Properties

Label 169.2.h.a.155.4
Level $169$
Weight $2$
Character 169.155
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 155.4
Character \(\chi\) \(=\) 169.155
Dual form 169.2.h.a.12.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24935 - 0.862366i) q^{2} +(-1.71162 + 0.898326i) q^{3} +(0.107998 + 0.284768i) q^{4} +(0.371060 - 0.418840i) q^{5} +(2.91310 + 0.353715i) q^{6} +(-0.356102 + 1.44476i) q^{7} +(-0.615953 + 2.49902i) q^{8} +(0.418452 - 0.606232i) q^{9} +O(q^{10})\) \(q+(-1.24935 - 0.862366i) q^{2} +(-1.71162 + 0.898326i) q^{3} +(0.107998 + 0.284768i) q^{4} +(0.371060 - 0.418840i) q^{5} +(2.91310 + 0.353715i) q^{6} +(-0.356102 + 1.44476i) q^{7} +(-0.615953 + 2.49902i) q^{8} +(0.418452 - 0.606232i) q^{9} +(-0.824778 + 0.203290i) q^{10} +(3.96719 - 2.73835i) q^{11} +(-0.440666 - 0.390396i) q^{12} +(2.06554 + 2.95525i) q^{13} +(1.69081 - 1.49793i) q^{14} +(-0.258858 + 1.05023i) q^{15} +(3.38055 - 2.99490i) q^{16} +(7.61181 + 1.87614i) q^{17} +(-1.04559 + 0.396539i) q^{18} +5.51308i q^{19} +(0.159346 + 0.0604319i) q^{20} +(-0.688358 - 2.79278i) q^{21} -7.31788 q^{22} -6.37662 q^{23} +(-1.19066 - 4.83070i) q^{24} +(0.564942 + 4.65271i) q^{25} +(-0.0320826 - 5.47341i) q^{26} +(0.527370 - 4.34328i) q^{27} +(-0.449880 + 0.0546254i) q^{28} +(1.15185 - 1.66874i) q^{29} +(1.22909 - 1.08887i) q^{30} +(-3.06058 - 0.371622i) q^{31} +(-1.69611 + 0.205945i) q^{32} +(-4.33037 + 8.25084i) q^{33} +(-7.89191 - 8.90813i) q^{34} +(0.472990 + 0.685244i) q^{35} +(0.217827 + 0.0536896i) q^{36} +(-6.28396 - 0.763011i) q^{37} +(4.75429 - 6.88778i) q^{38} +(-6.19021 - 3.20273i) q^{39} +(0.818134 + 1.18527i) q^{40} +(-1.57560 - 3.00206i) q^{41} +(-1.54840 + 4.08278i) q^{42} +(1.14959 + 9.46773i) q^{43} +(1.20824 + 0.833990i) q^{44} +(-0.0986435 - 0.400213i) q^{45} +(7.96666 + 5.49899i) q^{46} +(0.734847 + 0.278691i) q^{47} +(-3.09580 + 8.16296i) q^{48} +(4.23766 + 2.22410i) q^{49} +(3.30653 - 6.30007i) q^{50} +(-14.7139 + 3.62665i) q^{51} +(-0.618486 + 0.907362i) q^{52} +(9.64825 + 2.37808i) q^{53} +(-4.40437 + 4.97151i) q^{54} +(0.325133 - 2.67771i) q^{55} +(-3.39115 - 1.77981i) q^{56} +(-4.95254 - 9.43628i) q^{57} +(-2.87813 + 1.09153i) q^{58} +(-0.709790 + 0.801187i) q^{59} +(-0.327027 + 0.0397083i) q^{60} +(5.70686 - 1.40661i) q^{61} +(3.50327 + 3.10363i) q^{62} +(0.726850 + 0.820444i) q^{63} +(-5.70144 - 2.99235i) q^{64} +(2.00422 + 0.231444i) q^{65} +(12.5254 - 6.57384i) q^{66} +(-1.44145 - 0.546670i) q^{67} +(0.287796 + 2.37022i) q^{68} +(10.9143 - 5.72829i) q^{69} -1.26400i q^{70} +(-2.49253 - 4.74913i) q^{71} +(1.25724 + 1.41913i) q^{72} +(4.52280 - 3.12187i) q^{73} +(7.19289 + 6.37235i) q^{74} +(-5.14662 - 7.45617i) q^{75} +(-1.56995 + 0.595402i) q^{76} +(2.54355 + 6.70678i) q^{77} +(4.97182 + 9.33957i) q^{78} +(0.523916 - 1.38145i) q^{79} -2.52720i q^{80} +(3.78266 + 9.97406i) q^{81} +(-0.620390 + 5.10937i) q^{82} +(-1.23021 + 2.34397i) q^{83} +(0.720952 - 0.497637i) q^{84} +(3.61024 - 2.49197i) q^{85} +(6.72841 - 12.8199i) q^{86} +(-0.472451 + 3.89099i) q^{87} +(4.39959 + 11.6008i) q^{88} -15.8350i q^{89} +(-0.221889 + 0.585074i) q^{90} +(-5.00519 + 1.93185i) q^{91} +(-0.688664 - 1.81586i) q^{92} +(5.57238 - 2.11332i) q^{93} +(-0.677750 - 0.981890i) q^{94} +(2.30910 + 2.04568i) q^{95} +(2.71808 - 1.87616i) q^{96} +(-2.04793 - 2.31164i) q^{97} +(-3.37635 - 6.43310i) q^{98} -3.55090i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24935 0.862366i −0.883426 0.609785i 0.0375970 0.999293i \(-0.488030\pi\)
−0.921023 + 0.389508i \(0.872645\pi\)
\(3\) −1.71162 + 0.898326i −0.988203 + 0.518649i −0.879742 0.475452i \(-0.842285\pi\)
−0.108461 + 0.994101i \(0.534592\pi\)
\(4\) 0.107998 + 0.284768i 0.0539991 + 0.142384i
\(5\) 0.371060 0.418840i 0.165943 0.187311i −0.659657 0.751567i \(-0.729298\pi\)
0.825600 + 0.564256i \(0.190837\pi\)
\(6\) 2.91310 + 0.353715i 1.18927 + 0.144403i
\(7\) −0.356102 + 1.44476i −0.134594 + 0.546069i 0.864465 + 0.502693i \(0.167657\pi\)
−0.999059 + 0.0433759i \(0.986189\pi\)
\(8\) −0.615953 + 2.49902i −0.217772 + 0.883537i
\(9\) 0.418452 0.606232i 0.139484 0.202077i
\(10\) −0.824778 + 0.203290i −0.260818 + 0.0642858i
\(11\) 3.96719 2.73835i 1.19615 0.825644i 0.207851 0.978161i \(-0.433353\pi\)
0.988301 + 0.152517i \(0.0487377\pi\)
\(12\) −0.440666 0.390396i −0.127209 0.112698i
\(13\) 2.06554 + 2.95525i 0.572879 + 0.819640i
\(14\) 1.69081 1.49793i 0.451889 0.400338i
\(15\) −0.258858 + 1.05023i −0.0668368 + 0.271167i
\(16\) 3.38055 2.99490i 0.845136 0.748725i
\(17\) 7.61181 + 1.87614i 1.84613 + 0.455031i 0.997287 0.0736071i \(-0.0234511\pi\)
0.848847 + 0.528638i \(0.177297\pi\)
\(18\) −1.04559 + 0.396539i −0.246447 + 0.0934652i
\(19\) 5.51308i 1.26479i 0.774648 + 0.632393i \(0.217927\pi\)
−0.774648 + 0.632393i \(0.782073\pi\)
\(20\) 0.159346 + 0.0604319i 0.0356308 + 0.0135130i
\(21\) −0.688358 2.79278i −0.150212 0.609434i
\(22\) −7.31788 −1.56018
\(23\) −6.37662 −1.32962 −0.664809 0.747013i \(-0.731487\pi\)
−0.664809 + 0.747013i \(0.731487\pi\)
\(24\) −1.19066 4.83070i −0.243042 0.986062i
\(25\) 0.564942 + 4.65271i 0.112988 + 0.930543i
\(26\) −0.0320826 5.47341i −0.00629191 1.07342i
\(27\) 0.527370 4.34328i 0.101492 0.835865i
\(28\) −0.449880 + 0.0546254i −0.0850194 + 0.0103232i
\(29\) 1.15185 1.66874i 0.213893 0.309878i −0.701321 0.712846i \(-0.747406\pi\)
0.915214 + 0.402968i \(0.132021\pi\)
\(30\) 1.22909 1.08887i 0.224399 0.198800i
\(31\) −3.06058 0.371622i −0.549696 0.0667452i −0.159023 0.987275i \(-0.550835\pi\)
−0.390673 + 0.920530i \(0.627758\pi\)
\(32\) −1.69611 + 0.205945i −0.299833 + 0.0364063i
\(33\) −4.33037 + 8.25084i −0.753821 + 1.43629i
\(34\) −7.89191 8.90813i −1.35345 1.52773i
\(35\) 0.472990 + 0.685244i 0.0799498 + 0.115827i
\(36\) 0.217827 + 0.0536896i 0.0363045 + 0.00894827i
\(37\) −6.28396 0.763011i −1.03308 0.125438i −0.413605 0.910457i \(-0.635730\pi\)
−0.619473 + 0.785018i \(0.712653\pi\)
\(38\) 4.75429 6.88778i 0.771248 1.11735i
\(39\) −6.19021 3.20273i −0.991226 0.512848i
\(40\) 0.818134 + 1.18527i 0.129358 + 0.187408i
\(41\) −1.57560 3.00206i −0.246068 0.468843i 0.730827 0.682562i \(-0.239134\pi\)
