Properties

Label 169.2.h.a.12.6
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.6
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.705316 + 0.486844i) q^{2} +(-1.15919 - 0.608391i) q^{3} +(-0.448757 + 1.18327i) q^{4} +(-0.816038 - 0.921117i) q^{5} +(1.11379 - 0.135238i) q^{6} +(0.328944 + 1.33458i) q^{7} +(-0.669753 - 2.71730i) q^{8} +(-0.730609 - 1.05847i) q^{9} +O(q^{10})\) \(q+(-0.705316 + 0.486844i) q^{2} +(-1.15919 - 0.608391i) q^{3} +(-0.448757 + 1.18327i) q^{4} +(-0.816038 - 0.921117i) q^{5} +(1.11379 - 0.135238i) q^{6} +(0.328944 + 1.33458i) q^{7} +(-0.669753 - 2.71730i) q^{8} +(-0.730609 - 1.05847i) q^{9} +(1.02401 + 0.252395i) q^{10} +(-4.34079 - 2.99623i) q^{11} +(1.24009 - 1.09862i) q^{12} +(-3.59110 - 0.322536i) q^{13} +(-0.881740 - 0.781154i) q^{14} +(0.385546 + 1.56422i) q^{15} +(-0.0992110 - 0.0878933i) q^{16} +(-1.38245 + 0.340744i) q^{17} +(1.03062 + 0.390862i) q^{18} +2.34458i q^{19} +(1.45614 - 0.552240i) q^{20} +(0.430635 - 1.74716i) q^{21} +4.52033 q^{22} +1.57912 q^{23} +(-0.876805 + 3.55734i) q^{24} +(0.420146 - 3.46021i) q^{25} +(2.68988 - 1.52082i) q^{26} +(0.676353 + 5.57027i) q^{27} +(-1.72679 - 0.209670i) q^{28} +(1.82071 + 2.63775i) q^{29} +(-1.03346 - 0.915569i) q^{30} +(-1.01979 + 0.123825i) q^{31} +(5.66919 + 0.688364i) q^{32} +(3.20893 + 6.11410i) q^{33} +(0.809177 - 0.913372i) q^{34} +(0.960870 - 1.39206i) q^{35} +(1.58032 - 0.389515i) q^{36} +(-7.12219 + 0.864790i) q^{37} +(-1.14145 - 1.65367i) q^{38} +(3.96654 + 2.55867i) q^{39} +(-1.95640 + 2.83434i) q^{40} +(4.12376 - 7.85717i) q^{41} +(0.546859 + 1.44195i) q^{42} +(-1.27272 + 10.4818i) q^{43} +(5.49332 - 3.79177i) q^{44} +(-0.378769 + 1.53673i) q^{45} +(-1.11378 + 0.768785i) q^{46} +(-2.51425 + 0.953527i) q^{47} +(0.0615311 + 0.162244i) q^{48} +(4.52530 - 2.37506i) q^{49} +(1.38825 + 2.64509i) q^{50} +(1.80983 + 0.446084i) q^{51} +(1.99318 - 4.10451i) q^{52} +(-12.6191 + 3.11032i) q^{53} +(-3.18890 - 3.59952i) q^{54} +(0.782372 + 6.44342i) q^{55} +(3.40613 - 1.78767i) q^{56} +(1.42642 - 2.71782i) q^{57} +(-2.56835 - 0.974046i) q^{58} +(-0.113453 - 0.128062i) q^{59} +(-2.02392 - 0.245748i) q^{60} +(4.08076 + 1.00582i) q^{61} +(0.658989 - 0.583813i) q^{62} +(1.17228 - 1.32323i) q^{63} +(-4.09897 + 2.15131i) q^{64} +(2.63338 + 3.57102i) q^{65} +(-5.23993 - 2.75013i) q^{66} +(1.30041 - 0.493179i) q^{67} +(0.217191 - 1.78873i) q^{68} +(-1.83050 - 0.960721i) q^{69} +1.44964i q^{70} +(0.139794 - 0.266356i) q^{71} +(-2.38685 + 2.69419i) q^{72} +(-9.71703 - 6.70718i) q^{73} +(4.60238 - 4.07735i) q^{74} +(-2.59219 + 3.75543i) q^{75} +(-2.77429 - 1.05215i) q^{76} +(2.57083 - 6.77871i) q^{77} +(-4.04334 + 0.126417i) q^{78} +(-1.34914 - 3.55738i) q^{79} +0.163109i q^{80} +(1.23667 - 3.26082i) q^{81} +(0.916666 + 7.54942i) q^{82} +(-3.48415 - 6.63849i) q^{83} +(1.87411 + 1.29361i) q^{84} +(1.44200 + 0.995340i) q^{85} +(-4.20535 - 8.01262i) q^{86} +(-0.505766 - 4.16536i) q^{87} +(-5.23439 + 13.8019i) q^{88} -13.0444i q^{89} +(-0.480995 - 1.26828i) q^{90} +(-0.750819 - 4.89869i) q^{91} +(-0.708640 + 1.86853i) q^{92} +(1.25746 + 0.476893i) q^{93} +(1.30912 - 1.89658i) q^{94} +(2.15964 - 1.91327i) q^{95} +(-6.15288 - 4.24703i) q^{96} +(9.44318 - 10.6591i) q^{97} +(-2.03548 + 3.87829i) q^{98} +6.78367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.705316 + 0.486844i −0.498734 + 0.344251i −0.790727 0.612169i \(-0.790297\pi\)
0.291993 + 0.956420i \(0.405682\pi\)
\(3\) −1.15919 0.608391i −0.669260 0.351254i 0.0956291 0.995417i \(-0.469514\pi\)
−0.764889 + 0.644163i \(0.777206\pi\)
\(4\) −0.448757 + 1.18327i −0.224378 + 0.591637i
\(5\) −0.816038 0.921117i −0.364943 0.411936i 0.537143 0.843491i \(-0.319503\pi\)
−0.902087 + 0.431555i \(0.857965\pi\)
\(6\) 1.11379 0.135238i 0.454702 0.0552108i
\(7\) 0.328944 + 1.33458i 0.124329 + 0.504422i 0.999777 + 0.0211105i \(0.00672017\pi\)
−0.875448 + 0.483312i \(0.839434\pi\)
\(8\) −0.669753 2.71730i −0.236793 0.960709i
\(9\) −0.730609 1.05847i −0.243536 0.352823i
\(10\) 1.02401 + 0.252395i 0.323819 + 0.0798142i
\(11\) −4.34079 2.99623i −1.30880 0.903398i −0.309920 0.950763i \(-0.600302\pi\)
−0.998878 + 0.0473645i \(0.984918\pi\)
\(12\) 1.24009 1.09862i 0.357983 0.317145i
\(13\) −3.59110 0.322536i −0.995991 0.0894554i
