Properties

Label 169.2.h.a.12.8
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.8
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.197515 - 0.136335i) q^{2} +(1.40158 + 0.735608i) q^{3} +(-0.688785 + 1.81618i) q^{4} +(-0.369290 - 0.416842i) q^{5} +(0.377124 - 0.0457911i) q^{6} +(0.397115 + 1.61116i) q^{7} +(0.226434 + 0.918678i) q^{8} +(-0.280874 - 0.406917i) q^{9} +O(q^{10})\) \(q+(0.197515 - 0.136335i) q^{2} +(1.40158 + 0.735608i) q^{3} +(-0.688785 + 1.81618i) q^{4} +(-0.369290 - 0.416842i) q^{5} +(0.377124 - 0.0457911i) q^{6} +(0.397115 + 1.61116i) q^{7} +(0.226434 + 0.918678i) q^{8} +(-0.280874 - 0.406917i) q^{9} +(-0.129771 - 0.0319856i) q^{10} +(3.54807 + 2.44906i) q^{11} +(-2.30138 + 2.03885i) q^{12} +(0.00632121 - 3.60555i) q^{13} +(0.298093 + 0.264088i) q^{14} +(-0.210959 - 0.855893i) q^{15} +(-2.73784 - 2.42552i) q^{16} +(-3.12757 + 0.770877i) q^{17} +(-0.110954 - 0.0420793i) q^{18} -1.72532i q^{19} +(1.01142 - 0.383581i) q^{20} +(-0.628591 + 2.55029i) q^{21} +1.03469 q^{22} +7.98168 q^{23} +(-0.358421 + 1.45417i) q^{24} +(0.565301 - 4.65567i) q^{25} +(-0.490313 - 0.713012i) q^{26} +(-0.666729 - 5.49101i) q^{27} +(-3.19967 - 0.388510i) q^{28} +(-0.395697 - 0.573266i) q^{29} +(-0.158356 - 0.140291i) q^{30} +(-4.11400 + 0.499530i) q^{31} +(-2.75000 - 0.333910i) q^{32} +(3.17137 + 6.04255i) q^{33} +(-0.512646 + 0.578657i) q^{34} +(0.524948 - 0.760518i) q^{35} +(0.932494 - 0.229839i) q^{36} +(-1.44710 + 0.175710i) q^{37} +(-0.235221 - 0.340776i) q^{38} +(2.66113 - 5.04883i) q^{39} +(0.299324 - 0.433646i) q^{40} +(-0.456082 + 0.868992i) q^{41} +(0.223538 + 0.589421i) q^{42} +(0.325001 - 2.67662i) q^{43} +(-6.89177 + 4.75705i) q^{44} +(-0.0658960 + 0.267350i) q^{45} +(1.57650 - 1.08818i) q^{46} +(-11.5975 + 4.39834i) q^{47} +(-2.05309 - 5.41355i) q^{48} +(3.76006 - 1.97343i) q^{49} +(-0.523075 - 0.996637i) q^{50} +(-4.95062 - 1.22022i) q^{51} +(6.54395 + 2.49493i) q^{52} +(-1.84470 + 0.454678i) q^{53} +(-0.880305 - 0.993659i) q^{54} +(-0.289397 - 2.38340i) q^{55} +(-1.39021 + 0.729641i) q^{56} +(1.26916 - 2.41818i) q^{57} +(-0.156312 - 0.0592815i) q^{58} +(3.10092 + 3.50021i) q^{59} +(1.69976 + 0.206388i) q^{60} +(-9.59120 - 2.36402i) q^{61} +(-0.744474 + 0.659546i) q^{62} +(0.544067 - 0.614125i) q^{63} +(5.88881 - 3.09069i) q^{64} +(-1.50528 + 1.32886i) q^{65} +(1.45021 + 0.761127i) q^{66} +(-4.31198 + 1.63532i) q^{67} +(0.754175 - 6.21119i) q^{68} +(11.1870 + 5.87139i) q^{69} -0.221783i q^{70} +(3.75186 - 7.14856i) q^{71} +(0.310226 - 0.350173i) q^{72} +(10.7947 + 7.45108i) q^{73} +(-0.261869 + 0.231995i) q^{74} +(4.21707 - 6.10948i) q^{75} +(3.13348 + 1.18837i) q^{76} +(-2.53682 + 6.68905i) q^{77} +(-0.162718 - 1.36003i) q^{78} +(4.76293 + 12.5588i) q^{79} +2.03697i q^{80} +(2.57876 - 6.79963i) q^{81} +(0.0283908 + 0.233819i) q^{82} +(4.25995 + 8.11666i) q^{83} +(-4.19882 - 2.89824i) q^{84} +(1.47632 + 1.01903i) q^{85} +(-0.300724 - 0.572983i) q^{86} +(-0.132903 - 1.09456i) q^{87} +(-1.44649 + 3.81408i) q^{88} +14.9265i q^{89} +(0.0234338 + 0.0617897i) q^{90} +(5.81161 - 1.42163i) q^{91} +(-5.49766 + 14.4961i) q^{92} +(-6.13357 - 2.32616i) q^{93} +(-1.69103 + 2.44988i) q^{94} +(-0.719184 + 0.637142i) q^{95} +(-3.60873 - 2.49092i) q^{96} +(3.54411 - 4.00048i) q^{97} +(0.473622 - 0.902412i) q^{98} -2.13164i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.197515 0.136335i 0.139664 0.0964034i −0.496184 0.868217i \(-0.665266\pi\)
0.635848 + 0.771814i \(0.280650\pi\)
\(3\) 1.40158 + 0.735608i 0.809205 + 0.424704i 0.817972 0.575258i \(-0.195098\pi\)
−0.00876680 + 0.999962i \(0.502791\pi\)
\(4\) −0.688785 + 1.81618i −0.344392 + 0.908088i
\(5\) −0.369290 0.416842i −0.165152 0.186418i 0.660109 0.751170i \(-0.270510\pi\)
−0.825260 + 0.564752i \(0.808972\pi\)
\(6\) 0.377124 0.0457911i 0.153960 0.0186941i
\(7\) 0.397115 + 1.61116i 0.150095 + 0.608960i 0.997013 + 0.0772361i \(0.0246095\pi\)
−0.846918 + 0.531724i \(0.821544\pi\)
\(8\) 0.226434 + 0.918678i 0.0800564 + 0.324802i
\(9\) −0.280874 0.406917i −0.0936247 0.135639i
\(10\) −0.129771 0.0319856i −0.0410371 0.0101147i
\(11\) 3.54807 + 2.44906i 1.06978 + 0.738418i 0.966612 0.256245i \(-0.0824855\pi\)
0.103172 + 0.994664i \(0.467101\pi\)
\(12\) −2.30138 + 2.03885i −0.664352 + 0.588565i
\(13\) 0.00632121 3.60555i 0.00175319 0.999998i
\(14\) 0.298093 + 0.264088i 0.0796688 + 0.0705804i
\(15\) −0.210959 0.855893i −0.0544693 0.220991i
\(16\) −2.73784 2.42552i −0.684461 0.606379i
\(17\) −3.12757 + 0.770877i −0.758548 + 0.186965i −0.599576 0.800318i \(-0.704664\pi\)
−0.158972 + 0.987283i \(0.550818\pi\)
\(18\) −0.110954 0.0420793i −0.0261521 0.00991818i
\(19\) 1.72532i 0.395814i −0.980221 0.197907i \(-0.936586\pi\)
0.980221 0.197907i \(-0.0634145\pi\)
\(20\) 1.01142 0.383581i 0.226160 0.0857713i
\(21\) −0.628591 + 2.55029i −0.137170 + 0.556520i
\(22\) 1.03469 0.220597
\(23\) 7.98168 1.66429 0.832147 0.554555i \(-0.187111\pi\)
0.832147 + 0.554555i \(0.187111\pi\)
\(24\) −0.358421 + 1.45417i −0.0731624 + 0.296832i
\(25\) 0.565301 4.65567i 0.113060 0.931135i
\(26\) −0.490313 0.713012i −0.0961584 0.139833i
\(27\) −0.666729 5.49101i −0.128312 1.05674i
\(28\) −3.19967 0.388510i −0.604681 0.0734216i
\(29\) −0.395697 0.573266i −0.0734791 0.106453i 0.784521 0.620102i \(-0.212909\pi\)
−0.858000 + 0.513649i \(0.828293\pi\)
\(30\) −0.158356 0.140291i −0.0289117 0.0256135i
\(31\) −4.11400 + 0.499530i −0.738896 + 0.0897182i −0.481326 0.876542i \(-0.659845\pi\)
−0.257570 + 0.966260i \(0.582922\pi\)
\(32\) −2.75000 0.333910i −0.486135 0.0590275i
\(33\) 3.17137 + 6.04255i 0.552065 + 1.05187i
\(34\) −0.512646 + 0.578657i −0.0879180 + 0.0992389i
\(35\) 0.524948 0.760518i 0.0887324 0.128551i
\(36\) 0.932494 0.229839i 0.155416 0.0383065i
\(37\) −1.44710 + 0.175710i −0.237901 + 0.0288865i −0.238619 0.971113i \(-0.576695\pi\)
0.000717505 1.00000i \(0.499772\pi\)
\(38\) −0.235221 0.340776i −0.0381579 0.0552812i
\(39\) 2.66113 5.04883i 0.426122 0.808459i
\(40\) 0.299324 0.433646i 0.0473273 0.0685654i
\(41\) −0.456082 + 0.868992i −0.0712280 + 0.135714i −0.918466 0.395500i \(-0.870571\pi\)
0.847238 + 0.531213i \(0.178264\pi\)
\(42\) 0.223538 + 0.589421i 0.0344927 + 0.0909496i