−0.976895 + 0.213720i \(0.931442\pi\)
\(42\) −1.54840 + 4.08278i −0.238923 + 0.629987i
\(43\) 1.14959 + 9.46773i 0.175311 + 1.44382i 0.769066 + 0.639170i \(0.220722\pi\)
−0.593755 + 0.804646i \(0.702355\pi\)
\(44\) 1.20824 + 0.833990i 0.182149 + 0.125729i
\(45\) −0.0986435 0.400213i −0.0147049 0.0596602i
\(46\) 7.96666 + 5.49899i 1.17462 + 0.810781i
\(47\) 0.734847 + 0.278691i 0.107188 + 0.0406512i 0.407616 0.913153i \(-0.366360\pi\)
−0.300428 + 0.953805i \(0.597129\pi\)
\(48\) −3.09580 + 8.16296i −0.446841 + 1.17822i
\(49\) 4.23766 + 2.22410i 0.605380 + 0.317728i
\(50\) 3.30653 6.30007i 0.467614 0.890965i
\(51\) −14.7139 + 3.62665i −2.06036 + 0.507832i
\(52\) −0.618486 + 0.907362i −0.0857686 + 0.125829i
\(53\) 9.64825 + 2.37808i 1.32529 + 0.326654i 0.837562 0.546342i \(-0.183980\pi\)
0.487727 + 0.872996i \(0.337826\pi\)
\(54\) −4.40437 + 4.97151i −0.599359 + 0.676536i
\(55\) 0.325133 2.67771i 0.0438409 0.361062i
\(56\) −3.39115 1.77981i −0.453162 0.237838i
\(57\) −4.95254 9.43628i −0.655980 1.24987i
\(58\) −2.87813 + 1.09153i −0.377917 + 0.143325i
\(59\) −0.709790 + 0.801187i −0.0924068 + 0.104306i −0.792895 0.609358i \(-0.791427\pi\)
0.700488 + 0.713664i \(0.252966\pi\)
\(60\) −0.327027 + 0.0397083i −0.0422190 + 0.00512631i
\(61\) 5.70686 1.40661i 0.730688 0.180098i 0.143616 0.989633i \(-0.454127\pi\)
0.587072 + 0.809535i \(0.300281\pi\)
\(62\) 3.50327 + 3.10363i 0.444916 + 0.394161i
\(63\) 0.726850 + 0.820444i 0.0915745 + 0.103366i
\(64\) −5.70144 2.99235i −0.712680 0.374043i
\(65\) 2.00422 + 0.231444i 0.248593 + 0.0287071i
\(66\) 12.5254 6.57384i 1.54177 0.809184i
\(67\) −1.44145 0.546670i −0.176101 0.0667863i 0.264979 0.964254i \(-0.414635\pi\)
−0.441080 + 0.897468i \(0.645404\pi\)
\(68\) 0.287796 + 2.37022i 0.0349004 + 0.287431i
\(69\) 10.9143 5.72829i 1.31393 0.689605i
\(70\) 1.26400i 0.151077i
\(71\) −2.49253 4.74913i −0.295809 0.563618i 0.691509 0.722367i \(-0.256946\pi\)
−0.987319 + 0.158750i \(0.949254\pi\)
\(72\) 1.25724 + 1.41913i 0.148167 + 0.167246i
\(73\) 4.52280 3.12187i 0.529354 0.365387i −0.273208 0.961955i \(-0.588085\pi\)
0.802562 + 0.596568i \(0.203469\pi\)
\(74\) 7.19289 + 6.37235i 0.836157 + 0.740770i
\(75\) −5.14662 7.45617i −0.594281 0.860964i
\(76\) −1.56995 + 0.595402i −0.180085 + 0.0682973i
\(77\) 2.54355 + 6.70678i 0.289864 + 0.764308i
\(78\) 4.97182 + 9.33957i 0.562948 + 1.05750i
\(79\) 0.523916 1.38145i 0.0589452 0.155426i −0.902309 0.431091i \(-0.858129\pi\)
0.961254 + 0.275665i \(0.0888981\pi\)
\(80\) 2.52720i 0.282549i
\(81\) 3.78266 + 9.97406i 0.420296 + 1.10823i
\(82\) −0.620390 + 5.10937i −0.0685107 + 0.564236i
\(83\) −1.23021 + 2.34397i −0.135033 + 0.257284i −0.943578 0.331150i \(-0.892563\pi\)
0.808545 + 0.588435i \(0.200256\pi\)
\(84\) 0.720952 0.497637i 0.0786623 0.0542967i
\(85\) 3.61024 2.49197i 0.391586 0.270292i
\(86\) 6.72841 12.8199i 0.725543 1.38241i
\(87\) −0.472451 + 3.89099i −0.0506521 + 0.417157i
\(88\) 4.39959 + 11.6008i 0.468998 + 1.23665i
\(89\) 15.8350i 1.67851i −0.543742 0.839253i \(-0.682993\pi\)
0.543742 0.839253i \(-0.317007\pi\)
\(90\) −0.221889 + 0.585074i −0.0233892 + 0.0616722i
\(91\) −5.00519 + 1.93185i −0.524686 + 0.202513i
\(92\) −0.688664 1.81586i −0.0717981 0.189316i
\(93\) 5.57238 2.11332i 0.577829 0.219142i
\(94\) −0.677750 0.981890i −0.0699046 0.101274i
\(95\) 2.30910 + 2.04568i 0.236908 + 0.209882i
\(96\) 2.71808 1.87616i 0.277413 0.191485i
\(97\) −2.04793 2.31164i −0.207936 0.234711i 0.635286 0.772277i \(-0.280882\pi\)
−0.843222 + 0.537566i \(0.819344\pi\)
\(98\) −3.37635 6.43310i −0.341063 0.649841i
\(99\) 3.55090i 0.356879i
\(100\) −1.26393 + 0.663362i −0.126393 + 0.0663362i
\(101\) 1.05828 + 8.71576i 0.105303 + 0.867250i 0.945647 + 0.325196i \(0.105430\pi\)
−0.840343 + 0.542054i \(0.817647\pi\)
\(102\) 21.5104 + 8.15780i 2.12984 + 0.807743i
\(103\) −2.76538 + 1.45138i −0.272481 + 0.143009i −0.595430 0.803407i \(-0.703018\pi\)
0.322949 + 0.946416i \(0.395326\pi\)
\(104\) −8.65752 + 3.34154i −0.848940 + 0.327665i
\(105\) −1.42515 0.747976i −0.139080 0.0729950i
\(106\) −10.0033 11.2914i −0.971606 1.09672i
\(107\) 7.87952 + 6.98065i 0.761742 + 0.674845i 0.951728 0.306942i \(-0.0993058\pi\)
−0.189986 + 0.981787i \(0.560844\pi\)
\(108\) 1.29378 0.318888i 0.124494 0.0306851i
\(109\) −14.8706 + 1.80562i −1.42435 + 0.172947i −0.796146 0.605105i \(-0.793131\pi\)
−0.628200 + 0.778052i \(0.716208\pi\)
\(110\) −2.71537 + 3.06502i −0.258901 + 0.292238i
\(111\) 11.4412 4.33907i 1.08595 0.411846i
\(112\) 3.12311 + 5.95058i 0.295106 + 0.562277i
\(113\) −13.3211 6.99145i −1.25314 0.657700i −0.298204 0.954502i \(-0.596387\pi\)
−0.954939 + 0.296802i \(0.904080\pi\)
\(114\) −1.95006 + 16.0602i −0.182639 + 1.50417i
\(115\) −2.36611 + 2.67079i −0.220641 + 0.249052i
\(116\) 0.599601 + 0.147788i 0.0556716 + 0.0137218i
\(117\) 2.65590 0.0155676i 0.245538 0.00143923i
\(118\) 1.57769 0.388867i 0.145239 0.0357981i
\(119\) −5.42116 + 10.3292i −0.496957 + 0.946873i
\(120\) −2.46509 1.29378i −0.225031 0.118106i
\(121\) 4.33935 11.4419i 0.394486 1.04017i
\(122\) −8.34290 3.16404i −0.755330 0.286459i
\(123\) 5.39365 + 3.72297i 0.486329 + 0.335689i
\(124\) −0.224711 0.911688i −0.0201796 0.0818720i
\(125\) 4.46093 + 3.07916i 0.398998 + 0.275408i
\(126\) −0.200569 1.65184i −0.0178681 0.147157i
\(127\) 4.68084 12.3424i 0.415358 1.09521i −0.550203 0.835031i \(-0.685450\pi\)
0.965561 0.260177i \(-0.0837811\pi\)
\(128\) 6.13064 + 11.6809i 0.541877 + 1.03246i
\(129\) −10.4728 15.1724i −0.922076 1.33586i
\(130\) −2.30439 2.01753i −0.202108 0.176949i
\(131\) −6.50029 + 9.41730i −0.567933 + 0.822793i −0.996747 0.0806001i \(-0.974316\pi\)
0.428814 + 0.903393i \(0.358932\pi\)
\(132\) −2.81725 0.342076i −0.245210 0.0297739i
\(133\) −7.96509 1.96322i −0.690661 0.170233i
\(134\) 1.32945 + 1.92604i 0.114847 + 0.166385i
\(135\) −1.62345 1.83250i −0.139725 0.157717i
\(136\) −9.37703 + 17.8664i −0.804074 + 1.53204i
\(137\) 7.44324 0.903773i 0.635919 0.0772146i 0.203773 0.979018i \(-0.434680\pi\)
0.432146 + 0.901804i \(0.357756\pi\)
\(138\) −18.5758 2.25551i −1.58127 0.192001i
\(139\) 17.1607 15.2031i 1.45555 1.28951i 0.572783 0.819707i \(-0.305864\pi\)
