Properties

Label 169.2.h.a.12.7
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.7
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.156578 - 0.108078i) q^{2} +(2.47375 + 1.29833i) q^{3} +(-0.696374 + 1.83619i) q^{4} +(0.268145 + 0.302673i) q^{5} +(0.527655 - 0.0640690i) q^{6} +(-0.983215 - 3.98906i) q^{7} +(0.180477 + 0.732225i) q^{8} +(2.72961 + 3.95452i) q^{9} +O(q^{10})\) \(q+(0.156578 - 0.108078i) q^{2} +(2.47375 + 1.29833i) q^{3} +(-0.696374 + 1.83619i) q^{4} +(0.268145 + 0.302673i) q^{5} +(0.527655 - 0.0640690i) q^{6} +(-0.983215 - 3.98906i) q^{7} +(0.180477 + 0.732225i) q^{8} +(2.72961 + 3.95452i) q^{9} +(0.0746977 + 0.0184113i) q^{10} +(-3.14047 - 2.16771i) q^{11} +(-4.10663 + 3.63815i) q^{12} +(-0.132396 + 3.60312i) q^{13} +(-0.585079 - 0.518335i) q^{14} +(0.270356 + 1.09688i) q^{15} +(-2.83246 - 2.50934i) q^{16} +(5.36554 - 1.32249i) q^{17} +(0.854793 + 0.324180i) q^{18} -2.02432i q^{19} +(-0.742492 + 0.281590i) q^{20} +(2.74687 - 11.1445i) q^{21} -0.726011 q^{22} -4.36801 q^{23} +(-0.504210 + 2.04566i) q^{24} +(0.582974 - 4.80122i) q^{25} +(0.368687 + 0.578478i) q^{26} +(0.607870 + 5.00626i) q^{27} +(8.00935 + 0.972511i) q^{28} +(4.82210 + 6.98602i) q^{29} +(0.160880 + 0.142527i) q^{30} +(4.58503 - 0.556723i) q^{31} +(-2.21198 - 0.268584i) q^{32} +(-4.95436 - 9.43975i) q^{33} +(0.697193 - 0.786968i) q^{34} +(0.943736 - 1.36724i) q^{35} +(-9.16207 + 2.25825i) q^{36} +(-9.27923 + 1.12670i) q^{37} +(-0.218784 - 0.316963i) q^{38} +(-5.00554 + 8.74134i) q^{39} +(-0.173230 + 0.250968i) q^{40} +(-0.934182 + 1.77994i) q^{41} +(-0.774374 - 2.04186i) q^{42} +(0.751651 - 6.19040i) q^{43} +(6.16727 - 4.25696i) q^{44} +(-0.464996 + 1.88656i) q^{45} +(-0.683934 + 0.472085i) q^{46} +(-3.09675 + 1.17444i) q^{47} +(-3.74886 - 9.88494i) q^{48} +(-8.74771 + 4.59115i) q^{49} +(-0.427625 - 0.814772i) q^{50} +(14.9900 + 3.69471i) q^{51} +(-6.52381 - 2.75222i) q^{52} +(-6.07185 + 1.49658i) q^{53} +(0.636245 + 0.718172i) q^{54} +(-0.185994 - 1.53180i) q^{55} +(2.74344 - 1.43987i) q^{56} +(2.62822 - 5.00766i) q^{57} +(1.51007 + 0.572693i) q^{58} +(6.58214 + 7.42969i) q^{59} +(-2.20234 - 0.267412i) q^{60} +(-4.30087 - 1.06007i) q^{61} +(0.657745 - 0.582711i) q^{62} +(13.0910 - 14.7767i) q^{63} +(6.32598 - 3.32013i) q^{64} +(-1.12607 + 0.926084i) q^{65} +(-1.79597 - 0.942599i) q^{66} +(-4.35852 + 1.65297i) q^{67} +(-1.30809 + 10.7731i) q^{68} +(-10.8054 - 5.67110i) q^{69} -0.316076i q^{70} +(-4.93011 + 9.39353i) q^{71} +(-2.40297 + 2.71239i) q^{72} +(6.97287 + 4.81303i) q^{73} +(-1.33115 + 1.17930i) q^{74} +(7.67569 - 11.1202i) q^{75} +(3.71702 + 1.40968i) q^{76} +(-5.55938 + 14.6589i) q^{77} +(0.160989 + 1.90969i) q^{78} +(-2.88713 - 7.61275i) q^{79} -1.53017i q^{80} +(0.115704 - 0.305087i) q^{81} +(0.0460994 + 0.379663i) q^{82} +(1.74252 + 3.32009i) q^{83} +(18.5505 + 12.8045i) q^{84} +(1.83902 + 1.26938i) q^{85} +(-0.551354 - 1.05052i) q^{86} +(2.85856 + 23.5423i) q^{87} +(1.02047 - 2.69076i) q^{88} +3.64179i q^{89} +(0.131088 + 0.345650i) q^{90} +(14.5032 - 3.01451i) q^{91} +(3.04177 - 8.02048i) q^{92} +(12.0650 + 4.57567i) q^{93} +(-0.357951 + 0.518582i) q^{94} +(0.612705 - 0.542809i) q^{95} +(-5.12319 - 3.53629i) q^{96} +(7.28820 - 8.22667i) q^{97} +(-0.873495 + 1.66431i) q^{98} -18.3361i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156578 0.108078i 0.110717 0.0764226i −0.511419 0.859331i \(-0.670880\pi\)
0.622137 + 0.782909i \(0.286265\pi\)
\(3\) 2.47375 + 1.29833i 1.42822 + 0.749589i 0.988878 0.148730i \(-0.0475186\pi\)
0.439344 + 0.898319i \(0.355211\pi\)
\(4\) −0.696374 + 1.83619i −0.348187 + 0.918094i
\(5\) 0.268145 + 0.302673i 0.119918 + 0.135359i 0.805404 0.592727i \(-0.201949\pi\)
−0.685486 + 0.728086i \(0.740410\pi\)
\(6\) 0.527655 0.0640690i 0.215414 0.0261560i
\(7\) −0.983215 3.98906i −0.371620 1.50772i −0.797709 0.603042i \(-0.793955\pi\)
0.426089 0.904681i \(-0.359891\pi\)
\(8\) 0.180477 + 0.732225i 0.0638083 + 0.258881i
\(9\) 2.72961 + 3.95452i 0.909870 + 1.31817i
\(10\) 0.0746977 + 0.0184113i 0.0236215 + 0.00582218i
\(11\) −3.14047 2.16771i −0.946889 0.653590i −0.00879126 0.999961i \(-0.502798\pi\)
−0.938098 + 0.346371i \(0.887414\pi\)
\(12\) −4.10663 + 3.63815i −1.18548 + 1.05024i
\(13\) −0.132396 + 3.60312i −0.0367199 + 0.999326i
\(14\) −0.585079 0.518335i −0.156369 0.138531i
\(15\) 0.270356 + 1.09688i 0.0698055 + 0.283212i
\(16\) −2.83246 2.50934i −0.708115 0.627335i
\(17\) 5.36554 1.32249i 1.30133 0.320750i 0.473039 0.881042i \(-0.343157\pi\)
0.828295 + 0.560292i \(0.189311\pi\)
\(18\) 0.854793 + 0.324180i 0.201477 + 0.0764100i
\(19\) 2.02432i 0.464410i −0.972667 0.232205i \(-0.925406\pi\)
0.972667 0.232205i \(-0.0745940\pi\)
\(20\) −0.742492 + 0.281590i −0.166026 + 0.0629655i
\(21\) 2.74687 11.1445i 0.599416 2.43193i
\(22\) −0.726011 −0.154786
\(23\) −4.36801 −0.910793 −0.455396 0.890289i \(-0.650502\pi\)
−0.455396 + 0.890289i \(0.650502\pi\)
\(24\) −0.504210 + 2.04566i −0.102921 + 0.417569i
\(25\) 0.582974 4.80122i 0.116595 0.960245i
\(26\) 0.368687 + 0.578478i 0.0723056 + 0.113449i
\(27\) 0.607870 + 5.00626i 0.116985 + 0.963455i
\(28\) 8.00935 + 0.972511i 1.51362 + 0.183787i
\(29\) 4.82210 + 6.98602i 0.895441 + 1.29727i 0.954253 + 0.299002i \(0.0966537\pi\)
−0.0588110 + 0.998269i \(0.518731\pi\)
\(30\) 0.160880 + 0.142527i 0.0293725 + 0.0260218i
\(31\) 4.58503 0.556723i 0.823496 0.0999905i 0.302068 0.953286i \(-0.402323\pi\)
0.521427 + 0.853296i \(0.325400\pi\)
\(32\) −2.21198 0.268584i −0.391027 0.0474793i
\(33\) −4.95436 9.43975i −0.862444 1.64325i
\(34\) 0.697193 0.786968i 0.119568 0.134964i
\(35\) 0.943736 1.36724i 0.159520 0.231105i
\(36\) −9.16207 + 2.25825i −1.52701 + 0.376375i
\(37\) −9.27923 + 1.12670i −1.52550 + 0.185229i −0.839895 0.542749i \(-0.817384\pi\)
−0.685601 + 0.727978i \(0.740460\pi\)
\(38\) −0.218784 0.316963i −0.0354914 0.0514182i
\(39\) −5.00554 + 8.74134i −0.801527 + 1.39973i
\(40\) −0.173230 + 0.250968i −0.0273901 + 0.0396815i
\(41\) −0.934182 + 1.77994i −0.145895 + 0.277979i −0.947427 0.319973i \(-0.896326\pi\)
0.801532 + 0.597952i \(0.204019\pi\)
\(42\) −0.774374 2.04186i −0.119488 0.315065i
