Properties

Label 169.2.h.a.155.10
Level $169$
Weight $2$
Character 169.155
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 155.10
Character \(\chi\) \(=\) 169.155
Dual form 169.2.h.a.12.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.651938 + 0.450000i) q^{2} +(-1.14686 + 0.601918i) q^{3} +(-0.486687 - 1.28329i) q^{4} +(-2.65258 + 2.99414i) q^{5} +(-1.01854 - 0.123674i) q^{6} +(-0.815660 + 3.30926i) q^{7} +(0.639345 - 2.59392i) q^{8} +(-0.751216 + 1.08832i) q^{9} +O(q^{10})\) \(q+(0.651938 + 0.450000i) q^{2} +(-1.14686 + 0.601918i) q^{3} +(-0.486687 - 1.28329i) q^{4} +(-2.65258 + 2.99414i) q^{5} +(-1.01854 - 0.123674i) q^{6} +(-0.815660 + 3.30926i) q^{7} +(0.639345 - 2.59392i) q^{8} +(-0.751216 + 1.08832i) q^{9} +(-3.07668 + 0.758333i) q^{10} +(-0.0864794 + 0.0596924i) q^{11} +(1.33059 + 1.17880i) q^{12} +(3.60323 - 0.129485i) q^{13} +(-2.02093 + 1.79039i) q^{14} +(1.23990 - 5.03049i) q^{15} +(-0.470548 + 0.416869i) q^{16} +(0.528057 + 0.130154i) q^{17} +(-0.979492 + 0.371472i) q^{18} -1.09996i q^{19} +(5.13332 + 1.94681i) q^{20} +(-1.05646 - 4.28621i) q^{21} -0.0832408 q^{22} -0.747912 q^{23} +(0.828090 + 3.35969i) q^{24} +(-1.32603 - 10.9208i) q^{25} +(2.40735 + 1.53704i) q^{26} +(0.674820 - 5.55764i) q^{27} +(4.64371 - 0.563848i) q^{28} +(-5.92507 + 8.58394i) q^{29} +(3.07206 - 2.72161i) q^{30} +(4.48092 + 0.544083i) q^{31} +(-5.79851 + 0.704066i) q^{32} +(0.0632497 - 0.120512i) q^{33} +(0.285691 + 0.322478i) q^{34} +(-7.74479 - 11.2203i) q^{35} +(1.76224 + 0.434353i) q^{36} +(6.81322 + 0.827274i) q^{37} +(0.494981 - 0.717104i) q^{38} +(-4.05445 + 2.31735i) q^{39} +(6.07066 + 8.79487i) q^{40} +(5.07205 + 9.66399i) q^{41} +(1.24005 - 3.26975i) q^{42} +(0.481709 + 3.96723i) q^{43} +(0.118691 + 0.0819264i) q^{44} +(-1.26594 - 5.13611i) q^{45} +(-0.487592 - 0.336561i) q^{46} +(7.74511 + 2.93733i) q^{47} +(0.288731 - 0.761320i) q^{48} +(-4.08772 - 2.14540i) q^{49} +(4.04989 - 7.71642i) q^{50} +(-0.683948 + 0.168578i) q^{51} +(-1.91981 - 4.56096i) q^{52} +(-4.21290 - 1.03839i) q^{53} +(2.94088 - 3.31957i) q^{54} +(0.0506658 - 0.417270i) q^{55} +(8.06248 + 4.23152i) q^{56} +(0.662084 + 1.26150i) q^{57} +(-7.72555 + 2.92992i) q^{58} +(-1.30902 + 1.47758i) q^{59} +(-7.05901 + 0.857119i) q^{60} +(-0.502044 + 0.123743i) q^{61} +(2.67645 + 2.37112i) q^{62} +(-2.98881 - 3.37367i) q^{63} +(-2.98382 - 1.56603i) q^{64} +(-9.17014 + 11.1320i) q^{65} +(0.0954654 - 0.0501041i) q^{66} +(-11.1014 - 4.21020i) q^{67} +(-0.0899728 - 0.740993i) q^{68} +(0.857749 - 0.450181i) q^{69} -10.8001i q^{70} +(0.470463 + 0.896392i) q^{71} +(2.34274 + 2.64441i) q^{72} +(-2.57481 + 1.77726i) q^{73} +(4.06952 + 3.60528i) q^{74} +(8.09421 + 11.7265i) q^{75} +(-1.41156 + 0.535335i) q^{76} +(-0.127000 - 0.334871i) q^{77} +(-3.68606 - 0.313737i) q^{78} +(3.60784 - 9.51309i) q^{79} -2.51466i q^{80} +(1.16452 + 3.07059i) q^{81} +(-1.04213 + 8.58275i) q^{82} +(6.17255 - 11.7608i) q^{83} +(-4.98628 + 3.44178i) q^{84} +(-1.79041 + 1.23583i) q^{85} +(-1.47121 + 2.80316i) q^{86} +(1.62839 - 13.4110i) q^{87} +(0.0995474 + 0.262485i) q^{88} -2.82305i q^{89} +(1.48594 - 3.91809i) q^{90} +(-2.51051 + 12.0296i) q^{91} +(0.363999 + 0.959787i) q^{92} +(-5.46648 + 2.07316i) q^{93} +(3.72753 + 5.40026i) q^{94} +(3.29343 + 2.91772i) q^{95} +(6.22628 - 4.29769i) q^{96} +(5.28070 + 5.96068i) q^{97} +(-1.69951 - 3.23814i) q^{98} -0.138959i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.651938 + 0.450000i 0.460990 + 0.318198i 0.775825 0.630948i \(-0.217334\pi\)
−0.314835 + 0.949146i \(0.601949\pi\)
\(3\) −1.14686 + 0.601918i −0.662139 + 0.347517i −0.762086 0.647475i \(-0.775825\pi\)
0.0999475 + 0.994993i \(0.468133\pi\)
\(4\) −0.486687 1.28329i −0.243343 0.641644i
\(5\) −2.65258 + 2.99414i −1.18627 + 1.33902i −0.258433 + 0.966029i \(0.583206\pi\)
−0.927835 + 0.372991i \(0.878332\pi\)
\(6\) −1.01854 0.123674i −0.415819 0.0504895i
\(7\) −0.815660 + 3.30926i −0.308290 + 1.25078i 0.588562 + 0.808452i \(0.299694\pi\)
−0.896852 + 0.442331i \(0.854152\pi\)
\(8\) 0.639345 2.59392i 0.226042 0.917090i
\(9\) −0.751216 + 1.08832i −0.250405 + 0.362775i
\(10\) −3.07668 + 0.758333i −0.972932 + 0.239806i
\(11\) −0.0864794 + 0.0596924i −0.0260745 + 0.0179979i −0.581031 0.813882i \(-0.697350\pi\)
0.554956 + 0.831880i \(0.312735\pi\)
\(12\) 1.33059 + 1.17880i 0.384109 + 0.340291i
\(13\) 3.60323 0.129485i 0.999355 0.0359127i
\(14\) −2.02093 + 1.79039i −0.540116 + 0.478501i
\(15\) 1.23990 5.03049i 0.320142 1.29887i
\(16\) −0.470548 + 0.416869i −0.117637 + 0.104217i
\(17\) 0.528057 + 0.130154i 0.128073 + 0.0315670i 0.302831 0.953044i \(-0.402068\pi\)
−0.174758 + 0.984611i \(0.555914\pi\)
\(18\) −0.979492 + 0.371472i −0.230868 + 0.0875569i
\(19\) 1.09996i 0.252348i −0.992008 0.126174i \(-0.959730\pi\)
0.992008 0.126174i \(-0.0402697\pi\)
\(20\) 5.13332 + 1.94681i 1.14784 + 0.435320i
\(21\) −1.05646 4.28621i −0.230538 0.935328i
\(22\) −0.0832408 −0.0177470
\(23\) −0.747912 −0.155950 −0.0779752 0.996955i \(-0.524846\pi\)
−0.0779752 + 0.996955i \(0.524846\pi\)
\(24\) 0.828090 + 3.35969i 0.169033 + 0.685795i
\(25\) −1.32603 10.9208i −0.265206 2.18417i
\(26\) 2.40735 + 1.53704i 0.472120 + 0.301438i
\(27\) 0.674820 5.55764i 0.129869 1.06957i
\(28\) 4.64371 0.563848i 0.877578 0.106557i
\(29\) −5.92507 + 8.58394i −1.10026 + 1.59400i −0.344958 + 0.938618i \(0.612107\pi\)
−0.755299 + 0.655380i \(0.772509\pi\)
\(30\) 3.07206 2.72161i 0.560879 0.496895i
\(31\) 4.48092 + 0.544083i 0.804798 + 0.0977201i 0.512589 0.858634i \(-0.328687\pi\)
0.292209 + 0.956354i \(0.405610\pi\)
\(32\) −5.79851 + 0.704066i −1.02504 + 0.124463i
\(33\) 0.0632497 0.120512i 0.0110104 0.0209785i
\(34\) 0.285691 + 0.322478i 0.0489955 + 0.0553045i
\(35\) −7.74479 11.2203i −1.30911 1.89657i
\(36\) 1.76224 + 0.434353i 0.293707 + 0.0723922i
\(37\) 6.81322 + 0.827274i 1.12009 + 0.136003i 0.659566 0.751646i \(-0.270740\pi\)
0.460520 + 0.887649i \(0.347663\pi\)
\(38\) 0.494981 0.717104i 0.0802966 0.116330i
\(39\) −4.05445 + 2.31735i −0.649231 + 0.371072i
\(40\) 6.07066 + 8.79487i 0.959855 + 1.39059i
\(41\) 5.07205 + 9.66399i 0.792122 + 1.50926i 0.859272 + 0.511519i \(0.170917\pi\)