\(43\) 0.325001 2.67662i 0.0495621 0.408181i −0.946722 0.322052i \(-0.895627\pi\)
0.996284 0.0861286i \(-0.0274496\pi\)
\(44\) −6.89177 + 4.75705i −1.03897 + 0.717152i
\(45\) −0.0658960 + 0.267350i −0.00982319 + 0.0398543i
\(46\) 1.57650 1.08818i 0.232443 0.160444i
\(47\) −11.5975 + 4.39834i −1.69167 + 0.641564i −0.996973 0.0777432i \(-0.975229\pi\)
−0.694692 + 0.719307i \(0.744459\pi\)
\(48\) −2.05309 5.41355i −0.296338 0.781378i
\(49\) 3.76006 1.97343i 0.537152 0.281919i
\(50\) −0.523075 0.996637i −0.0739740 0.140946i
\(51\) −4.95062 1.22022i −0.693225 0.170865i
\(52\) 6.54395 + 2.49493i 0.907483 + 0.345984i
\(53\) −1.84470 + 0.454678i −0.253389 + 0.0624549i −0.363964 0.931413i \(-0.618577\pi\)
0.110575 + 0.993868i \(0.464731\pi\)
\(54\) −0.880305 0.993659i −0.119794 0.135220i
\(55\) −0.289397 2.38340i −0.0390223 0.321377i
\(56\) −1.39021 + 0.729641i −0.185775 + 0.0975024i
\(57\) 1.26916 2.41818i 0.168104 0.320295i
\(58\) −0.156312 0.0592815i −0.0205248 0.00778404i
\(59\) 3.10092 + 3.50021i 0.403705 + 0.455689i 0.914843 0.403810i \(-0.132314\pi\)
−0.511138 + 0.859499i \(0.670776\pi\)
\(60\) 1.69976 + 0.206388i 0.219438 + 0.0266446i
\(61\) −9.59120 2.36402i −1.22803 0.302681i −0.428627 0.903481i \(-0.641003\pi\)
−0.799399 + 0.600800i \(0.794849\pi\)
\(62\) −0.744474 + 0.659546i −0.0945483 + 0.0837625i
\(63\) 0.544067 0.614125i 0.0685460 0.0773725i
\(64\) 5.88881 3.09069i 0.736101 0.386336i
\(65\) −1.50528 + 1.32886i −0.186707 + 0.164824i
\(66\) 1.45021 + 0.761127i 0.178508 + 0.0936882i
\(67\) −4.31198 + 1.63532i −0.526792 + 0.199786i −0.603640 0.797257i \(-0.706284\pi\)
0.0768479 + 0.997043i \(0.475514\pi\)
\(68\) 0.754175 6.21119i 0.0914571 0.753217i
\(69\) 11.1870 + 5.87139i 1.34676 + 0.706832i
\(70\) 0.221783i 0.0265081i
\(71\) 3.75186 7.14856i 0.445263 0.848378i −0.554604 0.832114i \(-0.687130\pi\)
0.999868 0.0162643i \(-0.00517731\pi\)
\(72\) 0.310226 0.350173i 0.0365605 0.0412682i
\(73\) 10.7947 + 7.45108i 1.26343 + 0.872082i 0.995810 0.0914423i \(-0.0291477\pi\)
0.267619 + 0.963525i \(0.413763\pi\)
\(74\) −0.261869 + 0.231995i −0.0304416 + 0.0269689i
\(75\) 4.21707 6.10948i 0.486945 0.705462i
\(76\) 3.13348 + 1.18837i 0.359434 + 0.136315i
\(77\) −2.53682 + 6.68905i −0.289098 + 0.762288i
\(78\) −0.162718 1.36003i −0.0184242 0.153993i
\(79\) 4.76293 + 12.5588i 0.535871 + 1.41298i 0.880414 + 0.474206i \(0.157265\pi\)
−0.344543 + 0.938771i \(0.611966\pi\)
\(80\) 2.03697i 0.227740i
\(81\) 2.57876 6.79963i 0.286529 0.755515i
\(82\) 0.0283908 + 0.233819i 0.00313524 + 0.0258210i
\(83\) 4.25995 + 8.11666i 0.467590 + 0.890919i 0.999039 + 0.0438283i \(0.0139555\pi\)
−0.531449 + 0.847090i \(0.678352\pi\)
\(84\) −4.19882 2.89824i −0.458129 0.316223i
\(85\) 1.47632 + 1.01903i 0.160129 + 0.110529i
\(86\) −0.300724 0.572983i −0.0324280 0.0617863i
\(87\) −0.132903 1.09456i −0.0142487 0.117349i
\(88\) −1.44649 + 3.81408i −0.154196 + 0.406583i
\(89\) 14.9265i 1.58221i 0.611682 + 0.791104i \(0.290493\pi\)
−0.611682 + 0.791104i \(0.709507\pi\)
\(90\) 0.0234338 + 0.0617897i 0.00247013 + 0.00651321i
\(91\) 5.81161 1.42163i 0.609222 0.149027i
\(92\) −5.49766 + 14.4961i −0.573170 + 1.51133i
\(93\) −6.13357 2.32616i −0.636022 0.241211i
\(94\) −1.69103 + 2.44988i −0.174417 + 0.252686i
\(95\) −0.719184 + 0.637142i −0.0737867 + 0.0653694i
\(96\) −3.60873 2.49092i −0.368314 0.254229i
\(97\) 3.54411 4.00048i 0.359850 0.406187i −0.540506 0.841340i \(-0.681767\pi\)
0.900356 + 0.435153i \(0.143306\pi\)
\(98\) 0.473622 0.902412i 0.0478431 0.0911574i
\(99\) 2.13164i 0.214238i
\(100\) 8.06615 + 4.23344i 0.806615 + 0.423344i
\(101\) −0.825756 + 6.80071i −0.0821658 + 0.676696i 0.892186 + 0.451668i \(0.149171\pi\)
−0.974352 + 0.225029i \(0.927752\pi\)
\(102\) −1.14418 + 0.433931i −0.113291 + 0.0429656i
\(103\) −16.0297 8.41305i −1.57946 0.828962i −0.999902 0.0140288i \(-0.995534\pi\)
−0.579554 0.814934i \(-0.696773\pi\)
\(104\) 3.31377 0.810610i 0.324942 0.0794869i
\(105\) 1.29520 0.679775i 0.126399 0.0663392i
\(106\) −0.302368 + 0.341303i −0.0293686 + 0.0331503i
\(107\) 7.69082 6.81347i 0.743500 0.658683i −0.203807 0.979011i \(-0.565332\pi\)
0.947307 + 0.320328i \(0.103793\pi\)
\(108\) 10.4319 + 2.57122i 1.00381 + 0.247416i
\(109\) −1.86701 0.226696i −0.178827 0.0217135i 0.0306332 0.999531i \(-0.490248\pi\)
−0.209460 + 0.977817i \(0.567171\pi\)
\(110\) −0.382101 0.431303i −0.0364319 0.0411231i
\(111\) −2.15748 0.818226i −0.204779 0.0776625i
\(112\) 2.82065 5.37430i 0.266527 0.507824i
\(113\) −0.607740 + 0.318966i −0.0571713 + 0.0300058i −0.493067 0.869992i \(-0.664124\pi\)
0.435895 + 0.899997i \(0.356432\pi\)
\(114\) −0.0790041 0.650657i −0.00739941 0.0609396i
\(115\) −2.94755 3.32710i −0.274861 0.310254i
\(116\) 1.31370 0.323798i 0.121974 0.0300639i
\(117\) −1.46893 + 1.01013i −0.135803 + 0.0933868i
\(118\) 1.08968 + 0.268582i 0.100313 + 0.0247250i
\(119\) −2.48401 4.73288i −0.227709 0.433863i
\(120\) 0.738522 0.387606i 0.0674175 0.0353834i
\(121\) 2.69027 + 7.09366i 0.244570 + 0.644879i
\(122\) −2.21671 + 0.840686i −0.200691 + 0.0761121i
\(123\) −1.27847 + 0.882468i −0.115276 + 0.0795694i
\(124\) 1.92642 7.81581i 0.172998 0.701881i
\(125\) −4.44102 + 3.06542i −0.397217 + 0.274179i
\(126\) 0.0237349 0.195474i 0.00211447 0.0174143i
\(127\) −1.80359 4.75567i −0.160043 0.421998i 0.830876 0.556457i \(-0.187840\pi\)
−0.990919 + 0.134459i \(0.957070\pi\)
\(128\) 3.31651 6.31908i 0.293141 0.558533i
\(129\) 2.42446 3.51244i 0.213462 0.309253i
\(130\) −0.116146 + 0.467692i −0.0101867 + 0.0410193i
\(131\) 6.38184 + 9.24569i 0.557584 + 0.807800i 0.995847 0.0910473i \(-0.0290214\pi\)
−0.438263 + 0.898847i \(0.644406\pi\)
\(132\) −13.1587 + 1.59776i −1.14532 + 0.139067i
\(133\) 2.77975 0.685148i 0.241035 0.0594098i
\(134\) −0.628731 + 0.910874i −0.0543141 + 0.0786876i
\(135\) −2.04267 + 2.30569i −0.175805 + 0.198443i
\(136\) −1.41638 2.69868i −0.121453 0.231410i
\(137\) −7.48201 0.908481i −0.639231 0.0776167i −0.205497 0.978658i \(-0.565881\pi\)
−0.433734 + 0.901041i \(0.642804\pi\)
\(138\) 3.01008 0.365490i 0.256235 0.0311126i
\(139\) −12.2456 10.8487i −1.03866 0.920171i −0.0417805 0.999127i \(-0.513303\pi\)
−0.996878 + 0.0789555i \(0.974841\pi\)
\(140\) 1.01966 + 1.47723i 0.0861769 + 0.124849i