\(43\) 0.751651 6.19040i 0.114626 0.944028i −0.815999 0.578053i \(-0.803813\pi\)
0.930625 0.365975i \(-0.119264\pi\)
\(44\) 6.16727 4.25696i 0.929751 0.641761i
\(45\) −0.464996 + 1.88656i −0.0693175 + 0.281232i
\(46\) −0.683934 + 0.472085i −0.100841 + 0.0696052i
\(47\) −3.09675 + 1.17444i −0.451708 + 0.171310i −0.569958 0.821674i \(-0.693041\pi\)
0.118251 + 0.992984i \(0.462271\pi\)
\(48\) −3.74886 9.88494i −0.541102 1.42677i
\(49\) −8.74771 + 4.59115i −1.24967 + 0.655879i
\(50\) −0.427625 0.814772i −0.0604754 0.115226i
\(51\) 14.9900 + 3.69471i 2.09902 + 0.517363i
\(52\) −6.52381 2.75222i −0.904689 0.381665i
\(53\) −6.07185 + 1.49658i −0.834032 + 0.205570i −0.633135 0.774042i \(-0.718232\pi\)
−0.200898 + 0.979612i \(0.564386\pi\)
\(54\) 0.636245 + 0.718172i 0.0865820 + 0.0977309i
\(55\) −0.185994 1.53180i −0.0250794 0.206547i
\(56\) 2.74344 1.43987i 0.366608 0.192411i
\(57\) 2.62822 5.00766i 0.348116 0.663280i
\(58\) 1.51007 + 0.572693i 0.198282 + 0.0751983i
\(59\) 6.58214 + 7.42969i 0.856921 + 0.967264i 0.999747 0.0224839i \(-0.00715746\pi\)
−0.142826 + 0.989748i \(0.545619\pi\)
\(60\) −2.20234 0.267412i −0.284321 0.0345228i
\(61\) −4.30087 1.06007i −0.550670 0.135728i −0.0458432 0.998949i \(-0.514597\pi\)
−0.504827 + 0.863221i \(0.668444\pi\)
\(62\) 0.657745 0.582711i 0.0835337 0.0740044i
\(63\) 13.0910 14.7767i 1.64932 1.86169i
\(64\) 6.32598 3.32013i 0.790747 0.415016i
\(65\) −1.12607 + 0.926084i −0.139671 + 0.114867i
\(66\) −1.79597 0.942599i −0.221069 0.116026i
\(67\) −4.35852 + 1.65297i −0.532478 + 0.201942i −0.606165 0.795339i \(-0.707293\pi\)
0.0736864 + 0.997281i \(0.476524\pi\)
\(68\) −1.30809 + 10.7731i −0.158629 + 1.30643i
\(69\) −10.8054 5.67110i −1.30081 0.682720i
\(70\) 0.316076i 0.0377783i
\(71\) −4.93011 + 9.39353i −0.585096 + 1.11481i 0.395445 + 0.918490i \(0.370591\pi\)
−0.980540 + 0.196317i \(0.937102\pi\)
\(72\) −2.40297 + 2.71239i −0.283192 + 0.319658i
\(73\) 6.97287 + 4.81303i 0.816113 + 0.563322i 0.901376 0.433036i \(-0.142558\pi\)
−0.0852635 + 0.996358i \(0.527173\pi\)
\(74\) −1.33115 + 1.17930i −0.154743 + 0.137090i
\(75\) 7.67569 11.1202i 0.886312 1.28404i
\(76\) 3.71702 + 1.40968i 0.426372 + 0.161701i
\(77\) −5.55938 + 14.6589i −0.633550 + 1.67053i
\(78\) 0.160989 + 1.90969i 0.0182284 + 0.216230i
\(79\) −2.88713 7.61275i −0.324828 0.856501i −0.993592 0.113026i \(-0.963946\pi\)
0.668764 0.743475i \(-0.266824\pi\)
\(80\) 1.53017i 0.171079i
\(81\) 0.115704 0.305087i 0.0128560 0.0338986i
\(82\) 0.0460994 + 0.379663i 0.00509083 + 0.0419268i
\(83\) 1.74252 + 3.32009i 0.191266 + 0.364427i 0.962138 0.272563i \(-0.0878713\pi\)
−0.770872 + 0.636991i \(0.780179\pi\)
\(84\) 18.5505 + 12.8045i 2.02403 + 1.39709i
\(85\) 1.83902 + 1.26938i 0.199470 + 0.137684i
\(86\) −0.551354 1.05052i −0.0594540 0.113280i
\(87\) 2.85856 + 23.5423i 0.306470 + 2.52400i
\(88\) 1.02047 2.69076i 0.108782 0.286836i
\(89\) 3.64179i 0.386029i 0.981196 + 0.193014i \(0.0618264\pi\)
−0.981196 + 0.193014i \(0.938174\pi\)
\(90\) 0.131088 + 0.345650i 0.0138178 + 0.0364347i
\(91\) 14.5032 3.01451i 1.52035 0.316006i
\(92\) 3.04177 8.02048i 0.317126 0.836193i
\(93\) 12.0650 + 4.57567i 1.25109 + 0.474474i
\(94\) −0.357951 + 0.518582i −0.0369199 + 0.0534877i
\(95\) 0.612705 0.542809i 0.0628622 0.0556910i
\(96\) −5.12319 3.53629i −0.522884 0.360921i
\(97\) 7.28820 8.22667i 0.740004 0.835292i −0.251158 0.967946i \(-0.580811\pi\)
0.991162 + 0.132654i \(0.0423499\pi\)
\(98\) −0.873495 + 1.66431i −0.0882364 + 0.168120i
\(99\) 18.3361i 1.84285i
\(100\) 8.40998 + 4.41390i 0.840998 + 0.441390i
\(101\) −0.957265 + 7.88378i −0.0952514 + 0.784466i 0.864309 + 0.502962i \(0.167756\pi\)
−0.959560 + 0.281504i \(0.909167\pi\)
\(102\) 2.74642 1.04158i 0.271937 0.103132i
\(103\) 5.19618 + 2.72717i 0.511995 + 0.268716i 0.700875 0.713285i \(-0.252793\pi\)
−0.188880 + 0.982000i \(0.560486\pi\)
\(104\) −2.66219 + 0.553337i −0.261049 + 0.0542592i
\(105\) 4.10969 2.15693i 0.401065 0.210495i
\(106\) −0.788970 + 0.890563i −0.0766316 + 0.0864991i
\(107\) −7.93123 + 7.02646i −0.766741 + 0.679273i −0.952913 0.303244i \(-0.901930\pi\)
0.186172 + 0.982517i \(0.440392\pi\)
\(108\) −9.61573 2.37007i −0.925274 0.228060i
\(109\) 0.805196 + 0.0977685i 0.0771238 + 0.00936453i 0.159008 0.987277i \(-0.449171\pi\)
−0.0818838 + 0.996642i \(0.526094\pi\)
\(110\) −0.194676 0.219744i −0.0185616 0.0209517i
\(111\) −24.4173 9.26028i −2.31759 0.878947i
\(112\) −7.22499 + 13.7661i −0.682698 + 1.30077i
\(113\) 5.61914 2.94915i 0.528604 0.277433i −0.179235 0.983806i \(-0.557362\pi\)
0.707840 + 0.706373i \(0.249670\pi\)
\(114\) −0.129696 1.06814i −0.0121471 0.100041i
\(115\) −1.17126 1.32208i −0.109220 0.123284i
\(116\) −16.1856 + 3.98940i −1.50280 + 0.370406i
\(117\) −14.6100 + 9.31155i −1.35070 + 0.860853i
\(118\) 1.83360 + 0.451943i 0.168797 + 0.0416047i
\(119\) −10.5510 20.1032i −0.967205 1.84285i
\(120\) −0.754367 + 0.395922i −0.0688640 + 0.0361426i
\(121\) 1.26295 + 3.33012i 0.114813 + 0.302738i
\(122\) −0.787991 + 0.298846i −0.0713414 + 0.0270562i
\(123\) −4.62187 + 3.19025i −0.416740 + 0.287655i
\(124\) −2.17065 + 8.80666i −0.194930 + 0.790861i
\(125\) 3.27346 2.25950i 0.292787 0.202096i
\(126\) 0.452729 3.72856i 0.0403323 0.332167i
\(127\) −2.86624 7.55766i −0.254338 0.670634i −0.999991 0.00429931i \(-0.998631\pi\)
0.745653 0.666335i \(-0.232138\pi\)
\(128\) 2.70270 5.14956i 0.238887 0.455161i
\(129\) 9.89656 14.3376i 0.871343 1.26236i
\(130\) −0.0762279 + 0.266707i −0.00668563 + 0.0233918i
\(131\) −1.39014 2.01397i −0.121457 0.175961i 0.757539 0.652790i \(-0.226402\pi\)
−0.878996 + 0.476829i \(0.841786\pi\)
\(132\) 20.7832 2.52354i 1.80895 0.219646i
\(133\) −8.07512 + 1.99034i −0.700201 + 0.172584i
\(134\) −0.503799 + 0.729879i −0.0435216 + 0.0630519i
\(135\) −1.35226 + 1.52639i −0.116384 + 0.131370i
\(136\) 1.93671 + 3.69010i 0.166072 + 0.316424i
\(137\) 9.48606 + 1.15182i 0.810449 + 0.0984063i 0.515262 0.857033i \(-0.327695\pi\)
0.295188 + 0.955439i \(0.404618\pi\)
\(138\) −2.30480 + 0.279854i −0.196198 + 0.0238227i
\(139\) 6.29596 + 5.57774i 0.534017 + 0.473098i 0.886505 0.462719i \(-0.153126\pi\)
−0.352488 + 0.935816i \(0.614664\pi\)