−0.0671506 + 0.997743i \(0.521391\pi\)
\(42\) 1.24005 3.26975i 0.191344 0.504533i
\(43\) 0.481709 + 3.96723i 0.0734599 + 0.604997i 0.982227 + 0.187694i \(0.0601014\pi\)
−0.908768 + 0.417303i \(0.862975\pi\)
\(44\) 0.118691 + 0.0819264i 0.0178933 + 0.0123509i
\(45\) −1.26594 5.13611i −0.188715 0.765646i
\(46\) −0.487592 0.336561i −0.0718916 0.0496232i
\(47\) 7.74511 + 2.93733i 1.12974 + 0.428454i 0.847450 0.530875i \(-0.178137\pi\)
0.282290 + 0.959329i \(0.408906\pi\)
\(48\) 0.288731 0.761320i 0.0416747 0.109887i
\(49\) −4.08772 2.14540i −0.583959 0.306486i
\(50\) 4.04989 7.71642i 0.572741 1.09127i
\(51\) −0.683948 + 0.168578i −0.0957719 + 0.0236056i
\(52\) −1.91981 4.56096i −0.266230 0.632491i
\(53\) −4.21290 1.03839i −0.578686 0.142633i −0.0609005 0.998144i \(-0.519397\pi\)
−0.517785 + 0.855511i \(0.673243\pi\)
\(54\) 2.94088 3.31957i 0.400203 0.451736i
\(55\) 0.0506658 0.417270i 0.00683177 0.0562647i
\(56\) 8.06248 + 4.23152i 1.07739 + 0.565460i
\(57\) 0.662084 + 1.26150i 0.0876952 + 0.167089i
\(58\) −7.72555 + 2.92992i −1.01441 + 0.384717i
\(59\) −1.30902 + 1.47758i −0.170420 + 0.192364i −0.827515 0.561443i \(-0.810246\pi\)
0.657095 + 0.753807i \(0.271785\pi\)
\(60\) −7.05901 + 0.857119i −0.911314 + 0.110654i
\(61\) −0.502044 + 0.123743i −0.0642801 + 0.0158436i −0.271325 0.962488i \(-0.587462\pi\)
0.207044 + 0.978332i \(0.433616\pi\)
\(62\) 2.67645 + 2.37112i 0.339909 + 0.301133i
\(63\) −2.98881 3.37367i −0.376555 0.425042i
\(64\) −2.98382 1.56603i −0.372978 0.195754i
\(65\) −9.17014 + 11.1320i −1.13742 + 1.38076i
\(66\) 0.0954654 0.0501041i 0.0117510 0.00616739i
\(67\) −11.1014 4.21020i −1.35625 0.514357i −0.433986 0.900920i \(-0.642893\pi\)
−0.922263 + 0.386562i \(0.873662\pi\)
\(68\) −0.0899728 0.740993i −0.0109108 0.0898586i
\(69\) 0.857749 0.450181i 0.103261 0.0541955i
\(70\) 10.8001i 1.29086i
\(71\) 0.470463 + 0.896392i 0.0558337 + 0.106382i 0.911774 0.410693i \(-0.134713\pi\)
−0.855940 + 0.517075i \(0.827021\pi\)
\(72\) 2.34274 + 2.64441i 0.276095 + 0.311647i
\(73\) −2.57481 + 1.77726i −0.301359 + 0.208013i −0.709142 0.705066i \(-0.750917\pi\)
0.407783 + 0.913079i \(0.366302\pi\)
\(74\) 4.06952 + 3.60528i 0.473072 + 0.419106i
\(75\) 8.09421 + 11.7265i 0.934638 + 1.35406i
\(76\) −1.41156 + 0.535335i −0.161917 + 0.0614072i
\(77\) −0.127000 0.334871i −0.0144730 0.0381621i
\(78\) −3.68606 0.313737i −0.417364 0.0355238i
\(79\) 3.60784 9.51309i 0.405913 1.07031i −0.563768 0.825933i \(-0.690649\pi\)
0.969681 0.244373i \(-0.0785820\pi\)
\(80\) 2.51466i 0.281148i
\(81\) 1.16452 + 3.07059i 0.129391 + 0.341176i
\(82\) −1.04213 + 8.58275i −0.115084 + 0.947806i
\(83\) 6.17255 11.7608i 0.677526 1.29092i −0.267385 0.963590i \(-0.586160\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(84\) −4.98628 + 3.44178i −0.544048 + 0.375529i
\(85\) −1.79041 + 1.23583i −0.194197 + 0.134045i
\(86\) −1.47121 + 2.80316i −0.158645 + 0.302272i
\(87\) 1.62839 13.4110i 0.174581 1.43781i
\(88\) 0.0995474 + 0.262485i 0.0106118 + 0.0279810i
\(89\) 2.82305i 0.299242i −0.988743 0.149621i \(-0.952195\pi\)
0.988743 0.149621i \(-0.0478054\pi\)
\(90\) 1.48594 3.91809i 0.156632 0.413003i
\(91\) −2.51051 + 12.0296i −0.263172 + 1.26105i
\(92\) 0.363999 + 0.959787i 0.0379495 + 0.100065i
\(93\) −5.46648 + 2.07316i −0.566847 + 0.214977i
\(94\) 3.72753 + 5.40026i 0.384465 + 0.556994i
\(95\) 3.29343 + 2.91772i 0.337899 + 0.299352i
\(96\) 6.22628 4.29769i 0.635467 0.438631i
\(97\) 5.28070 + 5.96068i 0.536174 + 0.605216i 0.952702 0.303908i \(-0.0982914\pi\)
−0.416527 + 0.909123i \(0.636753\pi\)
\(98\) −1.69951 3.23814i −0.171676 0.327102i
\(99\) 0.138959i 0.0139659i
\(100\) −13.3692 + 7.01670i −1.33692 + 0.701670i
\(101\) 2.15882 + 17.7795i 0.214811 + 1.76913i 0.557982 + 0.829853i \(0.311576\pi\)
−0.343171 + 0.939273i \(0.611501\pi\)
\(102\) −0.521752 0.197874i −0.0516611 0.0195925i
\(103\) 1.60963 0.844798i 0.158601 0.0832404i −0.383555 0.923518i \(-0.625300\pi\)
0.542156 + 0.840278i \(0.317608\pi\)
\(104\) 1.96783 9.42928i 0.192961 0.924617i
\(105\) 15.6359 + 8.20633i 1.52590 + 0.800856i
\(106\) −2.27927 2.57277i −0.221383 0.249889i
\(107\) −12.7297 11.2775i −1.23063 1.09024i −0.992905 0.118908i \(-0.962061\pi\)
−0.237723 0.971333i \(-0.576401\pi\)
\(108\) −7.46048 + 1.83884i −0.717885 + 0.176943i
\(109\) −4.28304 + 0.520055i −0.410241 + 0.0498123i −0.323056 0.946380i \(-0.604710\pi\)
−0.0871850 + 0.996192i \(0.527787\pi\)
\(110\) 0.220803 0.249235i 0.0210527 0.0237636i
\(111\) −8.31175 + 3.15223i −0.788916 + 0.299196i
\(112\) −0.995721 1.89719i −0.0940868 0.179267i
\(113\) 1.06128 + 0.557005i 0.0998372 + 0.0523986i 0.513903 0.857848i \(-0.328199\pi\)
−0.414065 + 0.910247i \(0.635892\pi\)
\(114\) −0.136036 + 1.12036i −0.0127409 + 0.104931i
\(115\) 1.98389 2.23935i 0.184999 0.208821i
\(116\) 13.8993 + 3.42588i 1.29052 + 0.318085i
\(117\) −2.56588 + 4.01875i −0.237215 + 0.371533i
\(118\) −1.51831 + 0.374230i −0.139772 + 0.0344507i
\(119\) −0.861429 + 1.64132i −0.0789670 + 0.150459i
\(120\) −12.2560 6.43243i −1.11881 0.587198i
\(121\) −3.89674 + 10.2749i −0.354249 + 0.934078i
\(122\) −0.382985 0.145247i −0.0346739 0.0131501i
\(123\) −11.6338 8.03027i −1.04899 0.724065i
\(124\) −1.48259 6.01511i −0.133141 0.540173i
\(125\) 19.7557 + 13.6364i 1.76700 + 1.21967i
\(126\) −0.430367 3.54439i −0.0383401 0.315759i
\(127\) 7.08346 18.6775i 0.628555 1.65736i −0.118783 0.992920i \(-0.537899\pi\)
0.747338 0.664444i \(-0.231332\pi\)
\(128\) 4.18843 + 7.98039i 0.370209 + 0.705374i
\(129\) −2.94040 4.25990i −0.258888 0.375063i
\(130\) −10.9878 + 3.13083i −0.963692 + 0.274592i
\(131\) 4.21094 6.10060i 0.367912 0.533012i −0.594682 0.803961i \(-0.702722\pi\)
0.962594 + 0.270949i \(0.0873374\pi\)
\(132\) −0.185435 0.0225158i −0.0161400 0.00195975i
\(133\) 3.64005 + 0.897191i 0.315632 + 0.0777964i
\(134\) −5.34282 7.74041i −0.461549 0.668670i
\(135\) 14.8504 + 16.7626i 1.27811 + 1.44269i
\(136\) 0.675220 1.28652i 0.0578997 0.110319i
\(137\) 9.58394 1.16370i 0.818811 0.0994217i 0.299597 0.954066i \(-0.403148\pi\)
0.519214 + 0.854644i \(0.326225\pi\)
\(138\) 0.761781 + 0.0924970i 0.0648471 + 0.00787386i
\(139\) −3.94023 + 3.49074i −0.334206 + 0.296081i −0.813490 0.581579i \(-0.802435\pi\)