\(141\) −19.4903 2.36655i −1.64138 0.199300i
\(142\) −0.233550 1.92346i −0.0195991 0.161413i
\(143\) 8.85261 12.7772i 0.740293 1.06849i
\(144\) −0.217994 + 1.79534i −0.0181661 + 0.149612i
\(145\) −0.0928345 + 0.376644i −0.00770949 + 0.0312786i
\(146\) 3.14797 0.260528
\(147\) 6.72172 0.554398
\(148\) 0.677620 2.74921i 0.0557000 0.225984i
\(149\) −10.0204 + 3.80024i −0.820904 + 0.311328i −0.729063 0.684446i \(-0.760044\pi\)
−0.0918402 + 0.995774i \(0.529275\pi\)
\(150\) 1.78165i 0.145471i
\(151\) −15.2399 5.77971i −1.24020 0.470346i −0.354699 0.934981i \(-0.615417\pi\)
−0.885503 + 0.464634i \(0.846186\pi\)
\(152\) 1.58501 0.390670i 0.128561 0.0316875i
\(153\) 1.19214 + 1.05614i 0.0963786 + 0.0853839i
\(154\) 0.410891 + 1.66705i 0.0331105 + 0.134335i
\(155\) 1.72748 + 1.53042i 0.138755 + 0.122926i
\(156\) 7.33661 + 8.31063i 0.587399 + 0.665383i
\(157\) 3.14097 2.78265i 0.250676 0.222080i −0.528422 0.848982i \(-0.677216\pi\)
0.779098 + 0.626902i \(0.215677\pi\)
\(158\) 2.65296 + 1.83120i 0.211058 + 0.145683i
\(159\) −2.91997 0.719709i −0.231569 0.0570766i
\(160\) 0.876358 + 1.26962i 0.0692822 + 0.100373i
\(161\) 3.16964 + 12.8597i 0.249803 + 1.01349i
\(162\) −0.417683 1.69461i −0.0328163 0.133141i
\(163\) 22.9675 2.78876i 1.79896 0.218433i 0.848479 0.529229i \(-0.177519\pi\)
0.950477 + 0.310796i \(0.100596\pi\)
\(164\) −1.26410 1.42687i −0.0987096 0.111420i
\(165\) 1.34763 3.55342i 0.104913 0.276633i
\(166\) 1.94799 + 1.02238i 0.151193 + 0.0793524i
\(167\) −6.90583 + 4.76675i −0.534389 + 0.368862i −0.804487 0.593971i \(-0.797560\pi\)
0.270097 + 0.962833i \(0.412944\pi\)
\(168\) −2.48523 −0.191740
\(169\) −12.9999 0.0455828i −0.999994 0.00350637i
\(170\) 0.430524 0.0330197
\(171\) −0.702059 + 0.484597i −0.0536878 + 0.0370580i
\(172\) 4.63736 + 2.43387i 0.353595 + 0.185581i
\(173\) 3.11163 8.20468i 0.236572 0.623790i −0.763177 0.646190i \(-0.776361\pi\)
0.999749 + 0.0223996i \(0.00713060\pi\)
\(174\) −0.175477 0.198073i −0.0133029 0.0150159i
\(175\) 7.72551 0.938047i 0.583994 0.0709097i
\(176\) −3.77383 15.3110i −0.284463 1.15411i
\(177\) 1.77141 + 7.18690i 0.133147 + 0.540201i
\(178\) 2.03501 + 2.94821i 0.152530 + 0.220978i
\(179\) −14.9596 3.68722i −1.11814 0.275596i −0.363405 0.931631i \(-0.618386\pi\)
−0.754730 + 0.656035i \(0.772232\pi\)
\(180\) −0.440167 0.303826i −0.0328081 0.0226458i
\(181\) −12.6262 + 11.1858i −0.938496 + 0.831435i −0.985882 0.167442i \(-0.946449\pi\)
0.0473863 + 0.998877i \(0.484911\pi\)
\(182\) 0.954064 1.07312i 0.0707199 0.0795449i
\(183\) −11.7039 10.3687i −0.865176 0.766479i
\(184\) 1.80732 + 7.33259i 0.133238 + 0.540566i
\(185\) 0.607642 + 0.538324i 0.0446747 + 0.0395784i
\(186\) −1.52861 + 0.376769i −0.112083 + 0.0276260i
\(187\) −12.9848 4.92447i −0.949540 0.360113i
\(188\) 24.0926i 1.75713i
\(189\) 8.58211 3.25476i 0.624256 0.236749i
\(190\) −0.0551852 + 0.223895i −0.00400356 + 0.0162431i
\(191\) −8.05542 −0.582870 −0.291435 0.956591i \(-0.594133\pi\)
−0.291435 + 0.956591i \(0.594133\pi\)
\(192\) 10.5272 0.759735
\(193\) −1.39477 + 5.65879i −0.100398 + 0.407329i −0.999540 0.0303272i \(-0.990345\pi\)
0.899143 + 0.437656i \(0.144191\pi\)
\(194\) 0.154612 1.27334i 0.0111005 0.0914206i
\(195\) −3.08729 + 0.755211i −0.221086 + 0.0540817i
\(196\) 0.994229 + 8.18821i 0.0710163 + 0.584872i
\(197\) 23.4056 + 2.84196i 1.66758 + 0.202481i 0.899208 0.437521i \(-0.144143\pi\)
0.768373 + 0.640002i \(0.221066\pi\)
\(198\) −0.290618 0.421033i −0.0206533 0.0299215i
\(199\) 1.79999 + 1.59465i 0.127598 + 0.113042i 0.724508 0.689266i \(-0.242067\pi\)
−0.596911 + 0.802308i \(0.703605\pi\)
\(200\) 4.40507 0.534872i 0.311485 0.0378212i
\(201\) −7.24656 0.879892i −0.511133 0.0620628i
\(202\) 0.764076 + 1.45582i 0.0537602 + 0.102431i
\(203\) 0.766484 0.865182i 0.0537967 0.0607239i
\(204\) 5.62604 8.15073i 0.393902 0.570665i
\(205\) 0.530659 0.130796i 0.0370628 0.00913517i
\(206\) −4.31311 + 0.523706i −0.300509 + 0.0364883i
\(207\) −2.24185 3.24788i −0.155819 0.225743i
\(208\) −8.76262 + 9.85609i −0.607578 + 0.683397i
\(209\) 4.22539 6.12154i 0.292277 0.423436i
\(210\) 0.163145 0.310847i 0.0112581 0.0214505i
\(211\) 1.48788 + 3.92321i 0.102430 + 0.270085i 0.976428 0.215845i \(-0.0692505\pi\)
−0.873998 + 0.485929i \(0.838481\pi\)
\(212\) 0.444827 3.66348i 0.0305508 0.251609i
\(213\) 10.5171 7.25942i 0.720619 0.497407i
\(214\) 0.590140 2.39429i 0.0403411 0.163670i
\(215\) −1.23575 + 0.852976i −0.0842773 + 0.0581724i
\(216\) 4.89350 1.85586i 0.332960 0.126275i
\(217\) −2.43855 6.42993i −0.165539 0.436492i
\(218\) −0.399670 + 0.209763i −0.0270690 + 0.0142069i
\(219\) 9.64868 + 18.3840i 0.651997 + 1.24228i
\(220\) 4.52800 + 1.11605i 0.305278 + 0.0752442i
\(221\) 2.75966 + 11.2815i 0.185635 + 0.758874i
\(222\) −0.537689 + 0.132528i −0.0360873 + 0.00889472i
\(223\) −8.35446 9.43024i −0.559456 0.631495i 0.398926 0.916983i \(-0.369383\pi\)
−0.958382 + 0.285488i \(0.907844\pi\)
\(224\) −0.554082 4.56328i −0.0370212 0.304897i
\(225\) −2.05325 + 1.07763i −0.136883 + 0.0718419i
\(226\) −0.0765516 + 0.145857i −0.00509214 + 0.00970226i
\(227\) 7.88313 + 2.98968i 0.523221 + 0.198432i 0.602053 0.798456i \(-0.294350\pi\)
−0.0788314 + 0.996888i \(0.525119\pi\)
\(228\) 3.51766 + 3.97061i 0.232963 + 0.262960i
\(229\) −14.3964 1.74804i −0.951339 0.115513i −0.369871 0.929083i \(-0.620598\pi\)
−0.581468 + 0.813570i \(0.697521\pi\)
\(230\) −1.03579 0.255299i −0.0682978 0.0168339i
\(231\) −8.47610 + 7.50917i −0.557686 + 0.494067i
\(232\) 0.437048 0.493325i 0.0286936 0.0323884i
\(233\) 5.44707 2.85884i 0.356850 0.187289i −0.276766 0.960937i \(-0.589263\pi\)
0.633615 + 0.773648i \(0.281570\pi\)
\(234\) −0.152420 + 0.399783i −0.00996401 + 0.0261347i
\(235\) 6.11625 + 3.21005i 0.398980 + 0.209401i
\(236\) −8.49286 + 3.22092i −0.552838 + 0.209664i
\(237\) −2.56272 + 21.1059i −0.166466 + 1.37097i
\(238\) −1.13589 0.596160i −0.0736286 0.0386433i
\(239\) 5.08882i 0.329169i −0.986363 0.164584i \(-0.947372\pi\)
0.986363 0.164584i \(-0.0526283\pi\)
\(240\) −1.49841 + 2.85498i −0.0967220 + 0.184288i
\(241\) −7.28882 + 8.22738i −0.469514 + 0.529972i −0.934793 0.355192i \(-0.884415\pi\)
0.465279 + 0.885164i \(0.345954\pi\)