\(14\) −0.881740 0.781154i −0.235655 0.208772i
\(15\) 0.385546 + 1.56422i 0.0995475 + 0.403880i
\(16\) −0.0992110 0.0878933i −0.0248028 0.0219733i
\(17\) −1.38245 + 0.340744i −0.335294 + 0.0826426i −0.403368 0.915038i \(-0.632161\pi\)
0.0680743 + 0.997680i \(0.478315\pi\)
\(18\) 1.03062 + 0.390862i 0.242919 + 0.0921272i
\(19\) 2.34458i 0.537885i 0.963156 + 0.268942i \(0.0866741\pi\)
−0.963156 + 0.268942i \(0.913326\pi\)
\(20\) 1.45614 0.552240i 0.325602 0.123485i
\(21\) 0.430635 1.74716i 0.0939723 0.381261i
\(22\) 4.52033 0.963737
\(23\) 1.57912 0.329269 0.164634 0.986355i \(-0.447356\pi\)
0.164634 + 0.986355i \(0.447356\pi\)
\(24\) −0.876805 + 3.55734i −0.178977 + 0.726138i
\(25\) 0.420146 3.46021i 0.0840291 0.692042i
\(26\) 2.68988 1.52082i 0.527529 0.298256i
\(27\) 0.676353 + 5.57027i 0.130164 + 1.07200i
\(28\) −1.72679 0.209670i −0.326332 0.0396239i
\(29\) 1.82071 + 2.63775i 0.338097 + 0.489818i 0.954747 0.297419i \(-0.0961260\pi\)
−0.616650 + 0.787237i \(0.711511\pi\)
\(30\) −1.03346 0.915569i −0.188684 0.167159i
\(31\) −1.01979 + 0.123825i −0.183159 + 0.0222396i −0.211602 0.977356i \(-0.567868\pi\)
0.0284430 + 0.999595i \(0.490945\pi\)
\(32\) 5.66919 + 0.688364i 1.00218 + 0.121687i
\(33\) 3.20893 + 6.11410i 0.558603 + 1.06433i
\(34\) 0.809177 0.913372i 0.138773 0.156642i
\(35\) 0.960870 1.39206i 0.162417 0.235301i
\(36\) 1.58032 0.389515i 0.263387 0.0649192i
\(37\) −7.12219 + 0.864790i −1.17088 + 0.142171i −0.682785 0.730619i \(-0.739231\pi\)
−0.488096 + 0.872790i \(0.662308\pi\)
\(38\) −1.14145 1.65367i −0.185167 0.268261i
\(39\) 3.96654 + 2.55867i 0.635155 + 0.409715i
\(40\) −1.95640 + 2.83434i −0.309334 + 0.448148i
\(41\) 4.12376 7.85717i 0.644024 1.22708i −0.316423 0.948618i \(-0.602482\pi\)
0.960446 0.278466i \(-0.0898260\pi\)
\(42\) 0.546859 + 1.44195i 0.0843822 + 0.222498i
\(43\) −1.27272 + 10.4818i −0.194089 + 1.59846i 0.491768 + 0.870726i \(0.336351\pi\)
−0.685856 + 0.727737i \(0.740572\pi\)
\(44\) 5.49332 3.79177i 0.828150 0.571631i
\(45\) −0.378769 + 1.53673i −0.0564636 + 0.229082i
\(46\) −1.11378 + 0.768785i −0.164217 + 0.113351i
\(47\) −2.51425 + 0.953527i −0.366740 + 0.139086i −0.531089 0.847316i \(-0.678217\pi\)
0.164349 + 0.986402i \(0.447448\pi\)
\(48\) 0.0615311 + 0.162244i 0.00888125 + 0.0234179i
\(49\) 4.52530 2.37506i 0.646472 0.339295i
\(50\) 1.38825 + 2.64509i 0.196328 + 0.374072i
\(51\) 1.80983 + 0.446084i 0.253427 + 0.0624642i
\(52\) 1.99318 4.10451i 0.276404 0.569193i
\(53\) −12.6191 + 3.11032i −1.73336 + 0.427236i −0.974568 0.224093i \(-0.928058\pi\)
−0.758796 + 0.651329i \(0.774212\pi\)
\(54\) −3.18890 3.59952i −0.433954 0.489833i
\(55\) 0.782372 + 6.44342i 0.105495 + 0.868830i
\(56\) 3.40613 1.78767i 0.455163 0.238888i
\(57\) 1.42642 2.71782i 0.188934 0.359984i
\(58\) −2.56835 0.974046i −0.337241 0.127899i
\(59\) −0.113453 0.128062i −0.0147703 0.0166722i 0.741079 0.671418i \(-0.234314\pi\)
−0.755849 + 0.654745i \(0.772776\pi\)
\(60\) −2.02392 0.245748i −0.261287 0.0317260i
\(61\) 4.08076 + 1.00582i 0.522488 + 0.128782i 0.491734 0.870745i \(-0.336363\pi\)
0.0307536 + 0.999527i \(0.490209\pi\)
\(62\) 0.658989 0.583813i 0.0836917 0.0741444i
\(63\) 1.17228 1.32323i 0.147693 0.166711i
\(64\) −4.09897 + 2.15131i −0.512372 + 0.268913i
\(65\) 2.63338 + 3.57102i 0.326630 + 0.442931i
\(66\) −5.23993 2.75013i −0.644990 0.338517i
\(67\) 1.30041 0.493179i 0.158870 0.0602514i −0.273888 0.961762i \(-0.588310\pi\)
0.432758 + 0.901510i \(0.357541\pi\)
\(68\) 0.217191 1.78873i 0.0263383 0.216916i
\(69\) −1.83050 0.960721i −0.220366 0.115657i
\(70\) 1.44964i 0.173265i
\(71\) 0.139794 0.266356i 0.0165905 0.0316106i −0.877020 0.480454i \(-0.840472\pi\)
0.893610 + 0.448844i \(0.148164\pi\)
\(72\) −2.38685 + 2.69419i −0.281293 + 0.317514i
\(73\) −9.71703 6.70718i −1.13729 0.785016i −0.157994 0.987440i \(-0.550503\pi\)
−0.979298 + 0.202424i \(0.935118\pi\)
\(74\) 4.60238 4.07735i 0.535015 0.473982i
\(75\) −2.59219 + 3.75543i −0.299320 + 0.433640i
\(76\) −2.77429 1.05215i −0.318232 0.120690i
\(77\) 2.57083 6.77871i 0.292973 0.772506i
\(78\) −4.04334 + 0.126417i −0.457818 + 0.0143139i
\(79\) −1.34914 3.55738i −0.151790 0.400237i 0.837455 0.546506i \(-0.184043\pi\)
−0.989245 + 0.146269i \(0.953273\pi\)
\(80\) 0.163109i 0.0182362i