0.479284 + 0.877660i \(0.340897\pi\)
\(140\) −10.6295 + 15.3996i −0.898361 + 1.30150i
\(141\) −10.6506 + 1.29321i −0.896940 + 0.108908i
\(142\) −0.0966641 + 0.796101i −0.00811187 + 0.0668073i
\(143\) −0.303875 + 0.226283i −0.0254113 + 0.0189227i
\(144\) −0.100205 0.825266i −0.00835046 0.0687722i
\(145\) −9.98483 40.5100i −0.829195 3.36418i
\(146\) −2.47839 −0.205113
\(147\) 5.97938 0.493171
\(148\) −2.25427 9.14594i −0.185300 0.751792i
\(149\) −12.3558 4.68592i −1.01222 0.383886i −0.207946 0.978140i \(-0.566678\pi\)
−0.804277 + 0.594254i \(0.797447\pi\)
\(150\) 11.2873i 0.921607i
\(151\) 20.1641 7.64724i 1.64093 0.622324i 0.650399 0.759592i \(-0.274602\pi\)
0.990534 + 0.137269i \(0.0438323\pi\)
\(152\) −2.85321 0.703252i −0.231426 0.0570413i
\(153\) −0.538334 + 0.476922i −0.0435217 + 0.0385569i
\(154\) 0.0678961 0.275465i 0.00547123 0.0221976i
\(155\) −13.5151 + 11.9733i −1.08556 + 0.961718i
\(156\) 4.94707 + 4.07520i 0.396082 + 0.326277i
\(157\) 10.7312 + 9.50706i 0.856447 + 0.758746i 0.972106 0.234543i \(-0.0753595\pi\)
−0.115659 + 0.993289i \(0.536898\pi\)
\(158\) 6.63298 4.57841i 0.527691 0.364239i
\(159\) 5.45662 1.34494i 0.432738 0.106660i
\(160\) 13.2729 19.2291i 1.04932 1.52020i
\(161\) 0.610042 2.47504i 0.0480780 0.195060i
\(162\) −0.622570 + 2.52587i −0.0489137 + 0.198451i
\(163\) 8.74787 + 1.06218i 0.685186 + 0.0831966i 0.455724 0.890121i \(-0.349380\pi\)
0.229462 + 0.973318i \(0.426303\pi\)
\(164\) 9.93318 11.2122i 0.775651 0.875529i
\(165\) 0.193056 + 0.509046i 0.0150294 + 0.0396292i
\(166\) 9.31649 4.88967i 0.723100 0.379512i
\(167\) 10.2235 + 7.05679i 0.791120 + 0.546071i 0.893706 0.448653i \(-0.148096\pi\)
−0.102586 + 0.994724i \(0.532712\pi\)
\(168\) −11.7935 −0.909892
\(169\) 12.9665 0.933129i 0.997421 0.0717791i
\(170\) −1.72336 −0.132176
\(171\) 1.19711 + 0.826306i 0.0915453 + 0.0631892i
\(172\) 4.85666 2.54897i 0.370317 0.194357i
\(173\) 0.324382 + 0.855326i 0.0246623 + 0.0650292i 0.946782 0.321876i \(-0.104313\pi\)
−0.922120 + 0.386905i \(0.873544\pi\)
\(174\) 7.09655 8.01034i 0.537988 0.607263i
\(175\) 37.2215 + 4.51950i 2.81368 + 0.341642i
\(176\) 0.0158088 0.0641387i 0.00119163 0.00483463i
\(177\) 0.611880 2.48250i 0.0459917 0.186596i
\(178\) 1.27037 1.84045i 0.0952184 0.137948i
\(179\) −0.803126 + 0.197953i −0.0600284 + 0.0147957i −0.269216 0.963080i \(-0.586764\pi\)
0.209187 + 0.977876i \(0.432918\pi\)
\(180\) −5.97499 + 4.12424i −0.445349 + 0.307402i
\(181\) −12.0608 10.6850i −0.896474 0.794207i 0.0828379 0.996563i \(-0.473602\pi\)
−0.979312 + 0.202356i \(0.935140\pi\)
\(182\) −7.05003 + 6.71284i −0.522583 + 0.497589i
\(183\) 0.501290 0.444104i 0.0370564 0.0328291i
\(184\) −0.478174 + 1.94003i −0.0352514 + 0.143021i
\(185\) −20.5496 + 18.2053i −1.51083 + 1.33848i
\(186\) −4.49673 1.10834i −0.329716 0.0812677i
\(187\) −0.0534352 + 0.0202653i −0.00390757 + 0.00148195i
\(188\) 11.3688i 0.829152i
\(189\) 17.8413 + 6.76630i 1.29776 + 0.492176i
\(190\) 0.834135 + 3.38422i 0.0605145 + 0.245517i
\(191\) 16.3492 1.18299 0.591495 0.806309i \(-0.298538\pi\)
0.591495 + 0.806309i \(0.298538\pi\)
\(192\) 4.36464 0.314991
\(193\) −1.76594 7.16469i −0.127115 0.515726i −0.999632 0.0271412i \(-0.991360\pi\)
0.872517 0.488584i \(-0.162487\pi\)
\(194\) 0.760383 + 6.26231i 0.0545923 + 0.449608i
\(195\) 3.81628 18.2865i 0.273289 1.30953i
\(196\) −0.763727 + 6.28985i −0.0545519 + 0.449275i
\(197\) 7.55521 0.917369i 0.538287 0.0653598i 0.153121 0.988207i \(-0.451067\pi\)
0.385165 + 0.922848i \(0.374144\pi\)
\(198\) 0.0625318 0.0905929i 0.00444394 0.00643816i
\(199\) −12.1150 + 10.7330i −0.858811 + 0.760841i −0.972556 0.232670i \(-0.925254\pi\)
0.113744 + 0.993510i \(0.463715\pi\)
\(200\) −29.1756 3.54256i −2.06303 0.250497i
\(201\) 15.2659 1.85362i 1.07677 0.130744i
\(202\) −6.59336 + 12.5626i −0.463907 + 0.883901i
\(203\) −23.5737 26.6092i −1.65455 1.86760i
\(204\) 0.549203 + 0.795657i 0.0384519 + 0.0557072i
\(205\) −42.3893 10.4480i −2.96060 0.729722i
\(206\) 1.42954 + 0.173577i 0.0996006 + 0.0120937i
\(207\) 0.561843 0.813970i 0.0390508 0.0565749i
\(208\) −1.64151 + 1.56300i −0.113818 + 0.108375i
\(209\) 0.0656591 + 0.0951237i 0.00454174 + 0.00657984i
\(210\) 6.50076 + 12.3862i 0.448595 + 0.854726i
\(211\) 2.98458 7.86968i 0.205467 0.541771i −0.792184 0.610283i \(-0.791056\pi\)
0.997650 + 0.0685116i \(0.0218250\pi\)
\(212\) 0.717814 + 5.91173i 0.0492996 + 0.406019i
\(213\) −1.07911 0.744855i −0.0739393 0.0510366i
\(214\) −3.22409 13.0806i −0.220394 0.894174i
\(215\) −13.1562 9.08108i −0.897246 0.619325i
\(216\) −13.9847 5.30368i −0.951536 0.360870i
\(217\) −5.45542 + 14.3848i −0.370338 + 0.976501i
\(218\) −3.02630 1.58833i −0.204967 0.107575i
\(219\) 1.88318 3.58810i 0.127253 0.242461i
\(220\) −0.560136 + 0.138061i −0.0377644 + 0.00930808i
\(221\) 1.91956 + 0.400600i 0.129124 + 0.0269472i
\(222\) −6.83725 1.68523i −0.458886 0.113105i
\(223\) −11.7070 + 13.2144i −0.783956 + 0.884904i −0.995720 0.0924171i \(-0.970541\pi\)
0.211764 + 0.977321i \(0.432079\pi\)
\(224\) 2.39967 19.7631i 0.160335 1.32047i
\(225\) 12.8815 + 6.76075i 0.858769 + 0.450717i
\(226\) 0.441239 + 0.840711i 0.0293508 + 0.0559232i
\(227\) −18.1847 + 6.89656i −1.20696 + 0.457741i −0.874338 0.485318i \(-0.838704\pi\)
−0.332626 + 0.943059i \(0.607935\pi\)
\(228\) 1.29663 1.46360i 0.0858717 0.0969291i
\(229\) 11.8697 1.44124i 0.784371 0.0952398i 0.281454 0.959575i \(-0.409183\pi\)
0.502917 + 0.864335i \(0.332260\pi\)
\(230\) 2.30109 0.567167i 0.151729 0.0373979i
\(231\) 0.347216 + 0.307607i 0.0228451 + 0.0202390i
\(232\) 18.4779 + 20.8573i 1.21314 + 1.36935i
\(233\) 3.49644 + 1.83508i 0.229060 + 0.120220i 0.575349 0.817908i \(-0.304866\pi\)
−0.346289 + 0.938128i \(0.612559\pi\)
\(234\) −3.48123 + 1.46533i −0.227575 + 0.0957915i
\(235\) −29.3393 + 15.3984i −1.91388 + 1.00448i
\(236\) 2.53324 + 0.960732i 0.164900 + 0.0625383i
\(237\) 1.58842 + 13.0818i 0.103179 + 0.849753i
\(238\) −1.30019 + 0.682393i −0.0842788 + 0.0442329i
\(239\) 17.4108i 1.12621i 0.826385 + 0.563106i \(0.190394\pi\)
−0.826385 + 0.563106i \(0.809606\pi\)
\(240\) 1.51362 + 2.88396i 0.0977037 + 0.186159i