\(140\) 1.85331 + 2.68498i 0.156633 + 0.226923i
\(141\) −9.18541 1.11531i −0.773551 0.0939261i
\(142\) 0.243288 + 2.00365i 0.0204163 + 0.168143i
\(143\) 8.22632 11.0285i 0.687919 0.922250i
\(144\) 2.19173 18.0505i 0.182644 1.50421i
\(145\) −0.821457 + 3.33278i −0.0682183 + 0.276772i
\(146\) 1.61198 0.133408
\(147\) −27.6005 −2.27645
\(148\) 4.39298 17.8230i 0.361100 1.46504i
\(149\) −10.7339 + 4.07084i −0.879357 + 0.333496i −0.752632 0.658442i \(-0.771216\pi\)
−0.126725 + 0.991938i \(0.540447\pi\)
\(150\) 2.57074i 0.209900i
\(151\) 12.1024 + 4.58985i 0.984883 + 0.373517i 0.793881 0.608073i \(-0.208057\pi\)
0.191002 + 0.981590i \(0.438826\pi\)
\(152\) 1.48225 0.365343i 0.120227 0.0296332i
\(153\) 19.8756 + 17.6083i 1.60685 + 1.42354i
\(154\) 0.713825 + 2.89610i 0.0575217 + 0.233375i
\(155\) 1.39796 + 1.23848i 0.112286 + 0.0994771i
\(156\) −12.5650 15.2783i −1.00601 1.22325i
\(157\) 3.92764 3.47958i 0.313460 0.277701i −0.491693 0.870769i \(-0.663622\pi\)
0.805153 + 0.593068i \(0.202083\pi\)
\(158\) −1.27483 0.879952i −0.101420 0.0700052i
\(159\) −16.9633 4.18108i −1.34528 0.331581i
\(160\) −0.511839 0.741526i −0.0404644 0.0586228i
\(161\) 4.29469 + 17.4243i 0.338469 + 1.37322i
\(162\) −0.0148565 0.0602750i −0.00116723 0.00473565i
\(163\) −19.9021 + 2.41655i −1.55885 + 0.189279i −0.854075 0.520150i \(-0.825876\pi\)
−0.704777 + 0.709429i \(0.748953\pi\)
\(164\) −2.61775 2.95483i −0.204412 0.230734i
\(165\) 1.52867 4.03077i 0.119007 0.313795i
\(166\) 0.631669 + 0.331525i 0.0490270 + 0.0257313i
\(167\) 20.1078 13.8794i 1.55599 1.07402i 0.592741 0.805393i \(-0.298046\pi\)
0.963245 0.268626i \(-0.0865695\pi\)
\(168\) 8.65601 0.667826
\(169\) −12.9649 0.954075i −0.997303 0.0733904i
\(170\) 0.425142 0.0326069
\(171\) 8.00520 5.52559i 0.612173 0.422552i
\(172\) 10.8433 + 5.69101i 0.826795 + 0.433935i
\(173\) −8.04730 + 21.2190i −0.611825 + 1.61325i 0.166965 + 0.985963i \(0.446603\pi\)
−0.778789 + 0.627286i \(0.784166\pi\)
\(174\) 2.99199 + 3.37726i 0.226822 + 0.256030i
\(175\) −19.7256 + 2.39512i −1.49111 + 0.181054i
\(176\) 3.45574 + 14.0205i 0.260486 + 1.05683i
\(177\) 6.63641 + 26.9250i 0.498823 + 2.02381i
\(178\) 0.393597 + 0.570224i 0.0295013 + 0.0427401i
\(179\) −15.7741 3.88797i −1.17901 0.290601i −0.399349 0.916799i \(-0.630764\pi\)
−0.779664 + 0.626198i \(0.784610\pi\)
\(180\) −3.14027 2.16757i −0.234062 0.161561i
\(181\) 4.42668 3.92169i 0.329032 0.291497i −0.482391 0.875956i \(-0.660232\pi\)
0.811423 + 0.584459i \(0.198693\pi\)
\(182\) 1.94508 2.03949i 0.144179 0.151177i
\(183\) −9.26297 8.20628i −0.684739 0.606626i
\(184\) −0.788326 3.19836i −0.0581162 0.235787i
\(185\) −2.82920 2.50645i −0.208007 0.184278i
\(186\) 2.38365 0.587516i 0.174777 0.0430788i
\(187\) −19.7171 7.47771i −1.44186 0.546825i
\(188\) 6.50407i 0.474358i
\(189\) 19.3726 7.34706i 1.40915 0.534420i
\(190\) 0.0372703 0.151212i 0.00270388 0.0109701i
\(191\) 21.9323 1.58697 0.793484 0.608591i \(-0.208265\pi\)
0.793484 + 0.608591i \(0.208265\pi\)
\(192\) 19.9595 1.44045
\(193\) −0.638737 + 2.59146i −0.0459773 + 0.186537i −0.989440 0.144940i \(-0.953701\pi\)
0.943463 + 0.331478i \(0.107547\pi\)
\(194\) 0.252049 2.07581i 0.0180960 0.149034i
\(195\) −3.98797 + 0.828902i −0.285584 + 0.0593589i
\(196\) −2.33854 19.2596i −0.167038 1.37568i
\(197\) 0.749130 + 0.0909608i 0.0533733 + 0.00648069i 0.147180 0.989110i \(-0.452980\pi\)
−0.0938065 + 0.995590i \(0.529903\pi\)
\(198\) −1.98173 2.87103i −0.140835 0.204035i
\(199\) −3.61022 3.19838i −0.255922 0.226727i 0.525400 0.850855i \(-0.323916\pi\)
−0.781322 + 0.624128i \(0.785454\pi\)
\(200\) 3.62079 0.439643i 0.256028 0.0310875i
\(201\) −12.9280 1.56974i −0.911871 0.110721i
\(202\) 0.702176 + 1.33789i 0.0494050 + 0.0941333i
\(203\) 23.1265 26.1044i 1.62316 1.83217i
\(204\) −17.2229 + 24.9516i −1.20584 + 1.74696i
\(205\) −0.789233 + 0.194529i −0.0551225 + 0.0135865i
\(206\) 1.10835 0.134578i 0.0772227 0.00937653i
\(207\) −11.9230 17.2734i −0.828703 1.20058i
\(208\) 9.41645 9.87346i 0.652914 0.684601i
\(209\) −4.38813 + 6.35731i −0.303534 + 0.439744i
\(210\) 0.410370 0.781894i 0.0283182 0.0539558i
\(211\) 2.48767 + 6.55945i 0.171258 + 0.451571i 0.992975 0.118325i \(-0.0377525\pi\)
−0.821717 + 0.569896i \(0.806983\pi\)
\(212\) 1.48028 12.1912i 0.101666 0.837297i
\(213\) −24.3917 + 16.8364i −1.67129 + 1.15361i
\(214\) −0.482451 + 1.95738i −0.0329796 + 0.133804i
\(215\) 2.07522 1.43242i 0.141529 0.0976901i
\(216\) −3.55600 + 1.34861i −0.241955 + 0.0917615i
\(217\) −6.72887 17.7426i −0.456786 1.20445i
\(218\) 0.136643 0.0717156i 0.00925460 0.00485719i
\(219\) 11.0003 + 20.9593i 0.743331 + 1.41630i
\(220\) 2.94219 + 0.725184i 0.198362 + 0.0488919i
\(221\) 4.05470 + 19.5078i 0.272749 + 1.31223i
\(222\) −4.82405 + 1.18902i −0.323769 + 0.0798019i
\(223\) 3.09724 + 3.49606i 0.207407 + 0.234114i 0.843004 0.537907i \(-0.180785\pi\)
−0.635598 + 0.772020i \(0.719246\pi\)
\(224\) 1.10346 + 9.08782i 0.0737281 + 0.607205i
\(225\) 20.5778 10.8001i 1.37186 0.720006i
\(226\) 0.561095 1.06908i 0.0373235 0.0711140i
\(227\) 7.68708 + 2.91533i 0.510209 + 0.193497i 0.596256 0.802794i \(-0.296654\pi\)
−0.0860468 + 0.996291i \(0.527423\pi\)
\(228\) 7.36477 + 8.31311i 0.487744 + 0.550549i
\(229\) −13.3643 1.62272i −0.883140 0.107233i −0.333615 0.942710i \(-0.608268\pi\)
−0.549526 + 0.835477i \(0.685192\pi\)
\(230\) −0.326280 0.0804209i −0.0215143 0.00530280i
\(231\) −32.7845 + 29.0446i −2.15706 + 1.91099i
\(232\) −4.24506 + 4.79168i −0.278702 + 0.314589i
\(233\) 17.9068 9.39820i 1.17311 0.615696i 0.238422 0.971162i \(-0.423370\pi\)
0.934689 + 0.355465i \(0.115678\pi\)
\(234\) −1.28123 + 3.03700i −0.0837567 + 0.198535i
\(235\) −1.18585 0.622381i −0.0773562 0.0405997i
\(236\) −18.2259 + 6.91219i −1.18641 + 0.449945i
\(237\) 2.74177 22.5805i 0.178097 1.46676i
\(238\) −3.82476 2.00739i −0.247922 0.130120i
\(239\) 22.5348i 1.45766i −0.684697 0.728828i \(-0.740065\pi\)
0.684697 0.728828i \(-0.259935\pi\)
\(240\) 1.98666 3.78527i 0.128239 0.244338i
\(241\) −6.73550 + 7.60281i −0.433872 + 0.489740i −0.924260 0.381764i \(-0.875317\pi\)
0.490388 + 0.871504i \(0.336855\pi\)