0.882772 0.469802i \(-0.155675\pi\)
\(140\) −0.144053 + 0.208697i −0.0121747 + 0.0176381i
\(141\) −1.50813 + 0.183120i −0.127008 + 0.0154215i
\(142\) −0.981431 + 8.08282i −0.0823599 + 0.678295i
\(143\) 16.2869 + 6.06786i 1.36198 + 0.507420i
\(144\) −0.401010 3.30262i −0.0334175 0.275218i
\(145\) −0.271531 1.10164i −0.0225494 0.0914865i
\(146\) −8.34277 −0.690453
\(147\) −9.25122 −0.763028
\(148\) −0.461375 1.87187i −0.0379248 0.153867i
\(149\) 5.09453 + 1.93210i 0.417360 + 0.158284i 0.554340 0.832290i \(-0.312971\pi\)
−0.136981 + 0.990574i \(0.543740\pi\)
\(150\) 13.7537i 1.12298i
\(151\) 5.58413 2.11778i 0.454430 0.172342i −0.116761 0.993160i \(-0.537251\pi\)
0.571190 + 0.820818i \(0.306482\pi\)
\(152\) −13.7773 3.39580i −1.11749 0.275435i
\(153\) 4.32255 3.82944i 0.349457 0.309592i
\(154\) 2.60591 10.5726i 0.209990 0.851965i
\(155\) −1.29131 + 1.14400i −0.103720 + 0.0918882i
\(156\) 0.243504 2.10866i 0.0194960 0.168828i
\(157\) −8.52910 7.55612i −0.680696 0.603044i 0.250258 0.968179i \(-0.419484\pi\)
−0.930955 + 0.365135i \(0.881023\pi\)
\(158\) −1.84588 + 1.27412i −0.146850 + 0.101363i
\(159\) −18.6504 + 4.59691i −1.47907 + 0.364559i
\(160\) −0.543100 + 0.786816i −0.0429358 + 0.0622033i
\(161\) 2.27073 9.21271i 0.178959 0.726063i
\(162\) 3.87541 15.7232i 0.304481 1.23533i
\(163\) −7.21625 0.876211i −0.565220 0.0686301i −0.167061 0.985947i \(-0.553428\pi\)
−0.398159 + 0.917316i \(0.630351\pi\)
\(164\) 0.684727 0.772897i 0.0534682 0.0603531i
\(165\) 1.84895 + 4.87529i 0.143941 + 0.379541i
\(166\) 3.55833 1.86756i 0.276180 0.144950i
\(167\) −17.2321 11.8944i −1.33346 0.920419i −0.333706 0.942677i \(-0.608299\pi\)
−0.999752 + 0.0222579i \(0.992915\pi\)
\(168\) 7.40321 0.571170
\(169\) −4.46706 + 12.2084i −0.343620 + 0.939109i
\(170\) −6.65945 −0.510757
\(171\) 3.34220 + 2.30696i 0.255585 + 0.176417i
\(172\) −2.57195 + 1.34986i −0.196109 + 0.102926i
\(173\) −5.24454 13.8287i −0.398735 1.05138i −0.972612 0.232436i \(-0.925330\pi\)
0.573876 0.818942i \(-0.305439\pi\)
\(174\) 3.94571 4.45379i 0.299124 0.337641i
\(175\) −6.92325 0.840635i −0.523348 0.0635460i
\(176\) 5.21016 21.1385i 0.392731 1.59337i
\(177\) 0.495161 2.00895i 0.0372186 0.151002i
\(178\) −13.6556 + 19.7835i −1.02353 + 1.48284i
\(179\) 7.96042 1.96207i 0.594990 0.146652i 0.0696894 0.997569i \(-0.477799\pi\)
0.525300 + 0.850917i \(0.323953\pi\)
\(180\) 0.103314 0.0713127i 0.00770059 0.00531534i
\(181\) 14.4635 + 12.8135i 1.07506 + 0.952420i 0.999001 0.0446830i \(-0.0142278\pi\)
0.0760590 + 0.997103i \(0.475766\pi\)
\(182\) 7.91921 + 1.90274i 0.587011 + 0.141041i
\(183\) −8.50436 + 7.53421i −0.628660 + 0.556945i
\(184\) 3.92770 15.9353i 0.289554 1.17477i
\(185\) −2.65131 + 2.34885i −0.194928 + 0.172691i
\(186\) −8.78433 2.16514i −0.644098 0.158756i
\(187\) 35.3350 13.4008i 2.58395 0.979963i
\(188\) 0.239359i 0.0174570i
\(189\) 6.08722 + 2.30858i 0.442780 + 0.167924i
\(190\) −1.12075 4.54707i −0.0813078 0.329879i
\(191\) −9.67777 −0.700259 −0.350130 0.936701i \(-0.613862\pi\)
−0.350130 + 0.936701i \(0.613862\pi\)
\(192\) 12.4468 0.898270
\(193\) 2.43340 + 9.87270i 0.175160 + 0.710653i 0.991168 + 0.132612i \(0.0423364\pi\)
−0.816008 + 0.578041i \(0.803817\pi\)
\(194\) 0.565112 + 4.65412i 0.0405727 + 0.334146i
\(195\) −3.63837 + 1.40430i −0.260549 + 0.100564i
\(196\) −0.175691 + 1.44695i −0.0125494 + 0.103353i
\(197\) −19.1013 + 2.31932i −1.36091 + 0.165245i −0.768221 0.640184i \(-0.778858\pi\)
−0.592692 + 0.805429i \(0.701935\pi\)
\(198\) −3.06218 + 4.43633i −0.217620 + 0.315276i
\(199\) 0.597329 0.529187i 0.0423435 0.0375131i −0.641686 0.766968i \(-0.721765\pi\)
0.684029 + 0.729455i \(0.260226\pi\)
\(200\) −11.9752 1.45405i −0.846775 0.102817i
\(201\) 2.95830 0.359203i 0.208662 0.0253362i
\(202\) 6.19401 11.8017i 0.435809 0.830364i
\(203\) 2.00076 + 2.25839i 0.140426 + 0.158508i
\(204\) −2.62183 3.79837i −0.183565 0.265939i
\(205\) −1.84202 0.454018i −0.128653 0.0317100i
\(206\) 4.70656 + 0.571480i 0.327922 + 0.0398169i
\(207\) −2.66831 + 3.86571i −0.185460 + 0.268686i
\(208\) 15.8334 + 3.80427i 1.09785 + 0.263779i
\(209\) 15.0967 + 21.8714i 1.04426 + 1.51288i
\(210\) 1.13549 + 2.16349i 0.0783560 + 0.149295i
\(211\) 4.20143 11.0783i 0.289239 0.762659i −0.709104 0.705104i \(-0.750900\pi\)
0.998342 0.0575553i \(-0.0183306\pi\)
\(212\) 0.364793 + 3.00434i 0.0250541 + 0.206339i
\(213\) 8.53253 + 5.88958i 0.584640 + 0.403548i
\(214\) −3.82443 15.5163i −0.261433 1.06067i
\(215\) 4.39203 + 3.03160i 0.299534 + 0.206753i
\(216\) 10.5291 + 3.99317i 0.716415 + 0.271701i
\(217\) 1.62678 4.28948i 0.110433 0.291189i
\(218\) 20.1357 + 10.5681i 1.36376 + 0.715759i
\(219\) −4.93686 + 9.40639i −0.333602 + 0.635625i
\(220\) 0.797639 0.196600i 0.0537768 0.0132548i
\(221\) 10.1780 + 26.3701i 0.684650 + 1.77384i
\(222\) −18.0359 4.44546i −1.21049 0.298360i
\(223\) 2.89345 3.26603i 0.193760 0.218709i −0.643600 0.765362i \(-0.722560\pi\)
0.837359 + 0.546653i \(0.184098\pi\)
\(224\) 0.306446 2.52381i 0.0204753 0.168629i
\(225\) 3.05702 + 1.60445i 0.203802 + 0.106963i
\(226\) 10.6136 + 20.2224i 0.706003 + 1.34518i
\(227\) −6.51269 + 2.46994i −0.432262 + 0.163935i −0.561132 0.827726i \(-0.689634\pi\)
0.128870 + 0.991661i \(0.458865\pi\)
\(228\) 2.15228 2.42942i 0.142538 0.160893i
\(229\) 16.8176 2.04203i 1.11134 0.134941i 0.455786 0.890089i \(-0.349358\pi\)
0.655554 + 0.755148i \(0.272435\pi\)
\(230\) 5.25930 1.29630i 0.346788 0.0854756i
\(231\) −10.3785 9.19451i −0.682852 0.604954i
\(232\) 3.46073 + 3.90636i 0.227208 + 0.256465i
\(233\) −16.6669 8.74744i −1.09188 0.573064i −0.180062 0.983655i \(-0.557630\pi\)
−0.911819 + 0.410591i \(0.865322\pi\)
\(234\) −3.33158 2.27091i −0.217792 0.148454i
\(235\) 0.389399 0.204372i 0.0254016 0.0133318i
\(236\) −0.304808 0.115599i −0.0198413 0.00752482i
\(237\) 0.344252 + 2.83517i 0.0223616 + 0.184164i
\(238\) 15.6805 8.22974i 1.01641 0.533455i
\(239\) 12.6253i 0.816662i −0.912834 0.408331i \(-0.866111\pi\)
0.912834 0.408331i \(-0.133889\pi\)
\(240\) 2.27025 + 4.32559i 0.146544 + 0.279216i
\(241\) −9.94782 11.2288i −0.640795 0.723308i 0.334945 0.942238i \(-0.391282\pi\)