\(241\) 6.25374 + 7.05902i 0.402839 + 0.454711i 0.914566 0.404437i \(-0.132532\pi\)
−0.511727 + 0.859148i \(0.670994\pi\)
\(242\) −7.16412 + 4.94503i −0.460527 + 0.317879i
\(243\) 9.38775 + 8.31682i 0.602225 + 0.533524i
\(244\) 0.403135 + 0.584042i 0.0258081 + 0.0373895i
\(245\) 17.2666 6.54836i 1.10312 0.418359i
\(246\) −3.97093 10.4705i −0.253177 0.667573i
\(247\) −0.142428 3.96340i −0.00906249 0.252185i
\(248\) 4.27616 11.2753i 0.271537 0.715983i
\(249\) 17.2034i 1.09022i
\(250\) 6.74311 + 17.7801i 0.426472 + 1.12451i
\(251\) −0.224179 + 1.84628i −0.0141501 + 0.116536i −0.998072 0.0620607i \(-0.980233\pi\)
0.983922 + 0.178597i \(0.0571558\pi\)
\(252\) −2.87477 + 5.47743i −0.181094 + 0.345045i
\(253\) 0.0646790 0.0446447i 0.00406633 0.00280679i
\(254\) 13.0229 8.98904i 0.817128 0.564023i
\(255\) 1.30948 2.49500i 0.0820027 0.156243i
\(256\) −1.67295 + 13.7780i −0.104560 + 0.861126i
\(257\) −6.41098 16.9044i −0.399906 1.05446i −0.972145 0.234378i \(-0.924695\pi\)
0.572240 0.820086i \(-0.306075\pi\)
\(258\) 4.10037i 0.255278i
\(259\) −8.29493 + 21.8719i −0.515422 + 1.35906i
\(260\) 18.7486 + 6.35011i 1.16274 + 0.393817i
\(261\) −4.89110 12.8968i −0.302752 0.798291i
\(262\) 5.49055 2.08229i 0.339207 0.128644i
\(263\) 2.19648 + 3.18215i 0.135441 + 0.196220i 0.884835 0.465904i \(-0.154271\pi\)
−0.749395 + 0.662124i \(0.769655\pi\)
\(264\) −0.272161 0.241114i −0.0167503 0.0148395i
\(265\) 14.2841 9.85960i 0.877465 0.605671i
\(266\) 1.96935 + 2.22294i 0.120749 + 0.136297i
\(267\) 1.69924 + 3.23763i 0.103992 + 0.198140i
\(268\) 16.2953i 0.995395i
\(269\) −5.04514 + 2.64789i −0.307607 + 0.161445i −0.611462 0.791273i \(-0.709418\pi\)
0.303855 + 0.952718i \(0.401726\pi\)
\(270\) 2.13834 + 17.6108i 0.130135 + 1.07176i
\(271\) 8.12293 + 3.08062i 0.493433 + 0.187134i 0.588754 0.808312i \(-0.299619\pi\)
−0.0953213 + 0.995447i \(0.530388\pi\)
\(272\) −0.302733 + 0.158887i −0.0183559 + 0.00963391i
\(273\) −4.36165 15.3074i −0.263979 0.926446i
\(274\) 6.77180 + 3.55412i 0.409099 + 0.214712i
\(275\) 0.766565 + 0.865273i 0.0462256 + 0.0521779i
\(276\) −0.995168 0.881642i −0.0599021 0.0530686i
\(277\) 13.5751 3.34595i 0.815647 0.201039i 0.190642 0.981660i \(-0.438943\pi\)
0.625005 + 0.780621i \(0.285097\pi\)
\(278\) −4.13962 + 0.502641i −0.248278 + 0.0301464i
\(279\) −3.95828 + 4.46797i −0.236976 + 0.267490i
\(280\) −34.0561 + 12.9158i −2.03524 + 0.771865i
\(281\) 2.32349 + 4.42705i 0.138608 + 0.264096i 0.944859 0.327479i \(-0.106199\pi\)
−0.806251 + 0.591574i \(0.798507\pi\)
\(282\) −7.52546 3.94966i −0.448134 0.235199i
\(283\) −1.49456 + 12.3088i −0.0888424 + 0.731683i 0.878417 + 0.477894i \(0.158600\pi\)
−0.967260 + 0.253789i \(0.918323\pi\)
\(284\) 0.921361 1.04000i 0.0546727 0.0617128i
\(285\) −5.53332 1.36384i −0.327766 0.0807870i
\(286\) −0.299935 + 0.0107784i −0.0177355 + 0.000637343i
\(287\) −36.1177 + 8.90222i −2.13196 + 0.525481i
\(288\) 3.58968 6.83956i 0.211524 0.403025i
\(289\) −14.7908 7.76284i −0.870050 0.456637i
\(290\) 11.7200 30.9032i 0.688225 1.81470i
\(291\) −9.64406 3.65751i −0.565345 0.214407i
\(292\) 3.53387 + 2.43925i 0.206804 + 0.142747i
\(293\) −2.87216 11.6528i −0.167793 0.680764i −0.993220 0.116254i \(-0.962911\pi\)
0.825426 0.564510i \(-0.190935\pi\)
\(294\) 3.89819 + 2.69072i 0.227347 + 0.156926i
\(295\) −0.951800 7.83878i −0.0554160 0.456392i
\(296\) 6.50188 17.1441i 0.377914 0.996478i
\(297\) 0.273391 + 0.520903i 0.0158638 + 0.0302259i
\(298\) −5.94652 8.61503i −0.344473 0.499055i
\(299\) −2.69490 + 0.0968435i −0.155850 + 0.00560061i
\(300\) 11.1091 16.0943i 0.641385 0.929206i
\(301\) −13.5215 1.64181i −0.779367 0.0946323i
\(302\) 16.5870 + 4.08833i 0.954476 + 0.235257i
\(303\) −13.1777 19.0911i −0.757036 1.09676i
\(304\) 0.458538 + 0.517583i 0.0262990 + 0.0296854i
\(305\) 0.961206 1.83143i 0.0550385 0.104867i
\(306\) −0.565576 + 0.0686733i −0.0323318 + 0.00392579i
\(307\) −26.2884 3.19199i −1.50036 0.182176i −0.671235 0.741244i \(-0.734236\pi\)
−0.829122 + 0.559068i \(0.811159\pi\)
\(308\) −0.367927 + 0.325955i −0.0209646 + 0.0185730i
\(309\) −1.33752 + 1.93773i −0.0760887 + 0.110233i
\(310\) −14.1990 + 1.72407i −0.806447 + 0.0979204i
\(311\) 1.79015 14.7432i 0.101510 0.836009i −0.849658 0.527335i \(-0.823191\pi\)
0.951168 0.308675i \(-0.0998855\pi\)
\(312\) 3.41883 + 11.9985i 0.193553 + 0.679282i
\(313\) 2.51459 + 20.7095i 0.142133 + 1.17057i 0.872884 + 0.487927i \(0.162247\pi\)
−0.730751 + 0.682644i \(0.760830\pi\)
\(314\) 2.71793 + 11.0271i 0.153382 + 0.622294i
\(315\) 18.0293 1.01584
\(316\) −13.9639 −0.785532
\(317\) −4.63619 18.8097i −0.260394 1.05646i −0.944875 0.327430i \(-0.893817\pi\)
0.684481 0.729030i \(-0.260029\pi\)
\(318\) 4.16260 + 1.57866i 0.233427 + 0.0885271i
\(319\) 1.09602i 0.0613651i
\(320\) 12.6037 4.77997i 0.704570 0.267208i
\(321\) 21.3873 + 5.27150i 1.19372 + 0.294227i
\(322\) 1.51148 1.33905i 0.0842313 0.0746224i
\(323\) 0.143164 0.580840i 0.00796587 0.0323188i
\(324\) 3.37369 2.98883i 0.187427 0.166046i
\(325\) −6.19207 39.1785i −0.343474 2.17323i
\(326\) 5.22508 + 4.62902i 0.289391 + 0.256378i
\(327\) 4.59901 3.17447i 0.254326 0.175548i
\(328\) 28.3104 6.97790i 1.56318 0.385290i
\(329\) −16.0378 + 23.2347i −0.884191 + 1.28097i
\(330\) −0.103211 + 0.418742i −0.00568155 + 0.0230510i
\(331\) −7.63614 + 30.9811i −0.419720 + 1.70287i 0.256813 + 0.966461i \(0.417327\pi\)
−0.676534 + 0.736412i \(0.736519\pi\)
\(332\) −18.0966 2.19733i −0.993181 0.120594i
\(333\) −6.01854 + 6.79352i −0.329814 + 0.372283i
\(334\) 3.48955 + 9.20118i 0.190939 + 0.503466i
\(335\) 42.0532 22.0712i 2.29761 1.20588i
\(336\) 2.28390 + 1.57646i 0.124597 + 0.0860031i
\(337\) 30.0074 1.63461 0.817304 0.576207i \(-0.195468\pi\)
0.817304 + 0.576207i \(0.195468\pi\)
\(338\) 8.87324 + 5.22657i 0.482641 + 0.284288i
\(339\) −1.55241 −0.0843155
\(340\) 2.45730 + 1.69615i 0.133266 + 0.0919866i
\(341\) −0.419985 + 0.220425i −0.0227435 + 0.0119367i
\(342\) 0.408604 + 1.07740i 0.0220948 + 0.0582591i
\(343\) −5.38698 + 6.08064i −0.290869 + 0.328324i
\(344\) 10.5987 + 1.28691i 0.571442 + 0.0693856i
\(345\) −0.927339 + 3.76236i −0.0499262 + 0.202559i
\(346\) −0.173420 + 0.703592i −0.00932310 + 0.0378253i