\(81\) 1.23667 3.26082i 0.137407 0.362313i
\(82\) 0.916666 + 7.54942i 0.101229 + 0.833694i
\(83\) −3.48415 6.63849i −0.382435 0.728668i 0.615810 0.787895i \(-0.288829\pi\)
−0.998245 + 0.0592263i \(0.981137\pi\)
\(84\) 1.87411 + 1.29361i 0.204483 + 0.141144i
\(85\) 1.44200 + 0.995340i 0.156407 + 0.107960i
\(86\) −4.20535 8.01262i −0.453474 0.864023i
\(87\) −0.505766 4.16536i −0.0542238 0.446573i
\(88\) −5.23439 + 13.8019i −0.557988 + 1.47129i
\(89\) 13.0444i 1.38271i −0.722516 0.691354i \(-0.757014\pi\)
0.722516 0.691354i \(-0.242986\pi\)
\(90\) −0.480995 1.26828i −0.0507013 0.133688i
\(91\) −0.750819 4.89869i −0.0787072 0.513522i
\(92\) −0.708640 + 1.86853i −0.0738808 + 0.194808i
\(93\) 1.25746 + 0.476893i 0.130393 + 0.0494515i
\(94\) 1.30912 1.89658i 0.135025 0.195618i
\(95\) 2.15964 1.91327i 0.221574 0.196297i
\(96\) −6.15288 4.24703i −0.627976 0.433461i
\(97\) 9.44318 10.6591i 0.958810 1.08227i −0.0377413 0.999288i \(-0.512016\pi\)
0.996551 0.0829847i \(-0.0264453\pi\)
\(98\) −2.03548 + 3.87829i −0.205615 + 0.391766i
\(99\) 6.78367i 0.681784i
\(100\) 3.90584 + 2.04994i 0.390584 + 0.204994i
\(101\) 0.745451 6.13934i 0.0741752 0.610887i −0.907463 0.420133i \(-0.861983\pi\)
0.981638 0.190755i \(-0.0610935\pi\)
\(102\) −1.49368 + 0.566477i −0.147896 + 0.0560896i
\(103\) 12.7157 + 6.67373i 1.25292 + 0.657582i 0.954886 0.296974i \(-0.0959775\pi\)
0.298032 + 0.954556i \(0.403670\pi\)
\(104\) 1.52872 + 9.97409i 0.149904 + 0.978040i
\(105\) −1.96075 + 1.02908i −0.191350 + 0.100428i
\(106\) 7.38619 8.33729i 0.717410 0.809789i
\(107\) 4.74075 4.19994i 0.458306 0.406023i −0.402130 0.915583i \(-0.631730\pi\)
0.860436 + 0.509559i \(0.170192\pi\)
\(108\) −6.89467 1.69938i −0.663440 0.163523i
\(109\) −18.6416 2.26350i −1.78555 0.216804i −0.840065 0.542485i \(-0.817483\pi\)
−0.945480 + 0.325681i \(0.894407\pi\)
\(110\) −3.68876 4.16375i −0.351710 0.396998i
\(111\) 8.78211 + 3.33062i 0.833561 + 0.316128i
\(112\) 0.0846655 0.161317i 0.00800014 0.0152430i
\(113\) −6.74761 + 3.54142i −0.634761 + 0.333148i −0.751225 0.660047i \(-0.770537\pi\)
0.116463 + 0.993195i \(0.462844\pi\)
\(114\) 0.317078 + 2.61137i 0.0296970 + 0.244577i
\(115\) −1.28862 1.45455i −0.120164 0.135638i
\(116\) −3.93824 + 0.970688i −0.365656 + 0.0901261i
\(117\) 2.28229 + 4.03671i 0.210998 + 0.373194i
\(118\) 0.142366 + 0.0350901i 0.0131059 + 0.00323031i
\(119\) −0.909498 1.73290i −0.0833735 0.158855i
\(120\) 3.99223 2.09528i 0.364439 0.191272i
\(121\) 5.96441 + 15.7269i 0.542219 + 1.42971i
\(122\) −3.36790 + 1.27728i −0.304915 + 0.115639i
\(123\) −9.56046 + 6.59911i −0.862038 + 0.595022i
\(124\) 0.311118 1.26226i 0.0279392 0.113354i
\(125\) −8.59393 + 5.93196i −0.768665 + 0.530571i
\(126\) −0.182620 + 1.50401i −0.0162691 + 0.133988i
\(127\) 3.98296 + 10.5022i 0.353431 + 0.931921i 0.987355 + 0.158525i \(0.0506740\pi\)
−0.633924 + 0.773395i \(0.718557\pi\)
\(128\) −3.46419 + 6.60046i −0.306194 + 0.583404i
\(129\) 7.85237 11.3761i 0.691363 1.00161i
\(130\) −3.59590 1.23665i −0.315381 0.108462i
\(131\) 5.00543 + 7.25161i 0.437326 + 0.633577i 0.978234 0.207506i \(-0.0665345\pi\)
−0.540908 + 0.841082i \(0.681919\pi\)
\(132\) −8.67469 + 1.05330i −0.755035 + 0.0916778i
\(133\) −3.12903 + 0.771236i −0.271321 + 0.0668746i
\(134\) −0.677095 + 0.980942i −0.0584921 + 0.0847405i
\(135\) 4.57894 5.16855i 0.394092 0.444838i
\(136\) 1.85180 + 3.52832i 0.158791 + 0.302551i
\(137\) −15.0864 1.83182i −1.28891 0.156503i −0.552774 0.833331i \(-0.686431\pi\)
−0.736141 + 0.676829i \(0.763354\pi\)
\(138\) 1.75880 0.213557i 0.149719 0.0181792i
\(139\) −3.48418 3.08672i −0.295525 0.261812i 0.502311 0.864687i \(-0.332483\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(140\) 1.21599 + 1.76167i 0.102770 + 0.148888i
\(141\) 3.49461 + 0.424322i 0.294299 + 0.0357344i
\(142\) 0.0310747 + 0.255923i 0.00260773 + 0.0214766i
\(143\) 14.6218 + 12.1598i 1.22274 + 1.01686i
\(144\) −0.0205479 + 0.169227i −0.00171233 + 0.0141023i
\(145\) 0.943909 3.82959i 0.0783874 0.318030i
\(146\) 10.1189 0.837449
\(147\) −6.69066 −0.551836
\(148\) 2.17285 8.81558i 0.178607 0.724637i
\(149\) 18.7258 7.10175i 1.53407 0.581798i 0.564251 0.825603i \(-0.309165\pi\)
0.969824 + 0.243806i \(0.0783959\pi\)
\(150\) 3.91076i 0.319312i