−0.975741 + 0.218929i \(0.929744\pi\)
\(242\) −15.2885 + 10.5529i −0.982782 + 0.678366i
\(243\) −5.60983 4.96987i −0.359871 0.318817i
\(244\) 1.01689 + 1.47322i 0.0650996 + 0.0943131i
\(245\) 2.50397 0.949629i 0.159973 0.0606696i
\(246\) −3.52802 9.30261i −0.224938 0.593113i
\(247\) −16.2925 + 11.3875i −1.03667 + 0.724569i
\(248\) 2.81386 7.41955i 0.178680 0.471142i
\(249\) 5.11712i 0.324284i
\(250\) −2.91792 7.69392i −0.184545 0.486606i
\(251\) −1.53775 + 12.6645i −0.0970619 + 0.799376i 0.860161 + 0.510023i \(0.170363\pi\)
−0.957222 + 0.289353i \(0.906560\pi\)
\(252\) −0.155138 + 0.295590i −0.00977275 + 0.0186204i
\(253\) −25.2973 + 17.4614i −1.59042 + 1.09779i
\(254\) −16.4917 + 11.3834i −1.03478 + 0.714257i
\(255\) −3.94075 + 7.50847i −0.246779 + 0.470199i
\(256\) 0.861659 7.09640i 0.0538537 0.443525i
\(257\) −6.21499 16.3876i −0.387681 1.02223i −0.976794 0.214180i \(-0.931292\pi\)
0.589114 0.808050i \(-0.299477\pi\)
\(258\) 27.9871i 1.74240i
\(259\) 3.34010 8.80713i 0.207544 0.547248i
\(260\) 0.150544 + 0.595733i 0.00933636 + 0.0369458i
\(261\) −0.529651 1.39658i −0.0327846 0.0864458i
\(262\) 16.2423 6.15990i 1.00345 0.380560i
\(263\) 10.2318 + 14.8234i 0.630922 + 0.914048i 0.999881 0.0153972i \(-0.00490128\pi\)
−0.368959 + 0.929445i \(0.620286\pi\)
\(264\) −17.9517 15.9038i −1.10485 0.978813i
\(265\) 4.57611 3.15866i 0.281108 0.194035i
\(266\) 8.25820 + 9.32158i 0.506343 + 0.571543i
\(267\) 14.2250 + 27.1034i 0.870555 + 1.65870i
\(268\) 0.469518i 0.0286804i
\(269\) 11.6657 6.12264i 0.711271 0.373304i −0.0699564 0.997550i \(-0.522286\pi\)
0.781228 + 0.624246i \(0.214594\pi\)
\(270\) 0.447981 + 3.68945i 0.0272632 + 0.224533i
\(271\) −8.12446 3.08120i −0.493526 0.187170i 0.0952702 0.995451i \(-0.469629\pi\)
−0.588796 + 0.808282i \(0.700398\pi\)
\(272\) 31.3509 16.4542i 1.90093 0.997684i
\(273\) 6.83154 7.80288i 0.413463 0.472252i
\(274\) −10.0786 5.28967i −0.608872 0.319561i
\(275\) 14.9820 + 16.9112i 0.903448 + 1.01978i
\(276\) 2.80996 + 2.48941i 0.169140 + 0.149845i
\(277\) 5.01187 1.23531i 0.301134 0.0742228i −0.0858537 0.996308i \(-0.527362\pi\)
0.386988 + 0.922085i \(0.373516\pi\)
\(278\) −34.5505 + 4.19518i −2.07220 + 0.251610i
\(279\) −1.50599 + 1.69991i −0.0901614 + 0.101771i
\(280\) −2.00378 + 0.759932i −0.119749 + 0.0454146i
\(281\) 1.85763 + 3.53942i 0.110817 + 0.211144i 0.934548 0.355836i \(-0.115804\pi\)
−0.823731 + 0.566980i \(0.808112\pi\)
\(282\) 2.04211 + 1.07178i 0.121606 + 0.0638236i
\(283\) −0.421394 + 3.47050i −0.0250493 + 0.206300i −0.999860 0.0167344i \(-0.994673\pi\)
0.974811 + 0.223034i \(0.0715961\pi\)
\(284\) 1.08321 1.22269i 0.0642766 0.0725533i
\(285\) −5.78998 1.42710i −0.342969 0.0845342i
\(286\) −15.1154 21.6262i −0.893792 1.27878i
\(287\) 4.89834 1.20733i 0.289140 0.0712665i
\(288\) −0.584889 + 1.11441i −0.0344649 + 0.0656674i
\(289\) 39.3670 + 20.6614i 2.31570 + 1.21537i
\(290\) −0.610783 + 1.61050i −0.0358664 + 0.0945719i
\(291\) 5.58188 + 2.11693i 0.327216 + 0.124097i
\(292\) 1.37746 + 0.950793i 0.0806098 + 0.0556409i
\(293\) −4.08796 16.5855i −0.238821 0.968935i −0.960849 0.277071i \(-0.910636\pi\)
0.722028 0.691864i \(-0.243210\pi\)
\(294\) 11.5580 + 7.97794i 0.674079 + 0.465283i
\(295\) 0.0721947 + 0.594577i 0.00420334 + 0.0346176i
\(296\) 5.77741 15.2338i 0.335805 0.885445i
\(297\) −9.80126 18.6747i −0.568727 1.08362i
\(298\) −4.69869 6.80722i −0.272188 0.394332i
\(299\) −13.1712 18.8445i −0.761710 1.08981i
\(300\) 1.56745 2.27084i 0.0904968 0.131107i
\(301\) −14.0880 1.71059i −0.812019 0.0985970i
\(302\) −8.80285 2.16971i −0.506547 0.124853i
\(303\) −9.64098 13.9674i −0.553860 0.802404i
\(304\) 16.5111 + 18.6372i 0.946978 + 1.06892i
\(305\) 1.52844 2.91220i 0.0875182 0.166752i
\(306\) −8.70278 + 1.05671i −0.497505 + 0.0604080i
\(307\) −3.19463 0.387899i −0.182327 0.0221385i 0.0288637 0.999583i \(-0.490811\pi\)
−0.211191 + 0.977445i \(0.567734\pi\)
\(308\) −1.63518 + 1.44864i −0.0931728 + 0.0825439i
\(309\) 3.42946 4.96843i 0.195095 0.282644i
\(310\) 2.59985 0.315678i 0.147661 0.0179293i
\(311\) 3.04057 25.0414i 0.172415 1.41996i −0.607619 0.794228i \(-0.707875\pi\)
0.780034 0.625737i \(-0.215202\pi\)
\(312\) 11.8166 13.4967i 0.668982 0.764101i
\(313\) −2.07347 17.0765i −0.117199 0.965223i −0.926100 0.377278i \(-0.876860\pi\)
0.808901 0.587945i \(-0.200063\pi\)
\(314\) 4.13971 + 16.7955i 0.233618 + 0.947823i
\(315\) 0.613340 0.0345578
\(316\) 0.449975 0.0253131
\(317\) 7.35763 + 29.8511i 0.413246 + 1.67660i 0.696498 + 0.717559i \(0.254740\pi\)
−0.283252 + 0.959045i \(0.591413\pi\)
\(318\) 27.2652 + 10.3403i 1.52896 + 0.579856i
\(319\) 9.77438i 0.547260i
\(320\) −3.36889 + 1.27765i −0.188327 + 0.0714229i
\(321\) −19.7576 4.86982i −1.10276 0.271807i
\(322\) −10.7817 + 9.55173i −0.600839 + 0.532297i
\(323\) −10.3433 + 41.9645i −0.575517 + 2.33497i
\(324\) −2.43177 + 2.15436i −0.135098 + 0.119687i
\(325\) −12.5830 + 11.2799i −0.697982 + 0.625698i
\(326\) 8.26003 + 7.31774i 0.457480 + 0.405292i
\(327\) 23.8308 16.4492i 1.31784 0.909642i
\(328\) 8.47270 2.08833i 0.467826 0.115309i
\(329\) −0.664323 + 0.962438i −0.0366253 + 0.0530609i
\(330\) 1.89429 7.68543i 0.104277 0.423069i
\(331\) 3.08159 12.5025i 0.169380 0.687201i −0.823422 0.567430i \(-0.807938\pi\)
0.992802 0.119771i \(-0.0382160\pi\)
\(332\) −0.800348 0.0971798i −0.0439248 0.00533344i
\(333\) −3.09210 + 3.49025i −0.169446 + 0.191265i
\(334\) 11.2716 + 29.7207i 0.616753 + 1.62625i
\(335\) −0.763831 + 0.400890i −0.0417326 + 0.0219029i
\(336\) −10.6911 7.37955i −0.583249 0.402588i
\(337\) −15.8912 −0.865650 −0.432825 0.901478i \(-0.642483\pi\)
−0.432825 + 0.901478i \(0.642483\pi\)
\(338\) 16.1091 11.4004i 0.876217 0.620099i
\(339\) 29.0812 1.57947
\(340\) 1.09953 + 0.758952i 0.0596305 + 0.0411599i
\(341\) −13.1595 + 6.90665i −0.712628 + 0.374016i
\(342\) −2.18615 5.76440i −0.118213 0.311703i
\(343\) −11.6294 + 13.1269i −0.627930 + 0.708786i
\(344\) −24.3681 2.95883i −1.31384 0.159529i
\(345\) 1.65064 6.69690i 0.0888674 0.360549i
\(346\) −5.37314 + 21.7997i −0.288862 + 1.17196i
\(347\) 11.2323 16.2728i 0.602983 0.873572i −0.396019 0.918242i \(-0.629608\pi\)