\(242\) 1.49848 + 1.03433i 0.0963262 + 0.0664892i
\(243\) −3.80458 + 3.37056i −0.244064 + 0.216221i
\(244\) 10.8997 15.7910i 0.697784 1.01092i
\(245\) −2.21117 0.838584i −0.141266 0.0535752i
\(246\) −0.132207 + 0.348602i −0.00842922 + 0.0222260i
\(247\) −6.22070 0.0109061i −0.395814 0.000693937i
\(248\) −1.39046 3.66633i −0.0882940 0.232812i
\(249\) 14.5098i 0.919523i
\(250\) −0.459246 + 1.21093i −0.0290453 + 0.0765861i
\(251\) −0.0213620 0.175932i −0.00134836 0.0111047i 0.992019 0.126087i \(-0.0402419\pi\)
−0.993368 + 0.114982i \(0.963319\pi\)
\(252\) 0.740614 + 1.41112i 0.0466543 + 0.0888923i
\(253\) 28.3195 + 19.5476i 1.78043 + 1.22895i
\(254\) −1.00460 0.693426i −0.0630343 0.0435094i
\(255\) 1.31958 + 2.51424i 0.0826351 + 0.157448i
\(256\) 1.39683 + 11.5039i 0.0873020 + 0.718996i
\(257\) −0.0818334 + 0.215777i −0.00510463 + 0.0134598i −0.937544 0.347866i \(-0.886906\pi\)
0.932440 + 0.361326i \(0.117676\pi\)
\(258\) 1.02430i 0.0637701i
\(259\) −0.857759 2.26173i −0.0532986 0.140537i
\(260\) −1.37663 3.64915i −0.0853747 0.226310i
\(261\) −0.122130 + 0.322031i −0.00755968 + 0.0199332i
\(262\) 2.52102 + 0.956097i 0.155749 + 0.0590679i
\(263\) 14.3348 20.7676i 0.883922 1.28058i −0.0750785 0.997178i \(-0.523921\pi\)
0.959000 0.283404i \(-0.0914639\pi\)
\(264\) −4.83305 + 4.28171i −0.297454 + 0.263521i
\(265\) 0.870760 + 0.601042i 0.0534903 + 0.0369217i
\(266\) 0.455634 0.514305i 0.0279367 0.0315341i
\(267\) −10.9801 + 20.9208i −0.671969 + 1.28033i
\(268\) 8.95770i 0.547179i
\(269\) 11.5785 + 6.07688i 0.705955 + 0.370514i 0.779179 0.626802i \(-0.215636\pi\)
−0.0732239 + 0.997316i \(0.523329\pi\)
\(270\) −0.0891112 + 0.733897i −0.00542314 + 0.0446635i
\(271\) 23.4179 8.88123i 1.42254 0.539497i 0.481093 0.876670i \(-0.340240\pi\)
0.941443 + 0.337173i \(0.109471\pi\)
\(272\) 10.4326 + 5.47544i 0.632568 + 0.331997i
\(273\) 9.19123 + 2.28253i 0.556278 + 0.138145i
\(274\) −1.60167 + 0.840621i −0.0967604 + 0.0507838i
\(275\) 13.4077 15.1342i 0.808517 0.912627i
\(276\) −18.3689 + 16.2734i −1.10568 + 0.979546i
\(277\) 7.63895 + 1.88283i 0.458980 + 0.113128i 0.462025 0.886867i \(-0.347123\pi\)
−0.00304474 + 0.999995i \(0.500969\pi\)
\(278\) −3.89775 0.473272i −0.233771 0.0283850i
\(279\) 1.35878 + 1.53375i 0.0813482 + 0.0918231i
\(280\) 0.817538 + 0.310051i 0.0488572 + 0.0185291i
\(281\) −7.72110 + 14.7113i −0.460602 + 0.877604i 0.538780 + 0.842447i \(0.318886\pi\)
−0.999382 + 0.0351573i \(0.988807\pi\)
\(282\) −4.17228 + 2.18978i −0.248455 + 0.130399i
\(283\) 0.931127 + 7.66852i 0.0553497 + 0.455846i 0.993864 + 0.110606i \(0.0352793\pi\)
−0.938515 + 0.345240i \(0.887798\pi\)
\(284\) 10.3988 + 11.7379i 0.617057 + 0.696513i
\(285\) −1.47668 + 0.363970i −0.0874712 + 0.0215597i
\(286\) 0.00654050 3.73062i 0.000386748 0.220596i
\(287\) −1.58120 0.389730i −0.0933352 0.0230051i
\(288\) 0.636529 + 1.21281i 0.0375079 + 0.0714652i
\(289\) −5.86530 + 3.07835i −0.345018 + 0.181079i
\(290\) 0.0330136 + 0.0870496i 0.00193862 + 0.00511173i
\(291\) 7.91016 2.99993i 0.463702 0.175859i
\(292\) −20.9677 + 14.4730i −1.22704 + 0.846967i
\(293\) −3.14068 + 12.7422i −0.183480 + 0.744410i 0.805027 + 0.593238i \(0.202151\pi\)
−0.988508 + 0.151171i \(0.951695\pi\)
\(294\) 1.32764 0.916406i 0.0774297 0.0534459i
\(295\) 0.313898 2.58519i 0.0182759 0.150515i
\(296\) −0.489092 1.28963i −0.0284279 0.0749583i
\(297\) 11.0822 21.1153i 0.643053 1.22524i
\(298\) −1.46108 + 2.11674i −0.0846380 + 0.122619i
\(299\) 0.0504539 28.7783i 0.00291782 1.66429i
\(300\) 8.19124 + 11.8671i 0.472921 + 0.685145i
\(301\) 4.44152 0.539298i 0.256005 0.0310846i
\(302\) −3.79808 + 0.936143i −0.218555 + 0.0538690i
\(303\) −6.16003 + 8.92434i −0.353884 + 0.512690i
\(304\) −4.18478 + 4.72364i −0.240014 + 0.270919i
\(305\) 2.55651 + 4.87102i 0.146385 + 0.278914i
\(306\) 0.379454 + 0.0460741i 0.0216920 + 0.00263388i
\(307\) 22.1430 2.68865i 1.26377 0.153450i 0.538921 0.842356i \(-0.318832\pi\)
0.724850 + 0.688907i \(0.241909\pi\)
\(308\) −10.4012 9.21464i −0.592662 0.525053i
\(309\) −16.2783 23.5832i −0.926041 1.34160i
\(310\) 0.549854 + 0.0667643i 0.0312296 + 0.00379196i
\(311\) −0.971247 7.99894i −0.0550743 0.453578i −0.993993 0.109440i \(-0.965094\pi\)
0.938919 0.344138i \(-0.111829\pi\)
\(312\) 5.24082 + 1.30150i 0.296703 + 0.0736827i
\(313\) 3.62562 29.8596i 0.204932 1.68777i −0.420346 0.907364i \(-0.638091\pi\)
0.625278 0.780402i \(-0.284986\pi\)
\(314\) 0.241016 0.977840i 0.0136013 0.0551827i
\(315\) −0.456912 −0.0257441
\(316\) −26.0896 −1.46766
\(317\) 7.38724 29.9712i 0.414909 1.68335i −0.276601 0.960985i \(-0.589208\pi\)
0.691510 0.722367i \(-0.256946\pi\)
\(318\) −0.674861 + 0.255941i −0.0378443 + 0.0143525i
\(319\) 3.00307i 0.168140i
\(320\) −3.46301 1.31335i −0.193588 0.0734183i
\(321\) 15.7914 3.89223i 0.881389 0.217243i
\(322\) 2.37928 + 2.10786i 0.132592 + 0.117467i
\(323\) 1.33001 + 5.39605i 0.0740035 + 0.300244i
\(324\) 10.5731 + 9.36696i 0.587395 + 0.520387i
\(325\) −16.7827 2.06765i −0.930935 0.114692i
\(326\) 4.15623 3.68210i 0.230192 0.203933i
\(327\) −2.45001 1.69112i −0.135486 0.0935192i
\(328\) −0.901596 0.222223i −0.0497823 0.0122702i
\(329\) −11.6919 16.9387i −0.644598 0.933861i
\(330\) −0.218277 0.885584i −0.0120157 0.0487498i
\(331\) 3.02809 + 12.2855i 0.166439 + 0.675270i 0.993566 + 0.113255i \(0.0361276\pi\)
−0.827127 + 0.562015i \(0.810026\pi\)
\(332\) −17.6755 + 2.14619i −0.970067 + 0.117787i
\(333\) 0.477952 + 0.539496i 0.0261916 + 0.0295642i
\(334\) −0.714133 + 1.88301i −0.0390756 + 0.103034i
\(335\) 2.27404 + 1.19351i 0.124244 + 0.0652084i
\(336\) 7.90677 5.45765i 0.431349 0.297739i
\(337\) 2.70315 0.147250 0.0736251 0.997286i \(-0.476543\pi\)
0.0736251 + 0.997286i \(0.476543\pi\)
\(338\) −2.57390 + 1.76334i −0.140002 + 0.0959131i
\(339\) −1.08643 −0.0590069
\(340\) −2.86760 + 1.97936i −0.155517 + 0.107346i
\(341\) −15.8201 8.30304i −0.856708 0.449635i
\(342\) −0.0726000 + 0.191430i −0.00392576 + 0.0103514i
\(343\) 12.3753 + 13.9688i 0.668202 + 0.754244i
\(344\) 2.53254 0.307507i 0.136546 0.0165796i
\(345\) −1.68380 6.83146i −0.0906529 0.367793i
\(346\) −0.503991 2.04477i −0.0270947 0.109928i
\(347\) 13.6074 + 19.7137i 0.730481 + 1.05829i 0.995567 + 0.0940601i \(0.0299846\pi\)
