Properties

Label 169.2.h.a.142.5
Level $169$
Weight $2$
Character 169.142
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 142.5
Character \(\chi\) \(=\) 169.142
Dual form 169.2.h.a.25.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.49527 + 0.567082i) q^{2} +(1.18578 - 1.71790i) q^{3} +(0.417236 - 0.369639i) q^{4} +(-2.96326 + 0.359805i) q^{5} +(-0.798874 + 3.24116i) q^{6} +(1.24562 - 2.37332i) q^{7} +(1.07210 - 2.04271i) q^{8} +(-0.481287 - 1.26905i) q^{9} +O(q^{10})\) \(q+(-1.49527 + 0.567082i) q^{2} +(1.18578 - 1.71790i) q^{3} +(0.417236 - 0.369639i) q^{4} +(-2.96326 + 0.359805i) q^{5} +(-0.798874 + 3.24116i) q^{6} +(1.24562 - 2.37332i) q^{7} +(1.07210 - 2.04271i) q^{8} +(-0.481287 - 1.26905i) q^{9} +(4.22684 - 2.21842i) q^{10} +(-4.01299 - 1.52193i) q^{11} +(-0.140252 - 1.15508i) q^{12} +(-1.01665 - 3.45925i) q^{13} +(-0.516666 + 4.25513i) q^{14} +(-2.89566 + 5.51722i) q^{15} +(-0.579073 + 4.76910i) q^{16} +(-3.38159 - 1.77479i) q^{17} +(1.43931 + 1.62464i) q^{18} -3.49861i q^{19} +(-1.10338 + 1.24546i) q^{20} +(-2.60010 - 4.95408i) q^{21} +6.86357 q^{22} +6.33211 q^{23} +(-2.23790 - 4.26397i) q^{24} +(3.79672 - 0.935808i) q^{25} +(3.48185 + 4.59600i) q^{26} +(3.32944 + 0.820634i) q^{27} +(-0.357557 - 1.45066i) q^{28} +(-1.14319 - 3.01434i) q^{29} +(1.20109 - 9.89183i) q^{30} +(-1.63386 + 6.62883i) q^{31} +(-0.734413 - 2.97963i) q^{32} +(-7.37304 + 5.08924i) q^{33} +(6.06285 + 0.736163i) q^{34} +(-2.83715 + 7.48094i) q^{35} +(-0.669900 - 0.351591i) q^{36} +(0.694875 - 2.81922i) q^{37} +(1.98400 + 5.23137i) q^{38} +(-7.14816 - 2.35541i) q^{39} +(-2.44193 + 6.43883i) q^{40} +(6.02013 + 4.15540i) q^{41} +(6.69723 + 5.93322i) q^{42} +(7.11200 - 1.75295i) q^{43} +(-2.23693 + 0.848356i) q^{44} +(1.88279 + 3.58735i) q^{45} +(-9.46823 + 3.59083i) q^{46} +(-6.61375 + 7.46538i) q^{47} +(7.50617 + 6.64989i) q^{48} +(-0.104644 - 0.151603i) q^{49} +(-5.14646 + 3.55234i) q^{50} +(-7.05873 + 3.70471i) q^{51} +(-1.70286 - 1.06753i) q^{52} +(-5.07487 - 2.66350i) q^{53} +(-5.44379 + 0.660996i) q^{54} +(12.4391 + 3.06597i) q^{55} +(-3.51259 - 5.08887i) q^{56} +(-6.01025 - 4.14858i) q^{57} +(3.41876 + 3.85898i) q^{58} +(13.8480 - 1.68145i) q^{59} +(0.831206 + 3.37234i) q^{60} +(-1.93527 + 1.01571i) q^{61} +(-1.31602 - 10.8384i) q^{62} +(-3.61136 - 0.438498i) q^{63} +(-2.67027 - 3.86855i) q^{64} +(4.25725 + 9.88486i) q^{65} +(8.13869 - 11.7909i) q^{66} +(3.89831 - 4.40029i) q^{67} +(-2.06695 + 0.509458i) q^{68} +(7.50849 - 10.8779i) q^{69} -12.7949i q^{70} +(-6.65436 - 4.59318i) q^{71} +(-3.10829 - 0.377415i) q^{72} +(1.17549 + 0.445804i) q^{73} +(0.559701 + 4.60955i) q^{74} +(2.89445 - 7.63205i) q^{75} +(-1.29322 - 1.45975i) q^{76} +(-8.61067 + 7.62838i) q^{77} +(12.0242 - 0.531614i) q^{78} +(-8.90005 - 7.88476i) q^{79} -14.3404i q^{80} +(8.40549 - 7.44662i) q^{81} +(-11.3582 - 2.79954i) q^{82} +(-1.30947 + 0.903865i) q^{83} +(-2.91608 - 1.10592i) q^{84} +(10.6591 + 4.04246i) q^{85} +(-9.64032 + 6.65423i) q^{86} +(-6.53390 - 1.61046i) q^{87} +(-7.41119 + 6.56574i) q^{88} -12.0431i q^{89} +(-4.84960 - 4.29637i) q^{90} +(-9.47627 - 1.89606i) q^{91} +(2.64199 - 2.34060i) q^{92} +(9.45025 + 10.6671i) q^{93} +(5.65587 - 14.9133i) q^{94} +(1.25881 + 10.3673i) q^{95} +(-5.98955 - 2.27154i) q^{96} +(9.94763 + 1.20786i) q^{97} +(0.242442 + 0.167346i) q^{98} +5.82517i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49527 + 0.567082i −1.05732 + 0.400988i −0.821143 0.570723i \(-0.806663\pi\)
−0.236175 + 0.971711i \(0.575894\pi\)
\(3\) 1.18578 1.71790i 0.684610 0.991829i −0.314483 0.949263i \(-0.601831\pi\)
0.999094 0.0425661i \(-0.0135533\pi\)
\(4\) 0.417236 0.369639i 0.208618 0.184820i
\(5\) −2.96326 + 0.359805i −1.32521 + 0.160909i −0.752360 0.658752i \(-0.771085\pi\)
−0.572848 + 0.819661i \(0.694162\pi\)
\(6\) −0.798874 + 3.24116i −0.326139 + 1.32320i
\(7\) 1.24562 2.37332i 0.470798 0.897031i −0.528058 0.849209i \(-0.677079\pi\)
0.998856 0.0478226i \(-0.0152282\pi\)
\(8\) 1.07210 2.04271i 0.379044 0.722208i
\(9\) −0.481287 1.26905i −0.160429 0.423016i
\(10\) 4.22684 2.21842i 1.33664 0.701525i
\(11\) −4.01299 1.52193i −1.20996 0.458878i −0.334607 0.942358i \(-0.608604\pi\)
−0.875356 + 0.483479i \(0.839373\pi\)
\(12\) −0.140252 1.15508i −0.0404873 0.333443i
\(13\) −1.01665 3.45925i −0.281968 0.959424i
\(14\) −0.516666 + 4.25513i −0.138085 + 1.13723i
\(15\) −2.89566 + 5.51722i −0.747657 + 1.42454i
\(16\) −0.579073 + 4.76910i −0.144768 + 1.19227i
\(17\) −3.38159 1.77479i −0.820155 0.430451i 0.00180312 0.999998i \(-0.499426\pi\)
−0.821958 + 0.569548i \(0.807118\pi\)
\(18\) 1.43931 + 1.62464i 0.339249 + 0.382932i
\(19\) 3.49861i 0.802635i −0.915939 0.401318i \(-0.868552\pi\)
0.915939 0.401318i \(-0.131448\pi\)
\(20\) −1.10338 + 1.24546i −0.246723 + 0.278493i
\(21\) −2.60010 4.95408i −0.567388 1.08107i
\(22\) 6.86357 1.46332
\(23\) 6.33211 1.32034 0.660168 0.751118i \(-0.270485\pi\)
0.660168 + 0.751118i \(0.270485\pi\)
\(24\) −2.23790 4.26397i −0.456810 0.870378i
\(25\) 3.79672 0.935808i 0.759345 0.187162i
\(26\) 3.48185 + 4.59600i 0.682846 + 0.901350i
\(27\) 3.32944 + 0.820634i 0.640751 + 0.157931i
\(28\) −0.357557 1.45066i −0.0675718 0.274150i
\(29\) −1.14319 3.01434i −0.212285 0.559749i 0.786004 0.618221i \(-0.212146\pi\)
−0.998289 + 0.0584720i \(0.981377\pi\)
\(30\) 1.20109 9.89183i 0.219287 1.80599i
\(31\) −1.63386 + 6.62883i −0.293450 + 1.19057i 0.620323 + 0.784346i \(0.287002\pi\)
−0.913773 + 0.406226i \(0.866845\pi\)
\(32\) −0.734413 2.97963i −0.129827 0.526729i
\(33\) −7.37304 + 5.08924i −1.28348 + 0.885923i
\(34\) 6.06285 + 0.736163i 1.03977 + 0.126251i
\(35\) −2.83715 + 7.48094i −0.479565 + 1.26451i
\(36\) −0.669900 0.351591i −0.111650 0.0585985i
\(37\) 0.694875 2.81922i 0.114237 0.463477i −0.885763 0.464138i \(-0.846364\pi\)
1.00000 0.000661049i \(0.000210419\pi\)
\(38\) 1.98400 + 5.23137i 0.321847 + 0.848640i
\(39\) −7.14816 2.35541i −1.14462 0.377168i
\(40\) −2.44193 + 6.43883i −0.386103 + 1.01807i
\(41\) 6.02013 + 4.15540i 0.940187 + 0.648964i 0.936365 0.351028i \(-0.114168\pi\)
0.00382221 + 0.999993i \(0.498783\pi\)