\(242\) 0.557662 + 0.384926i 0.0358479 + 0.0247440i
\(243\) 12.0066 10.6369i 0.770224 0.682359i
\(244\) 4.94150 7.15900i 0.316347 0.458308i
\(245\) −3.73527 1.41660i −0.238637 0.0905032i
\(246\) −0.378888 + 0.999044i −0.0241570 + 0.0636967i
\(247\) 7.29385 + 0.268010i 0.464097 + 0.0170531i
\(248\) 1.23514 + 3.25680i 0.0784314 + 0.206807i
\(249\) 10.4754i 0.663854i
\(250\) 0.268348 0.707577i 0.0169718 0.0447511i
\(251\) −1.21635 10.0176i −0.0767756 0.632304i −0.979408 0.201892i \(-0.935291\pi\)
0.902632 0.430413i \(-0.141632\pi\)
\(252\) 18.0166 + 34.3277i 1.13494 + 2.16244i
\(253\) 13.7176 + 9.46859i 0.862420 + 0.595285i
\(254\) −1.26561 0.873585i −0.0794112 0.0548136i
\(255\) 2.90121 + 5.52779i 0.181681 + 0.346164i
\(256\) 1.58893 + 13.0860i 0.0993083 + 0.817878i
\(257\) 8.82349 23.2656i 0.550394 1.45127i −0.314472 0.949267i \(-0.601827\pi\)
0.864866 0.502003i \(-0.167403\pi\)
\(258\) 3.31456i 0.206355i
\(259\) 13.6180 + 35.9076i 0.846179 + 2.23119i
\(260\) −0.916301 2.71257i −0.0568266 0.168226i
\(261\) −14.4639 + 38.1382i −0.895294 + 2.36070i
\(262\) −0.435331 0.165099i −0.0268949 0.0101999i
\(263\) −2.10878 + 3.05510i −0.130033 + 0.188385i −0.882592 0.470139i \(-0.844204\pi\)
0.752559 + 0.658525i \(0.228819\pi\)
\(264\) 6.01787 5.33136i 0.370374 0.328123i
\(265\) −2.08110 1.43648i −0.127841 0.0882425i
\(266\) −1.04927 + 1.18438i −0.0643351 + 0.0726193i
\(267\) −4.72823 + 9.00889i −0.289363 + 0.551335i
\(268\) 9.15415i 0.559179i
\(269\) −2.37392 1.24593i −0.144741 0.0759658i 0.390798 0.920476i \(-0.372199\pi\)
−0.535539 + 0.844511i \(0.679891\pi\)
\(270\) −0.0467654 + 0.385148i −0.00284605 + 0.0234394i
\(271\) −4.59141 + 1.74129i −0.278909 + 0.105776i −0.490093 0.871670i \(-0.663037\pi\)
0.211184 + 0.977446i \(0.432268\pi\)
\(272\) −18.5162 9.71807i −1.12271 0.589244i
\(273\) 39.7912 + 11.3728i 2.40828 + 0.688312i
\(274\) 1.60979 0.844885i 0.0972512 0.0510414i
\(275\) −12.2385 + 13.8144i −0.738009 + 0.833040i
\(276\) 17.9378 15.8915i 1.07973 0.956555i
\(277\) 21.9985 + 5.42215i 1.32176 + 0.325786i 0.836204 0.548418i \(-0.184770\pi\)
0.485560 + 0.874204i \(0.338616\pi\)
\(278\) 1.58864 + 0.192896i 0.0952803 + 0.0115691i
\(279\) 14.7169 + 16.6120i 0.881079 + 0.994532i
\(280\) 1.17145 + 0.444272i 0.0700074 + 0.0265503i
\(281\) −5.33866 + 10.1720i −0.318478 + 0.606809i −0.991091 0.133185i \(-0.957480\pi\)
0.672613 + 0.739994i \(0.265172\pi\)
\(282\) −1.55877 + 0.818107i −0.0928235 + 0.0487175i
\(283\) −0.801014 6.59694i −0.0476153 0.392147i −0.996960 0.0779116i \(-0.975175\pi\)
0.949345 0.314236i \(-0.101748\pi\)
\(284\) −13.8151 15.5940i −0.819774 0.925334i
\(285\) 2.22042 0.547285i 0.131527 0.0324184i
\(286\) 0.0961207 2.61590i 0.00568373 0.154682i
\(287\) 8.01877 + 1.97645i 0.473333 + 0.116666i
\(288\) −4.97574 9.48047i −0.293198 0.558642i
\(289\) 11.9873 6.29141i 0.705134 0.370083i
\(290\) 0.231578 + 0.610621i 0.0135987 + 0.0358569i
\(291\) 28.7101 10.8883i 1.68302 0.638284i
\(292\) −13.6933 + 9.45183i −0.801342 + 0.553127i
\(293\) 6.87252 27.8829i 0.401497 1.62894i −0.327806 0.944745i \(-0.606309\pi\)
0.729302 0.684191i \(-0.239845\pi\)
\(294\) −4.32162 + 2.98300i −0.252042 + 0.173972i
\(295\) −0.483802 + 3.98446i −0.0281680 + 0.231984i
\(296\) −2.49969 6.59114i −0.145291 0.383102i
\(297\) 8.94313 17.0397i 0.518933 0.988745i
\(298\) −1.24073 + 1.79750i −0.0718734 + 0.104127i
\(299\) 0.578305 15.7385i 0.0334443 0.910179i
\(300\) 15.0735 + 21.8378i 0.870271 + 1.26081i
\(301\) −25.4329 + 3.08812i −1.46593 + 0.177996i
\(302\) 2.39104 0.589338i 0.137589 0.0339126i
\(303\) −12.6038 + 18.2597i −0.724067 + 1.04899i
\(304\) −5.07969 + 5.73379i −0.291340 + 0.328855i
\(305\) −0.832401 1.58601i −0.0476631 0.0908145i
\(306\) 5.01515 + 0.608949i 0.286697 + 0.0348113i
\(307\) 4.04997 0.491756i 0.231144 0.0280660i −0.00414489 0.999991i \(-0.501319\pi\)
0.235289 + 0.971925i \(0.424396\pi\)
\(308\) −23.0450 20.4161i −1.31311 1.16332i
\(309\) 9.31332 + 13.4927i 0.529816 + 0.767571i
\(310\) 0.352741 + 0.0428306i 0.0200344 + 0.00243261i
\(311\) −0.255721 2.10605i −0.0145006 0.119423i 0.983661 0.180030i \(-0.0576195\pi\)
−0.998162 + 0.0606069i \(0.980696\pi\)
\(312\) −7.30401 2.08757i −0.413508 0.118185i
\(313\) −1.48117 + 12.1985i −0.0837207 + 0.689502i 0.889063 + 0.457785i \(0.151357\pi\)
−0.972783 + 0.231716i \(0.925566\pi\)
\(314\) 0.238915 0.969316i 0.0134828 0.0547017i
\(315\) 7.98280 0.449780
\(316\) 15.9890 0.899449
\(317\) 5.06422 20.5463i 0.284435 1.15400i −0.638680 0.769473i \(-0.720519\pi\)
0.923115 0.384525i \(-0.125635\pi\)
\(318\) −3.10796 + 1.17869i −0.174286 + 0.0660978i
\(319\) 32.3923i 1.81362i
\(320\) 2.70119 + 1.02443i 0.151001 + 0.0572671i
\(321\) −28.7425 + 7.08440i −1.60425 + 0.395413i
\(322\) 2.55563 + 2.26409i 0.142420 + 0.126173i
\(323\) −2.67713 10.8615i −0.148959 0.604352i
\(324\) 0.479624 + 0.424910i 0.0266458 + 0.0236061i
\(325\) 17.2222 + 2.73619i 0.955316 + 0.151776i
\(326\) −2.85505 + 2.52936i −0.158127 + 0.140088i
\(327\) 1.86492 + 1.28726i 0.103130 + 0.0711858i
\(328\) −1.47191 0.362793i −0.0812727 0.0200319i
\(329\) 7.72970 + 11.1984i 0.426152 + 0.617388i
\(330\) −0.196281 0.796344i −0.0108049 0.0438373i
\(331\) −5.04064 20.4507i −0.277059 1.12407i −0.930264 0.366891i \(-0.880422\pi\)
0.653205 0.757181i \(-0.273424\pi\)
\(332\) −7.30975 + 0.887565i −0.401175 + 0.0487115i
\(333\) −29.7842 33.6195i −1.63217 1.84234i
\(334\) 1.64838 4.34641i 0.0901951 0.237825i
\(335\) −1.66902 0.875971i −0.0911885 0.0478594i
\(336\) −35.7457 + 24.6735i −1.95009 + 1.34605i
\(337\) −30.9964 −1.68848 −0.844242 0.535963i \(-0.819949\pi\)
−0.844242 + 0.535963i \(0.819949\pi\)
\(338\) −2.13314 + 1.25184i −0.116027 + 0.0680910i
\(339\) 17.7293 0.962925
\(340\) −3.61147 + 2.49282i −0.195860 + 0.135192i
\(341\) −15.6060 8.19065i −0.845112 0.443549i
\(342\) 0.656243 1.73037i 0.0354856 0.0935677i
\(343\) 7.84444 + 8.85454i 0.423560 + 0.478100i
\(344\) 4.66842 0.566849i 0.251704 0.0305625i
\(345\) −1.18092 4.79117i −0.0635784 0.257948i
\(346\) 1.03327 + 4.19216i 0.0555492 + 0.225372i
\(347\) 5.47397 + 7.93042i 0.293858 + 0.425727i 0.941908 0.335871i \(-0.109031\pi\)
−0.648050 + 0.761598i \(0.724415\pi\)