−0.265085 + 0.964225i \(0.585400\pi\)
\(348\) 2.07945 + 0.512539i 0.111470 + 0.0274750i
\(349\) −25.6253 17.6879i −1.37169 0.946809i −0.999828 0.0185209i \(-0.994104\pi\)
−0.371861 0.928288i \(-0.621280\pi\)
\(350\) 1.39802 1.23854i 0.0747272 0.0662025i
\(351\) −19.8023 + 2.36921i −1.05697 + 0.126459i
\(352\) −8.93941 7.91963i −0.476472 0.422118i
\(353\) −2.50653 10.1694i −0.133409 0.541263i −0.999167 0.0408001i \(-0.987009\pi\)
0.865758 0.500463i \(-0.166837\pi\)
\(354\) 1.32971 + 1.17802i 0.0706731 + 0.0626109i
\(355\) −4.36535 + 1.07596i −0.231689 + 0.0571061i
\(356\) −27.1092 10.2812i −1.43678 0.544900i
\(357\) 8.46079i 0.447793i
\(358\) −3.45745 + 1.31124i −0.182732 + 0.0693011i
\(359\) −3.83730 + 15.5685i −0.202525 + 0.821676i 0.778476 + 0.627674i \(0.215993\pi\)
−0.981001 + 0.194002i \(0.937853\pi\)
\(360\) −0.260530 −0.0137311
\(361\) 16.0233 0.843331
\(362\) −0.968845 + 3.93076i −0.0509213 + 0.206596i
\(363\) −1.44751 + 11.9214i −0.0759748 + 0.625709i
\(364\) −1.42102 + 11.5341i −0.0744816 + 0.604551i
\(365\) −0.880469 7.25131i −0.0460859 0.379551i
\(366\) −3.72532 0.452335i −0.194725 0.0236440i
\(367\) 1.87734 + 2.71980i 0.0979963 + 0.141972i 0.868915 0.494962i \(-0.164818\pi\)
−0.770919 + 0.636934i \(0.780202\pi\)
\(368\) −21.8526 19.3597i −1.13914 1.00919i
\(369\) 0.481709 0.0584900i 0.0250768 0.00304487i
\(370\) 0.193411 + 0.0234843i 0.0100550 + 0.00122089i
\(371\) −1.46512 2.79155i −0.0760651 0.144930i
\(372\) 8.44942 9.53743i 0.438082 0.494493i
\(373\) −14.3439 + 20.7807i −0.742698 + 1.07598i 0.251440 + 0.967873i \(0.419096\pi\)
−0.994139 + 0.108112i \(0.965520\pi\)
\(374\) −3.23607 + 0.797619i −0.167333 + 0.0412439i
\(375\) −8.47941 + 1.02959i −0.437875 + 0.0531677i
\(376\) −6.66672 9.65841i −0.343810 0.498095i
\(377\) −2.06944 + 1.42308i −0.106581 + 0.0732923i
\(378\) 1.25136 1.81291i 0.0643630 0.0932459i
\(379\) 10.0303 19.1111i 0.515220 0.981671i −0.479352 0.877623i \(-0.659128\pi\)
0.994572 0.104048i \(-0.0331795\pi\)
\(380\) −0.661798 1.74502i −0.0339495 0.0895176i
\(381\) 0.970431 7.99222i 0.0497167 0.409454i
\(382\) −1.59107 + 1.09824i −0.0814061 + 0.0561906i
\(383\) 0.890815 3.61418i 0.0455185 0.184676i −0.943782 0.330569i \(-0.892759\pi\)
0.989300 + 0.145893i \(0.0466055\pi\)
\(384\) 9.29673 6.41707i 0.474422 0.327470i
\(385\) 3.72510 1.41275i 0.189849 0.0720002i
\(386\) 0.496003 + 1.30785i 0.0252459 + 0.0665680i
\(387\) −1.18045 + 0.619546i −0.0600054 + 0.0314933i
\(388\) 4.82444 + 9.19220i 0.244924 + 0.466663i
\(389\) 25.5320 + 6.29307i 1.29452 + 0.319071i 0.825644 0.564191i \(-0.190812\pi\)
0.468879 + 0.883262i \(0.344658\pi\)
\(390\) −0.506826 + 0.570072i −0.0256641 + 0.0288667i
\(391\) −24.9633 + 6.15289i −1.26245 + 0.311165i
\(392\) 2.66436 + 3.00744i 0.134570 + 0.151899i
\(393\) 2.14348 + 17.6532i 0.108124 + 0.890484i
\(394\) 5.01043 2.62968i 0.252422 0.132481i
\(395\) 3.47614 6.62323i 0.174904 0.333251i
\(396\) 3.87144 + 1.46824i 0.194547 + 0.0737821i
\(397\) −0.00134083 0.00151348i −6.72942e−5 7.59595e-5i 0.748477 0.663161i \(-0.230785\pi\)
−0.748544 + 0.663085i \(0.769247\pi\)
\(398\) 0.572931 + 0.0695665i 0.0287185 + 0.00348705i
\(399\) 4.40006 + 1.08452i 0.220279 + 0.0542938i
\(400\) −12.8401 + 11.3754i −0.642006 + 0.568768i
\(401\) 20.9686 23.6687i 1.04712 1.18196i 0.0642017 0.997937i \(-0.479550\pi\)
0.982922 0.184022i \(-0.0589116\pi\)
\(402\) −1.55127 + 0.814168i −0.0773702 + 0.0406070i
\(403\) 1.77507 + 14.8364i 0.0884226 + 0.739052i
\(404\) −11.7825 6.18395i −0.586202 0.307663i
\(405\) −3.78668 + 1.43610i −0.188162 + 0.0713604i
\(406\) 0.0334378 0.275385i 0.00165949 0.0136671i
\(407\) −5.56473 2.92059i −0.275833 0.144768i
\(408\) 4.82433i 0.238840i
\(409\) −7.71261 + 14.6952i −0.381364 + 0.726629i −0.998169 0.0604874i \(-0.980734\pi\)
0.616805 + 0.787116i \(0.288427\pi\)
\(410\) 0.0869812 0.0981815i 0.00429570 0.00484884i
\(411\) −9.81839 6.77714i −0.484305 0.334292i
\(412\) 26.3206 23.3180i 1.29672 1.14880i
\(413\) −4.40797 + 6.38605i −0.216902 + 0.314237i
\(414\) −0.885598 0.335863i −0.0435248 0.0165068i
\(415\) 1.81021 4.77313i 0.0888596 0.234304i
\(416\) −1.22131 + 9.91313i −0.0598797 + 0.486031i
\(417\) −9.18289 24.2133i −0.449688 1.18573i
\(418\) 1.78517i 0.0873153i
\(419\) −3.15503 + 8.31912i −0.154133 + 0.406416i −0.989734 0.142921i \(-0.954350\pi\)
0.835601 + 0.549337i \(0.185120\pi\)
\(420\) 0.342475 + 2.82053i 0.0167111 + 0.137628i
\(421\) 18.3578 + 34.9778i 0.894702 + 1.70471i 0.687187 + 0.726480i \(0.258845\pi\)
0.207515 + 0.978232i \(0.433462\pi\)
\(422\) 0.828749 + 0.572044i 0.0403429 + 0.0278467i
\(423\) 5.04719 + 3.48382i 0.245403 + 0.169389i
\(424\) −0.835406 1.59173i −0.0405709 0.0773014i
\(425\) 1.82093 + 14.9967i 0.0883282 + 0.727448i
\(426\) 1.08757 2.86769i 0.0526931 0.138940i
\(427\) 16.3917i 0.793250i
\(428\) 7.07714 + 18.6609i 0.342087 + 0.902008i
\(429\) 21.8067 11.3963i 1.05284 0.550220i
\(430\) −0.127789 + 0.336951i −0.00616252 + 0.0162492i
\(431\) 30.7522 + 11.6628i 1.48128 + 0.561775i 0.957081 0.289821i \(-0.0935958\pi\)
0.524198 + 0.851596i \(0.324365\pi\)
\(432\) −11.4931 + 16.6507i −0.552964 + 0.801106i
\(433\) 25.3859 22.4900i 1.21997 1.08080i 0.225668 0.974204i \(-0.427544\pi\)
0.994303 0.106595i \(-0.0339948\pi\)
\(434\) −1.35827 0.937549i −0.0651993 0.0450038i
\(435\) −0.407178 + 0.459609i −0.0195227 + 0.0220366i
\(436\) 1.69769 3.23467i 0.0813045 0.154913i
\(437\) 13.7709i 0.658752i
\(438\) 4.41215 + 2.31567i 0.210821 + 0.110647i
\(439\) −3.50693 + 28.8822i −0.167377 + 1.37847i 0.630751 + 0.775985i \(0.282747\pi\)
−0.798128 + 0.602487i \(0.794176\pi\)
\(440\) 2.12405 0.805544i 0.101260 0.0384028i
\(441\) −1.85913 0.975746i −0.0885299 0.0464641i
\(442\) 2.08314 + 1.85203i 0.0990846 + 0.0880919i
\(443\) 26.1806 13.7406i 1.24388 0.652836i 0.291153 0.956677i \(-0.405961\pi\)
0.952723 + 0.303840i \(0.0982689\pi\)
\(444\) 2.97208 3.35479i 0.141049 0.159211i
\(445\) 6.22200 5.51221i 0.294951 0.261304i
\(446\) −2.93580 0.723611i −0.139014 0.0342640i
\(447\) −16.8399 2.04474i −0.796502 0.0967128i
\(448\) 7.31811 + 8.26044i 0.345748 + 0.390269i
\(449\) −30.9127 11.7236i −1.45886 0.553272i −0.507580 0.861604i \(-0.669460\pi\)
−0.951279 + 0.308332i \(0.900229\pi\)
