i −0.964612 0.263674i \(-0.915066\pi\)
−0.378023 0.925796i \(-0.623396\pi\)
\(758\) 81.3258 20.0450i 2.95389 0.728067i
\(759\) −38.3252 26.4540i −1.39112 0.960218i
\(760\) −13.9528 + 5.29159i −0.506120 + 0.191946i
\(761\) 10.8732 4.12366i 0.394153 0.149482i −0.149562 0.988752i \(-0.547786\pi\)
0.543715 + 0.839270i \(0.317017\pi\)
\(762\) −48.4626 33.4513i −1.75561 1.21181i
\(763\) 12.1222 2.98786i 0.438854 0.108168i
\(764\) −32.8923 29.1400i −1.19000 1.05425i
\(765\) 1.48460i 0.0536758i
\(766\) −19.2320 + 17.0381i −0.694881 + 0.615610i
\(767\) 6.99765 39.6934i