\(348\) −45.2188 11.1454i −2.42398 0.597458i
\(349\) −1.46580 1.01177i −0.0784626 0.0541588i 0.528188 0.849128i \(-0.322872\pi\)
−0.606650 + 0.794969i \(0.707487\pi\)
\(350\) −2.82973 + 2.50692i −0.151255 + 0.134001i
\(351\) −18.1186 + 1.52742i −0.967101 + 0.0815277i
\(352\) 6.36447 + 5.63843i 0.339227 + 0.300529i
\(353\) 1.60842 + 6.52562i 0.0856076 + 0.347324i 0.998089 0.0617948i \(-0.0196824\pi\)
−0.912481 + 0.409118i \(0.865836\pi\)
\(354\) 3.94911 + 3.49861i 0.209893 + 0.185949i
\(355\) −4.16515 + 1.02662i −0.221063 + 0.0544871i
\(356\) −6.68701 2.53605i −0.354411 0.134410i
\(357\) 63.4289i 3.35701i
\(358\) −2.89008 + 1.09606i −0.152746 + 0.0579287i
\(359\) 0.540398 2.19248i 0.0285211 0.115715i −0.954956 0.296748i \(-0.904098\pi\)
0.983477 + 0.181033i \(0.0579441\pi\)
\(360\) −1.46531 −0.0772285
\(361\) 14.9021 0.784324
\(362\) 0.269271 1.09248i 0.0141526 0.0574193i
\(363\) −1.19936 + 9.87761i −0.0629500 + 0.518440i
\(364\) −4.56448 + 28.7299i −0.239244 + 1.50586i
\(365\) 0.412966 + 3.40108i 0.0216156 + 0.178021i
\(366\) −2.33729 0.283799i −0.122172 0.0148344i
\(367\) −5.70483 8.26487i −0.297789 0.431423i 0.645316 0.763916i \(-0.276726\pi\)
−0.943106 + 0.332493i \(0.892110\pi\)
\(368\) 12.3722 + 10.9608i 0.644946 + 0.571372i
\(369\) −9.58875 + 1.16428i −0.499170 + 0.0606102i
\(370\) −0.713881 0.0866809i −0.0371129 0.00450633i
\(371\) 11.9399 + 22.7495i 0.619887 + 1.18110i
\(372\) −16.8036 + 18.9673i −0.871224 + 0.983408i
\(373\) 16.3372 23.6685i 0.845908 1.22551i −0.126440 0.991974i \(-0.540355\pi\)
0.972348 0.233536i \(-0.0750296\pi\)
\(374\) −3.89544 + 0.960140i −0.201428 + 0.0496476i
\(375\) 11.0313 1.33944i 0.569653 0.0691685i
\(376\) −1.41885 2.05556i −0.0731715 0.106007i
\(377\) −25.8099 + 16.4497i −1.32928 + 0.847202i
\(378\) 2.23927 3.24414i 0.115175 0.166860i
\(379\) 10.8967 20.7618i 0.559723 1.06646i −0.427030 0.904237i \(-0.640440\pi\)
0.986754 0.162227i \(-0.0518675\pi\)
\(380\) 0.570027 + 1.50304i 0.0292418 + 0.0771043i
\(381\) 2.72193 22.4171i 0.139449 1.14846i
\(382\) 3.43412 2.37040i 0.175705 0.121280i
\(383\) 7.52907 30.5466i 0.384718 1.56086i −0.385271 0.922803i \(-0.625892\pi\)
0.769989 0.638057i \(-0.220262\pi\)
\(384\) 13.3716 9.22975i 0.682367 0.471004i
\(385\) −5.92756 + 2.24803i −0.302096 + 0.114570i
\(386\) 0.180067 + 0.474798i 0.00916518 + 0.0241666i
\(387\) 26.5318 13.9250i 1.34869 0.707846i
\(388\) 10.0304 + 19.1113i 0.509217 + 0.970231i
\(389\) −11.1195 2.74072i −0.563783 0.138960i −0.0528841 0.998601i \(-0.516841\pi\)
−0.510899 + 0.859641i \(0.670688\pi\)
\(390\) −0.534842 + 0.560799i −0.0270828 + 0.0283972i
\(391\) −23.4367 + 5.77663i −1.18525 + 0.292137i
\(392\) −4.94051 5.57669i −0.249534 0.281665i
\(393\) −0.824081 6.78692i −0.0415694 0.342355i
\(394\) 0.127128 0.0667219i 0.00640462 0.00336140i
\(395\) 1.53000 2.91517i 0.0769827 0.146678i
\(396\) 33.6685 + 12.7688i 1.69191 + 0.641655i
\(397\) −1.78641 2.01644i −0.0896571 0.101202i 0.701970 0.712207i \(-0.252304\pi\)
−0.791627 + 0.611005i \(0.790766\pi\)
\(398\) −0.910955 0.110610i −0.0456621 0.00554438i
\(399\) −22.5600 5.56053i −1.12941 0.278375i
\(400\) −13.6992 + 12.1364i −0.684958 + 0.606819i
\(401\) −17.0452 + 19.2401i −0.851197 + 0.960803i −0.999604 0.0281237i \(-0.991047\pi\)
0.148408 + 0.988926i \(0.452585\pi\)
\(402\) −2.19389 + 1.15144i −0.109422 + 0.0574288i
\(403\) 1.39890 + 16.5941i 0.0696843 + 0.826612i
\(404\) −13.8095 7.24778i −0.687048 0.360590i
\(405\) 0.123367 0.0467869i 0.00613016 0.00232486i
\(406\) 0.799787 6.58684i 0.0396928 0.326899i
\(407\) 31.5836 + 16.5763i 1.56554 + 0.821658i
\(408\) 11.6429i 0.576409i
\(409\) 12.7706 24.3323i 0.631465 1.20316i −0.333988 0.942577i \(-0.608395\pi\)
0.965453 0.260578i \(-0.0839131\pi\)
\(410\) −0.102552 + 0.115758i −0.00506470 + 0.00571686i
\(411\) 21.9707 + 15.1653i 1.08374 + 0.748050i
\(412\) −8.62607 + 7.64203i −0.424976 + 0.376496i
\(413\) 23.1659 33.5615i 1.13992 1.65145i
\(414\) −3.73374 1.41602i −0.183504 0.0695937i
\(415\) −0.537654 + 1.41768i −0.0263924 + 0.0695910i
\(416\) 1.26060 7.93449i 0.0618058 0.389020i
\(417\) 8.33294 + 21.9722i 0.408066 + 1.07598i
\(418\) 1.46967i 0.0718841i
\(419\) −13.9902 + 36.8893i −0.683468 + 1.80216i −0.0921103 + 0.995749i \(0.529361\pi\)
−0.591358 + 0.806409i \(0.701408\pi\)
\(420\) 1.09865 + 9.04819i 0.0536086 + 0.441506i
\(421\) 7.88093 + 15.0159i 0.384093 + 0.731828i 0.998359 0.0572713i \(-0.0182400\pi\)
−0.614266 + 0.789099i \(0.710548\pi\)
\(422\) 1.09845 + 0.758203i 0.0534715 + 0.0369087i
\(423\) −13.0973 9.04040i −0.636812 0.439559i
\(424\) −2.19166 4.17586i −0.106436 0.202798i
\(425\) −3.22158 26.5321i −0.156270 1.28700i
\(426\) −1.99956 + 5.27241i −0.0968791 + 0.255449i
\(427\) 18.1987i 0.880697i
\(428\) −7.37879 19.4563i −0.356667 0.940454i
\(429\) 34.6685 16.6014i 1.67381 0.801522i
\(430\) 0.170120 0.448570i 0.00820393 0.0216320i
\(431\) 22.7213 + 8.61706i 1.09445 + 0.415069i 0.834755 0.550622i \(-0.185609\pi\)
0.259693 + 0.965691i \(0.416379\pi\)
\(432\) 10.8406 15.7054i 0.521570 0.755625i
\(433\) −12.5934 + 11.1568i −0.605202 + 0.536162i −0.909119 0.416537i \(-0.863244\pi\)
0.303917 + 0.952698i \(0.401705\pi\)
\(434\) −2.97117 2.05085i −0.142621 0.0984441i
\(435\) −6.35911 + 7.17796i −0.304896 + 0.344157i
\(436\) −0.740239 + 1.41041i −0.0354510 + 0.0675463i
\(437\) 8.84223i 0.422981i
\(438\) 3.98764 + 2.09287i 0.190537 + 0.100001i
\(439\) −1.23762 + 10.1927i −0.0590682 + 0.486470i 0.932915 + 0.360098i \(0.117257\pi\)
−0.991983 + 0.126373i \(0.959666\pi\)
\(440\) 1.08805 0.412643i 0.0518708 0.0196720i
\(441\) −42.0336 22.0610i −2.00160 1.05052i
\(442\) 2.74324 + 2.61626i 0.130482 + 0.124443i
\(443\) 23.6811 12.4288i 1.12512 0.590509i 0.203684 0.979037i \(-0.434708\pi\)
0.921437 + 0.388527i \(0.127016\pi\)
\(444\) 34.0072 38.3862i 1.61391 1.82173i
\(445\) −1.10227 + 0.976526i −0.0522526 + 0.0462918i
\(446\) 0.862807 + 0.212663i 0.0408551 + 0.0100699i
\(447\) −31.8384 3.86588i −1.50590 0.182850i
\(448\) −19.4640 21.9703i −0.919587 1.03800i
\(449\) 19.3469 + 7.33731i 0.913037 + 0.346269i 0.765984 0.642859i \(-0.222252\pi\)
0.147053 + 0.989129i \(0.453021\pi\)