0.999002 + 0.0446705i \(0.0142238\pi\)
\(348\) −1.15905 + 0.285680i −0.0621317 + 0.0153141i
\(349\) −0.116668 + 0.0805304i −0.00624512 + 0.00431070i −0.571183 0.820823i \(-0.693515\pi\)
0.564938 + 0.825133i \(0.308900\pi\)
\(350\) 7.92465 + 7.02063i 0.423590 + 0.375268i
\(351\) 13.9248 7.41273i 0.743251 0.395662i
\(352\) −6.16483 + 5.46156i −0.328587 + 0.291102i
\(353\) 3.55905 14.4396i 0.189429 0.768544i −0.796949 0.604047i \(-0.793554\pi\)
0.986378 0.164497i \(-0.0526000\pi\)
\(354\) −2.35108 + 2.08288i −0.124959 + 0.110704i
\(355\) −2.91400 0.718238i −0.154659 0.0381201i
\(356\) 4.50929 1.71015i 0.238992 0.0906377i
\(357\) 22.5496i 1.19345i
\(358\) −11.6374 4.41348i −0.615055 0.233260i
\(359\) 3.16392 + 12.8365i 0.166985 + 0.677487i 0.993427 + 0.114465i \(0.0365153\pi\)
−0.826442 + 0.563022i \(0.809639\pi\)
\(360\) 1.06090 0.0559143
\(361\) −11.3940 −0.599684
\(362\) −7.02003 28.4814i −0.368965 1.49695i
\(363\) 2.85127 + 23.4823i 0.149653 + 1.23250i
\(364\) −1.09068 1.21668i −0.0571671 0.0637714i
\(365\) 0.370669 3.05273i 0.0194017 0.159787i
\(366\) 17.1222 2.07901i 0.894992 0.108672i
\(367\) 13.0938 18.9696i 0.683489 0.990205i −0.315656 0.948874i \(-0.602225\pi\)
0.999145 0.0413315i \(-0.0131600\pi\)
\(368\) −21.5565 + 19.0974i −1.12371 + 0.995519i
\(369\) −2.47926 0.301036i −0.129065 0.0156713i
\(370\) 5.33799 0.648149i 0.277509 0.0336957i
\(371\) −6.87153 + 13.0926i −0.356752 + 0.679734i
\(372\) 1.20361 + 1.35860i 0.0624044 + 0.0704401i
\(373\) 0.200544 + 0.290538i 0.0103838 + 0.0150435i 0.828141 0.560519i \(-0.189398\pi\)
−0.817758 + 0.575563i \(0.804783\pi\)
\(374\) −55.7023 13.7294i −2.88030 0.709929i
\(375\) −10.4015 1.26297i −0.537131 0.0652196i
\(376\) −1.14908 + 1.66474i −0.0592595 + 0.0858523i
\(377\) 7.31075 0.0428522i 0.376523 0.00220700i
\(378\) −5.61424 8.13364i −0.288766 0.418349i
\(379\) 12.9321 + 24.6401i 0.664278 + 1.26568i 0.951452 + 0.307797i \(0.0995918\pi\)
−0.287174 + 0.957878i \(0.592716\pi\)
\(380\) −0.333166 + 0.878486i −0.0170910 + 0.0450654i
\(381\) 3.07566 + 25.3303i 0.157571 + 1.29771i
\(382\) 12.0910 + 8.34579i 0.618627 + 0.427008i
\(383\) −7.40981 30.0628i −0.378624 1.53614i −0.783281 0.621668i \(-0.786455\pi\)
0.404657 0.914469i \(-0.367391\pi\)
\(384\) −20.9866 14.4860i −1.07097 0.739236i
\(385\) 3.75288 + 1.42328i 0.191264 + 0.0725370i
\(386\) 5.47371 14.4330i 0.278604 0.734619i
\(387\) 6.22069 + 3.26487i 0.316215 + 0.165963i
\(388\) 0.437107 0.832837i 0.0221907 0.0422809i
\(389\) −9.50675 + 2.34320i −0.482011 + 0.118805i −0.472832 0.881153i \(-0.656768\pi\)
−0.00917957 + 0.999958i \(0.502922\pi\)
\(390\) 5.75663 + 1.38314i 0.291498 + 0.0700381i
\(391\) −48.5376 11.9635i −2.45465 0.605018i
\(392\) −8.16826 + 9.22006i −0.412559 + 0.465683i
\(393\) 2.66621 21.9582i 0.134492 1.10764i
\(394\) 25.8644 + 13.5747i 1.30303 + 0.683883i
\(395\) −0.384204 0.732039i −0.0193314 0.0368329i
\(396\) 1.01118 0.383491i 0.0508138 0.0192711i
\(397\) 3.77725 4.26364i 0.189575 0.213986i −0.646037 0.763306i \(-0.723575\pi\)
0.835612 + 0.549320i \(0.185113\pi\)
\(398\) −1.20263 + 0.146026i −0.0602823 + 0.00731960i
\(399\) 15.3968 3.79497i 0.770804 0.189986i
\(400\) 15.8442 + 14.0368i 0.792212 + 0.701838i
\(401\) −13.4783 15.2138i −0.673074 0.759743i 0.308417 0.951251i \(-0.400201\pi\)
−0.981491 + 0.191508i \(0.938662\pi\)
\(402\) −4.00573 2.10237i −0.199787 0.104857i
\(403\) −5.22352 9.81239i −0.260202 0.488790i
\(404\) −2.36767 + 1.24265i −0.117796 + 0.0618242i
\(405\) 5.58113 + 2.11664i 0.277329 + 0.105177i
\(406\) −0.552096 4.54692i −0.0274001 0.225660i
\(407\) −27.0190 + 14.1807i −1.33928 + 0.702911i
\(408\) 39.0042i 1.93099i
\(409\) 12.6089 + 24.0242i 0.623468 + 1.18792i 0.968426 + 0.249301i \(0.0802010\pi\)
−0.344958 + 0.938618i \(0.612107\pi\)
\(410\) 1.90981 + 2.15573i 0.0943187 + 0.106464i
\(411\) −11.9281 + 8.23337i −0.588370 + 0.406122i
\(412\) −0.711964 0.630745i −0.0350759 0.0310746i
\(413\) −0.904768 1.31078i −0.0445207 0.0644994i
\(414\) 6.66732 2.52858i 0.327681 0.124273i
\(415\) 0.525267 + 1.38502i 0.0257843 + 0.0679877i
\(416\) −4.11201 4.58704i −0.201608 0.224898i
\(417\) −15.7153 + 41.4378i −0.769581 + 2.02922i
\(418\) 40.3440i 1.97329i
\(419\) 0.200610 + 0.528964i 0.00980042 + 0.0258416i 0.939827 0.341650i \(-0.110986\pi\)
−0.930027 + 0.367492i \(0.880217\pi\)
\(420\) 0.0590860 0.486617i 0.00288310 0.0237445i
\(421\) −6.11901 + 11.6588i −0.298222 + 0.568215i −0.987750 0.156044i \(-0.950126\pi\)
0.689528 + 0.724259i \(0.257818\pi\)
\(422\) −14.8026 + 10.2175i −0.720579 + 0.497380i
\(423\) 0.476449 0.328869i 0.0231657 0.0159902i
\(424\) −11.8857 + 22.6464i −0.577223 + 1.09981i
\(425\) −4.42893 + 36.4755i −0.214834 + 1.76932i
\(426\) −5.58117 14.7163i −0.270409 0.713009i
\(427\) 8.74596i 0.423246i
\(428\) −1.13689 + 2.99773i −0.0549536 + 0.144901i
\(429\) −33.3279 + 4.24511i −1.60909 + 0.204956i
\(430\) −2.87285 7.57508i −0.138541 0.365303i
\(431\) 18.8432 7.14627i 0.907643 0.344224i 0.143786 0.989609i \(-0.454072\pi\)
0.763857 + 0.645385i \(0.223303\pi\)
\(432\) −11.2249 16.2621i −0.540058 0.782410i
\(433\) 23.0956 + 20.4609i 1.10990 + 0.983289i 0.999943 0.0106473i \(-0.00338921\pi\)
0.109960 + 0.993936i \(0.464928\pi\)
\(434\) −5.73153 + 3.95619i −0.275122 + 0.189903i
\(435\) 1.45439 + 1.64167i 0.0697328 + 0.0787121i
\(436\) −2.12018 4.03966i −0.101538 0.193465i
\(437\) 35.1548i 1.68168i
\(438\) 14.2796 7.49453i 0.682307 0.358103i
\(439\) −0.530641 4.37022i −0.0253261 0.208579i 0.974553 0.224159i \(-0.0719636\pi\)
−0.999879 + 0.0155800i \(0.995041\pi\)
\(440\) 6.49138 + 2.46186i 0.309465 + 0.117364i
\(441\) 3.12157 1.63833i 0.148646 0.0780156i
\(442\) 10.0247 41.7228i 0.476826 1.98455i
\(443\) 6.38961 + 3.35353i 0.303580 + 0.159331i 0.609634 0.792683i \(-0.291317\pi\)
−0.306054 + 0.952014i \(0.599009\pi\)
\(444\) 2.47125 + 2.78947i 0.117280 + 0.132382i
\(445\) −6.63233 5.87573i −0.314402 0.278536i
\(446\) −6.43145 + 1.58521i −0.304538 + 0.0750619i
\(447\) −10.4555 + 1.26953i −0.494530 + 0.0600468i
\(448\) 6.35353 7.17165i 0.300176 0.338829i
\(449\) −3.64932 + 1.38400i −0.172222 + 0.0653152i −0.439209 0.898385i \(-0.644741\pi\)