\(42\) 6.69723 + 5.93322i 1.03340 + 0.915516i
\(43\) 7.11200 1.75295i 1.08457 0.267323i 0.343774 0.939052i \(-0.388295\pi\)
0.740796 + 0.671730i \(0.234448\pi\)
\(44\) −2.23693 + 0.848356i −0.337230 + 0.127894i
\(45\) 1.88279 + 3.58735i 0.280669 + 0.534770i
\(46\) −9.46823 + 3.59083i −1.39601 + 0.529439i
\(47\) −6.61375 + 7.46538i −0.964714 + 1.08894i 0.0312791 + 0.999511i \(0.490042\pi\)
−0.995993 + 0.0894267i \(0.971497\pi\)
\(48\) 7.50617 + 6.64989i 1.08342 + 0.959829i
\(49\) −0.104644 0.151603i −0.0149491 0.0216575i
\(50\) −5.14646 + 3.55234i −0.727819 + 0.502377i
\(51\) −7.05873 + 3.70471i −0.988420 + 0.518763i
\(52\) −1.70286 1.06753i −0.236144 0.148040i
\(53\) −5.07487 2.66350i −0.697087 0.365860i 0.0786616 0.996901i \(-0.474935\pi\)
−0.775749 + 0.631042i \(0.782628\pi\)
\(54\) −5.44379 + 0.660996i −0.740806 + 0.0899501i
\(55\) 12.4391 + 3.06597i 1.67729 + 0.413415i
\(56\) −3.51259 5.08887i −0.469390 0.680029i
\(57\) −6.01025 4.14858i −0.796077 0.549492i
\(58\) 3.41876 + 3.85898i 0.448905 + 0.506709i
\(59\) 13.8480 1.68145i 1.80286 0.218906i 0.850939 0.525264i \(-0.176033\pi\)
0.951916 + 0.306358i \(0.0991104\pi\)
\(60\) 0.831206 + 3.37234i 0.107308 + 0.435367i
\(61\) −1.93527 + 1.01571i −0.247785 + 0.130048i −0.584044 0.811722i \(-0.698531\pi\)
0.336259 + 0.941770i \(0.390838\pi\)
\(62\) −1.31602 10.8384i −0.167135 1.37648i
\(63\) −3.61136 0.438498i −0.454988 0.0552456i
\(64\) −2.67027 3.86855i −0.333783 0.483569i
\(65\) 4.25725 + 9.88486i 0.528046 + 1.22607i
\(66\) 8.13869 11.7909i 1.00180 1.45136i
\(67\) 3.89831 4.40029i 0.476255 0.537581i −0.460457 0.887682i \(-0.652314\pi\)
0.936712 + 0.350102i \(0.113853\pi\)
\(68\) −2.06695 + 0.509458i −0.250655 + 0.0617809i
\(69\) 7.50849 10.8779i 0.903916 1.30955i
\(70\) 12.7949i 1.52929i
\(71\) −6.65436 4.59318i −0.789728 0.545110i 0.103545 0.994625i \(-0.466981\pi\)
−0.893273 + 0.449515i \(0.851597\pi\)
\(72\) −3.10829 0.377415i −0.366316 0.0444788i
\(73\) 1.17549 + 0.445804i 0.137581 + 0.0521775i 0.422434 0.906394i \(-0.361176\pi\)
−0.284854 + 0.958571i \(0.591945\pi\)
\(74\) 0.559701 + 4.60955i 0.0650639 + 0.535849i
\(75\) 2.89445 7.63205i 0.334223 0.881273i
\(76\) −1.29322 1.45975i −0.148343 0.167444i
\(77\) −8.61067 + 7.62838i −0.981276 + 0.869335i
\(78\) 12.0242 0.531614i 1.36147 0.0601935i
\(79\) −8.90005 7.88476i −1.00133 0.887105i −0.00772390 0.999970i \(-0.502459\pi\)
−0.993610 + 0.112866i \(0.963997\pi\)
\(80\) 14.3404i 1.60331i
\(81\) 8.40549 7.44662i 0.933944 0.827402i
\(82\) −11.3582 2.79954i −1.25430 0.309158i
\(83\) −1.30947 + 0.903865i −0.143733 + 0.0992120i −0.637761 0.770234i \(-0.720139\pi\)
0.494028 + 0.869446i \(0.335524\pi\)
\(84\) −2.91608 1.10592i −0.318170 0.120666i
\(85\) 10.6591 + 4.04246i 1.15614 + 0.438466i
\(86\) −9.64032 + 6.65423i −1.03954 + 0.717544i
\(87\) −6.53390 1.61046i −0.700508 0.172660i
\(88\) −7.41119 + 6.56574i −0.790035 + 0.699910i
\(89\) 12.0431i 1.27656i −0.769804 0.638281i \(-0.779646\pi\)
0.769804 0.638281i \(-0.220354\pi\)
\(90\) −4.84960 4.29637i −0.511193 0.452877i
\(91\) −9.47627 1.89606i −0.993383 0.198761i
\(92\) 2.64199 2.34060i 0.275446 0.244024i
\(93\) 9.45025 + 10.6671i 0.979945 + 1.10613i
\(94\) 5.65587 14.9133i 0.583359 1.53819i
\(95\) 1.25881 + 10.3673i 0.129152 + 1.06366i
\(96\) −5.98955 2.27154i −0.611306 0.231838i
\(97\) 9.94763 + 1.20786i 1.01003 + 0.122640i 0.608788 0.793333i \(-0.291656\pi\)
0.401241 + 0.915973i \(0.368579\pi\)
\(98\) 0.242442 + 0.167346i 0.0244904 + 0.0169045i
\(99\) 5.82517i 0.585451i
\(100\) 1.23822 1.79387i 0.123822 0.179387i
\(101\) 14.4463 3.56068i 1.43746 0.354301i 0.557825 0.829958i \(-0.311636\pi\)
0.879631 + 0.475657i \(0.157790\pi\)
\(102\) 8.45385 9.54243i 0.837056 0.944841i
\(103\) −6.80853 + 9.86386i −0.670865 + 0.971915i 0.328757 + 0.944414i \(0.393370\pi\)
−0.999622 + 0.0275007i \(0.991245\pi\)
\(104\) −8.15621 1.63194i −0.799782 0.160025i
\(105\) 9.48726 + 13.7447i 0.925862 + 1.34134i
\(106\) 9.09874 + 1.10479i 0.883748 + 0.107306i
\(107\) −0.465077 3.83026i −0.0449607 0.370285i −0.997772 0.0667207i \(-0.978746\pi\)
0.952811 0.303564i \(-0.0981767\pi\)
\(108\) 1.69250 0.888294i 0.162861 0.0854761i
\(109\) −0.648777 2.63219i −0.0621415 0.252118i 0.931653 0.363349i \(-0.118367\pi\)
−0.993795 + 0.111231i \(0.964521\pi\)
\(110\) −20.3385 + 2.46955i −1.93920 + 0.235462i
\(111\) −4.01916 4.53670i −0.381482 0.430604i
\(112\) 10.5973 + 7.31479i 1.00135 + 0.691182i
\(113\) 0.494926 + 0.717024i 0.0465587 + 0.0674520i 0.845572 0.533862i \(-0.179260\pi\)
−0.799013 + 0.601314i \(0.794644\pi\)
\(114\) 11.3395 + 2.79495i 1.06205 + 0.261771i
\(115\) −18.7637 + 2.27832i −1.74972 + 0.212455i
\(116\) −1.59120 0.835125i −0.147739 0.0775394i
\(117\) −3.90066 + 2.95507i −0.360616 + 0.273196i
\(118\) −19.7530 + 10.3672i −1.81841 + 0.954376i
\(119\) −8.42431 + 5.81488i −0.772255 + 0.533049i
\(120\) 8.16567 + 11.8300i 0.745420 + 1.07993i
\(121\) 5.55423 + 4.92061i 0.504930 + 0.447329i
\(122\) 2.31776 2.61621i 0.209840 0.236861i
\(123\) 14.2771 5.41459i 1.28732 0.488217i
\(124\) 1.76857 + 3.36972i 0.158822 + 0.302610i
\(125\) 3.04126 1.15340i 0.272018 0.103163i
\(126\) 5.64863 1.39226i 0.503220 0.124033i
\(127\) −10.9539 9.70434i −0.972005 0.861121i 0.0183282 0.999832i \(-0.494166\pi\)
−0.990333 + 0.138711i \(0.955704\pi\)
\(128\) 11.2377 + 7.75683i 0.993283 + 0.685614i
\(129\) 5.42188 14.2963i 0.477370 1.25872i
\(130\) −11.9713 12.3663i −1.04995 1.08460i
\(131\) 0.293503 + 0.773904i 0.0256435 + 0.0676163i 0.947227 0.320565i \(-0.103873\pi\)
−0.921583 + 0.388181i \(0.873103\pi\)
\(132\) −1.19512 + 4.84878i −0.104022 + 0.422032i
\(133\) −8.30332 4.35792i −0.719989 0.377879i
\(134\) −3.33372 + 8.79029i −0.287989 + 0.759365i
\(135\) −10.1613 1.23380i −0.874542 0.106189i
\(136\) −7.25079 + 5.00486i −0.621750 + 0.429163i
\(137\) −2.54507 10.3258i −0.217440 0.882190i −0.973684 0.227901i \(-0.926814\pi\)
0.756244 0.654290i \(-0.227032\pi\)
\(138\) −5.05856 + 20.5234i −0.430613 + 1.74707i
\(139\) 1.92737 15.8733i 0.163477 1.34636i −0.647851 0.761767i \(-0.724332\pi\)
0.811329 0.584590i \(-0.198745\pi\)