\(151\) 2.84856 + 1.08031i 0.231812 + 0.0879148i 0.467776 0.883847i \(-0.345055\pi\)
−0.235964 + 0.971762i \(0.575825\pi\)
\(152\) 6.37093 1.57029i 0.516751 0.127368i
\(153\) 1.37070 + 1.21433i 0.110814 + 0.0981730i
\(154\) 1.48693 + 6.03272i 0.119820 + 0.486131i
\(155\) 0.946243 + 0.838298i 0.0760040 + 0.0673337i
\(156\) −4.80762 + 3.54528i −0.384918 + 0.283850i
\(157\) 8.28092 7.33626i 0.660890 0.585497i −0.264559 0.964369i \(-0.585226\pi\)
0.925449 + 0.378872i \(0.123688\pi\)
\(158\) 2.68346 + 1.85226i 0.213485 + 0.147358i
\(159\) 16.5202 + 4.07187i 1.31014 + 0.322920i
\(160\) −3.99221 5.78372i −0.315612 0.457243i
\(161\) 0.519441 + 2.10745i 0.0409377 + 0.166091i
\(162\) 0.715272 + 2.90197i 0.0561970 + 0.228000i
\(163\) −1.05453 + 0.128043i −0.0825973 + 0.0100291i −0.161731 0.986835i \(-0.551708\pi\)
0.0791337 + 0.996864i \(0.474785\pi\)
\(164\) 7.44663 + 8.40550i 0.581484 + 0.656359i
\(165\) 3.01319 7.94514i 0.234577 0.618528i
\(166\) 5.68933 + 2.98599i 0.441578 + 0.231758i
\(167\) −5.03142 + 3.47294i −0.389343 + 0.268744i −0.746615 0.665256i \(-0.768322\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(168\) −5.03596 −0.388533
\(169\) 12.7919 + 2.31652i 0.983995 + 0.178194i
\(170\) −1.50164 −0.115171
\(171\) 2.48167 1.71297i 0.189778 0.130994i
\(172\) −11.8317 6.20977i −0.902161 0.473491i
\(173\) −1.38930 + 3.66329i −0.105627 + 0.278515i −0.977401 0.211393i \(-0.932200\pi\)
0.871775 + 0.489907i \(0.162969\pi\)
\(174\) 2.38461 + 2.69166i 0.180777 + 0.204055i
\(175\) 4.75612 0.577498i 0.359529 0.0436547i
\(176\) 0.167306 + 0.678786i 0.0126111 + 0.0511654i
\(177\) 0.0536020 + 0.217472i 0.00402897 + 0.0163462i
\(178\) 6.35061 + 9.20045i 0.475999 + 0.689603i
\(179\) −16.1617 3.98349i −1.20798 0.297740i −0.416614 0.909083i \(-0.636783\pi\)
−0.791366 + 0.611343i \(0.790630\pi\)
\(180\) −1.64839 1.13780i −0.122864 0.0848069i
\(181\) 15.0086 13.2964i 1.11558 0.988316i 0.115590 0.993297i \(-0.463124\pi\)
0.999988 + 0.00498121i \(0.00158558\pi\)
\(182\) 2.91446 + 3.08959i 0.216034 + 0.229016i
\(183\) −4.11845 3.64863i −0.304445 0.269715i
\(184\) −1.05762 4.29093i −0.0779687 0.316332i
\(185\) 6.60855 + 5.85467i 0.485870 + 0.430444i
\(186\) −1.11908 + 0.275829i −0.0820550 + 0.0202247i
\(187\) 7.02189 + 2.66305i 0.513491 + 0.194742i
\(188\) 3.40294i 0.248185i
\(189\) −7.21147 + 2.73495i −0.524557 + 0.198938i
\(190\) −0.591761 + 2.40087i −0.0429308 + 0.174177i
\(191\) −24.0502 −1.74021 −0.870107 0.492864i \(-0.835950\pi\)
−0.870107 + 0.492864i \(0.835950\pi\)
\(192\) 6.06033 0.437367
\(193\) −0.380703 + 1.54457i −0.0274036 + 0.111181i −0.983051 0.183333i \(-0.941311\pi\)
0.955647 + 0.294513i \(0.0951576\pi\)
\(194\) −1.47108 + 12.1154i −0.105617 + 0.869837i
\(195\) −0.880014 5.74162i −0.0630191 0.411166i
\(196\) 0.779590 + 6.42050i 0.0556850 + 0.458607i
\(197\) 6.38479 + 0.775254i 0.454898 + 0.0552346i 0.344779 0.938684i \(-0.387954\pi\)
0.110119 + 0.993918i \(0.464877\pi\)
\(198\) −3.30259 4.78463i −0.234705 0.340029i
\(199\) −18.0565 15.9967i −1.27999 1.13397i −0.983882 0.178820i \(-0.942772\pi\)
−0.296110 0.955154i \(-0.595690\pi\)
\(200\) −9.68381 + 1.17583i −0.684749 + 0.0831436i
\(201\) −1.80746 0.219466i −0.127489 0.0154799i
\(202\) 2.46313 + 4.69309i 0.173305 + 0.330205i
\(203\) −2.92137 + 3.29754i −0.205040 + 0.231442i
\(204\) −1.34001 + 1.94135i −0.0938198 + 0.135921i
\(205\) −10.6025 + 2.61329i −0.740512 + 0.182520i
\(206\) −12.2177 + 1.48349i −0.851245 + 0.103360i
\(207\) −1.15372 1.67145i −0.0801889 0.116174i
\(208\) 0.327928 + 0.347632i 0.0227377 + 0.0241040i
\(209\) 7.02492 10.1774i 0.485924 0.703982i
\(210\) 0.881946 1.68041i 0.0608600 0.115959i
\(211\) 1.31360 + 3.46368i 0.0904320 + 0.238450i 0.972600 0.232485i \(-0.0746858\pi\)
−0.882168 + 0.470935i \(0.843917\pi\)
\(212\) 1.98253 16.3276i 0.136161 1.12138i
\(213\) −0.324097 + 0.223708i −0.0222067 + 0.0153282i
\(214\) −1.29901 + 5.27029i −0.0887985 + 0.360270i
\(215\) 10.6936 7.38124i 0.729296 0.503397i
\(216\) 14.6831 5.56855i 0.999056 0.378892i
\(217\) −0.500706 1.32025i −0.0339901 0.0896246i
\(218\) 14.2502 7.47909i 0.965147 0.506548i
\(219\) 7.18331 + 13.6867i 0.485403 + 0.924859i
\(220\) −7.97542 1.96577i −0.537703 0.132532i
\(221\) 5.07442 0.777754i 0.341343 0.0523174i
\(222\) −7.81566 + 1.92639i −0.524552 + 0.129291i