0.266987 + 0.963700i \(0.413972\pi\)
\(450\) −2.43568 4.64080i −0.114819 0.218769i
\(451\) −14.4714 7.59517i −0.681431 0.357643i
\(452\) 0.552285 4.54848i 0.0259773 0.213942i
\(453\) −7.65543 + 8.64120i −0.359684 + 0.405999i
\(454\) 10.2666 + 2.53050i 0.481837 + 0.118762i
\(455\) −1.04809 + 2.81321i −0.0491351 + 0.131885i
\(456\) 26.6320 6.56420i 1.24716 0.307397i
\(457\) −10.5225 + 20.0489i −0.492220 + 0.937846i 0.504985 + 0.863128i \(0.331498\pi\)
−0.997205 + 0.0747182i \(0.976194\pi\)
\(458\) −22.7721 11.9517i −1.06407 0.558468i
\(459\) 12.1629 32.0708i 0.567713 1.49694i
\(460\) −1.01609 0.385352i −0.0473754 0.0179671i
\(461\) 11.1691 + 7.70944i 0.520195 + 0.359065i 0.799046 0.601270i \(-0.205338\pi\)
−0.278851 + 0.960334i \(0.589954\pi\)
\(462\) 5.03732 + 20.4372i 0.234357 + 0.950825i
\(463\) −16.3933 11.3155i −0.761862 0.525876i 0.122617 0.992454i \(-0.460871\pi\)
−0.884480 + 0.466578i \(0.845487\pi\)
\(464\) −1.10384 9.09093i −0.0512444 0.422036i
\(465\) 1.18254 3.11811i 0.0548390 0.144599i
\(466\) 13.2793 + 25.3016i 0.615151 + 1.17207i
\(467\) 12.8806 + 18.6607i 0.596041 + 0.863514i 0.998655 0.0518557i \(-0.0165136\pi\)
−0.402614 + 0.915370i \(0.631898\pi\)
\(468\) 0.291265 + 0.754633i 0.0134637 + 0.0348829i
\(469\) 1.30311 1.88788i 0.0601721 0.0871744i
\(470\) −0.662741 0.0804713i −0.0305700 0.00371186i
\(471\) 21.3864 + 5.27128i 0.985434 + 0.242888i
\(472\) −1.56499 2.26727i −0.0720343 0.104360i
\(473\) 30.4866 + 34.4123i 1.40178 + 1.58228i
\(474\) 2.01486 3.83900i 0.0925457 0.176331i
\(475\) −25.6508 + 3.11457i −1.17694 + 0.142906i
\(476\) −3.52689 0.428242i −0.161655 0.0196284i
\(477\) 5.47899 4.85397i 0.250866 0.222248i
\(478\) −10.8876 + 15.7735i −0.497989 + 0.721461i
\(479\) 19.0488 2.31294i 0.870361 0.105681i 0.326843 0.945079i \(-0.394015\pi\)
0.543518 + 0.839398i \(0.317092\pi\)
\(480\) 0.222762 1.83461i 0.0101676 0.0837381i
\(481\) −10.7249 20.1467i −0.489014 0.918612i
\(482\) 2.74503 + 22.6074i 0.125033 + 1.02974i
\(483\) 4.38940 + 17.8085i 0.199725 + 0.810315i
\(484\) 3.72693 0.169406
\(485\) −1.72811 −0.0784695
\(486\) 2.72280 + 11.0469i 0.123509 + 0.501095i
\(487\) 36.8108 + 13.9605i 1.66806 + 0.632611i 0.994327 0.106366i \(-0.0339215\pi\)
0.673731 + 0.738977i \(0.264691\pi\)
\(488\) 15.1280i 0.684811i
\(489\) 13.1386 4.98281i 0.594147 0.225330i
\(490\) −3.94727 0.972914i −0.178319 0.0439518i
\(491\) 5.38199 4.76803i 0.242886 0.215178i −0.532894 0.846182i \(-0.678895\pi\)
0.775779 + 0.631004i \(0.217357\pi\)
\(492\) −0.477677 + 1.93801i −0.0215354 + 0.0873724i
\(493\) 11.8985 10.5411i 0.535879 0.474748i
\(494\) 30.1753 0.176874i 1.35765 0.00795792i
\(495\) −1.48726 1.31760i −0.0668474 0.0592216i
\(496\) −11.4594 + 7.90985i −0.514542 + 0.355163i
\(497\) 7.74896 1.90995i 0.347588 0.0856729i
\(498\) −4.41283 + 6.39308i −0.197744 + 0.286481i
\(499\) −5.38343 + 21.8414i −0.240995 + 0.977757i 0.718386 + 0.695645i \(0.244881\pi\)
−0.959381 + 0.282112i \(0.908965\pi\)
\(500\) −0.395073 + 1.60287i −0.0176682 + 0.0716827i
\(501\) 40.1798 + 4.87871i 1.79510 + 0.217965i
\(502\) 12.8426 14.4963i 0.573195 0.647003i
\(503\) −3.26795 8.61688i −0.145711 0.384208i 0.842214 0.539144i \(-0.181252\pi\)
−0.987925 + 0.154936i \(0.950483\pi\)
\(504\) −2.49801 + 1.31106i −0.111270 + 0.0583992i
\(505\) 4.04320 + 2.79082i 0.179920 + 0.124190i
\(506\) 46.6634 2.07444
\(507\) −3.32125 24.9090i −0.147502 1.10625i
\(508\) 4.02023 0.178369
\(509\) 12.3474 + 8.52277i 0.547288 + 0.377765i 0.809387 0.587276i \(-0.199799\pi\)
−0.262100 + 0.965041i \(0.584415\pi\)
\(510\) 11.3984 5.98236i 0.504732 0.264904i
\(511\) 2.89978 + 7.64608i 0.128279 + 0.338243i
\(512\) 10.2996 11.6259i 0.455184 0.513796i
\(513\) 23.9448 + 2.90743i 1.05719 + 0.128366i
\(514\) −6.36738 + 25.8335i −0.280853 + 1.13947i
\(515\) −0.418224 + 1.69680i −0.0184292 + 0.0747701i
\(516\) 3.18958 4.62090i 0.140413 0.203424i
\(517\) 3.67843 0.906651i 0.161777 0.0398745i
\(518\) −11.7679 + 8.12282i −0.517054 + 0.356896i
\(519\) 21.3994 + 18.9582i 0.939328 + 0.832172i
\(520\) −1.81289 + 4.86603i −0.0795004 + 0.213389i
\(521\) −15.6697 + 13.8821i −0.686500 + 0.608186i −0.932537 0.361075i \(-0.882410\pi\)
0.246037 + 0.969260i \(0.420872\pi\)
\(522\) −0.542638 + 2.20157i −0.0237506 + 0.0963601i
\(523\) 11.3099 10.0197i 0.494547 0.438131i −0.378619 0.925552i \(-0.623601\pi\)
0.873167 + 0.487422i \(0.162063\pi\)
\(524\) −3.38376 0.834022i −0.147820 0.0364344i
\(525\) 12.6051 4.78049i 0.550133 0.208638i
\(526\) 27.3432i 1.19222i
\(527\) −22.5993 8.57079i −0.984442 0.373350i
\(528\) 10.0714 + 40.8614i 0.438303 + 1.77826i
\(529\) 17.6613 0.767884
\(530\) −8.44111 −0.366658
\(531\) 0.188692 + 0.765555i 0.00818855 + 0.0332223i
\(532\) −0.301154 2.48022i −0.0130567 0.107531i
\(533\) 5.61737 10.8572i 0.243315 0.470277i
\(534\) 5.60107 46.1289i 0.242382 1.99619i
\(535\) 5.84755 0.710021i 0.252812 0.0306969i
\(536\) 2.25400 3.26549i 0.0973582 0.141048i
\(537\) −11.8626 + 10.5094i −0.511910 + 0.453513i
\(538\) −19.8546 2.41078i −0.855991 0.103936i
\(539\) 22.9019 2.78080i 0.986456 0.119777i
\(540\) 0.346507 0.660214i 0.0149113 0.0284111i
\(541\) −17.1681 19.3788i −0.738114 0.833158i 0.252820 0.967513i \(-0.418642\pi\)
−0.990933 + 0.134355i \(0.957104\pi\)
\(542\) 7.49319 + 10.8558i 0.321860 + 0.466295i
\(543\) −36.2666 8.93892i −1.55635 0.383606i
\(544\) −13.2968 1.61453i −0.570097 0.0692223i
\(545\) −4.76162 + 6.89840i −0.203965 + 0.295495i
\(546\) −15.2639 + 3.85727i −0.653237 + 0.165076i
\(547\) 18.9847 + 27.5040i 0.811725 + 1.17599i 0.981680 + 0.190535i \(0.0610224\pi\)
−0.169955 + 0.985452i \(0.554362\pi\)
\(548\) 1.06122 + 2.02199i 0.0453332 + 0.0863751i
\(549\) 1.53531 4.04828i 0.0655254 0.172776i
\(550\) −4.13418 34.0480i −0.176282 1.45181i
\(551\) 9.19990 + 6.35023i 0.391929 + 0.270529i
\(552\) 7.59239 + 30.8035i 0.323153 + 1.31109i
\(553\) 1.80931 + 1.24887i 0.0769395 + 0.0531075i
\(554\) −7.32689 2.77872i −0.311290 0.118057i
\(555\) 2.42799 6.40208i 0.103062 0.271753i
\(556\) 6.18268 + 3.24492i 0.262204 + 0.137615i
\(557\) 21.0303 40.0699i 0.891083 1.69782i 0.193774 0.981046i \(-0.437927\pi\)