\(140\) 1.58149 + 4.17004i 0.133660 + 0.352433i
\(141\) 4.98231 + 20.2140i 0.419586 + 1.70233i
\(142\) 12.5548 + 3.09448i 1.05357 + 0.259683i
\(143\) −1.18493 + 15.4292i −0.0990885 + 1.29026i
\(144\) 6.33092 1.56043i 0.527576 0.130036i
\(145\) 4.47214 + 8.52094i 0.371391 + 0.707626i
\(146\) −2.01049 −0.166389
\(147\) −0.384522 −0.0317149
\(148\) −0.752166 1.43313i −0.0618277 0.117803i
\(149\) −9.27077 + 10.4645i −0.759491 + 0.857288i −0.993368 0.114978i \(-0.963320\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(150\) 13.0534i 1.06580i
\(151\) 3.63854 + 4.10706i 0.296100 + 0.334228i 0.877667 0.479270i \(-0.159099\pi\)
−0.581567 + 0.813498i \(0.697560\pi\)
\(152\) −7.14665 3.75085i −0.579670 0.304234i
\(153\) −0.624787 + 5.14558i −0.0505110 + 0.415996i
\(154\) 8.54937 16.2895i 0.688928 1.31264i
\(155\) 2.45646 20.2308i 0.197308 1.62498i
\(156\) −3.85313 + 1.65948i −0.308497 + 0.132865i
\(157\) 1.10817 + 9.12662i 0.0884418 + 0.728384i 0.967712 + 0.252060i \(0.0811080\pi\)
−0.879270 + 0.476324i \(0.841969\pi\)
\(158\) 17.7793 + 6.74280i 1.41445 + 0.536429i
\(159\) −10.5933 + 5.55979i −0.840103 + 0.440920i
\(160\) 3.24834 + 8.56516i 0.256804 + 0.677135i
\(161\) 7.88737 15.0281i 0.621612 1.18438i
\(162\) −8.34566 + 15.9013i −0.655697 + 1.24933i
\(163\) −2.58193 + 10.4753i −0.202232 + 0.820488i 0.778900 + 0.627148i \(0.215778\pi\)
−0.981132 + 0.193340i \(0.938068\pi\)
\(164\) 4.04782 0.491494i 0.316081 0.0383792i
\(165\) 20.0171 17.7336i 1.55833 1.38056i
\(166\) 1.44545 2.09410i 0.112189 0.162534i
\(167\) 20.8249 7.89785i 1.61148 0.611154i 0.625831 0.779958i \(-0.284760\pi\)
0.985650 + 0.168804i \(0.0539906\pi\)
\(168\) −12.9073 −0.995822
\(169\) −10.9329 + 7.03369i −0.840988 + 0.541053i
\(170\) −18.2306 −1.39823
\(171\) −4.43990 + 1.68383i −0.339528 + 0.128766i
\(172\) 2.31943 3.36027i 0.176855 0.256218i
\(173\) 10.8240 9.58923i 0.822933 0.729055i −0.142475 0.989798i \(-0.545506\pi\)
0.965408 + 0.260743i \(0.0839676\pi\)
\(174\) 10.6832 1.29718i 0.809893 0.0983389i
\(175\) 2.50828 10.1765i 0.189608 0.769271i
\(176\) 9.58203 18.2570i 0.722273 1.37618i
\(177\) 13.5321 25.7833i 1.01714 1.93799i
\(178\) 6.82940 + 18.0077i 0.511885 + 1.34973i
\(179\) −9.29134 + 4.87647i −0.694467 + 0.364484i −0.774733 0.632289i \(-0.782115\pi\)
0.0802655 + 0.996774i \(0.474423\pi\)
\(180\) 2.11159 + 0.800821i 0.157389 + 0.0596897i
\(181\) −0.755983 6.22608i −0.0561918 0.462781i −0.993461 0.114174i \(-0.963578\pi\)
0.937269 0.348607i \(-0.113345\pi\)
\(182\) 15.2448 2.53869i 1.13002 0.188180i
\(183\) −0.549920 + 4.52899i −0.0406512 + 0.334793i
\(184\) 6.78865 12.9347i 0.500466 0.953558i
\(185\) −1.04473 + 8.60409i −0.0768097 + 0.632585i
\(186\) −20.1798 10.5912i −1.47966 0.776584i
\(187\) 10.8692 + 12.2688i 0.794833 + 0.897181i
\(188\) 5.55953i 0.405470i
\(189\) 6.09483 6.87964i 0.443334 0.500420i
\(190\) −7.76136 14.7880i −0.563069 1.07284i
\(191\) −4.04418 −0.292626 −0.146313 0.989238i \(-0.546741\pi\)
−0.146313 + 0.989238i \(0.546741\pi\)
\(192\) −9.81212 −0.708129
\(193\) 1.56003 + 2.97239i 0.112293 + 0.213957i 0.935117 0.354340i \(-0.115295\pi\)
−0.822823 + 0.568298i \(0.807602\pi\)
\(194\) −15.5594 + 3.83504i −1.11710 + 0.275340i
\(195\) 22.0293 + 4.40775i 1.57755 + 0.315645i
\(196\) −0.0996995 0.0245737i −0.00712139 0.00175527i
\(197\) 5.02080 + 20.3702i 0.357717 + 1.45131i 0.823955 + 0.566655i \(0.191763\pi\)
−0.466238 + 0.884659i \(0.654391\pi\)
\(198\) −3.30335 8.71021i −0.234759 0.619008i
\(199\) −2.93058 + 24.1355i −0.207743 + 1.71092i 0.399777 + 0.916613i \(0.369088\pi\)
−0.607520 + 0.794305i \(0.707835\pi\)
\(200\) 2.15887 8.75890i 0.152655 0.619348i
\(201\) −2.93670 11.9147i −0.207139 0.840396i
\(202\) −19.5819 + 13.5164i −1.37778 + 0.951010i
\(203\) −8.57797 1.04155i −0.602056 0.0731028i
\(204\) −1.57575 + 4.15492i −0.110325 + 0.290903i
\(205\) −19.3343 10.1474i −1.35037 0.708728i
\(206\) 4.58699 18.6102i 0.319591 1.29663i
\(207\) −3.04756 8.03576i −0.211820 0.558524i
\(208\) 17.0862 2.84534i 1.18472 0.197289i
\(209\) −5.32462 + 14.0399i −0.368312 + 0.971159i
\(210\) −21.9804 15.1720i −1.51679 1.04697i
\(211\) −7.36589 6.52561i −0.507089 0.449241i 0.370377 0.928882i \(-0.379229\pi\)
−0.877465 + 0.479640i \(0.840767\pi\)
\(212\) −3.10195 + 0.764563i −0.213043 + 0.0525104i
\(213\) −15.7812 + 5.98503i −1.08131 + 0.410087i
\(214\) 2.86749 + 5.46354i 0.196017 + 0.373480i
\(215\) −20.4440 + 7.75338i −1.39427 + 0.528776i
\(216\) 5.24581 5.92130i 0.356932 0.402893i
\(217\) 13.6972 + 12.1346i 0.929825 + 0.823753i
\(218\) 2.46277 + 3.56793i 0.166800 + 0.241651i
\(219\) 2.15972 1.49075i 0.145940 0.100735i
\(220\) 6.32336 3.31875i 0.426321 0.223750i
\(221\) −2.70157 + 13.5021i −0.181727 + 0.908250i
\(222\) 8.58242 + 4.50440i 0.576014 + 0.302316i
\(223\) 8.47385 1.02891i 0.567451 0.0689010i 0.168217 0.985750i \(-0.446199\pi\)
0.399234 + 0.916849i \(0.369276\pi\)
\(224\) −7.98641 1.96847i −0.533615 0.131524i
\(225\) −3.01490 4.36783i −0.200993 0.291189i
\(226\) −1.14666 0.791483i −0.0762748 0.0526487i
\(227\) 5.85929 + 6.61378i 0.388895 + 0.438972i 0.910055 0.414487i \(-0.136039\pi\)
−0.521160 + 0.853459i \(0.674501\pi\)
\(228\) −4.04117 + 0.490687i −0.267633 + 0.0324965i
\(229\) 2.53343 + 10.2785i 0.167414 + 0.679225i 0.993317 + 0.115414i \(0.0368194\pi\)
−0.825903 + 0.563812i \(0.809334\pi\)
\(230\) 26.7648 14.0473i 1.76482 0.926249i
\(231\) 2.89444 + 23.8378i 0.190440 + 1.56841i
\(232\) −7.38305 0.896464i −0.484721 0.0588558i
\(233\) 3.13657 + 4.54410i 0.205483 + 0.297694i 0.912153 0.409849i \(-0.134419\pi\)
−0.706670 + 0.707544i \(0.749803\pi\)
\(234\) 4.15678 6.63063i 0.271737 0.433458i
\(235\) 16.9122 24.5015i 1.10323 1.59830i
\(236\) 5.15636 5.82032i 0.335650 0.378871i
\(237\) −24.0987 + 5.93980i −1.56538 + 0.385831i
\(238\) 9.29912 13.4721i 0.602773 0.873267i
\(239\) 7.16043i 0.463170i −0.972815 0.231585i \(-0.925609\pi\)
0.972815 0.231585i \(-0.0743911\pi\)
\(240\) −24.6354 17.0046i −1.59021 1.09764i
\(241\) 2.00613 + 0.243588i 0.129226 + 0.0156909i 0.184894 0.982758i \(-0.440806\pi\)
−0.0556680 + 0.998449i \(0.517729\pi\)