\(223\) −9.63494 10.8756i −0.645203 0.728284i 0.331363 0.943503i \(-0.392492\pi\)
−0.976566 + 0.215220i \(0.930953\pi\)
\(224\) 0.946169 + 7.79240i 0.0632186 + 0.520652i
\(225\) −3.96949 + 2.08335i −0.264633 + 0.138890i
\(226\) 3.03507 5.78285i 0.201890 0.384670i
\(227\) −13.8397 5.24870i −0.918572 0.348368i −0.150410 0.988624i \(-0.548059\pi\)
−0.768162 + 0.640256i \(0.778828\pi\)
\(228\) 2.57581 + 2.90749i 0.170587 + 0.192553i
\(229\) −4.65623 0.565369i −0.307692 0.0373606i −0.0347658 0.999395i \(-0.511069\pi\)
−0.272927 + 0.962035i \(0.587992\pi\)
\(230\) 1.61703 + 0.398561i 0.106623 + 0.0262803i
\(231\) −7.10418 + 6.29376i −0.467421 + 0.414099i
\(232\) 5.94812 6.71404i 0.390513 0.440799i
\(233\) −22.0110 + 11.5523i −1.44199 + 0.756814i −0.990764 0.135596i \(-0.956705\pi\)
−0.451225 + 0.892410i \(0.649013\pi\)
\(234\) −3.57499 1.73604i −0.233704 0.113488i
\(235\) 2.93003 + 1.53780i 0.191134 + 0.100315i
\(236\) 0.202445 0.0767772i 0.0131780 0.00499777i
\(237\) −0.600370 + 4.94449i −0.0389982 + 0.321179i
\(238\) 1.48514 + 0.779460i 0.0962672 + 0.0505249i
\(239\) 15.0037i 0.970509i 0.874373 + 0.485255i \(0.161273\pi\)
−0.874373 + 0.485255i \(0.838727\pi\)
\(240\) 0.0992341 0.189075i 0.00640554 0.0122047i
\(241\) −10.5874 + 11.9507i −0.681997 + 0.769815i −0.982960 0.183821i \(-0.941153\pi\)
0.300963 + 0.953636i \(0.402692\pi\)
\(242\) −11.8633 8.18866i −0.762604 0.526387i
\(243\) 9.18270 8.13516i 0.589070 0.521871i
\(244\) −3.02143 + 4.37729i −0.193427 + 0.280227i
\(245\) −5.88053 2.23019i −0.375693 0.142482i
\(246\) 3.53041 9.30891i 0.225090 0.593515i
\(247\) 0.756213 8.41963i 0.0481167 0.535728i
\(248\) 1.01947 + 2.68813i 0.0647367 + 0.170697i
\(249\) 9.81500i 0.622000i
\(250\) 3.17349 8.36781i 0.200709 0.529227i
\(251\) −0.931171 7.66888i −0.0587750 0.484056i −0.992141 0.125128i \(-0.960066\pi\)
0.933366 0.358927i \(-0.116857\pi\)
\(252\) 1.03968 + 1.98094i 0.0654934 + 0.124787i
\(253\) −6.85462 4.73140i −0.430946 0.297461i
\(254\) −7.92219 5.46830i −0.497083 0.343111i
\(255\) −1.06600 2.03109i −0.0667554 0.127192i
\(256\) −1.88603 15.5329i −0.117877 0.970805i
\(257\) −0.646124 + 1.70369i −0.0403041 + 0.106273i −0.953657 0.300895i \(-0.902715\pi\)
0.913353 + 0.407168i \(0.133484\pi\)
\(258\) 11.8466i 0.737540i
\(259\) −3.49693 9.22064i −0.217289 0.572943i
\(260\) −5.40724 + 1.51349i −0.335343 + 0.0938626i
\(261\) 1.46175 3.85433i 0.0904802 0.238577i
\(262\) −7.06082 2.67781i −0.436219 0.165436i
\(263\) −1.19139 + 1.72602i −0.0734640 + 0.106431i −0.857994 0.513660i \(-0.828289\pi\)
0.784530 + 0.620091i \(0.212905\pi\)
\(264\) 14.4646 12.8145i 0.890237 0.788681i
\(265\) 13.1626 + 9.08550i 0.808573 + 0.558118i
\(266\) 1.83148 2.06731i 0.112295 0.126755i
\(267\) −7.93612 + 15.1210i −0.485682 + 0.925391i
\(268\) 1.76005i 0.107512i
\(269\) 18.5421 + 9.73162i 1.13053 + 0.593348i 0.922969 0.384875i \(-0.125755\pi\)
0.207561 + 0.978222i \(0.433448\pi\)
\(270\) −0.713317 + 5.87469i −0.0434111 + 0.357522i
\(271\) 21.1300 8.01356i 1.28356 0.486789i 0.383895 0.923377i \(-0.374582\pi\)
0.899662 + 0.436588i \(0.143813\pi\)
\(272\) 0.167104 + 0.0877028i 0.0101321 + 0.00531776i
\(273\) −2.10997 + 6.13531i −0.127701 + 0.371326i
\(274\) 11.5325 6.05270i 0.696701 0.365657i
\(275\) −12.1914 + 13.7612i −0.735167 + 0.829832i
\(276\) 1.95825 1.73485i 0.117873 0.104426i
\(277\) 19.5112 + 4.80909i 1.17232 + 0.288950i 0.776943 0.629570i \(-0.216769\pi\)
0.395373 + 0.918521i \(0.370615\pi\)
\(278\) 3.96020 + 0.480856i 0.237517 + 0.0288398i
\(279\) 0.876130 + 0.988946i 0.0524525 + 0.0592067i
\(280\) −4.42619 1.67863i −0.264515 0.100317i
\(281\) 6.12159 11.6637i 0.365183 0.695799i −0.631656 0.775249i \(-0.717624\pi\)
0.996839 + 0.0794506i \(0.0253166\pi\)
\(282\) −2.67138 + 1.40205i −0.159078 + 0.0834908i
\(283\) −3.14048 25.8642i −0.186682 1.53747i −0.721449 0.692468i \(-0.756523\pi\)
0.534766 0.845000i \(-0.320400\pi\)
\(284\) 0.252438 + 0.284944i 0.0149795 + 0.0169083i
\(285\) −3.66745 + 0.903945i −0.217241 + 0.0535451i
\(286\) −16.2329 1.45797i −0.959873 0.0862115i
\(287\) 11.8425 + 2.91891i 0.699040 + 0.172298i
\(288\) −3.41335 6.50359i −0.201133 0.383228i
\(289\) −13.2577 + 6.95817i −0.779864 + 0.409304i
\(290\) 1.19866 + 3.16061i 0.0703878 + 0.185597i