\(347\) 7.24145 10.4910i 0.388741 0.563189i −0.578938 0.815371i \(-0.696533\pi\)
0.967680 + 0.252182i \(0.0811482\pi\)
\(348\) −18.0026 + 4.43725i −0.965043 + 0.237862i
\(349\) −1.37758 + 0.950872i −0.0737399 + 0.0508990i −0.604364 0.796708i \(-0.706573\pi\)
0.530624 + 0.847607i \(0.321957\pi\)
\(350\) 22.2323 + 19.6961i 1.18837 + 1.05280i
\(351\) 1.71190 20.1128i 0.0913743 1.07354i
\(352\) 0.459424 0.407014i 0.0244874 0.0216939i
\(353\) 1.96459 7.97066i 0.104565 0.424236i −0.895206 0.445653i \(-0.852972\pi\)
0.999771 + 0.0214171i \(0.00681779\pi\)
\(354\) 1.51603 1.34309i 0.0805762 0.0713843i
\(355\) −3.93186 0.969117i −0.208682 0.0514354i
\(356\) −3.62278 + 1.37394i −0.192007 + 0.0728186i
\(357\) 2.40086i 0.127067i
\(358\) −0.612667 0.232354i −0.0323805 0.0122803i
\(359\) −1.06881 4.33635i −0.0564098 0.228864i 0.935970 0.352080i \(-0.114525\pi\)
−0.992380 + 0.123216i \(0.960679\pi\)
\(360\) −14.1320 −0.744824
\(361\) 17.7901 0.936321
\(362\) −3.05468 12.3933i −0.160550 0.651378i
\(363\) −1.71561 14.1293i −0.0900461 0.741597i
\(364\) 16.6593 2.63296i 0.873185 0.138005i
\(365\) 1.50851 12.4237i 0.0789589 0.650285i
\(366\) 0.526657 0.0639477i 0.0275288 0.00334260i
\(367\) 6.99280 10.1308i 0.365021 0.528825i −0.596841 0.802360i \(-0.703578\pi\)
0.961862 + 0.273535i \(0.0881929\pi\)
\(368\) 0.351928 0.311781i 0.0183455 0.0162527i
\(369\) −14.3278 1.73970i −0.745873 0.0905654i
\(370\) −21.5894 + 2.62143i −1.12238 + 0.136282i
\(371\) 6.87258 13.0946i 0.356806 0.679838i
\(372\) 5.32092 + 6.00608i 0.275877 + 0.311401i
\(373\) −11.3466 16.4383i −0.587502 0.851144i 0.410657 0.911790i \(-0.365299\pi\)
−0.998159 + 0.0606457i \(0.980684\pi\)
\(374\) −0.0439558 0.0108341i −0.00227290 0.000560220i
\(375\) −30.8649 3.74768i −1.59386 0.193529i
\(376\) 12.5710 18.2122i 0.648300 0.939225i
\(377\) −20.2379 + 31.6971i −1.04230 + 1.63248i
\(378\) 8.58656 + 12.4398i 0.441645 + 0.639834i
\(379\) 11.9204 + 22.7124i 0.612310 + 1.16666i 0.972307 + 0.233706i \(0.0750852\pi\)
−0.359998 + 0.932953i \(0.617222\pi\)
\(380\) 2.14141 5.64643i 0.109852 0.289656i
\(381\) 3.11862 + 25.6842i 0.159772 + 1.31584i
\(382\) 10.6587 + 7.35716i 0.545346 + 0.376425i
\(383\) −5.56780 22.5895i −0.284501 1.15427i −0.923048 0.384685i \(-0.874310\pi\)
0.638547 0.769583i \(-0.279536\pi\)
\(384\) −9.60708 6.63129i −0.490259 0.338401i
\(385\) 1.33953 + 0.508016i 0.0682687 + 0.0258909i
\(386\) 2.07283 5.46560i 0.105504 0.278192i
\(387\) −4.67950 2.45599i −0.237872 0.124845i
\(388\) 5.07922 9.67765i 0.257858 0.491308i
\(389\) 5.72407 1.41086i 0.290222 0.0715333i −0.0915168 0.995804i \(-0.529172\pi\)
0.381739 + 0.924270i \(0.375325\pi\)
\(390\) 10.7169 10.2044i 0.542672 0.516718i
\(391\) −0.394940 0.0973439i −0.0199730 0.00492289i
\(392\) −8.17846 + 9.23157i −0.413075 + 0.466265i
\(393\) −1.15729 + 9.53117i −0.0583777 + 0.480784i
\(394\) 5.33835 + 2.80178i 0.268942 + 0.141152i
\(395\) 18.9134 + 36.0366i 0.951639 + 1.81320i
\(396\) −0.178325 + 0.0676297i −0.00896116 + 0.00339852i
\(397\) 21.1509 23.8744i 1.06153 1.19822i 0.0820647 0.996627i \(-0.473849\pi\)
0.979469 0.201596i \(-0.0646129\pi\)
\(398\) −12.7281 + 1.54547i −0.638001 + 0.0774674i
\(399\) −4.71465 + 1.16206i −0.236028 + 0.0581757i
\(400\) 5.17651 + 4.58599i 0.258826 + 0.229300i
\(401\) −14.2448 16.0791i −0.711352 0.802950i 0.276057 0.961141i \(-0.410972\pi\)
−0.987409 + 0.158191i \(0.949434\pi\)
\(402\) 10.7865 + 5.66122i 0.537984 + 0.282356i
\(403\) 16.2162 + 1.38024i 0.807788 + 0.0687546i
\(404\) 21.7655 11.4234i 1.08288 0.568337i
\(405\) −12.2827 4.65823i −0.610334 0.231469i
\(406\) −3.39443 27.9557i −0.168463 1.38742i
\(407\) −0.638585 + 0.335155i −0.0316535 + 0.0166130i
\(408\) 1.88189i 0.0931673i
\(409\) 2.00948 + 3.82874i 0.0993623 + 0.189319i 0.930063 0.367400i \(-0.119752\pi\)
−0.830701 + 0.556719i \(0.812060\pi\)
\(410\) −22.9336 25.8867i −1.13261 1.27845i
\(411\) −10.2910 + 7.10334i −0.507616 + 0.350382i
\(412\) −1.86750 1.65446i −0.0920053 0.0815096i
\(413\) −3.82198 5.53709i −0.188067 0.272462i
\(414\) 0.732574 0.277829i 0.0360040 0.0136545i
\(415\) 18.8404 + 49.6779i 0.924837 + 2.43859i
\(416\) −20.8022 + 3.28773i −1.01991 + 0.161194i
\(417\) 2.41775 6.37508i 0.118398 0.312189i
\(418\) 0.0915614i 0.00447841i
\(419\) 1.58307 + 4.17422i 0.0773381 + 0.203924i 0.968109 0.250528i \(-0.0806043\pi\)
−0.890771 + 0.454452i \(0.849835\pi\)
\(420\) 2.92132 24.0592i 0.142546 1.17397i
\(421\) −8.52673 + 16.2463i −0.415568 + 0.791798i −0.999804 0.0197854i \(-0.993702\pi\)
0.584237 + 0.811583i \(0.301394\pi\)
\(422\) 5.48712 3.78748i 0.267109 0.184372i
\(423\) −9.01501 + 6.22261i −0.438325 + 0.302554i
\(424\) −5.38699 + 10.2640i −0.261615 + 0.498466i
\(425\) 0.721174 5.93940i 0.0349821 0.288103i
\(426\) −0.368327 0.971198i −0.0178455 0.0470547i
\(427\) 1.76232i 0.0852849i
\(428\) −8.27695 + 21.8245i −0.400081 + 1.05493i
\(429\) 0.212298 0.442422i 0.0102499 0.0213604i
\(430\) −4.49055 11.8406i −0.216553 0.571005i
\(431\) −23.7406 + 9.00360i −1.14354 + 0.433688i −0.852348 0.522976i \(-0.824822\pi\)
−0.291194 + 0.956664i \(0.594053\pi\)
\(432\) 1.99927 + 2.89645i 0.0961901 + 0.139355i
\(433\) −1.90795 1.69030i −0.0916903 0.0812305i 0.616033 0.787721i \(-0.288739\pi\)
−0.707723 + 0.706490i \(0.750277\pi\)
\(434\) −10.0297 + 6.92303i −0.481443 + 0.332316i
\(435\) 35.8349 + 40.4492i 1.71815 + 1.93939i
\(436\) 2.75188 + 5.24327i 0.131791 + 0.251107i
\(437\) 0.822672i 0.0393537i
\(438\) 2.84236 1.49179i 0.135813 0.0712803i
\(439\) −2.16092 17.7967i −0.103135 0.849392i −0.948843 0.315747i \(-0.897745\pi\)
0.845709 0.533645i \(-0.179178\pi\)
\(440\) −1.04997 0.398202i −0.0500555 0.0189836i
\(441\) 5.40564 2.83710i 0.257412 0.135100i
\(442\) 1.07116 + 1.12497i 0.0509501 + 0.0535093i
\(443\) 8.74848 + 4.59156i 0.415653 + 0.218152i 0.659568 0.751645i \(-0.270739\pi\)
−0.243915 + 0.969797i \(0.578432\pi\)
\(444\) 8.09043 + 9.13221i 0.383955 + 0.433396i
\(445\) 8.45260 + 7.48835i 0.400691 + 0.354982i
\(446\) −13.5787 + 3.34685i −0.642971 + 0.158478i
\(447\) 16.9908 2.06306i 0.803639 0.0975795i
\(448\) 7.61619 8.59690i 0.359831 0.406165i
\(449\) 33.8413 12.8343i 1.59707 0.605689i 0.614064 0.789256i \(-0.289534\pi\)