\(450\) −0.258630 + 0.492778i −0.0121919 + 0.0232298i
\(451\) −3.74642 + 1.96627i −0.176412 + 0.0925882i
\(452\) −0.160697 1.32346i −0.00755856 0.0622504i
\(453\) −17.1083 19.3113i −0.803820 0.907325i
\(454\) 1.96464 0.484239i 0.0922049 0.0227265i
\(455\) −2.73877 1.89753i −0.128395 0.0889576i
\(456\) 2.50890 + 0.618389i 0.117490 + 0.0289587i
\(457\) −3.52467 6.71570i −0.164877 0.314147i 0.788974 0.614426i \(-0.210613\pi\)
−0.953851 + 0.300279i \(0.902920\pi\)
\(458\) −3.08182 + 1.61746i −0.144004 + 0.0755792i
\(459\) 6.31813 + 16.6595i 0.294905 + 0.777601i
\(460\) 8.07283 3.06162i 0.376398 0.142749i
\(461\) −24.5876 + 16.9716i −1.14516 + 0.790445i −0.980619 0.195926i \(-0.937229\pi\)
−0.164538 + 0.986371i \(0.552613\pi\)
\(462\) −0.650397 + 2.63876i −0.0302592 + 0.122766i
\(463\) 2.31745 1.59962i 0.107701 0.0743405i −0.512997 0.858390i \(-0.671465\pi\)
0.620698 + 0.784050i \(0.286849\pi\)
\(464\) −0.307110 + 2.52928i −0.0142572 + 0.117419i
\(465\) 1.29543 + 3.41576i 0.0600740 + 0.158402i
\(466\) 0.686120 1.30729i 0.0317839 0.0605591i
\(467\) 15.7770 22.8569i 0.730073 1.05769i −0.265538 0.964101i \(-0.585549\pi\)
0.995611 0.0935928i \(-0.0298352\pi\)
\(468\) −0.822801 3.36360i −0.0380340 0.155483i
\(469\) −4.34711 6.29787i −0.200731 0.290809i
\(470\) 1.64569 0.199824i 0.0759102 0.00921717i
\(471\) 6.44927 1.58960i 0.297167 0.0732450i
\(472\) −2.51341 + 3.64131i −0.115689 + 0.167605i
\(473\) 7.70832 8.70089i 0.354429 0.400068i
\(474\) 2.37129 + 4.51812i 0.108917 + 0.207524i
\(475\) −8.03250 0.975322i −0.368557 0.0447509i
\(476\) 10.3067 1.25146i 0.472407 0.0573605i
\(477\) 0.703146 + 0.622933i 0.0321948 + 0.0285221i
\(478\) −0.693785 1.00512i −0.0317330 0.0459731i
\(479\) −18.9410 2.29985i −0.865434 0.105083i −0.324234 0.945977i \(-0.605107\pi\)
−0.541200 + 0.840894i \(0.682030\pi\)
\(480\) 0.294344 + 2.42414i 0.0134349 + 0.110646i
\(481\) 0.624381 + 5.21869i 0.0284693 + 0.237952i
\(482\) −0.317974 + 2.61875i −0.0144833 + 0.119281i
\(483\) −5.01721 + 20.3556i −0.228291 + 0.926213i
\(484\) −14.7364 −0.669835
\(485\) −2.97637 −0.135150
\(486\) −0.291937 + 1.18443i −0.0132425 + 0.0537270i
\(487\) −28.4360 + 10.7844i −1.28856 + 0.488686i −0.901264 0.433270i \(-0.857360\pi\)
−0.387294 + 0.921956i \(0.626590\pi\)
\(488\) 9.34652i 0.423097i
\(489\) 34.2424 + 12.9864i 1.54849 + 0.587266i
\(490\) −0.551067 + 0.135826i −0.0248947 + 0.00613599i
\(491\) 21.8631 + 19.3690i 0.986669 + 0.874112i 0.992046 0.125873i \(-0.0401732\pi\)
−0.00537737 + 0.999986i \(0.501712\pi\)
\(492\) −0.722122 2.92977i −0.0325558 0.132084i
\(493\) 1.67949 + 1.48790i 0.0756403 + 0.0670115i
\(494\) −1.23017 + 0.845945i −0.0553480 + 0.0380609i
\(495\) −0.888560 + 0.787195i −0.0399378 + 0.0353818i
\(496\) 12.4751 + 8.61094i 0.560148 + 0.386642i
\(497\) 13.0074 + 3.20603i 0.583461 + 0.143810i
\(498\) 1.97820 + 2.86591i 0.0886452 + 0.128425i
\(499\) 7.92848 + 32.1671i 0.354927 + 1.44000i 0.828870 + 0.559441i \(0.188984\pi\)
−0.473943 + 0.880556i \(0.657170\pi\)
\(500\) −2.50843 10.1771i −0.112180 0.455133i
\(501\) −13.1856 + 1.60102i −0.589088 + 0.0715282i
\(502\) −0.0282050 0.0318369i −0.00125885 0.00142095i
\(503\) −12.9208 + 34.0693i −0.576109 + 1.51907i 0.257251 + 0.966345i \(0.417183\pi\)
−0.833360 + 0.552730i \(0.813586\pi\)
\(504\) 0.687378 + 0.360764i 0.0306183 + 0.0160697i
\(505\) 3.13977 2.16723i 0.139718 0.0964403i
\(506\) 8.25856 0.367138
\(507\) −18.1870 9.62674i −0.807711 0.427538i
\(508\) 9.87943 0.438329
\(509\) 1.80828 1.24816i 0.0801504 0.0553238i −0.527316 0.849669i \(-0.676801\pi\)
0.607466 + 0.794346i \(0.292186\pi\)
\(510\) 0.603416 + 0.316697i 0.0267197 + 0.0140236i
\(511\) −7.71810 + 20.3510i −0.341429 + 0.900274i
\(512\) 11.3091 + 12.7653i 0.499795 + 0.564152i
\(513\) −9.47372 + 1.15032i −0.418275 + 0.0507878i
\(514\) 0.0132546 + 0.0537760i 0.000584635 + 0.00237196i
\(515\) 2.41270 + 9.78872i 0.106316 + 0.431343i
\(516\) 4.70927 + 6.82256i 0.207314 + 0.300347i
\(517\) −51.9204 12.7972i −2.28346 0.562822i
\(518\) −0.477773 0.329783i −0.0209921 0.0144898i
\(519\) 10.3966 9.21062i 0.456362 0.404301i
\(520\) −1.56164 1.08197i −0.0684824 0.0474474i
\(521\) 3.70576 + 3.28302i 0.162352 + 0.143832i 0.740388 0.672180i \(-0.234642\pi\)
−0.578035 + 0.816012i \(0.696180\pi\)
\(522\) 0.0197815 + 0.0802567i 0.000865813 + 0.00351274i
\(523\) −4.67843 4.14473i −0.204573 0.181236i 0.554615 0.832107i \(-0.312866\pi\)
−0.759189 + 0.650871i \(0.774404\pi\)
\(524\) −21.1875 + 5.22225i −0.925581 + 0.228135i
\(525\) 11.5180 + 4.36820i 0.502686 + 0.190644i
\(526\) 6.05624i 0.264065i
\(527\) 12.4817 4.73370i 0.543713 0.206203i
\(528\) 5.97358 24.2358i 0.259967 1.05473i
\(529\) 40.7072 1.76988
\(530\) 0.253931 0.0110301
\(531\) 0.553326 2.24493i 0.0240123 0.0974218i
\(532\) −0.670303 + 5.52044i −0.0290613 + 0.239341i
\(533\) 3.13031 + 1.64992i 0.135589 + 0.0714659i
\(534\) 0.683501 + 5.62914i 0.0295780 + 0.243597i
\(535\) −5.68029 0.689712i −0.245580 0.0298188i
\(536\) −2.47871 3.59103i −0.107064 0.155109i
\(537\) −18.2548 16.1724i −0.787755 0.697890i
\(538\) 3.11543 0.378281i 0.134316 0.0163089i
\(539\) 18.1740 + 2.20673i 0.782811 + 0.0950504i
\(540\) −2.78059 5.29797i −0.119658 0.227988i
\(541\) 24.5778 27.7426i 1.05668 1.19275i 0.0760081 0.997107i \(-0.475783\pi\)
0.980675 0.195642i \(-0.0626790\pi\)
\(542\) 3.41457 4.94686i 0.146668 0.212486i
\(543\) −25.9250 + 6.38994i −1.11255 + 0.274219i
\(544\) 8.85821 1.07558i 0.379793 0.0461152i
\(545\) 0.594972 + 0.861965i 0.0254858 + 0.0369225i
\(546\) 2.12660 0.802250i 0.0910100 0.0343331i
\(547\) −15.5987 + 22.5986i −0.666950 + 0.966244i 0.332780 + 0.943005i \(0.392013\pi\)
−0.999730 + 0.0232397i \(0.992602\pi\)
\(548\) 6.80346 12.9629i 0.290629 0.553748i
\(549\) 1.73196 + 4.56681i 0.0739183 + 0.194907i
\(550\) 0.584911 4.81718i 0.0249407 0.205405i
\(551\) −0.989064 + 0.682702i −0.0421356 + 0.0290841i
\(552\) −2.86080 + 11.6067i −0.121764 + 0.494015i
\(553\) −18.3428 + 12.6611i −0.780015 + 0.538405i
\(554\) 1.76551 0.669568i 0.0750092 0.0284472i
\(555\) 0.455666 + 1.20149i 0.0193420 + 0.0510005i
\(556\) 28.1377 14.7678i 1.19330 0.626294i
\(557\) 17.3154 + 32.9918i 0.733679 + 1.39791i 0.910435 + 0.413653i \(0.135747\pi\)