\(291\) −17.4314 + 6.61085i −1.02185 + 0.387535i
\(292\) 12.2970 8.48802i 0.719629 0.496724i
\(293\) 0.920275 3.73370i 0.0537630 0.218125i −0.937916 0.346864i \(-0.887247\pi\)
0.991679 + 0.128739i \(0.0410928\pi\)
\(294\) 4.71903 3.25731i 0.275219 0.189970i
\(295\) −0.0253780 + 0.209007i −0.00147756 + 0.0121688i
\(296\) 7.12000 + 18.7739i 0.413842 + 1.09121i
\(297\) 13.7539 26.2059i 0.798083 1.52062i
\(298\) −9.75014 + 14.1255i −0.564810 + 0.818269i
\(299\) −5.67076 0.509322i −0.327949 0.0294549i
\(300\) −3.28045 4.75255i −0.189397 0.274388i
\(301\) −14.4075 + 1.74938i −0.830432 + 0.100833i
\(302\) −2.53508 + 0.624840i −0.145877 + 0.0359555i
\(303\) −4.59924 + 6.66315i −0.264219 + 0.382788i
\(304\) 0.206073 0.232609i 0.0118191 0.0133410i
\(305\) −2.40358 4.57964i −0.137629 0.262230i
\(306\) −1.55797 0.189171i −0.0890631 0.0108142i
\(307\) −7.57460 + 0.919723i −0.432305 + 0.0524914i −0.333797 0.942645i \(-0.608330\pi\)
−0.0985081 + 0.995136i \(0.531407\pi\)
\(308\) 6.86740 + 6.08398i 0.391306 + 0.346667i
\(309\) −10.6797 15.4723i −0.607548 0.880186i
\(310\) −1.07552 0.130592i −0.0610855 0.00741712i
\(311\) 0.878368 + 7.23401i 0.0498077 + 0.410203i 0.996194 + 0.0871657i \(0.0277810\pi\)
−0.946386 + 0.323038i \(0.895296\pi\)
\(312\) 4.29606 12.4919i 0.243216 0.707217i
\(313\) −0.352797 + 2.90555i −0.0199413 + 0.164231i −0.999277 0.0380080i \(-0.987899\pi\)
0.979336 + 0.202239i \(0.0648218\pi\)
\(314\) −2.26905 + 9.20590i −0.128050 + 0.519519i
\(315\) −2.17547 −0.122574
\(316\) 4.81480 0.270853
\(317\) 0.409079 1.65970i 0.0229762 0.0932180i −0.958334 0.285649i \(-0.907791\pi\)
0.981311 + 0.192431i \(0.0616371\pi\)
\(318\) −13.6343 + 5.17082i −0.764576 + 0.289965i
\(319\) 16.9052i 0.946509i
\(320\) 5.32652 + 2.02008i 0.297762 + 0.112926i
\(321\) −8.05064 + 1.98430i −0.449343 + 0.110753i
\(322\) −1.39237 1.23353i −0.0775938 0.0687421i
\(323\) −0.798903 3.24128i −0.0444522 0.180350i
\(324\) 3.30348 + 2.92663i 0.183527 + 0.162590i
\(325\) −2.62483 + 12.2904i −0.145599 + 0.681751i
\(326\) 0.681440 0.603704i 0.0377415 0.0334360i
\(327\) 20.2321 + 13.9652i 1.11884 + 0.772279i
\(328\) −24.1122 5.94311i −1.33137 0.328154i
\(329\) −2.09960 3.04180i −0.115755 0.167700i
\(330\) 1.74279 + 7.07079i 0.0959376 + 0.389234i
\(331\) 4.00948 + 16.2671i 0.220381 + 0.894121i 0.972087 + 0.234622i \(0.0753853\pi\)
−0.751706 + 0.659499i \(0.770769\pi\)
\(332\) 9.41868 1.14364i 0.516917 0.0627651i
\(333\) 6.11889 + 6.90680i 0.335313 + 0.378490i
\(334\) 1.85796 4.89904i 0.101663 0.268064i
\(335\) −1.51546 0.795373i −0.0827982 0.0434558i
\(336\) −0.196287 + 0.135487i −0.0107083 + 0.00739143i
\(337\) 14.4554 0.787434 0.393717 0.919232i \(-0.371189\pi\)
0.393717 + 0.919232i \(0.371189\pi\)
\(338\) −10.1501 + 4.59381i −0.552095 + 0.249870i
\(339\) 9.97633 0.541840
\(340\) −1.82487 + 1.25962i −0.0989673 + 0.0683122i
\(341\) 4.79769 + 2.51802i 0.259810 + 0.136359i
\(342\) −0.916410 + 2.41637i −0.0495538 + 0.130663i
\(343\) 11.0386 + 12.4600i 0.596028 + 0.672776i
\(344\) 29.3346 3.56187i 1.58162 0.192043i
\(345\) 0.608822 + 2.47009i 0.0327779 + 0.132985i
\(346\) −0.803555 3.26015i −0.0431994 0.175267i
\(347\) −9.66833 14.0070i −0.519023 0.751935i 0.472575 0.881290i \(-0.343324\pi\)
−0.991598 + 0.129356i \(0.958709\pi\)
\(348\) 5.15573 + 1.27077i 0.276376 + 0.0681206i
\(349\) −3.98649 2.75167i −0.213392 0.147294i 0.456575 0.889685i \(-0.349076\pi\)
−0.669966 + 0.742391i \(0.733692\pi\)
\(350\) −3.07342 + 2.72281i −0.164281 + 0.145540i
\(351\) −0.632236 20.2215i −0.0337463 1.07934i
\(352\) −22.5463 19.9743i −1.20172 1.06463i
\(353\) 7.10467 + 28.8248i 0.378143 + 1.53419i 0.784299 + 0.620383i \(0.213023\pi\)
−0.406155 + 0.913804i \(0.633131\pi\)
\(354\) −0.143681 0.127290i −0.00763657 0.00676541i
\(355\) −0.359422 + 0.0885897i −0.0190762 + 0.00470185i
\(356\) 15.4352 + 5.85378i 0.818061 + 0.310250i
\(357\) 2.56210i 0.135601i
\(358\) 13.3384 5.05860i 0.704958 0.267355i
\(359\) −1.81147 + 7.34940i −0.0956055 + 0.387887i −0.999178 0.0405495i \(-0.987089\pi\)
0.903572 + 0.428436i \(0.140935\pi\)
\(360\) 4.42942 0.233451
\(361\) 13.5029 0.710680
\(362\) −4.11249 + 16.6850i −0.216148 + 0.876945i
\(363\) 2.65418 21.8591i 0.139308 1.14731i
\(364\) 6.13343 + 1.30989i 0.321479 + 0.0686571i