\(450\) 2.05478 3.91506i 0.0968635 0.184558i
\(451\) 6.79216 3.56480i 0.319831 0.167860i
\(452\) 1.50217 + 12.3715i 0.0706563 + 0.581907i
\(453\) 23.9793 + 27.0671i 1.12665 + 1.27172i
\(454\) 1.51871 0.374328i 0.0712766 0.0175681i
\(455\) 4.80137 + 3.58141i 0.225092 + 0.167899i
\(456\) 4.14106 + 1.02068i 0.193923 + 0.0477977i
\(457\) 16.0836 + 30.6447i 0.752359 + 1.43350i 0.896085 + 0.443882i \(0.146399\pi\)
−0.143726 + 0.989617i \(0.545908\pi\)
\(458\) −2.26794 + 1.19031i −0.105974 + 0.0556194i
\(459\) 9.88226 + 26.0574i 0.461264 + 1.21625i
\(460\) 3.24321 1.22999i 0.151216 0.0573485i
\(461\) −27.1787 + 18.7601i −1.26584 + 0.873745i −0.996017 0.0891651i \(-0.971580\pi\)
−0.269822 + 0.962910i \(0.586965\pi\)
\(462\) −1.99426 + 8.09102i −0.0927812 + 0.376428i
\(463\) −5.08591 + 3.51055i −0.236362 + 0.163149i −0.680358 0.732880i \(-0.738176\pi\)
0.443996 + 0.896029i \(0.353560\pi\)
\(464\) 3.87189 31.8879i 0.179748 1.48036i
\(465\) 1.85025 + 4.87870i 0.0858031 + 0.226244i
\(466\) 1.78807 3.40688i 0.0828306 0.157820i
\(467\) 1.10026 1.59400i 0.0509141 0.0737617i −0.796700 0.604375i \(-0.793423\pi\)
0.847614 + 0.530613i \(0.178038\pi\)
\(468\) −6.92372 33.3110i −0.320049 1.53980i
\(469\) 10.8792 + 15.7612i 0.502353 + 0.727784i
\(470\) −0.252943 + 0.0307129i −0.0116674 + 0.00141668i
\(471\) 14.2336 3.50828i 0.655851 0.161653i
\(472\) −4.25228 + 6.16049i −0.195727 + 0.283560i
\(473\) −15.7796 + 17.8114i −0.725545 + 0.818971i
\(474\) −2.01115 3.83193i −0.0923753 0.176006i
\(475\) −9.71919 1.18012i −0.445947 0.0541478i
\(476\) 44.2606 5.37421i 2.02868 0.246327i
\(477\) −22.4920 19.9262i −1.02984 0.912357i
\(478\) −2.43552 3.52845i −0.111398 0.161388i
\(479\) −40.4461 4.91104i −1.84803 0.224391i −0.879954 0.475059i \(-0.842427\pi\)
−0.968073 + 0.250668i \(0.919350\pi\)
\(480\) −0.303420 2.49889i −0.0138492 0.114058i
\(481\) −2.83111 33.5833i −0.129088 1.53127i
\(482\) −0.232935 + 1.91839i −0.0106099 + 0.0873803i
\(483\) −11.9984 + 48.6792i −0.545944 + 2.21498i
\(484\) −6.99421 −0.317918
\(485\) 4.44428 0.201804
\(486\) 0.730353 2.96316i 0.0331295 0.134412i
\(487\) −27.4356 + 10.4049i −1.24322 + 0.471493i −0.886505 0.462718i \(-0.846874\pi\)
−0.356720 + 0.934211i \(0.616105\pi\)
\(488\) 3.34052i 0.151218i
\(489\) −52.3703 19.8614i −2.36827 0.898166i
\(490\) −0.737963 + 0.181892i −0.0333378 + 0.00821702i
\(491\) 12.7834 + 11.3251i 0.576909 + 0.511097i 0.900359 0.435149i \(-0.143304\pi\)
−0.323450 + 0.946245i \(0.604843\pi\)
\(492\) −2.63934 10.7082i −0.118991 0.482764i
\(493\) 35.1121 + 31.1066i 1.58137 + 1.40097i
\(494\) 1.17102 0.746340i 0.0526868 0.0335794i
\(495\) 5.54983 4.91672i 0.249446 0.220990i
\(496\) −14.3839 9.92850i −0.645857 0.445803i
\(497\) 42.3187 + 10.4306i 1.89825 + 0.467878i
\(498\) 1.13216 + 1.64022i 0.0507335 + 0.0735001i
\(499\) 0.877449 + 3.55995i 0.0392800 + 0.159365i 0.987307 0.158826i \(-0.0507708\pi\)
−0.948027 + 0.318191i \(0.896925\pi\)
\(500\) 1.86932 + 7.58414i 0.0835986 + 0.339173i
\(501\) 67.7616 8.22775i 3.02737 0.367589i
\(502\) −1.27313 1.43707i −0.0568227 0.0641396i
\(503\) −3.54081 + 9.33636i −0.157877 + 0.416288i −0.990493 0.137563i \(-0.956073\pi\)
0.832616 + 0.553851i \(0.186842\pi\)
\(504\) 13.1825 + 6.91872i 0.587196 + 0.308184i
\(505\) −2.64289 + 1.82426i −0.117607 + 0.0811783i
\(506\) 3.17122 0.140978
\(507\) −30.8334 19.1929i −1.36936 0.852385i
\(508\) 15.8733 0.704262
\(509\) −25.3014 + 17.4643i −1.12147 + 0.774092i −0.976537 0.215351i \(-0.930911\pi\)
−0.144928 + 0.989442i \(0.546295\pi\)
\(510\) 1.05170 + 0.551973i 0.0465699 + 0.0244418i
\(511\) 12.3436 32.5475i 0.546050 1.43981i
\(512\) 9.37617 + 10.5835i 0.414372 + 0.467729i
\(513\) 10.1342 1.23052i 0.447438 0.0543288i
\(514\) −1.13294 4.59651i −0.0499717 0.202743i
\(515\) 0.567889 + 2.30402i 0.0250242 + 0.101527i
\(516\) 19.4349 + 28.1563i 0.855573 + 1.23951i
\(517\) 12.2711 + 3.02456i 0.539683 + 0.133020i
\(518\) 6.01309 + 4.15054i 0.264200 + 0.182364i
\(519\) −47.4562 + 42.0425i −2.08309 + 1.84546i
\(520\) −0.881331 0.657397i −0.0386489 0.0288288i
\(521\) −29.1926 25.8624i −1.27895 1.13305i −0.984120 0.177505i \(-0.943198\pi\)
−0.294833 0.955549i \(-0.595264\pi\)
\(522\) 1.85717 + 7.53483i 0.0812861 + 0.329791i
\(523\) 27.8142 + 24.6412i 1.21623 + 1.07749i 0.994751 + 0.102320i \(0.0326267\pi\)
0.221478 + 0.975165i \(0.428912\pi\)
\(524\) 4.66608 1.15009i 0.203839 0.0502418i
\(525\) −51.9058 19.6853i −2.26536 0.859136i
\(526\) 0.706274i 0.0307950i
\(527\) 23.8649 9.05076i 1.03957 0.394257i
\(528\) −9.65450 + 39.1699i −0.420158 + 1.70465i
\(529\) −3.92049 −0.170456
\(530\) −0.481107 −0.0208980
\(531\) −11.4142 + 46.3094i −0.495336 + 2.00966i
\(532\) 1.96867 16.2134i 0.0853526 0.702942i
\(533\) −6.28964 3.60163i −0.272434 0.156004i
\(534\) 0.233326 + 1.92161i 0.0100970 + 0.0831562i
\(535\) −4.25343 0.516460i −0.183892 0.0223285i
\(536\) −1.99696 2.89310i −0.0862555 0.124963i
\(537\) −33.9734 30.0978i −1.46606 1.29882i
\(538\) −0.506362 + 0.0614835i −0.0218308 + 0.00265074i
\(539\) 37.4242 + 4.54413i 1.61198 + 0.195729i
\(540\) −1.86105 3.54594i −0.0800870 0.152593i
\(541\) −2.37096 + 2.67626i −0.101935 + 0.115061i −0.797264 0.603630i \(-0.793720\pi\)
0.695329 + 0.718692i \(0.255259\pi\)
\(542\) −0.530719 + 0.768878i −0.0227963 + 0.0330262i
\(543\) 16.0421 3.95403i 0.688434 0.169684i
\(544\) −12.2237 + 1.48422i −0.524086 + 0.0636356i
\(545\) 0.186317 + 0.269927i 0.00798095 + 0.0115624i
\(546\) 7.45958 2.51983i 0.319240 0.107839i
\(547\) 5.21634 7.55718i 0.223035 0.323122i −0.695453 0.718572i \(-0.744796\pi\)
0.918487 + 0.395450i \(0.129411\pi\)
\(548\) −8.72080 + 16.6161i −0.372534 + 0.709804i
\(549\) −7.54763 19.9015i −0.322125 0.849374i
\(550\) −0.423246 + 3.48574i −0.0180473 + 0.148633i
\(551\) 14.1419 9.76145i 0.602465 0.415852i
\(552\) 2.20239 8.93547i 0.0937401 0.380319i
\(553\) −27.5290 + 19.0019i −1.17065 + 0.808044i
\(554\) 4.03050 1.52857i 0.171240 0.0649426i
\(555\) −3.74455 9.87356i −0.158947 0.419109i
\(556\) −14.6261 + 7.67638i −0.620286 + 0.325551i
\(557\) 6.92080 + 13.1865i 0.293244 + 0.558729i 0.986853 0.161623i \(-0.0516727\pi\)