−0.176756 + 0.984255i \(0.556560\pi\)
\(558\) 0.477484 + 0.117689i 0.0202135 + 0.00498218i
\(559\) −9.64863 1.18872i −0.408093 0.0502777i
\(560\) −3.28188 + 0.808910i −0.138685 + 0.0341827i
\(561\) −14.5768 16.4538i −0.615431 0.694679i
\(562\) 0.480633 + 3.95837i 0.0202743 + 0.166974i
\(563\) 34.5743 18.1460i 1.45713 0.764763i 0.464461 0.885593i \(-0.346248\pi\)
0.992673 + 0.120830i \(0.0385557\pi\)
\(564\) 17.7227 33.7678i 0.746260 1.42188i
\(565\) 0.357391 + 0.135540i 0.0150355 + 0.00570223i
\(566\) 1.22940 + 1.38770i 0.0516755 + 0.0583296i
\(567\) 11.9793 + 1.45456i 0.503085 + 0.0610856i
\(568\) 7.41678 + 1.82807i 0.311201 + 0.0767042i
\(569\) −34.5847 + 30.6393i −1.44986 + 1.28447i −0.559805 + 0.828624i \(0.689124\pi\)
−0.890060 + 0.455844i \(0.849338\pi\)
\(570\) −0.242046 + 0.273213i −0.0101382 + 0.0114436i
\(571\) 9.29620 4.87902i 0.389034 0.204181i −0.258854 0.965916i \(-0.583345\pi\)
0.647888 + 0.761736i \(0.275653\pi\)
\(572\) 17.1082 + 24.8787i 0.715329 + 1.04023i
\(573\) −11.2904 5.92563i −0.471661 0.247547i
\(574\) −0.365445 + 0.138595i −0.0152534 + 0.00578484i
\(575\) 4.51205 37.1601i 0.188166 1.54968i
\(576\) −2.91167 1.52816i −0.121319 0.0636734i
\(577\) 26.4188i 1.09983i −0.835221 0.549915i \(-0.814660\pi\)
0.835221 0.549915i \(-0.185340\pi\)
\(578\) −0.738800 + 1.40767i −0.0307300 + 0.0585512i
\(579\) −6.11754 + 6.90527i −0.254236 + 0.286973i
\(580\) −0.620110 0.428031i −0.0257487 0.0177730i
\(581\) −11.3855 + 10.0867i −0.472351 + 0.418466i
\(582\) 1.15338 1.67096i 0.0478092 0.0692636i
\(583\) −7.65867 2.90455i −0.317190 0.120294i
\(584\) −4.40084 + 11.6041i −0.182108 + 0.480180i
\(585\) 0.963528 + 0.239281i 0.0398370 + 0.00989305i
\(586\) 1.11688 + 2.94497i 0.0461379 + 0.121656i
\(587\) 12.3709i 0.510603i 0.966861 + 0.255302i \(0.0821748\pi\)
−0.966861 + 0.255302i \(0.917825\pi\)
\(588\) −4.62982 + 12.2078i −0.190931 + 0.503443i
\(589\) 0.861846 + 7.09794i 0.0355118 + 0.292466i
\(590\) −0.290451 0.553409i −0.0119577 0.0227835i
\(591\) 30.7144 + 21.2006i 1.26342 + 0.872077i
\(592\) 4.38811 + 3.02890i 0.180350 + 0.124487i
\(593\) −12.9357 24.6469i −0.531205 1.01213i −0.992192 0.124720i \(-0.960197\pi\)
0.460987 0.887407i \(-0.347496\pi\)
\(594\) −0.689858 5.68149i −0.0283052 0.233114i
\(595\) −1.05555 + 2.78325i −0.0432732 + 0.114102i
\(596\) 20.8164i 0.852672i
\(597\) 1.34980 + 3.55912i 0.0552435 + 0.145665i
\(598\) −3.91352 5.69103i −0.160036 0.232724i
\(599\) −0.495046 + 1.30533i −0.0202270 + 0.0533343i −0.944749 0.327794i \(-0.893695\pi\)
0.924522 + 0.381128i \(0.124464\pi\)
\(600\) 6.56753 + 2.49074i 0.268118 + 0.101684i
\(601\) −12.9670 + 18.7859i −0.528934 + 0.766293i −0.992822 0.119601i \(-0.961839\pi\)
0.463888 + 0.885894i \(0.346454\pi\)
\(602\) 0.803743 0.712054i 0.0327581 0.0290212i
\(603\) 1.87656 + 1.29530i 0.0764195 + 0.0527486i
\(604\) 20.9940 23.6973i 0.854232 0.964228i
\(605\) 1.96345 3.74104i 0.0798255 0.152095i
\(606\) 2.60252i 0.105720i
\(607\) −16.7340 8.78267i −0.679212 0.356478i 0.0895777 0.995980i \(-0.471448\pi\)
−0.768789 + 0.639502i \(0.779141\pi\)
\(608\) −0.576100 + 4.74461i −0.0233639 + 0.192419i
\(609\) 1.71073 0.648794i 0.0693222 0.0262904i
\(610\) 1.16904 + 0.613560i 0.0473331 + 0.0248423i
\(611\) 15.7851 + 41.8430i 0.638597 + 1.69279i
\(612\) −2.73926 + 1.43768i −0.110728 + 0.0581146i
\(613\) 14.3628 16.2123i 0.580108 0.654807i −0.383055 0.923726i \(-0.625128\pi\)
0.963163 + 0.268919i \(0.0866664\pi\)
\(614\) 4.00703 3.54992i 0.161711 0.143263i
\(615\) 0.839978 + 0.207036i 0.0338712 + 0.00834849i
\(616\) −6.71951 0.815896i −0.270737 0.0328734i
\(617\) −8.05131 9.08805i −0.324134 0.365871i 0.563745 0.825949i \(-0.309360\pi\)
−0.887879 + 0.460078i \(0.847822\pi\)
\(618\) −6.43043 2.43874i −0.258670 0.0981005i
\(619\) 2.47064 4.70742i 0.0993036 0.189207i −0.830736 0.556667i \(-0.812080\pi\)
0.930040 + 0.367460i \(0.119772\pi\)
\(620\) −3.96937 + 2.08329i −0.159414 + 0.0836668i
\(621\) −5.32161 43.8274i −0.213549 1.75873i
\(622\) −1.28237 1.44750i −0.0514184 0.0580394i
\(623\) −24.0490 + 5.92754i −0.963501 + 0.237482i
\(624\) −19.5318 + 7.36828i −0.781897 + 0.294967i
\(625\) −19.8501 4.89262i −0.794005 0.195705i
\(626\) −3.35480 6.39203i −0.134085 0.255477i
\(627\) 10.4253 5.47162i 0.416346 0.218515i
\(628\) 2.89034 + 7.62120i 0.115337 + 0.304119i
\(629\) 4.39045 1.66508i 0.175059 0.0663910i
\(630\) −0.0902471 + 0.0622931i −0.00359553 + 0.00248182i
\(631\) 9.27985 37.6498i 0.369425 1.49882i −0.432633 0.901570i \(-0.642415\pi\)
0.802058 0.597247i \(-0.203739\pi\)
\(632\) −10.4590 + 7.21934i −0.416037 + 0.287170i
\(633\) −0.800560 + 6.59320i −0.0318194 + 0.262056i
\(634\) −2.62703 6.92691i −0.104333 0.275103i
\(635\) −1.31632 + 2.50804i −0.0522365 + 0.0995283i
\(636\) 3.31835 4.80746i 0.131581 0.190628i
\(637\) −7.09154 13.5696i −0.280977 0.537646i
\(638\) −0.409424 0.593152i −0.0162092 0.0234831i
\(639\) −3.96267 + 0.481155i −0.156761 + 0.0190342i
\(640\) −3.85881 + 0.951112i −0.152533 + 0.0375960i
\(641\) −8.42826 + 12.2104i −0.332896 + 0.482284i −0.953311 0.301990i \(-0.902349\pi\)
0.620415 + 0.784274i \(0.286964\pi\)
\(642\) 2.58839 2.92169i 0.102156 0.115310i
\(643\) 5.91504 + 11.2702i 0.233266 + 0.444452i 0.973749 0.227623i \(-0.0730954\pi\)
−0.740483 + 0.672075i \(0.765403\pi\)
\(644\) −25.5387 3.10097i −1.00637 0.122195i
\(645\) −2.35946 + 0.286491i −0.0929037 + 0.0112806i
\(646\) 0.998366 + 0.884475i 0.0392802 + 0.0347992i
\(647\) −2.24407 3.25110i −0.0882235 0.127814i 0.776387 0.630256i \(-0.217050\pi\)
−0.864611 + 0.502443i \(0.832435\pi\)
\(648\) 6.83059 + 0.829384i 0.268331 + 0.0325813i
\(649\) 2.43006 + 20.0133i 0.0953880 + 0.785591i
\(650\) −3.59673 + 1.87967i −0.141075 + 0.0737268i
\(651\) 1.31207 10.8059i 0.0514242 0.423517i
\(652\) −10.7548 + 43.6339i −0.421190 + 1.70884i
\(653\) 12.8275 0.501979 0.250990 0.967990i \(-0.419244\pi\)
0.250990 + 0.967990i \(0.419244\pi\)
\(654\) −0.714474 −0.0279381
\(655\) 1.49724 6.07456i 0.0585022 0.237353i
\(656\) 3.35643 1.27293i 0.131047 0.0496995i
\(657\) 6.48538i 0.253019i
\(658\) −4.61868 1.75163i −0.180055 0.0682858i
\(659\) −32.9940 + 8.13229i −1.28526 + 0.316789i −0.822029 0.569446i \(-0.807158\pi\)