\(365\) 1.75137 + 14.4238i 0.0916709 + 0.754978i
\(366\) 4.68113 + 0.568392i 0.244686 + 0.0297103i
\(367\) 1.91206 + 2.77010i 0.0998087 + 0.144598i 0.869706 0.493569i \(-0.164308\pi\)
−0.769898 + 0.638167i \(0.779693\pi\)
\(368\) −0.156666 0.138794i −0.00816678 0.00723513i
\(369\) −11.3294 + 1.37564i −0.589787 + 0.0716131i
\(370\) −7.51143 0.912053i −0.390501 0.0474154i
\(371\) −8.30193 15.8180i −0.431015 0.821230i
\(372\) −1.12859 + 1.27391i −0.0585147 + 0.0660494i
\(373\) −2.04156 + 2.95771i −0.105708 + 0.153144i −0.872268 0.489028i \(-0.837351\pi\)
0.766560 + 0.642173i \(0.221967\pi\)
\(374\) −6.24914 + 1.54027i −0.323135 + 0.0796457i
\(375\) 13.5710 1.64781i 0.700801 0.0850927i
\(376\) 4.27494 + 6.19332i 0.220463 + 0.319396i
\(377\) −5.68757 10.0597i −0.292925 0.518099i
\(378\) 3.75487 5.43986i 0.193130 0.279796i
\(379\) −2.42977 + 4.62954i −0.124809 + 0.237804i −0.939841 0.341612i \(-0.889027\pi\)
0.815032 + 0.579416i \(0.196719\pi\)
\(380\) 1.29477 + 3.41403i 0.0664204 + 0.175136i
\(381\) 1.77243 14.5973i 0.0908044 0.747841i
\(382\) 16.9630 11.7087i 0.867903 0.599070i
\(383\) −6.02520 + 24.4452i −0.307873 + 1.24909i 0.589482 + 0.807782i \(0.299332\pi\)
−0.897355 + 0.441309i \(0.854514\pi\)
\(384\) 8.03132 5.54362i 0.409847 0.282897i
\(385\) −8.34188 + 3.16366i −0.425141 + 0.161235i
\(386\) −0.483450 1.27475i −0.0246070 0.0648833i
\(387\) 12.0246 6.31097i 0.611242 0.320805i
\(388\) 8.37500 + 15.9572i 0.425176 + 0.810106i
\(389\) −28.8644 7.11444i −1.46348 0.360716i −0.574443 0.818544i \(-0.694781\pi\)
−0.889041 + 0.457828i \(0.848628\pi\)
\(390\) 3.41596 + 3.62123i 0.172974 + 0.183368i
\(391\) −2.18306 + 0.538075i −0.110402 + 0.0272116i
\(392\) −9.48458 10.7059i −0.479044 0.540728i
\(393\) −1.39044 11.4513i −0.0701382 0.577640i
\(394\) −4.88072 + 2.56160i −0.245887 + 0.129052i
\(395\) −2.17582 + 4.14568i −0.109477 + 0.208592i
\(396\) −8.02694 3.04422i −0.403369 0.152978i
\(397\) −0.668512 0.754595i −0.0335517 0.0378720i 0.731495 0.681846i \(-0.238823\pi\)
−0.765047 + 0.643974i \(0.777284\pi\)
\(398\) 20.5234 + 2.49200i 1.02875 + 0.124912i
\(399\) 4.09635 + 1.00966i 0.205074 + 0.0505463i
\(400\) −0.345812 + 0.306363i −0.0172906 + 0.0153182i
\(401\) 6.86046 7.74386i 0.342595 0.386710i −0.551808 0.833971i \(-0.686062\pi\)
0.894404 + 0.447261i \(0.147600\pi\)
\(402\) 1.38168 0.725161i 0.0689119 0.0361677i
\(403\) 3.70209 0.115748i 0.184414 0.00576581i
\(404\) 6.93000 + 3.63714i 0.344780 + 0.180955i
\(405\) −4.01276 + 1.52184i −0.199396 + 0.0756208i
\(406\) 0.455097 3.74806i 0.0225861 0.186013i
\(407\) 33.5071 + 17.5859i 1.66088 + 0.871699i
\(408\) 5.21662i 0.258261i
\(409\) −7.89223 + 15.0374i −0.390246 + 0.743551i −0.998749 0.0500002i \(-0.984078\pi\)
0.608504 + 0.793551i \(0.291770\pi\)
\(410\) 6.20586 7.00497i 0.306486 0.345951i
\(411\) 16.3735 + 11.3018i 0.807646 + 0.557478i
\(412\) −13.6031 + 12.0513i −0.670177 + 0.593725i
\(413\) 0.133589 0.193537i 0.00657347 0.00952331i
\(414\) 1.62747 + 0.617218i 0.0799858 + 0.0303346i
\(415\) −3.27162 + 8.62656i −0.160598 + 0.423461i
\(416\) −20.1366 4.30050i −0.987277 0.210849i
\(417\) 2.16091 + 5.69784i 0.105820 + 0.279025i
\(418\) 10.5983i 0.518379i
\(419\) 0.336879 0.888277i 0.0164576 0.0433952i −0.926536 0.376207i \(-0.877228\pi\)
0.942993 + 0.332812i \(0.107997\pi\)
\(420\) −0.337785 2.78191i −0.0164822 0.135743i
\(421\) 10.4205 + 19.8547i 0.507866 + 0.967657i 0.995514 + 0.0946169i \(0.0301626\pi\)
−0.487648 + 0.873040i \(0.662145\pi\)
\(422\) −2.61278 1.80347i −0.127188 0.0877915i
\(423\) 2.84621 + 1.96460i 0.138387 + 0.0955219i
\(424\) 16.9033 + 32.2066i 0.820898 + 1.56409i
\(425\) 0.598215 + 4.92674i 0.0290177 + 0.238982i
\(426\) 0.119680 0.315569i 0.00579850 0.0152894i
\(427\) 5.77694i 0.279566i
\(428\) 2.84224 + 7.49436i 0.137385 + 0.362253i
\(429\) −9.55155 22.9913i −0.461153 1.11003i
\(430\) −3.94883 + 10.4122i −0.190430 + 0.502122i
\(431\) 37.2776 + 14.1375i 1.79560 + 0.680981i 0.996849 + 0.0793179i \(0.0252742\pi\)
0.798750 + 0.601663i \(0.205495\pi\)
\(432\) 0.422488 0.612079i 0.0203269 0.0294487i
\(433\) −20.5135 + 18.1734i −0.985816 + 0.873357i −0.991951 0.126624i \(-0.959586\pi\)
0.00613481 + 0.999981i \(0.498047\pi\)
\(434\) 0.995914 + 0.687430i 0.0478054 + 0.0329977i