\(242\) −11.0955 4.20796i −0.713244 0.270498i
\(243\) −1.58548 13.0576i −0.101708 0.837644i
\(244\) −0.432019 + 1.13914i −0.0276572 + 0.0729259i
\(245\) 0.364634 + 0.411586i 0.0232956 + 0.0262953i
\(246\) −18.2776 + 16.1926i −1.16534 + 1.03240i
\(247\) −12.1026 + 3.55685i −0.770068 + 0.226317i
\(248\) 11.7891 + 10.4443i 0.748611 + 0.663211i
\(249\) 3.32133i 0.210481i
\(250\) −3.89344 + 3.44929i −0.246243 + 0.218152i
\(251\) 25.2050 + 6.21248i 1.59093 + 0.392128i 0.932689 0.360682i \(-0.117456\pi\)
0.658237 + 0.752810i \(0.271302\pi\)
\(252\) −1.66888 + 1.15194i −0.105129 + 0.0725655i
\(253\) −25.4107 9.63701i −1.59756 0.605874i
\(254\) 21.8823 + 8.29885i 1.37302 + 0.520716i
\(255\) 19.5839 13.5178i 1.22639 0.846515i
\(256\) −12.0741 2.97600i −0.754632 0.186000i
\(257\) 8.26837 7.32513i 0.515766 0.456929i −0.364640 0.931148i \(-0.618808\pi\)
0.880407 + 0.474219i \(0.157270\pi\)
\(258\) 24.4515i 1.52229i
\(259\) −5.82536 5.16082i −0.361971 0.320678i
\(260\) 5.43011 + 2.55068i 0.336761 + 0.158186i
\(261\) −3.27514 + 2.90152i −0.202726 + 0.179600i
\(262\) −0.877734 0.990757i −0.0542266 0.0612092i
\(263\) 2.71745 7.16532i 0.167565 0.441833i −0.824761 0.565481i \(-0.808690\pi\)
0.992326 + 0.123649i \(0.0394596\pi\)
\(264\) 2.49124 + 20.5172i 0.153325 + 1.26275i
\(265\) 15.9965 + 6.06667i 0.982656 + 0.372672i
\(266\) 14.8870 + 1.80761i 0.912782 + 0.110832i
\(267\) −20.6888 14.2804i −1.26613 0.873947i
\(268\) 3.27693i 0.200170i
\(269\) 8.35662 12.1067i 0.509512 0.738156i −0.480828 0.876815i \(-0.659664\pi\)
0.990340 + 0.138659i \(0.0442793\pi\)
\(270\) 15.8935 3.91740i 0.967249 0.238405i
\(271\) −14.4745 + 16.3384i −0.879264 + 0.992484i −1.00000 0.000200502i \(-0.999936\pi\)
0.120736 + 0.992685i \(0.461475\pi\)
\(272\) 10.4223 15.0994i 0.631948 0.915534i
\(273\) −14.4940 + 14.0310i −0.877217 + 0.849192i
\(274\) 9.66114 + 13.9966i 0.583651 + 0.845564i
\(275\) −16.6605 2.02295i −1.00466 0.121988i
\(276\) −0.888092 7.31410i −0.0534569 0.440257i
\(277\) −8.15082 + 4.27788i −0.489735 + 0.257033i −0.691467 0.722408i \(-0.743035\pi\)
0.201732 + 0.979441i \(0.435343\pi\)
\(278\) 6.11953 + 24.8279i 0.367025 + 1.48908i
\(279\) 9.19866 1.11692i 0.550709 0.0668682i
\(280\) 12.2397 + 13.8158i 0.731463 + 0.825651i
\(281\) 4.44211 + 3.06617i 0.264994 + 0.182912i 0.693151 0.720792i \(-0.256222\pi\)
−0.428157 + 0.903704i \(0.640837\pi\)
\(282\) −18.9129 27.4001i −1.12625 1.63165i
\(283\) −14.6174 3.60288i −0.868917 0.214169i −0.220438 0.975401i \(-0.570749\pi\)
−0.648479 + 0.761232i \(0.724595\pi\)
\(284\) −4.47426 + 0.543273i −0.265498 + 0.0322373i
\(285\) 19.3026 + 10.1308i 1.14339 + 0.600096i
\(286\) −6.97784 23.7428i −0.412609 1.40394i
\(287\) 17.3609 9.11169i 1.02478 0.537846i
\(288\) −3.42783 + 2.36606i −0.201987 + 0.139422i
\(289\) −1.37187 1.98749i −0.0806981 0.116911i
\(290\) −11.5191 10.2051i −0.676427 0.599262i
\(291\) 13.8707 15.6568i 0.813114 0.917816i
\(292\) 0.655244 0.248501i 0.0383452 0.0145424i
\(293\) −9.22898 17.5843i −0.539163 1.02729i −0.990832 0.135103i \(-0.956863\pi\)
0.451669 0.892186i \(-0.350829\pi\)
\(294\) 0.574966 0.218056i 0.0335327 0.0127173i
\(295\) −40.4302 + 9.96514i −2.35394 + 0.580193i
\(296\) −5.01388 4.44191i −0.291426 0.258181i
\(297\) −12.1121 8.36036i −0.702814 0.485118i
\(298\) 7.92808 20.9046i 0.459261 1.21097i
\(299\) −6.43753 21.9044i −0.372292 1.26676i
\(300\) −1.61343 4.25427i −0.0931515 0.245620i
\(301\) 4.69850 19.0626i 0.270817 1.09875i
\(302\) −7.76965 4.07783i −0.447093 0.234653i
\(303\) 11.0132 29.0394i 0.632691 1.66827i
\(304\) 16.6852 + 2.02595i 0.956962 + 0.116196i
\(305\) 5.36924 3.70612i 0.307442 0.212212i
\(306\) −1.98374 8.04835i −0.113403 0.460094i
\(307\) −5.76642 + 23.3953i −0.329107 + 1.33524i 0.540437 + 0.841384i \(0.318259\pi\)
−0.869544 + 0.493855i \(0.835587\pi\)
\(308\) −0.772933 + 6.36568i −0.0440420 + 0.362718i
\(309\) 8.87169 + 23.3927i 0.504693 + 1.33077i
\(310\) 7.79943 + 31.6435i 0.442978 + 1.79723i
\(311\) 14.5747 + 3.59234i 0.826456 + 0.203703i 0.629788 0.776767i \(-0.283142\pi\)
0.196668 + 0.980470i \(0.436988\pi\)
\(312\) −12.4750 + 12.0764i −0.706256 + 0.683693i
\(313\) 10.8295 2.66924i 0.612122 0.150874i 0.0789458 0.996879i \(-0.474845\pi\)
0.533176 + 0.846004i \(0.320998\pi\)
\(314\) −6.83256 13.0184i −0.385584 0.734669i
\(315\) 10.8592 0.611844
\(316\) −6.62794 −0.372851
\(317\) −15.5732 29.6722i −0.874677 1.66656i −0.736803 0.676107i \(-0.763666\pi\)
−0.137874 0.990450i \(-0.544027\pi\)
\(318\) 12.6870 14.3207i 0.711452 0.803063i
\(319\) 13.8364i 0.774688i
\(320\) 9.30461 + 10.5027i 0.520143 + 0.587120i
\(321\) −7.13147 3.74289i −0.398040 0.208907i
\(322\) −3.27159 + 26.9439i −0.182318 + 1.50153i
\(323\) −6.20930 + 11.8308i −0.345495 + 0.658286i
\(324\) 0.754516 6.21400i 0.0419175 0.345222i
\(325\) −7.09713 12.1824i −0.393678 0.675760i
\(326\) −2.07966 17.1276i −0.115182 0.948609i
\(327\) −5.29114 2.00667i −0.292601 0.110969i
\(328\) 14.9425 7.84241i 0.825060 0.433025i
\(329\) 9.47956 + 24.9955i 0.522625 + 1.37805i
\(330\) −19.8746 + 37.8679i −1.09406 + 2.08456i
\(331\) 8.42087 16.0446i 0.462853 0.881893i −0.536427 0.843947i \(-0.680226\pi\)
0.999280 0.0379460i \(-0.0120815\pi\)
\(332\) −0.212256 + 0.861158i −0.0116491 + 0.0472622i
\(333\) −3.91216 + 0.475022i −0.214385 + 0.0260311i
\(334\) −26.6602 + 23.6189i −1.45878 + 1.29237i
\(335\) −9.96846 + 14.4418i −0.544635 + 0.789040i
\(336\) 25.1321 9.53136i 1.37107 0.519978i
\(337\) 15.6888 0.854621 0.427311 0.904105i \(-0.359461\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(338\) 12.3589 16.7171i 0.672236 0.909291i
\(339\) 1.81865 0.0987754
\(340\) 5.94161 2.25335i 0.322229 0.122205i
\(341\) 16.6453 24.1148i 0.901391 1.30589i
\(342\) 5.68399 5.03558i 0.307355 0.272293i
\(343\) 18.1354 2.20204i 0.979221 0.118899i
\(344\) 4.04399 16.4071i 0.218037 0.884613i
\(345\) −18.3357 + 34.9357i −0.987159 + 1.88087i
\(346\) −10.7469 + 20.4766i −0.577760 + 1.10083i
\(347\) 8.17307 + 21.5506i 0.438753 + 1.15690i 0.953987 + 0.299847i \(0.0969358\pi\)
−0.515234 + 0.857050i \(0.672295\pi\)