−0.463235 + 0.886235i \(0.653312\pi\)
\(660\) 5.52540 + 4.89508i 0.215076 + 0.190541i
\(661\) −8.11244 32.9135i −0.315537 1.28019i −0.887843 0.460146i \(-0.847797\pi\)
0.572306 0.820040i \(-0.306049\pi\)
\(662\) 2.27303 + 2.01373i 0.0883439 + 0.0782659i
\(663\) −4.43085 + 17.8420i −0.172080 + 0.692925i
\(664\) −6.49200 + 5.75141i −0.251938 + 0.223198i
\(665\) −1.31213 0.905701i −0.0508824 0.0351216i
\(666\) 0.167955 + 0.0413972i 0.00650812 + 0.00160411i
\(667\) −3.15832 4.57562i −0.122291 0.177169i
\(668\) −3.90063 15.8255i −0.150920 0.612306i
\(669\) −4.77252 19.3629i −0.184516 0.748612i
\(670\) 0.611875 0.0742951i 0.0236388 0.00287027i
\(671\) −28.2406 31.8771i −1.09022 1.23060i
\(672\) 2.58019 6.80341i 0.0995330 0.262447i
\(673\) −23.8716 12.5288i −0.920181 0.482948i −0.0630291 0.998012i \(-0.520076\pi\)
−0.857152 + 0.515063i \(0.827768\pi\)
\(674\) 0.533914 0.368535i 0.0205656 0.0141954i
\(675\) −25.9412 −0.998478
\(676\) 9.03693 23.5787i 0.347574 0.906875i
\(677\) 31.5499 1.21256 0.606280 0.795251i \(-0.292661\pi\)
0.606280 + 0.795251i \(0.292661\pi\)
\(678\) −0.214587 + 0.148119i −0.00824117 + 0.00568847i
\(679\) 7.85281 + 4.12147i 0.301363 + 0.158168i
\(680\) −0.601870 + 1.58700i −0.0230807 + 0.0608587i
\(681\) 8.84964 + 9.98918i 0.339119 + 0.382786i
\(682\) −4.25671 + 0.516858i −0.162998 + 0.0197915i
\(683\) 2.46175 + 9.98773i 0.0941964 + 0.382170i 0.999051 0.0435504i \(-0.0138669\pi\)
−0.904855 + 0.425720i \(0.860021\pi\)
\(684\) −0.396545 1.60885i −0.0151623 0.0615158i
\(685\) 2.38434 + 3.45431i 0.0911009 + 0.131982i
\(686\) 4.34874 + 1.07187i 0.166036 + 0.0409241i
\(687\) −18.8919 13.0401i −0.720769 0.497511i
\(688\) −7.38199 + 6.53987i −0.281436 + 0.249330i
\(689\) 1.62770 + 6.65403i 0.0620105 + 0.253499i
\(690\) −1.26394 1.11976i −0.0481175 0.0426284i
\(691\) 3.18022 + 12.9027i 0.120981 + 0.490841i 0.999904 + 0.0138760i \(0.00441702\pi\)
−0.878922 + 0.476965i \(0.841737\pi\)
\(692\) 12.7579 + 11.3025i 0.484983 + 0.429657i
\(693\) 3.43442 0.846507i 0.130463 0.0321562i
\(694\) 5.37532 + 2.03859i 0.204045 + 0.0773839i
\(695\) 9.11079i 0.345592i
\(696\) 0.975453 0.369941i 0.0369745 0.0140226i
\(697\) 0.756543 3.06942i 0.0286561 0.116262i
\(698\) −7.47286 −0.282852
\(699\) 9.73752 0.368307
\(700\) −3.61756 + 14.6770i −0.136731 + 0.554738i
\(701\) −0.0933761 + 0.769021i −0.00352677 + 0.0290455i −0.994366 0.106001i \(-0.966195\pi\)
0.990839 + 0.135047i \(0.0431184\pi\)
\(702\) −3.58825 + 3.16770i −0.135430 + 0.119557i
\(703\) 0.303154 + 2.49670i 0.0114337 + 0.0941648i
\(704\) 28.4632 + 3.45606i 1.07275 + 0.130255i
\(705\) 6.21109 + 8.99832i 0.233923 + 0.338896i
\(706\) −1.88153 1.66689i −0.0708121 0.0627341i
\(707\) −11.2849 + 1.37024i −0.424414 + 0.0515332i
\(708\) −14.2728 1.73303i −0.536405 0.0651313i
\(709\) 14.8538 + 28.3016i 0.557847 + 1.06289i 0.987160 + 0.159733i \(0.0510633\pi\)
−0.429313 + 0.903156i \(0.641244\pi\)
\(710\) −0.715532 + 0.807668i −0.0268534 + 0.0303112i
\(711\) 3.77260 5.46556i 0.141484 0.204974i
\(712\) −13.7127 + 3.37987i −0.513904 + 0.126666i
\(713\) −32.8366 + 3.98708i −1.22974 + 0.149317i
\(714\) −1.15350 1.67114i −0.0431687 0.0625407i
\(715\) −8.59528 + 1.02837i −0.321445 + 0.0384588i
\(716\) 17.0006 24.6296i 0.635342 0.920452i
\(717\) 3.74338 7.13242i 0.139799 0.266365i
\(718\) 1.36461 + 3.59818i 0.0509268 + 0.134283i
\(719\) 4.72083 38.8795i 0.176057 1.44996i −0.590111 0.807322i \(-0.700916\pi\)
0.766168 0.642640i \(-0.222161\pi\)
\(720\) 0.828876 0.572132i 0.0308904 0.0213221i
\(721\) 7.18911 29.1674i 0.267736 1.08625i
\(722\) 3.16484 2.18453i 0.117783 0.0813000i
\(723\) −16.2680 + 6.16965i −0.605015 + 0.229452i
\(724\) −11.6187 30.6360i −0.431805 1.13858i
\(725\) −2.89263 + 1.51817i −0.107429 + 0.0563833i
\(726\) 1.33939 + 2.55200i 0.0497095 + 0.0947135i
\(727\) 6.98098 + 1.72066i 0.258910 + 0.0638156i 0.366634 0.930365i \(-0.380510\pi\)
−0.107724 + 0.994181i \(0.534356\pi\)
\(728\) 2.62197 + 5.01709i 0.0971765 + 0.185946i
\(729\) −28.9945 + 7.14651i −1.07387 + 0.264685i
\(730\) −1.16251 1.31221i −0.0430266 0.0485670i
\(731\) 1.04688 + 8.62186i 0.0387204 + 0.318891i
\(732\) 26.8929 14.1145i 0.993990 0.521686i
\(733\) 12.3260 23.4853i 0.455272 0.867449i −0.544319 0.838878i \(-0.683212\pi\)
0.999592 0.0285710i \(-0.00909566\pi\)
\(734\) 0.741606 + 0.281254i 0.0273732 + 0.0103813i
\(735\) −2.48227 2.80190i −0.0915597 0.103350i
\(736\) −21.9496 2.66516i −0.809072 0.0982392i
\(737\) −19.3042 4.75806i −0.711079 0.175265i
\(738\) 0.0871706 0.0772264i 0.00320879 0.00284274i
\(739\) −9.35995 + 10.5652i −0.344311 + 0.388647i −0.895002 0.446062i \(-0.852826\pi\)
0.550690 + 0.834710i \(0.314364\pi\)
\(740\) −1.39623 + 0.732796i −0.0513263 + 0.0269381i
\(741\) −8.71082 4.59129i −0.320000 0.168665i
\(742\) −0.669968 0.351627i −0.0245953 0.0129086i
\(743\) −18.2721 + 6.92968i −0.670337 + 0.254225i −0.666208 0.745766i \(-0.732084\pi\)
−0.00412915 + 0.999991i \(0.501314\pi\)
\(744\) 0.748142 6.16150i 0.0274282 0.225892i
\(745\) 5.28454 + 2.77354i 0.193610 + 0.101615i
\(746\) 6.06008i 0.221875i
\(747\) 2.10629 4.01320i 0.0770652 0.146835i
\(748\) 17.8874 20.1907i 0.654029 0.738246i
\(749\) 14.0317 + 9.68539i 0.512707 + 0.353896i
\(750\) −1.53445 + 1.35940i −0.0560300 + 0.0496383i
\(751\) 21.8243 31.6180i 0.796381 1.15376i −0.188763 0.982023i \(-0.560448\pi\)
0.985143 0.171734i \(-0.0549369\pi\)
\(752\) 42.4203 + 16.0879i 1.54691 + 0.586666i
\(753\) 0.0994764 0.262298i 0.00362512 0.00955866i
\(754\) −0.214730 + 0.563217i −0.00782001 + 0.0205111i
\(755\) 3.21870 + 8.48700i 0.117140 + 0.308874i
\(756\) 17.8284i 0.648414i
\(757\) 1.97638 5.21129i 0.0718328 0.189407i −0.894291 0.447485i \(-0.852320\pi\)
0.966124 + 0.258078i \(0.0830890\pi\)
\(758\) −0.624377 5.14221i −0.0226784 0.186773i
\(759\) 25.3129 + 48.2297i 0.918800 + 1.75063i
\(760\) −0.748176 0.516428i −0.0271392 0.0187328i
\(761\) −22.9787 15.8611i −0.832979 0.574964i 0.0734614 0.997298i \(-0.476595\pi\)
−0.906440 + 0.422334i \(0.861211\pi\)
\(762\) −0.897944 1.71089i −0.0325291 0.0619790i
\(763\) −0.376174 3.09807i −0.0136184 0.112158i
\(764\) 5.54845 14.6301i 0.200736 0.529297i
\(765\) 0.886955i 0.0320679i
\(766\) −0.316789 0.835305i −0.0114461 0.0301808i