−0.693609 + 0.720352i \(0.743980\pi\)
\(558\) 4.09973 + 1.01049i 0.173555 + 0.0427776i
\(559\) 22.2052 + 3.52787i 0.939182 + 0.149213i
\(560\) −6.10396 + 1.50449i −0.257939 + 0.0635763i
\(561\) −39.0668 44.0972i −1.64940 1.86179i
\(562\) 0.263449 + 2.16970i 0.0111129 + 0.0915232i
\(563\) −8.74816 + 4.59139i −0.368691 + 0.193504i −0.638886 0.769302i \(-0.720604\pi\)
0.270195 + 0.962806i \(0.412912\pi\)
\(564\) 8.44440 16.0895i 0.355573 0.677488i
\(565\) 2.39937 + 0.909961i 0.100942 + 0.0382823i
\(566\) −0.838405 0.946363i −0.0352408 0.0397786i
\(567\) −1.33077 0.161585i −0.0558873 0.00678594i
\(568\) −7.76795 1.91463i −0.325936 0.0803360i
\(569\) 18.2074 16.1304i 0.763295 0.676220i −0.188803 0.982015i \(-0.560461\pi\)
0.952097 + 0.305795i \(0.0989222\pi\)
\(570\) 0.288520 0.325671i 0.0120848 0.0136409i
\(571\) 4.90851 2.57618i 0.205415 0.107810i −0.358879 0.933384i \(-0.616841\pi\)
0.564294 + 0.825574i \(0.309149\pi\)
\(572\) 14.5218 + 22.7850i 0.607188 + 0.952690i
\(573\) 54.2552 + 28.4753i 2.26654 + 1.18957i
\(574\) 1.46917 0.557184i 0.0613221 0.0232564i
\(575\) −2.54644 + 20.9718i −0.106194 + 0.874584i
\(576\) 30.3970 + 15.9536i 1.26654 + 0.664732i
\(577\) 21.0609i 0.876777i −0.898786 0.438389i \(-0.855549\pi\)
0.898786 0.438389i \(-0.144451\pi\)
\(578\) 1.19698 2.28066i 0.0497878 0.0948628i
\(579\) −4.94463 + 5.58134i −0.205492 + 0.231952i
\(580\) −5.54757 3.82921i −0.230350 0.158999i
\(581\) 11.5308 10.2154i 0.478377 0.423805i
\(582\) 3.31858 4.80780i 0.137560 0.199290i
\(583\) 22.3126 + 8.46206i 0.924095 + 0.350463i
\(584\) −2.26577 + 5.97435i −0.0937583 + 0.247220i
\(585\) −6.73594 1.92521i −0.278497 0.0795975i
\(586\) −1.93744 5.10861i −0.0800350 0.211035i
\(587\) 4.92853i 0.203422i 0.994814 + 0.101711i \(0.0324317\pi\)
−0.994814 + 0.101711i \(0.967568\pi\)
\(588\) 19.2203 50.6796i 0.792630 2.08999i
\(589\) −1.12698 9.28154i −0.0464365 0.382439i
\(590\) 0.354880 + 0.676167i 0.0146102 + 0.0278374i
\(591\) 1.73507 + 1.19763i 0.0713710 + 0.0492639i
\(592\) 29.1103 + 20.0934i 1.19643 + 0.825833i
\(593\) −4.83227 9.20712i −0.198437 0.378091i 0.765821 0.643053i \(-0.222333\pi\)
−0.964259 + 0.264963i \(0.914640\pi\)
\(594\) −0.441320 3.63460i −0.0181076 0.149129i
\(595\) 3.25550 8.58404i 0.133462 0.351911i
\(596\) 22.5443i 0.923451i
\(597\) −4.77826 12.5992i −0.195561 0.515653i
\(598\) −1.61043 2.52680i −0.0658554 0.103328i
\(599\) −3.92630 + 10.3528i −0.160424 + 0.423004i −0.990993 0.133912i \(-0.957246\pi\)
0.830569 + 0.556916i \(0.188015\pi\)
\(600\) 9.52774 + 3.61339i 0.388968 + 0.147516i
\(601\) 2.14006 3.10041i 0.0872948 0.126468i −0.776904 0.629620i \(-0.783211\pi\)
0.864198 + 0.503151i \(0.167826\pi\)
\(602\) −3.64848 + 3.23227i −0.148701 + 0.131737i
\(603\) −18.4338 12.7239i −0.750681 0.518158i
\(604\) −16.8557 + 19.0261i −0.685847 + 0.774161i
\(605\) −0.669283 + 1.27521i −0.0272102 + 0.0518448i
\(606\) 4.22125i 0.171477i
\(607\) 11.6463 + 6.11246i 0.472709 + 0.248097i 0.684216 0.729280i \(-0.260145\pi\)
−0.211507 + 0.977377i \(0.567837\pi\)
\(608\) −0.543698 + 4.47775i −0.0220499 + 0.181597i
\(609\) 91.1013 34.5502i 3.69161 1.40004i
\(610\) −0.301748 0.158370i −0.0122174 0.00641220i
\(611\) −3.82166 11.3135i −0.154608 0.457693i
\(612\) −46.1730 + 24.2334i −1.86643 + 0.979579i
\(613\) 20.8023 23.4810i 0.840198 0.948387i −0.159046 0.987271i \(-0.550842\pi\)
0.999244 + 0.0388841i \(0.0123803\pi\)
\(614\) 0.580989 0.514711i 0.0234468 0.0207720i
\(615\) −2.20493 0.543466i −0.0889114 0.0219147i
\(616\) −11.7369 1.42512i −0.472894 0.0574198i
\(617\) 15.3100 + 17.2814i 0.616357 + 0.695723i 0.970946 0.239299i \(-0.0769176\pi\)
−0.354589 + 0.935022i \(0.615379\pi\)
\(618\) 2.91652 + 1.10609i 0.117320 + 0.0444935i
\(619\) −20.1606 + 38.4128i −0.810322 + 1.54394i 0.0285390 + 0.999593i \(0.490915\pi\)
−0.838861 + 0.544346i \(0.816778\pi\)
\(620\) −3.24758 + 1.70446i −0.130426 + 0.0684529i
\(621\) −2.65518 21.8674i −0.106549 0.877508i
\(622\) −0.267658 0.302123i −0.0107321 0.0121140i
\(623\) 14.5273 3.58066i 0.582025 0.143456i
\(624\) 36.1130 12.1989i 1.44568 0.488346i
\(625\) −21.9181 5.40232i −0.876724 0.216093i
\(626\) 1.08647 + 2.07010i 0.0434242 + 0.0827379i
\(627\) −19.1090 + 10.0292i −0.763141 + 0.400527i
\(628\) 3.65406 + 9.63497i 0.145813 + 0.384477i
\(629\) −48.2980 + 18.3170i −1.92577 + 0.730347i
\(630\) 1.24993 0.862765i 0.0497984 0.0343734i
\(631\) −7.46121 + 30.2713i −0.297026 + 1.20508i 0.612849 + 0.790200i \(0.290023\pi\)
−0.909875 + 0.414882i \(0.863823\pi\)
\(632\) 5.05318 3.48796i 0.201005 0.138743i
\(633\) −2.36242 + 19.4563i −0.0938977 + 0.773317i
\(634\) −1.42766 3.76443i −0.0566997 0.149505i
\(635\) 1.51893 2.89408i 0.0602769 0.114848i
\(636\) 19.4900 28.2362i 0.772830 1.11964i
\(637\) −15.3843 32.1269i −0.609548 1.27291i
\(638\) −3.50090 5.07193i −0.138602 0.200799i
\(639\) −50.6042 + 6.14446i −2.00187 + 0.243071i
\(640\) 2.28334 0.562794i 0.0902571 0.0222464i
\(641\) −15.1569 + 21.9586i −0.598664 + 0.867314i −0.998792 0.0491454i \(-0.984350\pi\)
0.400128 + 0.916459i \(0.368966\pi\)
\(642\) −3.73478 + 4.21569i −0.147400 + 0.166380i
\(643\) −8.41917 16.0414i −0.332020 0.632610i 0.661023 0.750366i \(-0.270123\pi\)
−0.993043 + 0.117755i \(0.962430\pi\)
\(644\) −34.9849 4.24794i −1.37860 0.167392i
\(645\) 6.99332 0.849143i 0.275362 0.0334350i
\(646\) −1.59307 1.41134i −0.0626786 0.0555284i
\(647\) −24.3719 35.3088i −0.958159 1.38813i −0.921317 0.388812i \(-0.872885\pi\)
−0.0368424 0.999321i \(-0.511730\pi\)
\(648\) 0.244274 + 0.0296603i 0.00959600 + 0.00116517i
\(649\) −4.56558 37.6010i −0.179215 1.47597i
\(650\) 2.99234 1.43291i 0.117369 0.0562035i
\(651\) 6.39008 52.6270i 0.250447 2.06262i
\(652\) 9.42206 38.2268i 0.368996 1.49708i
\(653\) −45.8864 −1.79567 −0.897836 0.440329i \(-0.854862\pi\)
−0.897836 + 0.440329i \(0.854862\pi\)
\(654\) 0.431130 0.0168585
\(655\) 0.236814 0.960793i 0.00925310 0.0375413i
\(656\) 7.11249 2.69741i 0.277696 0.105316i
\(657\) 40.7121i 1.58833i
\(658\) 2.42060 + 0.918012i 0.0943648 + 0.0357878i
\(659\) −9.26131 + 2.28271i −0.360769 + 0.0889216i −0.415534 0.909578i \(-0.636405\pi\)
0.0547647 + 0.998499i \(0.482559\pi\)