\(348\) −3.32147 + 1.74324i −0.178050 + 0.0934476i
\(349\) −32.7792 12.4315i −1.75463 0.665443i −0.999956 0.00934238i \(-0.997026\pi\)
−0.754673 0.656101i \(-0.772205\pi\)
\(350\) 2.02035 + 16.6390i 0.107992 + 0.889394i
\(351\) −0.546094 12.3517i −0.0291483 0.659284i
\(352\) −1.58759 + 13.0750i −0.0846186 + 0.696897i
\(353\) 8.77688 16.7230i 0.467146 0.890073i −0.531917 0.846797i \(-0.678528\pi\)
0.999063 0.0432765i \(-0.0137796\pi\)
\(354\) −5.61296 + 46.2268i −0.298325 + 2.45693i
\(355\) 21.3712 + 11.2165i 1.13427 + 0.595309i
\(356\) −4.45159 5.02480i −0.235934 0.266314i
\(357\) 21.3673i 1.13088i
\(358\) 11.1277 12.5606i 0.588118 0.663848i
\(359\) −2.82673 5.38588i −0.149189 0.284256i 0.799380 0.600825i \(-0.205161\pi\)
−0.948569 + 0.316570i \(0.897469\pi\)
\(360\) 9.34646 0.492602
\(361\) 6.75975 0.355776
\(362\) 4.66110 + 8.88099i 0.244982 + 0.466774i
\(363\) 15.0392 3.70683i 0.789353 0.194558i
\(364\) −4.65470 + 2.71169i −0.243973 + 0.142131i
\(365\) −3.64368 0.898087i −0.190719 0.0470080i
\(366\) −1.74603 7.08393i −0.0912666 0.370283i
\(367\) −2.30840 6.08676i −0.120498 0.317726i 0.861173 0.508312i \(-0.169730\pi\)
−0.981670 + 0.190586i \(0.938961\pi\)
\(368\) −3.66676 + 30.1985i −0.191143 + 1.57420i
\(369\) 2.37599 9.63978i 0.123689 0.501827i
\(370\) −3.31707 13.4579i −0.172447 0.699643i
\(371\) −12.6427 + 8.72661i −0.656375 + 0.453063i
\(372\) 7.88598 + 0.957531i 0.408869 + 0.0496457i
\(373\) −7.00773 + 18.4779i −0.362847 + 0.956748i 0.621953 + 0.783054i \(0.286339\pi\)
−0.984800 + 0.173693i \(0.944430\pi\)
\(374\) −23.2098 12.1814i −1.20015 0.629887i
\(375\) 1.62484 6.59225i 0.0839065 0.340422i
\(376\) 8.15904 + 21.5136i 0.420770 + 1.10948i
\(377\) −9.26514 + 7.01910i −0.477179 + 0.361502i
\(378\) −5.21211 + 13.7432i −0.268082 + 0.706874i
\(379\) −8.18135 5.64718i −0.420247 0.290076i 0.339113 0.940745i \(-0.389873\pi\)
−0.759361 + 0.650670i \(0.774488\pi\)
\(380\) 4.35737 + 3.86029i 0.223528 + 0.198029i
\(381\) −29.6600 + 7.31054i −1.51953 + 0.374530i
\(382\) 6.04715 2.29338i 0.309399 0.117340i
\(383\) 5.64400 + 10.7537i 0.288395 + 0.549491i 0.985950 0.167041i \(-0.0534211\pi\)
−0.697555 + 0.716531i \(0.745729\pi\)
\(384\) 26.6509 10.1074i 1.36002 0.515789i
\(385\) 22.7709 25.7030i 1.16051 1.30995i
\(386\) −4.01826 3.55987i −0.204524 0.181192i
\(387\) −5.64749 8.18181i −0.287078 0.415905i
\(388\) 4.59699 3.17307i 0.233377 0.161088i
\(389\) −22.2427 + 11.6739i −1.12775 + 0.591888i −0.922182 0.386755i \(-0.873596\pi\)
−0.205566 + 0.978643i \(0.565904\pi\)
\(390\) −35.4394 + 5.90166i −1.79454 + 0.298842i
\(391\) −21.4126 11.2382i −1.08288 0.568340i
\(392\) −0.421869 + 0.0512242i −0.0213076 + 0.00258721i
\(393\) 1.67752 + 0.413471i 0.0846196 + 0.0208569i
\(394\) −19.0590 27.6118i −0.960179 1.39106i
\(395\) 29.2101 + 20.1623i 1.46972 + 1.01447i
\(396\) 2.15321 + 2.43047i 0.108203 + 0.122136i
\(397\) 20.9301 2.54138i 1.05045 0.127548i 0.422942 0.906157i \(-0.360997\pi\)
0.627510 + 0.778608i \(0.284074\pi\)
\(398\) −9.30478 37.7510i −0.466406 1.89228i
\(399\) −17.3324 + 9.09673i −0.867704 + 0.455406i
\(400\) 2.26438 + 18.6488i 0.113219 + 0.932442i
\(401\) −14.1859 1.72248i −0.708409 0.0860164i −0.241602 0.970376i \(-0.577673\pi\)
−0.466807 + 0.884359i \(0.654596\pi\)
\(402\) 11.1478 + 16.1503i 0.556000 + 0.805505i
\(403\) 24.5918 1.08726i 1.22501 0.0541602i
\(404\) 4.71133 6.82554i 0.234398 0.339584i
\(405\) −22.2283 + 25.0906i −1.10453 + 1.24676i
\(406\) 13.4171 3.30701i 0.665877 0.164124i
\(407\) −7.07917 + 10.2560i −0.350902 + 0.508369i
\(408\) 18.3908i 0.910479i
\(409\) 32.3164 + 22.3064i 1.59794 + 1.10298i 0.935193 + 0.354139i \(0.115226\pi\)
0.662750 + 0.748841i \(0.269389\pi\)
\(410\) 34.6645 + 4.20904i 1.71196 + 0.207869i
\(411\) −20.7565 7.87191i −1.02384 0.388293i
\(412\) 0.805302 + 6.63226i 0.0396744 + 0.326748i
\(413\) 13.2587 34.9602i 0.652416 1.72028i
\(414\) 9.11387 + 10.2874i 0.447922 + 0.505600i
\(415\) 3.55509 3.14954i 0.174513 0.154605i
\(416\) −9.56065 + 5.56975i −0.468749 + 0.273080i
\(417\) −24.9833 22.1333i −1.22344 1.08387i
\(418\) 24.0129i 1.17451i
\(419\) −23.9613 + 21.2278i −1.17058 + 1.03705i −0.171934 + 0.985108i \(0.555002\pi\)
−0.998650 + 0.0519390i \(0.983460\pi\)
\(420\) 9.03900 + 2.22791i 0.441058 + 0.108711i
\(421\) −2.27803 + 1.57241i −0.111025 + 0.0766347i −0.622283 0.782792i \(-0.713795\pi\)
0.511259 + 0.859427i \(0.329179\pi\)
\(422\) 14.7146 + 5.58050i 0.716294 + 0.271654i
\(423\) 12.6570 + 4.80018i 0.615406 + 0.233393i
\(424\) −10.8815 + 7.51098i −0.528454 + 0.364765i
\(425\) −14.4998 3.57388i −0.703344 0.173359i
\(426\) 20.2032 17.8985i 0.978849 0.867185i
\(427\) 5.85819i 0.283498i
\(428\) −1.60986 1.42621i −0.0778155 0.0689385i
\(429\) 25.1008 + 20.3312i 1.21188 + 0.981601i
\(430\) 26.1725 23.1868i 1.26215 1.11817i
\(431\) 8.49682 + 9.59093i 0.409278 + 0.461979i 0.916616 0.399768i \(-0.130909\pi\)
−0.507339 + 0.861747i \(0.669371\pi\)
\(432\) −5.84167 + 15.4032i −0.281058 + 0.741088i
\(433\) −0.382386 3.14923i −0.0183763 0.151342i 0.980632 0.195857i \(-0.0627489\pi\)
−0.999009 + 0.0445148i \(0.985826\pi\)
\(434\) −27.3623 10.3772i −1.31343 0.498120i
\(435\) 19.9411 + 2.42129i 0.956102 + 0.116092i
\(436\) −1.24365 0.858432i −0.0595602 0.0411114i
\(437\) 22.1536i 1.05975i
\(438\) −2.38399 + 3.45381i −0.113912 + 0.165029i
\(439\) 21.9973 5.42186i 1.04988 0.258771i 0.323614 0.946189i \(-0.395102\pi\)
0.726262 + 0.687418i \(0.241256\pi\)
\(440\) 19.5989 22.1225i 0.934339 1.05465i
\(441\) −0.142028 + 0.205762i −0.00676322 + 0.00979821i
\(442\) −3.61721 21.7213i −0.172053 1.03318i
\(443\) −5.50468 7.97490i −0.261535 0.378899i 0.670114 0.742258i \(-0.266245\pi\)
−0.931649 + 0.363359i \(0.881630\pi\)
\(444\) −3.35388 0.407235i −0.159168 0.0193265i
\(445\) 4.33315 + 35.6867i 0.205411 + 1.69171i
\(446\) −12.0872 + 6.34387i −0.572347 + 0.300391i
\(447\) 6.98392 + 28.3349i 0.330328 + 1.34019i
\(448\) −12.5074 + 1.51868i −0.590921 + 0.0717508i
\(449\) −1.31155 1.48043i −0.0618956 0.0698657i 0.716747 0.697333i \(-0.245630\pi\)
−0.778643 + 0.627467i \(0.784092\pi\)
\(450\) 6.98502 + 4.82141i 0.329277 + 0.227283i