0.697309 0.716771i \(-0.254381\pi\)
\(558\) 3.34747 0.825076i 0.141710 0.0349283i
\(559\) −25.6050 + 22.9534i −1.08298 + 0.970823i
\(560\) 3.65120 + 0.899940i 0.154291 + 0.0380294i
\(561\) −48.4417 + 54.6794i −2.04521 + 2.30857i
\(562\) 0.731439 6.02394i 0.0308539 0.254105i
\(563\) −12.8602 6.74958i −0.541995 0.284461i 0.171426 0.985197i \(-0.445163\pi\)
−0.713420 + 0.700736i \(0.752855\pi\)
\(564\) −0.215022 0.409691i −0.00905407 0.0172511i
\(565\) −7.87122 + 2.98516i −0.331145 + 0.125587i
\(566\) 3.51931 3.97248i 0.147928 0.166976i
\(567\) −15.7572 + 1.91327i −0.661739 + 0.0803497i
\(568\) 13.4035 3.30365i 0.562396 0.138618i
\(569\) −26.8751 23.8092i −1.12666 0.998135i −0.999981 0.00619191i \(-0.998029\pi\)
−0.126681 0.991943i \(-0.540432\pi\)
\(570\) 6.00305 + 6.77604i 0.251440 + 0.283817i
\(571\) −27.3178 14.3375i −1.14322 0.600006i −0.216691 0.976240i \(-0.569526\pi\)
−0.926524 + 0.376235i \(0.877219\pi\)
\(572\) 0.0310269 + 5.29331i 0.00129730 + 0.221324i
\(573\) 16.5647 8.69380i 0.691998 0.363189i
\(574\) −7.16092 2.71578i −0.298891 0.113354i
\(575\) −3.60242 29.6686i −0.150231 1.23727i
\(576\) −4.19983 + 2.20424i −0.174993 + 0.0918434i
\(577\) 23.4543i 0.976415i −0.872728 0.488207i \(-0.837651\pi\)
0.872728 0.488207i \(-0.162349\pi\)
\(578\) −31.3656 59.7621i −1.30464 2.48577i
\(579\) −13.0340 14.7123i −0.541673 0.611423i
\(580\) 0.284388 0.196299i 0.0118086 0.00815086i
\(581\) −2.94840 2.61206i −0.122320 0.108366i
\(582\) −5.14817 7.45842i −0.213399 0.309161i
\(583\) 44.7884 16.9860i 1.85495 0.703489i
\(584\) 5.01577 + 13.2255i 0.207554 + 0.547275i
\(585\) 0.978977 1.11817i 0.0404757 0.0462308i
\(586\) −9.19547 + 24.2465i −0.379861 + 1.00161i
\(587\) 2.44599i 0.100957i 0.998725 + 0.0504783i \(0.0160746\pi\)
−0.998725 + 0.0504783i \(0.983925\pi\)
\(588\) −0.999115 2.63445i −0.0412028 0.108643i
\(589\) 2.04878 16.8732i 0.0844184 0.695248i
\(590\) 0.422546 0.805095i 0.0173960 0.0331452i
\(591\) 30.6107 21.1290i 1.25916 0.869132i
\(592\) −23.5284 + 16.2405i −0.967010 + 0.667479i
\(593\) 5.29149 10.0821i 0.217295 0.414022i −0.752270 0.658855i \(-0.771041\pi\)
0.969565 + 0.244833i \(0.0787333\pi\)
\(594\) −3.85923 + 31.7836i −0.158346 + 1.30410i
\(595\) 2.31469 + 6.10334i 0.0948931 + 0.250212i
\(596\) 1.65942i 0.0679725i
\(597\) −0.547016 + 1.44236i −0.0223879 + 0.0590320i
\(598\) 0.204578 + 34.9019i 0.00836583 + 1.42724i
\(599\) 4.48897 + 11.8364i 0.183414 + 0.483624i 0.994914 0.100729i \(-0.0321175\pi\)
−0.811499 + 0.584353i \(0.801348\pi\)
\(600\) 21.8032 8.26886i 0.890112 0.337575i
\(601\) −0.593535 0.859883i −0.0242108 0.0350754i 0.810692 0.585473i \(-0.199091\pi\)
−0.834902 + 0.550398i \(0.814476\pi\)
\(602\) 16.1257 + 14.2862i 0.657236 + 0.582260i
\(603\) −0.934586 + 0.645098i −0.0380593 + 0.0262704i
\(604\) 1.20615 + 1.36146i 0.0490776 + 0.0553971i
\(605\) −3.18218 6.06313i −0.129374 0.246501i
\(606\) 25.7642i 1.04660i
\(607\) −1.83294 + 0.961999i −0.0743965 + 0.0390463i −0.501511 0.865151i \(-0.667222\pi\)
0.427115 + 0.904197i \(0.359530\pi\)
\(608\) −1.13539 9.35078i −0.0460461 0.379224i
\(609\) −5.45331 2.06817i −0.220979 0.0838064i
\(610\) −4.42094 + 2.32029i −0.178999 + 0.0939458i
\(611\) 0.694257 + 2.74731i 0.0280866 + 0.111144i
\(612\) 1.55733 + 0.817350i 0.0629513 + 0.0330394i
\(613\) −24.6459 27.8194i −0.995437 1.12362i −0.992330 0.123621i \(-0.960549\pi\)
−0.00310709 0.999995i \(-0.500989\pi\)
\(614\) 3.65671 + 3.23957i 0.147573 + 0.130738i
\(615\) 3.56070 0.877633i 0.143581 0.0353896i
\(616\) −18.3271 + 2.22531i −0.738419 + 0.0896603i
\(617\) −9.69535 + 10.9438i −0.390320 + 0.440580i −0.910521 0.413464i \(-0.864319\pi\)
0.520200 + 0.854044i \(0.325857\pi\)
\(618\) −8.56921 + 3.24987i −0.344704 + 0.130729i
\(619\) 6.55445 + 12.4885i 0.263446 + 0.501954i 0.980865 0.194688i \(-0.0623693\pi\)
−0.717420 + 0.696641i \(0.754677\pi\)
\(620\) −0.465233 0.244173i −0.0186842 0.00980623i
\(621\) −3.36284 + 27.6955i −0.134946 + 1.11138i
\(622\) −25.3936 + 28.6634i −1.01819 + 1.14930i
\(623\) 22.8778 + 5.63887i 0.916580 + 0.225917i
\(624\) −30.5181 + 7.71207i −1.22170 + 0.308730i
\(625\) −19.8085 + 4.88236i −0.792341 + 0.195295i
\(626\) −12.1357 + 23.1227i −0.485041 + 0.924169i
\(627\) −45.4875 23.8737i −1.81660 0.953423i
\(628\) 1.23061 3.24486i 0.0491068 0.129484i
\(629\) −46.4008 17.5975i −1.85012 0.701658i
\(630\) −0.766278 0.528923i −0.0305292 0.0210728i
\(631\) −3.46494 14.0578i −0.137937 0.559633i −0.998716 0.0506543i \(-0.983869\pi\)
0.860779 0.508979i \(-0.169977\pi\)
\(632\) 3.12957 + 2.16019i 0.124488 + 0.0859277i
\(633\) 2.76065 + 22.7360i 0.109726 + 0.903676i
\(634\) 16.5503 43.6395i 0.657296 1.73315i
\(635\) −3.43261 6.54028i −0.136219 0.259543i
\(636\) −3.32326 4.81458i −0.131776 0.190910i
\(637\) 2.18031 + 17.1173i 0.0863868 + 0.678213i
\(638\) −8.42909 + 12.2117i −0.333711 + 0.483464i
\(639\) −3.92208 0.476226i −0.155155 0.0188392i
\(640\) 7.16728 + 1.76658i 0.283312 + 0.0698301i
\(641\) −2.64723 3.83517i −0.104559 0.151480i 0.767212 0.641394i \(-0.221644\pi\)
−0.871771 + 0.489914i \(0.837028\pi\)
\(642\) 20.4847 + 23.1224i 0.808466 + 0.912570i
\(643\) 20.9121 39.8446i 0.824692 1.57132i 0.00396936 0.999992i \(-0.498737\pi\)
0.820723 0.571327i \(-0.193571\pi\)
\(644\) 2.86872 0.348325i 0.113043 0.0137259i
\(645\) −10.2408 1.24346i −0.403233 0.0489614i
\(646\) 49.1112 43.5087i 1.93225 1.71183i
\(647\) −5.03830 + 7.29924i −0.198076 + 0.286963i −0.909418 0.415884i \(-0.863472\pi\)
0.711342 + 0.702846i \(0.248088\pi\)
\(648\) −27.2553 + 3.30940i −1.07069 + 0.130005i
\(649\) −0.621937 + 5.12211i −0.0244132 + 0.201060i
\(650\) 25.4481 3.24143i 0.998157 0.127139i
\(651\) 1.06892 + 8.80333i 0.0418942 + 0.345030i
\(652\) −0.529825 2.14958i −0.0207495 0.0841842i
\(653\) −16.3219 −0.638726 −0.319363 0.947632i \(-0.603469\pi\)
−0.319363 + 0.947632i \(0.603469\pi\)
\(654\) −43.9583 −1.71890
\(655\) 1.53234 + 6.21696i 0.0598736 + 0.242917i
\(656\) −14.3173 5.42982i −0.558995 0.211999i
\(657\) 4.04822i 0.157936i
\(658\) 1.65995 0.629535i 0.0647115 0.0245418i
\(659\) 30.7304 + 7.57435i 1.19708 + 0.295055i 0.786977 0.616982i \(-0.211645\pi\)