0.983007 + 0.183567i \(0.0587644\pi\)
\(450\) 5.35562 + 10.2043i 0.252466 + 0.481034i
\(451\) −1.01549 0.532973i −0.0478178 0.0250967i
\(452\) 0.198285 1.63302i 0.00932652 0.0768108i
\(453\) −18.5224 + 20.9074i −0.870257 + 0.982317i
\(454\) −14.9588 3.68701i −0.702050 0.173040i
\(455\) −29.3591 39.4263i −1.37638 1.84833i
\(456\) 3.69552 0.910865i 0.173059 0.0426551i
\(457\) −9.43405 + 17.9751i −0.441306 + 0.840839i 0.558629 + 0.829418i \(0.311328\pi\)
−0.999935 + 0.0114207i \(0.996365\pi\)
\(458\) 8.38685 + 4.40176i 0.391892 + 0.205681i
\(459\) 1.07969 2.84692i 0.0503958 0.132883i
\(460\) −3.83927 1.45604i −0.179007 0.0678884i
\(461\) 1.75721 + 1.21292i 0.0818415 + 0.0564911i 0.608283 0.793720i \(-0.291859\pi\)
−0.526441 + 0.850211i \(0.676474\pi\)
\(462\) 0.0879403 + 0.356788i 0.00409135 + 0.0165993i
\(463\) −9.26139 6.39267i −0.430413 0.297093i 0.333092 0.942894i \(-0.391908\pi\)
−0.763505 + 0.645802i \(0.776523\pi\)
\(464\) −0.790351 6.50913i −0.0366911 0.302179i
\(465\) 8.29291 21.8666i 0.384575 1.01404i
\(466\) 1.45368 + 2.76976i 0.0673404 + 0.128306i
\(467\) 0.651226 + 0.943463i 0.0301351 + 0.0436583i 0.837762 0.546036i \(-0.183864\pi\)
−0.807627 + 0.589694i \(0.799248\pi\)
\(468\) 6.40599 + 1.33689i 0.296117 + 0.0617977i
\(469\) 22.9876 33.3033i 1.06147 1.53780i
\(470\) −26.0567 3.16385i −1.20191 0.145938i
\(471\) −18.0297 4.44392i −0.830764 0.204765i
\(472\) 2.99581 + 4.34018i 0.137893 + 0.199773i
\(473\) −0.278471 0.314329i −0.0128041 0.0144529i
\(474\) −4.85126 + 9.24330i −0.222826 + 0.424559i
\(475\) −12.0125 + 1.45858i −0.551169 + 0.0669241i
\(476\) 2.52553 + 0.306654i 0.115757 + 0.0140555i
\(477\) 4.29489 3.80494i 0.196650 0.174216i
\(478\) −7.83487 + 11.3508i −0.358359 + 0.519172i
\(479\) −21.3639 + 2.59405i −0.976141 + 0.118525i −0.593033 0.805178i \(-0.702070\pi\)
−0.383109 + 0.923703i \(0.625146\pi\)
\(480\) −3.64780 + 30.0423i −0.166498 + 1.37124i
\(481\) 24.6567 + 2.09865i 1.12425 + 0.0956900i
\(482\) 0.900493 + 7.41623i 0.0410163 + 0.337800i
\(483\) 0.790137 + 3.20571i 0.0359525 + 0.145865i
\(484\) 15.0821 0.685549
\(485\) −31.8546 −1.44644
\(486\) 2.37766 + 9.64654i 0.107853 + 0.437576i
\(487\) 26.8190 + 10.1711i 1.21528 + 0.460897i 0.877157 0.480203i \(-0.159437\pi\)
0.338128 + 0.941100i \(0.390206\pi\)
\(488\) 1.38138i 0.0625320i
\(489\) −10.6719 + 4.04732i −0.482600 + 0.183026i
\(490\) 14.2035 + 3.50085i 0.641650 + 0.158152i
\(491\) 5.67577 5.02829i 0.256144 0.226924i −0.525272 0.850935i \(-0.676036\pi\)
0.781416 + 0.624011i \(0.214498\pi\)
\(492\) −4.64310 + 18.8378i −0.209327 + 0.849274i
\(493\) −4.24601 + 3.76163i −0.191231 + 0.169415i
\(494\) 1.69068 2.64798i 0.0760671 0.119138i
\(495\) 0.416064 + 0.368600i 0.0187007 + 0.0165674i
\(496\) −2.33530 + 1.61194i −0.104858 + 0.0723783i
\(497\) −3.35013 + 0.825734i −0.150274 + 0.0370392i
\(498\) −7.74151 + 11.2155i −0.346906 + 0.502579i
\(499\) 3.14528 12.7609i 0.140802 0.571256i −0.857578 0.514354i \(-0.828032\pi\)
0.998380 0.0569016i \(-0.0181221\pi\)
\(500\) 7.88454 31.9889i 0.352608 1.43059i
\(501\) −15.9725 1.93942i −0.713600 0.0866467i
\(502\) −0.976978 + 1.10278i −0.0436047 + 0.0492195i
\(503\) 7.01238 + 18.4901i 0.312667 + 0.824434i 0.995578 + 0.0939336i \(0.0299441\pi\)
−0.682912 + 0.730501i \(0.739287\pi\)
\(504\) −10.6619 + 5.59581i −0.474920 + 0.249257i
\(505\) −58.9607 40.6977i −2.62372 1.81102i
\(506\) 0.0622568 0.00276765
\(507\) −14.3090 + 8.87491i −0.635486 + 0.394149i
\(508\) −27.4161 −1.21639
\(509\) 22.1454 + 15.2859i 0.981577 + 0.677534i 0.946787 0.321861i \(-0.104308\pi\)
0.0347901 + 0.999395i \(0.488924\pi\)
\(510\) 1.97645 1.03732i 0.0875187 0.0459334i
\(511\) −3.78126 9.97037i −0.167273 0.441063i
\(512\) 4.66235 5.26270i 0.206049 0.232581i
\(513\) −6.11318 0.742274i −0.269903 0.0327722i
\(514\) 3.42741 13.9055i 0.151176 0.613347i
\(515\) −1.74022 + 7.06035i −0.0766832 + 0.311116i
\(516\) −4.03563 + 5.84662i −0.177659 + 0.257383i
\(517\) −0.845128 + 0.208305i −0.0371687 + 0.00916126i
\(518\) −15.2502 + 10.5264i −0.670054 + 0.462505i
\(519\) −0.886856 0.785686i −0.0389287 0.0344878i
\(520\) 23.0128 + 30.9038i 1.00918 + 1.35522i
\(521\) −27.5248 + 24.3848i −1.20588 + 1.06832i −0.209997 + 0.977702i \(0.567345\pi\)
−0.995886 + 0.0906166i \(0.971116\pi\)
\(522\) 2.61486 10.6089i 0.114449 0.464339i
\(523\) 4.38641 3.88602i 0.191805 0.169924i −0.561755 0.827304i \(-0.689874\pi\)
0.753560 + 0.657380i \(0.228335\pi\)
\(524\) −9.87824 2.43477i −0.431533 0.106363i
\(525\) −45.4081 + 17.2210i −1.98177 + 0.751587i
\(526\) 3.06298i 0.133552i
\(527\) 2.29537 + 0.870518i 0.0999877 + 0.0379203i
\(528\) 0.0204758 + 0.0830735i 0.000891094 + 0.00361531i
\(529\) −22.4406 −0.975679
\(530\) 13.7492 0.597226
\(531\) −0.624727 2.53462i −0.0271109 0.109993i
\(532\) −0.620209 5.10788i −0.0268895 0.221455i
\(533\) 19.5271 + 34.1648i 0.845812 + 1.47984i
\(534\) −0.349136 + 2.87539i −0.0151086 + 0.124431i
\(535\) 67.5331 8.20000i 2.91971 0.354517i
\(536\) −18.0185 + 26.1044i −0.778282 + 1.12754i
\(537\) 0.801920 0.710439i 0.0346054 0.0306577i
\(538\) −4.48067 0.544051i −0.193175 0.0234557i
\(539\) 0.481567 0.0584728i 0.0207426 0.00251860i
\(540\) 14.2837 27.2154i 0.614675 1.17116i
\(541\) 4.27914 + 4.83016i 0.183975 + 0.207665i 0.833261 0.552879i \(-0.186471\pi\)
−0.649287 + 0.760544i \(0.724932\pi\)
\(542\) 3.90937 + 5.66369i 0.167922 + 0.243277i
\(543\) 20.2635 + 4.99451i 0.869591 + 0.214335i
\(544\) −3.15358 0.382914i −0.135209 0.0164173i
\(545\) 9.80398 14.2035i 0.419956 0.608412i
\(546\) 4.04481 11.9422i 0.173102 0.511080i
\(547\) −24.8063 35.9381i −1.06064 1.53660i −0.825303 0.564690i \(-0.808996\pi\)
−0.235337 0.971914i \(-0.575619\pi\)
\(548\) −6.15774 11.7326i −0.263046 0.501192i
\(549\) 0.242471 0.639343i 0.0103484 0.0272865i
\(550\) 0.110380 + 0.909058i 0.00470660 + 0.0387624i
\(551\) 9.44198 + 6.51733i 0.402242 + 0.277647i
\(552\) −0.619339 2.51276i −0.0263608 0.106950i
\(553\) 28.5385 + 19.6987i 1.21358 + 0.837675i
\(554\) 10.3558 + 3.92743i 0.439975 + 0.166861i
\(555\) 12.6093 33.2481i 0.535236 1.41130i
\(556\) 6.39728 + 3.35755i 0.271305 + 0.142392i