\(451\) −17.8345 25.8378i −0.839796 1.21665i
\(452\) 0.471541 + 0.116225i 0.0221794 + 0.00546674i
\(453\) 11.3700 1.38057i 0.534210 0.0648649i
\(454\) −12.5118 6.56670i −0.587208 0.308190i
\(455\) 28.7628 + 2.20892i 1.34842 + 0.103556i
\(456\) −14.9179 + 7.82954i −0.698596 + 0.366652i
\(457\) 33.8787 23.3848i 1.58478 1.09389i 0.638942 0.769255i \(-0.279373\pi\)
0.945838 0.324639i \(-0.105243\pi\)
\(458\) −9.61695 13.9326i −0.449371 0.651026i
\(459\) −9.80234 8.68411i −0.457534 0.405340i
\(460\) −6.98673 + 7.88639i −0.325758 + 0.367705i
\(461\) −19.4481 + 7.37569i −0.905788 + 0.343520i −0.763125 0.646251i \(-0.776336\pi\)
−0.142663 + 0.989771i \(0.545567\pi\)
\(462\) −17.8460 34.0027i −0.830270 1.58195i
\(463\) 1.54081 0.584352i 0.0716075 0.0271571i −0.318541 0.947909i \(-0.603193\pi\)
0.390149 + 0.920752i \(0.372424\pi\)
\(464\) 15.0377 3.70645i 0.698107 0.172068i
\(465\) −31.8416 28.2092i −1.47662 1.30817i
\(466\) −7.26690 5.01598i −0.336633 0.232361i
\(467\) −5.16556 + 13.6205i −0.239033 + 0.630279i −0.999825 0.0187172i \(-0.994042\pi\)
0.760791 + 0.648996i \(0.224811\pi\)
\(468\) −0.535188 + 2.67480i −0.0247391 + 0.123643i
\(469\) −5.58749 14.7330i −0.258007 0.680307i
\(470\) −11.3939 + 46.2270i −0.525563 + 2.13229i
\(471\) 16.9927 + 8.91844i 0.782980 + 0.410940i
\(472\) 11.4117 30.0902i 0.525266 1.38501i
\(473\) −31.2083 3.78937i −1.43496 0.174235i
\(474\) 32.6658 22.5476i 1.50039 1.03564i
\(475\) −3.27403 13.2832i −0.150223 0.609477i
\(476\) −1.36552 + 5.54013i −0.0625885 + 0.253932i
\(477\) −0.937641 + 7.72217i −0.0429316 + 0.353574i
\(478\) 4.06055 + 10.7068i 0.185725 + 0.489717i
\(479\) 7.18259 + 29.1409i 0.328181 + 1.33148i 0.870855 + 0.491539i \(0.163566\pi\)
−0.542675 + 0.839943i \(0.682588\pi\)
\(480\) 18.5659 + 4.57608i 0.847413 + 0.208869i
\(481\) −10.4588 + 0.462407i −0.476882 + 0.0210840i
\(482\) −3.13785 + 0.773410i −0.142925 + 0.0352279i
\(483\) −16.4641 31.3698i −0.749143 1.42737i
\(484\) 4.13628 0.188013
\(485\) −29.9120 −1.35823
\(486\) 9.77544 + 18.6255i 0.443423 + 0.844872i
\(487\) 1.11248 1.25573i 0.0504112 0.0569025i −0.722764 0.691095i \(-0.757129\pi\)
0.773175 + 0.634192i \(0.218667\pi\)
\(488\) 5.04213i 0.228247i
\(489\) 14.9339 + 16.8569i 0.675334 + 0.762294i
\(490\) −0.778630 0.408657i −0.0351749 0.0184612i
\(491\) −4.51584 + 37.1913i −0.203797 + 1.67842i 0.428382 + 0.903598i \(0.359084\pi\)
−0.632179 + 0.774822i \(0.717839\pi\)
\(492\) 3.95548 7.53654i 0.178327 0.339773i
\(493\) −1.48404 + 12.2222i −0.0668378 + 0.550459i
\(494\) 16.0796 12.1816i 0.723455 0.548077i
\(495\) −2.09592 17.2615i −0.0942047 0.775845i
\(496\) −30.6674 11.6306i −1.37701 0.522230i
\(497\) −19.1899 + 10.0716i −0.860783 + 0.451774i
\(498\) −1.88347 4.96629i −0.0844001 0.222545i
\(499\) −5.47945 + 10.4402i −0.245294 + 0.467369i −0.976710 0.214563i \(-0.931167\pi\)
0.731416 + 0.681931i \(0.238860\pi\)
\(500\) 0.842582 1.60541i 0.0376814 0.0717960i
\(501\) 11.1261 45.1402i 0.497076 2.01672i
\(502\) −41.2113 + 5.00396i −1.83935 + 0.223338i
\(503\) −5.57077 + 4.93527i −0.248388 + 0.220053i −0.778125 0.628109i \(-0.783829\pi\)
0.529737 + 0.848162i \(0.322291\pi\)
\(504\) −4.76746 + 6.90686i −0.212360 + 0.307656i
\(505\) −41.5268 + 15.7490i −1.84792 + 0.700823i
\(506\) 43.4609 1.93207
\(507\) −0.880788 + 27.1219i −0.0391172 + 1.20453i
\(508\) −8.15748 −0.361930
\(509\) −24.2504 + 9.19697i −1.07488 + 0.407649i −0.827613 0.561299i \(-0.810302\pi\)
−0.247267 + 0.968947i \(0.579533\pi\)
\(510\) −21.6175 + 31.3184i −0.957240 + 1.38680i
\(511\) 2.52224 2.23451i 0.111578 0.0988491i
\(512\) −7.36884 + 0.894739i −0.325660 + 0.0395422i
\(513\) 2.87107 11.6484i 0.126761 0.514290i
\(514\) −8.20951 + 15.6419i −0.362106 + 0.689935i
\(515\) 16.6264 31.6789i 0.732645 1.39594i
\(516\) −3.02227 7.96908i −0.133048 0.350819i
\(517\) 37.9027 19.8929i 1.66696 0.874887i
\(518\) 11.6371 + 4.41338i 0.511306 + 0.193913i
\(519\) −3.63844 29.9652i −0.159710 1.31533i
\(520\) 24.7561 + 1.90121i 1.08563 + 0.0833736i
\(521\) −0.331168 + 2.72742i −0.0145088 + 0.119490i −0.998164 0.0605730i \(-0.980707\pi\)
0.983655 + 0.180063i \(0.0576303\pi\)
\(522\) 3.25183 6.19585i 0.142329 0.271185i
\(523\) 2.77086 22.8200i 0.121161 0.997851i −0.797641 0.603132i \(-0.793919\pi\)
0.918802 0.394719i \(-0.129158\pi\)
\(524\) 0.408525 + 0.214411i 0.0178465 + 0.00936657i
\(525\) −14.5079 16.3761i −0.633178 0.714710i
\(526\) 12.2551i 0.534349i
\(527\) 17.2898 19.5162i 0.753157 0.850138i
\(528\) −20.0016 38.1098i −0.870456 1.65852i
\(529\) 17.0956 0.743289
\(530\) −27.3594 −1.18842
\(531\) −8.79870 16.7645i −0.381831 0.727518i
\(532\) −5.07530 + 1.25095i −0.220042 + 0.0542355i
\(533\) 8.25421 25.0497i 0.357529 1.08502i
\(534\) 39.0335 + 9.62089i 1.68914 + 0.416337i
\(535\) 2.75629 + 11.1827i 0.119165 + 0.483470i
\(536\) −4.80915 12.6807i −0.207724 0.547722i
\(537\) −2.64020 + 21.7440i −0.113933 + 0.938322i
\(538\) −5.62996 + 22.8416i −0.242725 + 0.984773i
\(539\) 0.189206 + 0.767641i 0.00814970 + 0.0330646i
\(540\) −4.69571 + 3.24121i −0.202071 + 0.139480i
\(541\) 5.16069 + 0.626622i 0.221876 + 0.0269406i 0.230719 0.973020i \(-0.425892\pi\)
−0.00884385 + 0.999961i \(0.502815\pi\)
\(542\) 12.3782 32.6385i 0.531688 1.40194i
\(543\) −11.5922 6.08406i −0.497469 0.261092i
\(544\) −2.80475 + 11.3793i −0.120253 + 0.487884i
\(545\) 2.86957 + 7.56642i 0.122919 + 0.324110i
\(546\) 13.7158 29.1994i 0.586982 1.24962i
\(547\) 7.41221 19.5444i 0.316923 0.835658i −0.678004 0.735058i \(-0.737155\pi\)
0.994927 0.100599i \(-0.0320760\pi\)
\(548\) −4.87871 3.36753i −0.208408 0.143854i
\(549\) 2.22040 + 1.96710i 0.0947643 + 0.0839539i
\(550\) 26.0591 6.42299i 1.11116 0.273877i
\(551\) −10.5460 + 3.99957i −0.449274 + 0.170387i
\(552\) −14.1706 26.9999i −0.603143 1.14919i
\(553\) −29.7991 + 11.3013i −1.26719 + 0.480581i
\(554\) 9.76179 11.0188i 0.414739 0.468143i
\(555\) 13.5421 + 11.9973i 0.574832 + 0.509256i
\(556\) −5.06323 7.33535i −0.214729 0.311088i
\(557\) 36.0381 24.8753i 1.52699 1.05400i 0.551437 0.834216i \(-0.314080\pi\)
0.975548 0.219785i \(-0.0705357\pi\)