\(660\) 6.33672 + 5.61384i 0.246656 + 0.218518i
\(661\) 9.69730 + 39.3435i 0.377181 + 1.53028i 0.786324 + 0.617814i \(0.211981\pi\)
−0.409143 + 0.912470i \(0.634172\pi\)
\(662\) −2.99952 2.65734i −0.116580 0.103281i
\(663\) −15.2971 + 53.5217i −0.594090 + 2.07861i
\(664\) −2.11657 + 1.87512i −0.0821388 + 0.0727686i
\(665\) −2.76772 1.91042i −0.107328 0.0740829i
\(666\) −8.29708 2.04505i −0.321505 0.0792439i
\(667\) −21.0630 30.5150i −0.815562 1.18155i
\(668\) 11.4826 + 46.5869i 0.444276 + 1.80250i
\(669\) 3.12278 + 12.6696i 0.120734 + 0.489836i
\(670\) −0.356005 + 0.0432269i −0.0137537 + 0.00167000i
\(671\) 11.2088 + 12.6522i 0.432713 + 0.488432i
\(672\) −9.06926 + 23.9137i −0.349854 + 0.922490i
\(673\) −8.89790 4.66998i −0.342989 0.180014i 0.284429 0.958697i \(-0.408196\pi\)
−0.627418 + 0.778683i \(0.715888\pi\)
\(674\) −4.85336 + 3.35003i −0.186944 + 0.129038i
\(675\) 24.3905 0.938793
\(676\) 10.7803 23.1417i 0.414627 0.890064i
\(677\) −23.3435 −0.897162 −0.448581 0.893742i \(-0.648070\pi\)
−0.448581 + 0.893742i \(0.648070\pi\)
\(678\) 2.77602 1.91615i 0.106612 0.0735893i
\(679\) −39.9826 20.9845i −1.53439 0.805310i
\(680\) −0.597573 + 1.57567i −0.0229159 + 0.0604242i
\(681\) 15.2309 + 17.1921i 0.583649 + 0.658804i
\(682\) −3.32878 + 0.404187i −0.127466 + 0.0154771i
\(683\) −0.308530 1.25176i −0.0118056 0.0478971i 0.964744 0.263191i \(-0.0847751\pi\)
−0.976549 + 0.215294i \(0.930929\pi\)
\(684\) 4.57141 + 18.5469i 0.174792 + 0.709159i
\(685\) 2.19501 + 3.18003i 0.0838671 + 0.121503i
\(686\) 2.18525 + 0.538615i 0.0834331 + 0.0205644i
\(687\) −30.9532 21.3655i −1.18094 0.815144i
\(688\) −17.6628 + 15.6479i −0.673390 + 0.596571i
\(689\) −4.58846 22.0757i −0.174806 0.841018i
\(690\) −0.702725 0.622560i −0.0267523 0.0237004i
\(691\) −2.53908 10.3015i −0.0965912 0.391886i 0.902669 0.430335i \(-0.141604\pi\)
−0.999261 + 0.0384490i \(0.987758\pi\)
\(692\) −33.3581 29.5527i −1.26808 1.12342i
\(693\) −73.1438 + 18.0283i −2.77850 + 0.684839i
\(694\) 1.71421 + 0.650113i 0.0650704 + 0.0246779i
\(695\) 3.40126i 0.129017i
\(696\) −16.7224 + 6.34196i −0.633860 + 0.240391i
\(697\) −2.65845 + 10.7858i −0.100696 + 0.408540i
\(698\) −0.338862 −0.0128261
\(699\) 56.4988 2.13698
\(700\) 9.33849 37.8877i 0.352962 1.43202i
\(701\) 0.176313 1.45207i 0.00665926 0.0548439i −0.989000 0.147913i \(-0.952745\pi\)
0.995660 + 0.0930687i \(0.0296676\pi\)
\(702\) −2.67190 + 2.19738i −0.100844 + 0.0829349i
\(703\) 2.28080 + 18.7841i 0.0860220 + 0.708455i
\(704\) −27.0637 3.28612i −1.02000 0.123850i
\(705\) −2.12544 3.07924i −0.0800488 0.115971i
\(706\) 0.957118 + 0.847933i 0.0360216 + 0.0319124i
\(707\) 32.3901 3.93287i 1.21815 0.147911i
\(708\) −54.0607 6.56416i −2.03173 0.246696i
\(709\) 10.1337 + 19.3082i 0.380580 + 0.725135i 0.998113 0.0614105i \(-0.0195599\pi\)
−0.617532 + 0.786545i \(0.711868\pi\)
\(710\) −0.541215 + 0.610906i −0.0203114 + 0.0229269i
\(711\) 22.2240 32.1971i 0.833466 1.20748i
\(712\) −2.66661 + 0.657260i −0.0999354 + 0.0246319i
\(713\) −20.0275 + 2.43177i −0.750034 + 0.0910706i
\(714\) −6.85526 9.93156i −0.256552 0.371679i
\(715\) 5.54387 0.467355i 0.207329 0.0174781i
\(716\) 18.1237 26.2567i 0.677315 0.981261i
\(717\) 29.2575 55.7456i 1.09264 2.08186i
\(718\) −0.152344 0.401699i −0.00568544 0.0149913i
\(719\) −4.31315 + 35.5220i −0.160853 + 1.32475i 0.658987 + 0.752154i \(0.270985\pi\)
−0.819841 + 0.572592i \(0.805938\pi\)
\(720\) 6.05110 4.17678i 0.225511 0.155659i
\(721\) 5.76987 23.4093i 0.214881 0.871807i
\(722\) 2.33335 1.61059i 0.0868382 0.0599401i
\(723\) −26.5329 + 10.0626i −0.986768 + 0.374232i
\(724\) 4.11834 + 10.8592i 0.153057 + 0.403578i
\(725\) 36.3526 19.0793i 1.35010 0.708588i
\(726\) 0.879758 + 1.67624i 0.0326509 + 0.0622111i
\(727\) 24.6806 + 6.08323i 0.915354 + 0.225614i 0.668737 0.743499i \(-0.266835\pi\)
0.246616 + 0.969113i \(0.420681\pi\)
\(728\) 4.82480 + 10.0756i 0.178819 + 0.373426i
\(729\) 42.5612 10.4904i 1.57634 0.388533i
\(730\) 0.432243 + 0.487902i 0.0159980 + 0.0180581i
\(731\) −4.15371 34.2089i −0.153631 1.26526i
\(732\) 21.5188 11.2939i 0.795356 0.417435i
\(733\) 3.44446 6.56286i 0.127224 0.242405i −0.813510 0.581551i \(-0.802446\pi\)
0.940734 + 0.339146i \(0.110138\pi\)
\(734\) −1.78650 0.677530i −0.0659409 0.0250081i
\(735\) −7.40092 8.35391i −0.272987 0.308139i
\(736\) 9.66197 + 1.17318i 0.356145 + 0.0432438i
\(737\) 17.2710 + 4.25692i 0.636185 + 0.156806i
\(738\) −1.37555 + 1.21863i −0.0506348 + 0.0448585i
\(739\) 24.8788 28.0823i 0.915180 1.03302i −0.0841513 0.996453i \(-0.526818\pi\)
0.999331 0.0365714i \(-0.0116436\pi\)
\(740\) 6.57249 3.44951i 0.241610 0.126806i
\(741\) 17.6952 + 10.1328i 0.650050 + 0.372237i
\(742\) 4.32824 + 2.27164i 0.158895 + 0.0833943i
\(743\) −25.9712 + 9.84956i −0.952789 + 0.361345i −0.781521 0.623879i \(-0.785556\pi\)
−0.171268 + 0.985224i \(0.554787\pi\)
\(744\) −1.17295 + 9.66012i −0.0430025 + 0.354157i
\(745\) −4.11038 2.15729i −0.150592 0.0790370i
\(746\) 5.47166i 0.200332i
\(747\) −8.37298 + 15.9534i −0.306351 + 0.583704i
\(748\) 27.4610 30.9970i 1.00407 1.13336i
\(749\) 35.8271 + 24.7297i 1.30909 + 0.903602i
\(750\) 1.58249 1.40197i 0.0577845 0.0511926i
\(751\) −6.01103 + 8.70847i −0.219345 + 0.317777i −0.917173 0.398489i \(-0.869535\pi\)
0.697828 + 0.716266i \(0.254150\pi\)
\(752\) 11.7185 + 4.44424i 0.427330 + 0.162065i
\(753\) 9.99713 26.3603i 0.364315 0.960621i
\(754\) −2.26341 + 5.36514i −0.0824285 + 0.195387i
\(755\) 1.85598 + 4.89382i 0.0675461 + 0.178104i
\(756\) 40.6880i 1.47981i
\(757\) 3.52061 9.28307i 0.127959 0.337399i −0.855692 0.517485i \(-0.826868\pi\)
0.983651 + 0.180086i \(0.0576376\pi\)
\(758\) −0.537721 4.42853i −0.0195309 0.160852i
\(759\) 21.6407 + 41.2329i 0.785508 + 1.49666i
\(760\) 0.508037 + 0.350673i 0.0184285 + 0.0127202i
\(761\) 0.350957 + 0.242248i 0.0127222 + 0.00878150i 0.574409 0.818569i \(-0.305232\pi\)
−0.561687 + 0.827350i \(0.689847\pi\)
\(762\) −1.99660 3.80420i −0.0723292 0.137812i
\(763\) −0.401677 3.30811i −0.0145417 0.119761i
\(764\) −15.2731 + 40.2719i −0.552562 + 1.45699i
\(765\) 10.7374i 0.388210i
\(766\) −2.12253 5.59666i −0.0766902 0.202215i
\(767\) −27.6415