\(557\) 10.7338 20.4515i 0.454804 0.866556i −0.544804 0.838563i \(-0.683396\pi\)
0.999608 0.0279930i \(-0.00891161\pi\)
\(558\) −4.59114 + 1.13161i −0.194358 + 0.0479051i
\(559\) 2.24940 + 14.2325i 0.0951396 + 0.601969i
\(560\) 8.32167 + 2.05111i 0.351655 + 0.0866751i
\(561\) 0.0490846 0.0554050i 0.00207235 0.00233920i
\(562\) −0.477399 + 3.93173i −0.0201379 + 0.165850i
\(563\) −9.30082 4.88145i −0.391983 0.205728i 0.257205 0.966357i \(-0.417199\pi\)
−0.649187 + 0.760629i \(0.724891\pi\)
\(564\) 6.84306 + 13.0384i 0.288145 + 0.549014i
\(565\) −4.48289 + 1.70014i −0.188597 + 0.0715252i
\(566\) −6.51333 + 7.35203i −0.273776 + 0.309029i
\(567\) −11.1112 + 1.34915i −0.466627 + 0.0566588i
\(568\) 2.62596 0.647241i 0.110183 0.0271576i
\(569\) −16.4278 14.5537i −0.688689 0.610125i 0.244441 0.969664i \(-0.421395\pi\)
−0.933130 + 0.359539i \(0.882934\pi\)
\(570\) −2.99365 3.37914i −0.125390 0.141537i
\(571\) −20.1547 10.5780i −0.843450 0.442676i −0.0130966 0.999914i \(-0.504169\pi\)
−0.830353 + 0.557238i \(0.811861\pi\)
\(572\) 0.438278 + 0.279831i 0.0183253 + 0.0117003i
\(573\) −18.7503 + 9.84090i −0.783303 + 0.411109i
\(574\) −27.5525 10.4493i −1.15002 0.436145i
\(575\) 0.991753 + 8.16782i 0.0413590 + 0.340622i
\(576\) 3.94584 2.07094i 0.164410 0.0862891i
\(577\) 1.95329i 0.0813165i −0.999173 0.0406583i \(-0.987055\pi\)
0.999173 0.0406583i \(-0.0129455\pi\)
\(578\) −6.14944 11.7168i −0.255783 0.487354i
\(579\) 6.33783 + 7.15393i 0.263391 + 0.297307i
\(580\) −47.1266 + 32.5291i −1.95682 + 1.35070i
\(581\) 33.8849 + 30.0194i 1.40578 + 1.24541i
\(582\) −4.64145 6.72430i −0.192394 0.278731i
\(583\) 0.426312 0.161679i 0.0176561 0.00669606i
\(584\) 2.96390 + 7.81515i 0.122647 + 0.323393i
\(585\) −5.22650 18.3426i −0.216089 0.758374i
\(586\) 3.37129 8.88937i 0.139267 0.367217i
\(587\) 7.95369i 0.328284i −0.986437 0.164142i \(-0.947514\pi\)
0.986437 0.164142i \(-0.0524855\pi\)
\(588\) −2.91009 7.67327i −0.120010 0.316440i
\(589\) 0.598468 4.92883i 0.0246594 0.203089i
\(590\) 2.90694 5.53871i 0.119677 0.228025i
\(591\) −8.11258 + 5.59971i −0.333707 + 0.230341i
\(592\) −3.55081 + 2.45095i −0.145937 + 0.100733i
\(593\) 9.72876 18.5366i 0.399512 0.761207i −0.599727 0.800205i \(-0.704724\pi\)
0.999239 + 0.0389974i \(0.0124164\pi\)
\(594\) −0.0561726 + 0.462623i −0.00230479 + 0.0189816i
\(595\) −2.62932 6.93295i −0.107792 0.284223i
\(596\) 18.1366i 0.742903i
\(597\) 7.43385 19.6014i 0.304247 0.802234i
\(598\) −1.80048 1.14957i −0.0736273 0.0470093i
\(599\) 1.02144 + 2.69333i 0.0417351 + 0.110046i 0.954263 0.298967i \(-0.0966421\pi\)
−0.912528 + 0.409014i \(0.865873\pi\)
\(600\) 35.5926 13.4985i 1.45306 0.551073i
\(601\) −0.862750 1.24991i −0.0351923 0.0509848i 0.804993 0.593285i \(-0.202169\pi\)
−0.840185 + 0.542300i \(0.817554\pi\)
\(602\) −8.07637 7.15504i −0.329168 0.291618i
\(603\) 12.9216 8.91913i 0.526208 0.363215i
\(604\) −19.6272 22.1546i −0.798621 0.901456i
\(605\) −20.4280 38.9222i −0.830515 1.58241i
\(606\) 18.3762i 0.746481i
\(607\) 15.7322 8.25691i 0.638551 0.335138i −0.114185 0.993459i \(-0.536426\pi\)
0.752737 + 0.658322i \(0.228733\pi\)
\(608\) 0.774444 + 6.37812i 0.0314078 + 0.258667i
\(609\) 43.0522 + 16.3275i 1.74456 + 0.661625i
\(610\) 1.45079 0.761433i 0.0587407 0.0308295i
\(611\) 28.2877 + 9.58099i 1.14440 + 0.387605i
\(612\) 0.874029 + 0.458726i 0.0353305 + 0.0185429i
\(613\) 26.2330 + 29.6109i 1.05954 + 1.19597i 0.979970 + 0.199144i \(0.0638163\pi\)
0.0795700 + 0.996829i \(0.474645\pi\)
\(614\) −15.7020 13.9108i −0.633681 0.561392i
\(615\) 54.9034 13.5325i 2.21392 0.545682i
\(616\) −0.949828 + 0.115330i −0.0382696 + 0.00464678i
\(617\) 1.11031 1.25328i 0.0446994 0.0504552i −0.725736 0.687973i \(-0.758501\pi\)
0.770435 + 0.637518i \(0.220039\pi\)
\(618\) −1.74396 + 0.661395i −0.0701522 + 0.0266052i
\(619\) 21.0964 + 40.1959i 0.847937 + 1.61561i 0.786577 + 0.617493i \(0.211851\pi\)
0.0613600 + 0.998116i \(0.480456\pi\)
\(620\) 21.9428 + 11.5165i 0.881243 + 0.462512i
\(621\) −0.504706 + 4.15663i −0.0202532 + 0.166800i
\(622\) 7.80150 8.80608i 0.312812 0.353091i
\(623\) 9.34220 + 2.30264i 0.374287 + 0.0922535i
\(624\) 0.941782 2.78059i 0.0377015 0.111313i
\(625\) −39.8258 + 9.81617i −1.59303 + 0.392647i
\(626\) −7.67993 + 14.6329i −0.306952 + 0.584848i
\(627\) −0.132558 0.0695720i −0.00529387 0.00277844i
\(628\) 6.97753 18.3982i 0.278434 0.734170i
\(629\) 3.49009 + 1.32362i 0.139159 + 0.0527761i
\(630\) 11.7540 + 8.11319i 0.468290 + 0.323237i
\(631\) 8.28278 + 33.6046i 0.329732 + 1.33778i 0.868653 + 0.495420i \(0.164986\pi\)
−0.538921 + 0.842356i \(0.681168\pi\)
\(632\) −22.3696 15.4406i −0.889813 0.614194i
\(633\) 1.31401 + 10.8219i 0.0522274 + 0.430131i
\(634\) 5.44188 14.3491i 0.216125 0.569874i
\(635\) 37.1338 + 70.7525i 1.47361 + 2.80773i
\(636\) −4.38160 6.34785i −0.173742 0.251709i
\(637\) −15.0068 7.20106i −0.594589 0.285316i
\(638\) 0.493207 0.714534i 0.0195263 0.0282887i
\(639\) −1.32898 0.161368i −0.0525738 0.00638361i
\(640\) −35.0046 8.62785i −1.38368 0.341046i
\(641\) −14.8935 21.5769i −0.588257 0.852237i 0.409949 0.912108i \(-0.365546\pi\)
−0.998206 + 0.0598710i \(0.980931\pi\)
\(642\) 11.5710 + 13.0610i 0.456672 + 0.515476i
\(643\) 14.6399 27.8940i 0.577341 1.10003i −0.405243 0.914209i \(-0.632813\pi\)
0.982583 0.185822i \(-0.0594947\pi\)
\(644\) −3.47308 + 0.421709i −0.136859 + 0.0166177i
\(645\) 20.5544 + 2.49575i 0.809328 + 0.0982702i
\(646\) 0.354712 0.314248i 0.0139560 0.0123639i
\(647\) 0.830344 1.20296i 0.0326442 0.0472933i −0.806322 0.591477i \(-0.798545\pi\)
0.838966 + 0.544184i \(0.183160\pi\)
\(648\) 8.70939 1.05751i 0.342137 0.0415430i
\(649\) 0.0250030 0.205919i 0.000981455 0.00808301i
\(650\) 13.5935 28.3284i 0.533181 1.11113i
\(651\) −2.40185 19.7810i −0.0941358 0.775278i
\(652\) −2.89438 11.7430i −0.113353 0.459891i
\(653\) 25.9954 1.01728 0.508640 0.860979i \(-0.330148\pi\)
0.508640 + 0.860979i \(0.330148\pi\)
\(654\) 4.42678 0.173101
\(655\) 7.09622 + 28.7905i 0.277272 + 1.12494i
\(656\) −6.41526 2.43299i −0.250474 0.0949922i
\(657\) 4.13734i 0.161413i
\(658\) −20.9113 + 7.93059i −0.815206 + 0.309167i
\(659\) 12.4111 + 3.05907i 0.483468 + 0.119164i 0.473514 0.880786i \(-0.342985\pi\)