\(558\) −13.1211 + 6.88649i −0.555461 + 0.291528i
\(559\) −13.2943 22.8201i −0.562289 0.965186i
\(560\) −34.0344 17.8626i −1.43822 0.754834i
\(561\) 33.9649 4.12409i 1.43400 0.174119i
\(562\) −8.38094 2.06572i −0.353529 0.0871370i
\(563\) −4.00372 5.80039i −0.168737 0.244457i 0.729488 0.683993i \(-0.239758\pi\)
−0.898225 + 0.439536i \(0.855143\pi\)
\(564\) 9.55070 + 6.59237i 0.402157 + 0.277589i
\(565\) −1.72458 1.94665i −0.0725537 0.0818962i
\(566\) 23.9002 2.90201i 1.00460 0.121981i
\(567\) −7.20321 29.2246i −0.302506 1.22732i
\(568\) −16.5167 + 8.66862i −0.693024 + 0.363727i
\(569\) −3.04680 25.0926i −0.127728 1.05194i −0.905783 0.423741i \(-0.860717\pi\)
0.778055 0.628196i \(-0.216207\pi\)
\(570\) −34.6076 4.20213i −1.44955 0.176008i
\(571\) −5.61872 8.14012i −0.235136 0.340654i 0.687597 0.726092i \(-0.258666\pi\)
−0.922733 + 0.385439i \(0.874050\pi\)
\(572\) 5.20885 + 6.87562i 0.217793 + 0.287484i
\(573\) −4.79550 + 6.94748i −0.200335 + 0.290235i
\(574\) −20.7922 + 23.4695i −0.867848 + 0.979598i
\(575\) 24.0413 5.92564i 1.00259 0.247116i
\(576\) −3.62421 + 5.25058i −0.151009 + 0.218774i
\(577\) 5.35677i 0.223005i −0.993764 0.111503i \(-0.964434\pi\)
0.993764 0.111503i \(-0.0355663\pi\)
\(578\) 3.17839 + 2.19388i 0.132203 + 0.0912535i
\(579\) 6.95612 + 0.844625i 0.289086 + 0.0351014i
\(580\) 5.01561 + 1.90217i 0.208262 + 0.0789833i
\(581\) 0.514061 + 4.23367i 0.0213268 + 0.175642i
\(582\) −11.8618 + 31.2769i −0.491687 + 1.29647i
\(583\) 16.3118 + 18.4122i 0.675564 + 0.762555i
\(584\) 2.17089 1.92324i 0.0898322 0.0795843i
\(585\) 10.4954 10.1601i 0.433932 0.420069i
\(586\) 23.7716 + 21.0598i 0.981996 + 0.869973i
\(587\) 32.7230i 1.35062i 0.737533 + 0.675312i \(0.235991\pi\)
−0.737533 + 0.675312i \(0.764009\pi\)
\(588\) −0.160437 + 0.142135i −0.00661630 + 0.00586153i
\(589\) 23.1917 + 5.71623i 0.955595 + 0.235533i
\(590\) 54.8031 37.8278i 2.25621 1.55735i
\(591\) 40.9474 + 15.5293i 1.68435 + 0.638791i
\(592\) 13.0427 + 4.94646i 0.536053 + 0.203298i
\(593\) −34.0214 + 23.4832i −1.39709 + 0.964341i −0.398197 + 0.917300i \(0.630364\pi\)
−0.998893 + 0.0470414i \(0.985021\pi\)
\(594\) 22.8519 + 5.63248i 0.937624 + 0.231103i
\(595\) 22.8712 20.2621i 0.937627 0.830665i
\(596\) 7.79302i 0.319215i
\(597\) 37.9872 + 33.6538i 1.55471 + 1.37736i
\(598\) 22.0474 + 29.1024i 0.901587 + 1.19009i
\(599\) −29.6689 + 26.2844i −1.21224 + 1.07395i −0.217031 + 0.976165i \(0.569637\pi\)
−0.995208 + 0.0977848i \(0.968824\pi\)
\(600\) −12.4869 14.0948i −0.509777 0.575420i
\(601\) −8.27338 + 21.8151i −0.337478 + 0.889857i 0.653632 + 0.756813i \(0.273244\pi\)
−0.991110 + 0.133044i \(0.957525\pi\)
\(602\) 3.78450 + 31.1682i 0.154245 + 1.27032i
\(603\) −7.46038 2.82935i −0.303810 0.115220i
\(604\) 3.03626 + 0.368669i 0.123544 + 0.0150009i
\(605\) −18.2291 12.5826i −0.741117 0.511556i
\(606\) 49.6672i 2.01759i
\(607\) −0.715194 + 1.03614i −0.0290288 + 0.0420555i −0.837230 0.546852i \(-0.815826\pi\)
0.808201 + 0.588907i \(0.200442\pi\)
\(608\) −10.4246 + 2.56942i −0.422771 + 0.104204i
\(609\) −11.9609 + 13.5010i −0.484679 + 0.547089i
\(610\) −5.92680 + 8.58645i −0.239969 + 0.347655i
\(611\) 32.5485 + 15.2890i 1.31677 + 0.618525i
\(612\) 1.64132 + 2.37787i 0.0663466 + 0.0961197i
\(613\) −20.7097 2.51462i −0.836459 0.101564i −0.308912 0.951091i \(-0.599965\pi\)
−0.527547 + 0.849526i \(0.676888\pi\)
\(614\) −4.64468 38.2524i −0.187444 1.54374i
\(615\) −40.3585 + 21.1818i −1.62741 + 0.854132i
\(616\) 6.35112 + 25.7675i 0.255894 + 1.03820i
\(617\) −22.9906 + 2.79157i −0.925567 + 0.112384i −0.569421 0.822046i \(-0.692833\pi\)
−0.356146 + 0.934430i \(0.615909\pi\)
\(618\) −26.5312 29.9475i −1.06724 1.20467i
\(619\) 32.1571 + 22.1964i 1.29250 + 0.892150i 0.997982 0.0634958i \(-0.0202249\pi\)
0.294520 + 0.955645i \(0.404840\pi\)
\(620\) −6.45316 9.34902i −0.259165 0.375466i
\(621\) 21.0824 + 5.19634i 0.846007 + 0.208522i
\(622\) −23.8303 + 2.89352i −0.955509 + 0.116020i
\(623\) −28.5821 15.0010i −1.14512 0.601003i
\(624\) 15.3725 32.7263i 0.615392 1.31010i
\(625\) −25.9092 + 13.5982i −1.03637 + 0.543929i
\(626\) −14.6794 + 10.1325i −0.586708 + 0.404975i
\(627\) 17.8053 + 25.7954i 0.711074 + 1.03017i
\(628\) 3.83593 + 3.39833i 0.153070 + 0.135608i
\(629\) −7.35331 + 8.30017i −0.293196 + 0.330950i
\(630\) −16.2374 + 6.15803i −0.646913 + 0.245342i
\(631\) −16.3856 31.2202i −0.652302 1.24286i −0.956911 0.290381i \(-0.906218\pi\)
0.304609 0.952478i \(-0.401474\pi\)
\(632\) −25.6480 + 9.72702i −1.02022 + 0.386920i
\(633\) −19.9446 + 4.91591i −0.792729 + 0.195390i
\(634\) 40.1127 + 35.5368i 1.59308 + 1.41135i
\(635\) 35.9510 + 24.8152i 1.42667 + 0.984760i
\(636\) −2.36479 + 6.23544i −0.0937701 + 0.247251i
\(637\) −0.418046 + 0.516116i −0.0165636 + 0.0204493i
\(638\) −7.84636 20.6892i −0.310640 0.819091i
\(639\) −2.62631 + 10.6553i −0.103895 + 0.421519i
\(640\) −36.0912 18.9421i −1.42663 0.748753i
\(641\) −0.874882 + 2.30687i −0.0345558 + 0.0911161i −0.951184 0.308626i \(-0.900131\pi\)
0.916628 + 0.399742i \(0.130900\pi\)
\(642\) 12.7860 + 1.55250i 0.504624 + 0.0612724i
\(643\) −1.59243 + 1.09917i −0.0627992 + 0.0433472i −0.599051 0.800711i \(-0.704455\pi\)
0.536252 + 0.844058i \(0.319840\pi\)
\(644\) −2.26409 9.18577i −0.0892176 0.361970i
\(645\) −10.9225 + 44.3145i −0.430074 + 1.74488i
\(646\) 2.57554 21.2115i 0.101333 0.834556i
\(647\) 10.5842 + 27.9083i 0.416109 + 1.09719i 0.965220 + 0.261440i \(0.0841974\pi\)
−0.549110 + 0.835750i \(0.685033\pi\)
\(648\) −6.19979 25.1535i −0.243551 0.988124i
\(649\) −58.1309 14.3280i −2.28184 0.562423i
\(650\) 17.5206 + 14.1914i 0.687214 + 0.556633i
\(651\) 37.0879 9.14135i 1.45359 0.358278i
\(652\) 2.79480 + 5.32505i 0.109453 + 0.208545i
\(653\) 15.2608 0.597202 0.298601 0.954378i \(-0.403480\pi\)
0.298601 + 0.954378i \(0.403480\pi\)
\(654\) 9.04964 0.353869
\(655\) −1.14818 2.18767i −0.0448631 0.0854795i
\(656\) −23.3036 + 26.3043i −0.909853 + 1.02701i
\(657\) 1.70631i 0.0665696i
\(658\) −28.3490 31.9995i −1.10516 1.24747i
\(659\) 10.3649 + 5.43992i 0.403760 + 0.211909i 0.654363 0.756180i \(-0.272937\pi\)
−0.250604 + 0.968090i \(0.580629\pi\)