0.410108 + 0.912037i \(0.365491\pi\)
\(660\) −1.18864 + 1.05304i −0.0462678 + 0.0409897i
\(661\) −1.95324 + 7.92460i −0.0759722 + 0.308231i −0.996619 0.0821661i \(-0.973816\pi\)
0.920646 + 0.390397i \(0.127662\pi\)
\(662\) −14.6318 + 12.9626i −0.568679 + 0.503806i
\(663\) −41.1099 35.9923i −1.59657 1.39782i
\(664\) −5.09988 4.51810i −0.197914 0.175336i
\(665\) −3.77780 + 2.60763i −0.146497 + 0.101119i
\(666\) 6.87300 1.69404i 0.266323 0.0656428i
\(667\) −7.34491 + 10.6409i −0.284396 + 0.412019i
\(668\) 1.52612 6.19172i 0.0590474 0.239565i
\(669\) −2.01852 + 8.18945i −0.0780404 + 0.316622i
\(670\) 1.30001 + 0.157850i 0.0502237 + 0.00609826i
\(671\) 18.7884 21.2077i 0.725317 0.818713i
\(672\) 1.74269 + 4.59509i 0.0672257 + 0.177260i
\(673\) −22.4534 + 11.7844i −0.865513 + 0.454257i −0.838195 0.545370i \(-0.816389\pi\)
−0.0273182 + 0.999627i \(0.508697\pi\)
\(674\) 19.8538 + 13.7041i 0.764738 + 0.527861i
\(675\) 20.5060 0.789276
\(676\) −3.95900 + 0.0464131i −0.152269 + 0.00178512i
\(677\) −0.693109 −0.0266384 −0.0133192 0.999911i \(-0.504240\pi\)
−0.0133192 + 0.999911i \(0.504240\pi\)
\(678\) −36.3327 25.0787i −1.39535 0.963140i
\(679\) 4.06904 2.13560i 0.156155 0.0819567i
\(680\) 4.00374 + 10.5570i 0.153536 + 0.404842i
\(681\) 8.92842 10.0781i 0.342138 0.386194i
\(682\) 22.3969 + 2.71948i 0.857623 + 0.104134i
\(683\) 6.82528 27.6913i 0.261162 1.05958i −0.683085 0.730339i \(-0.739362\pi\)
0.944247 0.329238i \(-0.106792\pi\)
\(684\) −0.295995 + 1.20090i −0.0113176 + 0.0459175i
\(685\) 2.38335 3.45288i 0.0910632 0.131928i
\(686\) 25.8495 6.37132i 0.986937 0.243258i
\(687\) −26.9510 + 18.6029i −1.02824 + 0.709745i
\(688\) 32.2412 + 28.5632i 1.22918 + 1.08896i
\(689\) 12.9011 + 33.4251i 0.491491 + 1.27339i
\(690\) −7.83741 + 6.94334i −0.298365 + 0.264329i
\(691\) 5.50740 22.3444i 0.209512 0.850022i −0.768224 0.640181i \(-0.778859\pi\)
0.977736 0.209841i \(-0.0672945\pi\)
\(692\) 3.37157 2.98695i 0.128168 0.113547i
\(693\) 5.13021 + 1.26448i 0.194881 + 0.0480338i
\(694\) −28.0663 + 10.6441i −1.06538 + 0.404046i
\(695\) 12.8289i 0.486626i
\(696\) −9.43264 3.57733i −0.357543 0.135598i
\(697\) −6.36089 25.8071i −0.240936 0.977515i
\(698\) 0.215207 0.00814570
\(699\) 36.3853 1.37622
\(700\) −0.508313 2.06231i −0.0192124 0.0779478i
\(701\) −3.88840 32.0238i −0.146863 1.20952i −0.860664 0.509174i \(-0.829951\pi\)
0.713801 0.700349i \(-0.246972\pi\)
\(702\) −23.7895 2.74717i −0.897876 0.103685i
\(703\) 4.20654 34.6440i 0.158653 1.30662i
\(704\) −30.8128 + 3.74135i −1.16130 + 0.141007i
\(705\) −0.482909 + 0.699615i −0.0181874 + 0.0263490i
\(706\) −16.8988 + 14.9710i −0.635993 + 0.563441i
\(707\) −12.9691 1.57473i −0.487752 0.0592238i
\(708\) 0.625560 0.0759568i 0.0235100 0.00285463i
\(709\) −12.9825 + 24.7360i −0.487566 + 0.928980i 0.510061 + 0.860138i \(0.329623\pi\)
−0.997628 + 0.0688421i \(0.978070\pi\)
\(710\) 3.02124 + 3.41027i 0.113385 + 0.127985i
\(711\) −0.618248 0.895686i −0.0231861 0.0335909i
\(712\) 39.5720 + 9.75361i 1.48302 + 0.365532i
\(713\) 19.5162 + 2.36969i 0.730886 + 0.0887456i
\(714\) −19.4460 + 28.1724i −0.727747 + 1.05432i
\(715\) 8.58489 4.57008i 0.321057 0.170911i
\(716\) 1.41844 + 2.05497i 0.0530097 + 0.0767979i
\(717\) 11.3416 + 21.6097i 0.423561 + 0.807028i
\(718\) 7.11694 18.7658i 0.265602 0.700335i
\(719\) 2.01341 + 16.5820i 0.0750877 + 0.618403i 0.980871 + 0.194661i \(0.0623606\pi\)
−0.905783 + 0.423742i \(0.860716\pi\)
\(720\) −1.53207 1.05751i −0.0570967 0.0394110i
\(721\) −1.11215 4.51216i −0.0414186 0.168042i
\(722\) 14.2351 + 9.82580i 0.529777 + 0.365678i
\(723\) 27.1140 + 10.2830i 1.00838 + 0.382428i
\(724\) −2.08685 + 5.50256i −0.0775570 + 0.204501i
\(725\) 8.41491 + 4.41648i 0.312522 + 0.164024i
\(726\) 16.6881 31.7966i 0.619355 1.18008i
\(727\) −44.7588 + 11.0321i −1.66001 + 0.409156i −0.954183 0.299225i \(-0.903272\pi\)
−0.705830 + 0.708382i \(0.749426\pi\)
\(728\) −1.74477 13.6980i −0.0646655 0.507681i
\(729\) −17.0054 4.19146i −0.629830 0.155239i
\(730\) −3.09567 + 3.49429i −0.114576 + 0.129329i
\(731\) −9.01235 + 74.2234i −0.333334 + 2.74525i
\(732\) −3.06395 1.60809i −0.113247 0.0594366i
\(733\) −13.3709 25.4762i −0.493867 0.940984i −0.997046 0.0768026i \(-0.975529\pi\)
0.503180 0.864182i \(-0.332163\pi\)
\(734\) −32.7175 + 12.4081i −1.20762 + 0.457992i
\(735\) −3.43276 + 3.87478i −0.126619 + 0.142923i
\(736\) 10.8154 1.31323i 0.398663 0.0484064i
\(737\) −7.21547 + 1.77845i −0.265785 + 0.0655102i
\(738\) 2.83786 + 2.51413i 0.104463 + 0.0925463i
\(739\) 19.0837 + 21.5410i 0.702004 + 0.792399i 0.986057 0.166410i \(-0.0532174\pi\)
−0.284052 + 0.958809i \(0.591679\pi\)
\(740\) −0.955214 0.501335i −0.0351144 0.0184294i
\(741\) 17.6569 34.1271i 0.648643 1.25369i
\(742\) 19.8756 10.4315i 0.729656 0.382953i
\(743\) 29.7663 + 11.2889i 1.09202 + 0.414148i 0.833872 0.551958i \(-0.186119\pi\)
0.258146 + 0.966106i \(0.416888\pi\)
\(744\) 1.84892 + 15.2272i 0.0677846 + 0.558256i
\(745\) 2.69961 1.41687i 0.0989062 0.0519100i
\(746\) 0.535926i 0.0196217i
\(747\) 0.906206 + 1.72663i 0.0331564 + 0.0631742i
\(748\) 7.63223 + 8.61501i 0.279062 + 0.314996i
\(749\) −12.8913 + 8.89822i −0.471038 + 0.325134i
\(750\) 11.9060 + 10.5478i 0.434746 + 0.385151i
\(751\) 4.57027 + 6.62117i 0.166771 + 0.241610i 0.897455 0.441106i \(-0.145414\pi\)
−0.730683 + 0.682716i \(0.760798\pi\)
\(752\) 3.31883 1.25867i 0.121025 0.0458989i
\(753\) −8.74482 23.0582i −0.318679 0.840287i
\(754\) −9.17067 6.25101i −0.333976 0.227648i
\(755\) 1.18503 3.12468i 0.0431278 0.113719i
\(756\) 1.98276i 0.0721125i
\(757\) −13.4500 35.4646i −0.488847 1.28898i −0.921835 0.387584i \(-0.873310\pi\)
0.432988 0.901400i \(-0.357459\pi\)
\(758\) 5.09200 41.9364i 0.184950 1.52320i
\(759\) 27.6132 52.6125i 1.00229 1.90971i
\(760\) −6.53449 + 4.51044i −0.237031 + 0.163611i
\(761\) 30.5291 21.0727i 1.10668 0.763885i 0.132842 0.991137i \(-0.457590\pi\)
0.973836 + 0.227252i \(0.0729743\pi\)
\(762\) 18.0015 34.2989i 0.652124 1.24252i
\(763\) 2.68676 22.1275i 0.0972674 0.801069i
\(764\) −1.04518 2.75592i −0.0378134 0.0997056i
\(765\) 3.23141i 0.116832i
\(766\) −16.6677 + 43.9490i −0.602227 + 1.58794i
\(767\)