0.00995425 + 0.999950i \(0.496831\pi\)
\(660\) 0.559295 0.495492i 0.0217705 0.0192870i
\(661\) 2.51762 10.2144i 0.0979240 0.397293i −0.901442 0.432900i \(-0.857490\pi\)
0.999366 + 0.0356068i \(0.0113364\pi\)
\(662\) −18.9198 + 16.7615i −0.735338 + 0.651453i
\(663\) −2.44259 + 0.695986i −0.0948624 + 0.0270298i
\(664\) −26.5603 23.5303i −1.03074 0.913154i
\(665\) −12.3418 + 8.51895i −0.478595 + 0.330351i
\(666\) −6.98080 + 1.72061i −0.270501 + 0.0666724i
\(667\) 4.43143 6.42003i 0.171586 0.248585i
\(668\) 4.08024 16.5542i 0.157869 0.640500i
\(669\) 5.47223 22.2017i 0.211569 0.858367i
\(670\) 37.3481 + 4.53488i 1.44288 + 0.175198i
\(671\) 0.0360299 0.0406694i 0.00139092 0.00157002i
\(672\) 9.14365 + 24.1098i 0.352724 + 0.930057i
\(673\) −38.9104 + 20.4218i −1.49989 + 0.787201i −0.997018 0.0771630i \(-0.975414\pi\)
−0.502867 + 0.864364i \(0.667721\pi\)
\(674\) 19.5630 + 13.5033i 0.753538 + 0.520130i
\(675\) −61.5889 −2.37056
\(676\) −7.50808 16.1856i −0.288772 0.622522i
\(677\) 22.4753 0.863795 0.431898 0.901923i \(-0.357844\pi\)
0.431898 + 0.901923i \(0.357844\pi\)
\(678\) −1.01208 0.698586i −0.0388686 0.0268290i
\(679\) −24.0327 + 12.6133i −0.922291 + 0.484056i
\(680\) 2.06096 + 5.43431i 0.0790343 + 0.208396i
\(681\) 16.7042 18.8551i 0.640105 0.722529i
\(682\) −0.372996 0.0452899i −0.0142827 0.00173424i
\(683\) −3.13572 + 12.7221i −0.119985 + 0.486798i 0.879946 + 0.475073i \(0.157578\pi\)
−0.999931 + 0.0117248i \(0.996268\pi\)
\(684\) 0.477770 1.93839i 0.0182680 0.0741162i
\(685\) −21.9379 + 31.7825i −0.838202 + 1.21435i
\(686\) −6.24827 + 1.54006i −0.238560 + 0.0587997i
\(687\) −12.7453 + 8.79747i −0.486265 + 0.335644i
\(688\) −1.88048 1.66596i −0.0716927 0.0635142i
\(689\) −15.3145 3.19603i −0.583435 0.121759i
\(690\) −2.29763 + 2.03552i −0.0874693 + 0.0774911i
\(691\) −9.90273 + 40.1770i −0.376718 + 1.52840i 0.410577 + 0.911826i \(0.365327\pi\)
−0.787294 + 0.616577i \(0.788519\pi\)
\(692\) 0.939757 0.832552i 0.0357242 0.0316489i
\(693\) 0.459853 + 0.113344i 0.0174684 + 0.00430557i
\(694\) 9.44195 3.58086i 0.358412 0.135928i
\(695\) 21.0571i 0.798740i
\(696\) −33.7459 12.7981i −1.27914 0.485112i
\(697\) 1.42052 + 5.76328i 0.0538061 + 0.218300i
\(698\) −1.32599 −0.0501893
\(699\) −5.11449 −0.193448
\(700\) −12.3154 49.9654i −0.465477 1.88852i
\(701\) −1.29461 10.6621i −0.0488967 0.402700i −0.996523 0.0833189i \(-0.973448\pi\)
0.947626 0.319381i \(-0.103475\pi\)
\(702\) 10.1668 12.3420i 0.383722 0.465817i
\(703\) 0.909967 7.49425i 0.0343201 0.282651i
\(704\) 0.351519 0.0426822i 0.0132484 0.00160864i
\(705\) 24.3794 35.3196i 0.918181 1.33021i
\(706\) 4.86759 4.31231i 0.183194 0.162296i
\(707\) −60.5979 7.35791i −2.27902 0.276723i
\(708\) −3.48355 + 0.422980i −0.130920 + 0.0158965i
\(709\) 0.960847 1.83074i 0.0360854 0.0687549i −0.866746 0.498750i \(-0.833792\pi\)
0.902831 + 0.429995i \(0.141485\pi\)
\(710\) −2.12723 2.40114i −0.0798334 0.0901133i
\(711\) 7.64305 + 11.0729i 0.286637 + 0.415265i
\(712\) −7.32276 1.80490i −0.274432 0.0676415i
\(713\) −3.35134 0.406926i −0.125509 0.0152395i
\(714\) 1.08039 1.56521i 0.0404326 0.0585767i
\(715\) 0.128530 1.51008i 0.00480674 0.0564737i
\(716\) 0.644901 + 0.934301i 0.0241011 + 0.0349165i
\(717\) −10.4799 19.9677i −0.391378 0.745708i
\(718\) 1.25456 3.30800i 0.0468197 0.123453i
\(719\) −4.09358 33.7137i −0.152665 1.25731i −0.844620 0.535367i \(-0.820173\pi\)
0.691955 0.721941i \(-0.256750\pi\)
\(720\) 2.73677 + 1.88905i 0.101993 + 0.0704009i
\(721\) 1.48275 + 6.01575i 0.0552205 + 0.224038i
\(722\) 11.5980 + 8.00555i 0.431634 + 0.297936i
\(723\) −11.4211 4.33145i −0.424755 0.161088i
\(724\) −7.84203 + 20.6777i −0.291447 + 0.768482i
\(725\) 101.601 + 53.3241i 3.77335 + 1.98041i
\(726\) 5.23972 9.98346i 0.194464 0.370521i
\(727\) 35.8557 8.83763i 1.32981 0.327770i 0.490511 0.871435i \(-0.336810\pi\)
0.839302 + 0.543665i \(0.182964\pi\)
\(728\) 29.5989 + 14.2031i 1.09701 + 0.526403i
\(729\) −25.3382 6.24529i −0.938450 0.231307i
\(730\) 6.57411 7.42064i 0.243319 0.274650i
\(731\) −0.261982 + 2.15762i −0.00968977 + 0.0798024i
\(732\) −0.813885 0.427160i −0.0300820 0.0157883i
\(733\) 11.5115 + 21.9333i 0.425186 + 0.810124i 0.999967 0.00818381i \(-0.00260502\pi\)
−0.574781 + 0.818307i \(0.694913\pi\)
\(734\) 9.11775 3.45791i 0.336542 0.127634i
\(735\) −15.8608 + 17.9031i −0.585033 + 0.660366i
\(736\) 4.33678 0.526580i 0.159856 0.0194100i
\(737\) 1.21136 0.298573i 0.0446209 0.0109981i
\(738\) −8.55794 7.58167i −0.315022 0.279085i
\(739\) −2.85202 3.21926i −0.104913 0.118422i 0.693709 0.720256i \(-0.255976\pi\)
−0.798622 + 0.601833i \(0.794437\pi\)
\(740\) 33.3639 + 17.5107i 1.22648 + 0.643707i
\(741\) 2.54898 + 4.45972i 0.0936392 + 0.163832i
\(742\) 10.3731 5.44421i 0.380807 0.199863i
\(743\) −27.9539 10.6015i −1.02553 0.388931i −0.216238 0.976341i \(-0.569379\pi\)
−0.809290 + 0.587409i \(0.800148\pi\)
\(744\) 1.88266 + 15.5051i 0.0690216 + 0.568444i
\(745\) 46.8049 24.5651i 1.71480 0.899996i
\(746\) 15.8227i 0.579311i
\(747\) 8.16266 + 15.5526i 0.298656 + 0.569041i
\(748\) 0.0520124 + 0.0587099i 0.00190176 + 0.00214665i
\(749\) 47.7035 32.9273i 1.74305 1.20314i
\(750\) −18.4356 16.3325i −0.673171 0.596378i
\(751\) −6.38113 9.24466i −0.232851 0.337342i 0.689088 0.724677i \(-0.258011\pi\)
−0.921939 + 0.387335i \(0.873396\pi\)
\(752\) −4.86892 + 1.84654i −0.177551 + 0.0673363i
\(753\) −0.854208 2.25236i −0.0311291 0.0820806i
\(754\) −27.4575 + 11.5575i −0.999944 + 0.420899i
\(755\) −30.5900 + 80.6591i −1.11328 + 2.93549i
\(756\) 26.1886i 0.952469i
\(757\) −9.72412 25.6404i −0.353429 0.931916i −0.987355 0.158522i \(-0.949327\pi\)
0.633926 0.773393i \(-0.281442\pi\)
\(758\) −2.44924 + 20.1713i −0.0889603 + 0.732654i
\(759\) −0.0473052 + 0.0901325i −0.00171707 + 0.00327160i
\(760\) 9.67399 6.67747i 0.350912 0.242217i
\(761\) 26.7764 18.4824i 0.970644 0.669987i 0.0265443 0.999648i \(-0.491550\pi\)
0.944100 + 0.329661i \(0.106934\pi\)
\(762\) −9.52473 + 18.1479i −0.345045 + 0.657427i
\(763\) 1.77250 14.5979i 0.0641690 0.528479i
\(764\) −7.95696 20.9808i −0.287873 0.759058i
\(765\) 2.87692i 0.104015i
\(766\) 6.53540 17.2324i 0.236134 0.622634i
\(767\) −4.52537