\(660\) 1.79683 14.7982i 0.0699413 0.576019i
\(661\) 11.6001 22.1022i 0.451193 0.859676i −0.548530 0.836131i \(-0.684812\pi\)
0.999723 0.0235450i \(-0.00749531\pi\)
\(662\) −3.49288 + 28.7664i −0.135755 + 1.11804i
\(663\) 19.9918 + 20.6515i 0.776416 + 0.802039i
\(664\) 0.442451 + 3.64391i 0.0171704 + 0.141411i
\(665\) 26.1729 + 9.92606i 1.01494 + 0.384916i
\(666\) 5.58037 2.92880i 0.216235 0.113489i
\(667\) −7.23880 19.0871i −0.280287 0.739057i
\(668\) 5.76956 10.9930i 0.223231 0.425331i
\(669\) 8.28055 15.7773i 0.320144 0.609984i
\(670\) 6.71587 27.2474i 0.259457 1.05266i
\(671\) 9.31204 1.13069i 0.359487 0.0436497i
\(672\) −12.8518 + 11.3857i −0.495768 + 0.439212i
\(673\) −5.68629 + 8.23802i −0.219191 + 0.317552i −0.917118 0.398616i \(-0.869491\pi\)
0.697927 + 0.716169i \(0.254106\pi\)
\(674\) −23.4590 + 8.89682i −0.903606 + 0.342693i
\(675\) 13.4089 0.516110
\(676\) −1.96166 + 6.97592i −0.0754483 + 0.268305i
\(677\) 30.1174 1.15751 0.578753 0.815503i \(-0.303539\pi\)
0.578753 + 0.815503i \(0.303539\pi\)
\(678\) −2.71937 + 1.03132i −0.104437 + 0.0396077i
\(679\) 15.2576 22.1044i 0.585532 0.848289i
\(680\) 19.6852 17.4395i 0.754892 0.668776i
\(681\) 18.3096 2.22319i 0.701626 0.0851929i
\(682\) −11.2141 + 45.4974i −0.429411 + 1.74219i
\(683\) −2.17489 + 4.14390i −0.0832197 + 0.158562i −0.923509 0.383576i \(-0.874693\pi\)
0.840290 + 0.542138i \(0.182385\pi\)
\(684\) −1.23008 + 2.34372i −0.0470332 + 0.0896143i
\(685\) 11.2570 + 29.6822i 0.430107 + 1.13410i
\(686\) −25.8687 + 13.5769i −0.987670 + 0.518369i
\(687\) 20.6616 + 7.83591i 0.788289 + 0.298959i
\(688\) 4.24162 + 34.9329i 0.161710 + 1.33181i
\(689\) −4.05435 + 20.2631i −0.154458 + 0.771963i
\(690\) 7.60541 62.6362i 0.289533 2.38452i
\(691\) −19.1533 + 36.4935i −0.728626 + 1.38828i 0.185416 + 0.982660i \(0.440637\pi\)
−0.914042 + 0.405620i \(0.867056\pi\)
\(692\) 0.971612 8.00195i 0.0369351 0.304188i
\(693\) 13.8250 + 7.25591i 0.525168 + 0.275629i
\(694\) −24.4419 27.5892i −0.927803 1.04727i
\(695\) 47.7302i 1.81051i
\(696\) −10.2947 + 11.6203i −0.390220 + 0.440467i
\(697\) −12.9826 24.7363i −0.491752 0.936955i
\(698\) 56.0635 2.12203
\(699\) 11.5256 0.435938
\(700\) −2.71509 5.17316i −0.102621 0.195527i
\(701\) 19.1873 4.72923i 0.724693 0.178621i 0.140320 0.990106i \(-0.455187\pi\)
0.584373 + 0.811485i \(0.301341\pi\)
\(702\) 7.82097 + 18.1594i 0.295184 + 0.685384i
\(703\) −9.86334 2.43109i −0.372003 0.0916905i
\(704\) 4.82811 + 19.5884i 0.181966 + 0.738266i
\(705\) −22.0370 58.1067i −0.829961 2.18843i
\(706\) −3.64055 + 29.9826i −0.137014 + 1.12841i
\(707\) 9.54383 38.7208i 0.358933 1.45625i
\(708\) −3.88442 15.7597i −0.145985 0.592286i
\(709\) 32.6361 22.5271i 1.22567 0.846022i 0.233681 0.972313i \(-0.424923\pi\)
0.991993 + 0.126291i \(0.0403074\pi\)
\(710\) −38.3165 4.65246i −1.43799 0.174604i
\(711\) −5.72267 + 15.0894i −0.214617 + 0.565898i
\(712\) −24.6005 12.9114i −0.921944 0.483873i
\(713\) −10.3458 + 41.9745i −0.387452 + 1.57196i
\(714\) −12.1170 31.9499i −0.453467 1.19569i
\(715\) −2.04026 46.1471i −0.0763015 1.72580i
\(716\) −2.07415 + 5.46908i −0.0775146 + 0.204389i
\(717\) −12.3009 8.49069i −0.459385 0.317091i
\(718\) 7.28096 + 6.45037i 0.271723 + 0.240726i
\(719\) −3.92686 + 0.967885i −0.146447 + 0.0360960i −0.311858 0.950129i \(-0.600951\pi\)
0.165411 + 0.986225i \(0.447105\pi\)
\(720\) −18.1987 + 6.90185i −0.678225 + 0.257217i
\(721\) 14.9293 + 28.4454i 0.555996 + 1.05936i
\(722\) −10.1077 + 3.83333i −0.376168 + 0.142662i
\(723\) 2.79729 3.15749i 0.104032 0.117428i
\(724\) −2.61683 2.31831i −0.0972536 0.0861592i
\(725\) −7.16122 10.3748i −0.265961 0.385311i
\(726\) −20.3856 + 14.0712i −0.756582 + 0.522231i
\(727\) −1.70346 + 0.894047i −0.0631780 + 0.0331584i −0.496016 0.868313i \(-0.665204\pi\)
0.432838 + 0.901472i \(0.357512\pi\)
\(728\) −14.0326 + 17.3245i −0.520083 + 0.642090i
\(729\) 5.51839 + 2.89627i 0.204385 + 0.107269i
\(730\) 5.95758 0.723382i 0.220500 0.0267736i
\(731\) −27.1610 6.69458i −1.00459 0.247608i
\(732\) 1.44465 + 2.09293i 0.0533957 + 0.0773570i
\(733\) 18.9425 + 13.0750i 0.699655 + 0.482937i 0.864017 0.503463i \(-0.167941\pi\)
−0.164361 + 0.986400i \(0.552556\pi\)
\(734\) 6.90338 + 7.79230i 0.254808 + 0.287619i
\(735\) 1.13944 0.138353i 0.0420288 0.00510322i
\(736\) −4.65038 18.8673i −0.171415 0.695460i
\(737\) −22.3408 + 11.7254i −0.822935 + 0.431909i
\(738\) 1.91379 + 15.7615i 0.0704476 + 0.580188i
\(739\) 7.24267 + 0.879420i 0.266426 + 0.0323500i 0.252659 0.967555i \(-0.418695\pi\)
0.0137665 + 0.999905i \(0.495618\pi\)
\(740\) 2.74451 + 3.97611i 0.100890 + 0.146165i
\(741\) −8.24066 + 25.0086i −0.302728 + 0.918715i
\(742\) 13.9555 20.2181i 0.512324 0.742229i
\(743\) 7.08098 7.99277i 0.259776 0.293226i −0.604124 0.796891i \(-0.706477\pi\)
0.863899 + 0.503664i \(0.168015\pi\)
\(744\) 31.9215 7.86794i 1.17030 0.288453i
\(745\) 23.7065 34.3448i 0.868538 1.25830i
\(746\) 31.6034i 1.15708i
\(747\) 1.77728 + 1.22677i 0.0650273 + 0.0448851i
\(748\) 9.07003 + 1.10130i 0.331633 + 0.0402675i
\(749\) −9.66974 3.66725i −0.353325 0.133998i
\(750\) 1.30876 + 10.7786i 0.0477892 + 0.393580i
\(751\) −17.2606 + 45.5126i −0.629850 + 1.66078i 0.114854 + 0.993382i \(0.463360\pi\)
−0.744704 + 0.667395i \(0.767409\pi\)
\(752\) −31.7733 35.8646i −1.15865 1.30785i
\(753\) 40.5600 35.9330i 1.47809 1.30947i
\(754\) 9.87351 15.7496i 0.359572 0.573566i
\(755\) −12.2597 10.8611i −0.446175 0.395277i
\(756\) 5.12332i 0.186333i
\(757\) 14.3633 12.7248i 0.522043 0.462490i −0.360475 0.932769i \(-0.617385\pi\)
0.882518 + 0.470279i \(0.155847\pi\)
\(758\) 15.4358 + 3.80457i 0.560652 + 0.138188i
\(759\) −46.6869 + 32.2257i −1.69463 + 1.16972i
\(760\) 22.5269 + 8.54334i 0.817138 + 0.309900i
\(761\) 36.1128 + 13.6958i 1.30909 + 0.496471i 0.907770 0.419468i \(-0.137783\pi\)
0.401317 + 0.915939i \(0.368553\pi\)
\(762\) 40.2041 27.7509i 1.45644 1.00531i
\(763\) −7.05516 1.73894i −0.255414 0.0629539i
\(764\) −1.68738 + 1.49489i −0.0610472 + 0.0540831i
\(765\) 15.4725i 0.559409i
\(766\) −14.5376 12.8792i −0.525264 0.465343i
\(767\) −19.8951 46.1943i −0.718371