\(435\) −3.42406 + 3.86496i −0.164171 + 0.185311i
\(436\) 11.0439 21.0424i 0.528907 1.00775i
\(437\) 3.70238i 0.177109i
\(438\) −11.7298 6.15626i −0.560470 0.294158i
\(439\) 3.83200 31.5594i 0.182892 1.50625i −0.555297 0.831652i \(-0.687395\pi\)
0.738188 0.674595i \(-0.235682\pi\)
\(440\) 16.9847 6.44144i 0.809712 0.307083i
\(441\) −5.82015 3.05465i −0.277150 0.145460i
\(442\) −3.20043 + 3.01902i −0.152229 + 0.143600i
\(443\) −0.462158 + 0.242559i −0.0219578 + 0.0115243i −0.475666 0.879626i \(-0.657793\pi\)
0.453709 + 0.891150i \(0.350101\pi\)
\(444\) −7.88206 + 8.89701i −0.374066 + 0.422233i
\(445\) −12.0155 + 10.6448i −0.569587 + 0.504610i
\(446\) 12.0904 + 2.98001i 0.572497 + 0.141108i
\(447\) −26.0274 3.16030i −1.23105 0.149477i
\(448\) −4.21941 4.76273i −0.199349 0.225018i
\(449\) −11.6061 4.40161i −0.547725 0.207725i 0.0651909 0.997873i \(-0.479234\pi\)
−0.612916 + 0.790148i \(0.710004\pi\)
\(450\) 1.78548 3.40194i 0.0841682 0.160369i
\(451\) −41.4423 + 21.7506i −1.95144 + 1.02420i
\(452\) −1.16243 9.57350i −0.0546763 0.450300i
\(453\) −2.64477 2.98533i −0.124262 0.140263i
\(454\) 12.3166 3.03578i 0.578049 0.142476i
\(455\) −3.89957 + 4.68911i −0.182815 + 0.219829i
\(456\) −8.34048 2.05574i −0.390579 0.0962690i
\(457\) −8.28304 15.7820i −0.387464 0.738251i 0.611115 0.791542i \(-0.290721\pi\)
−0.998579 + 0.0532907i \(0.983029\pi\)
\(458\) 3.55936 1.86810i 0.166318 0.0872904i
\(459\) −2.83306 7.47017i −0.132236 0.348678i
\(460\) 2.29941 0.872052i 0.107211 0.0406596i
\(461\) −5.54616 + 3.82824i −0.258310 + 0.178299i −0.690181 0.723637i \(-0.742469\pi\)
0.431871 + 0.901936i \(0.357854\pi\)
\(462\) 1.94661 7.89772i 0.0905646 0.367435i
\(463\) 31.5005 21.7432i 1.46395 1.01049i 0.472314 0.881430i \(-0.343419\pi\)
0.991636 0.129062i \(-0.0411967\pi\)
\(464\) 0.0512063 0.421722i 0.00237719 0.0195780i
\(465\) −0.586864 1.54743i −0.0272152 0.0717605i
\(466\) 9.90055 18.8639i 0.458634 0.873855i
\(467\) −19.8196 + 28.7136i −0.917140 + 1.32871i 0.0271631 + 0.999631i \(0.491353\pi\)
−0.944303 + 0.329076i \(0.893263\pi\)
\(468\) −5.80073 + 0.889074i −0.268139 + 0.0410975i
\(469\) 1.08594 + 1.57326i 0.0501443 + 0.0726465i
\(470\) −2.81527 + 0.341835i −0.129859 + 0.0157677i
\(471\) −14.0625 + 3.46609i −0.647965 + 0.159709i
\(472\) −0.271996 + 0.394055i −0.0125196 + 0.0181378i
\(473\) 36.9306 41.6860i 1.69807 1.91673i
\(474\) −1.98375 3.77972i −0.0911166 0.173608i
\(475\) 8.11276 + 0.985067i 0.372239 + 0.0451980i
\(476\) 2.45864 0.298533i 0.112692 0.0136833i
\(477\) 12.5118 + 11.0845i 0.572875 + 0.507523i
\(478\) −7.30447 10.5824i −0.334099 0.484026i
\(479\) −42.2209 5.12655i −1.92912 0.234238i −0.936063 0.351833i \(-0.885558\pi\)
−0.993062 + 0.117595i \(0.962481\pi\)
\(480\) 1.10898 + 9.13326i 0.0506177 + 0.416875i
\(481\) 25.8554 0.808383i 1.17890 0.0368591i
\(482\) 1.64933 13.5835i 0.0751251 0.618711i
\(483\) 0.680024 2.75897i 0.0309422 0.125537i
\(484\) −21.2858 −0.967535
\(485\) −17.5243 −0.795738
\(486\) −2.51615 + 10.2084i −0.114135 + 0.463063i
\(487\) −7.23951 + 2.74558i −0.328053 + 0.124414i −0.513133 0.858309i \(-0.671515\pi\)
0.185079 + 0.982724i \(0.440746\pi\)
\(488\) 11.7623i 0.532453i
\(489\) 1.30030 + 0.493140i 0.0588018 + 0.0223006i
\(490\) 5.23339 1.28991i 0.236420 0.0582724i
\(491\) −26.2828 23.2845i −1.18613 1.05082i −0.997635 0.0687406i \(-0.978102\pi\)
−0.188491 0.982075i \(-0.560360\pi\)
\(492\) −3.51824 14.2740i −0.158614 0.643524i
\(493\) −3.41584 3.02617i −0.153842 0.136292i
\(494\) 3.56568 + 6.30666i 0.160428 + 0.283750i
\(495\) 6.24855 5.53573i 0.280851 0.248813i
\(496\) 0.112058 + 0.0773477i 0.00503153 + 0.00347302i
\(497\) 0.401457 + 0.0989502i 0.0180078 + 0.00443852i
\(498\) −4.77838 6.92267i −0.214124 0.310212i
\(499\) 2.41408 + 9.79429i 0.108069 + 0.438453i 0.999903 0.0139094i \(-0.00442763\pi\)
−0.891834 + 0.452362i \(0.850581\pi\)
\(500\) −3.16255 12.8310i −0.141434 0.573819i
\(501\) 7.94529 0.964733i 0.354969 0.0431011i
\(502\) 4.39032 + 4.95565i 0.195950 + 0.221181i
\(503\) 2.61571 6.89706i 0.116629 0.307525i −0.863972 0.503540i \(-0.832031\pi\)
0.980601 + 0.196015i \(0.0628000\pi\)
\(504\) −4.38074 2.29919i −0.195134 0.102414i
\(505\) −6.26337 + 4.32329i −0.278716 + 0.192384i
\(506\) 7.13813 0.317329
\(507\) −13.4190 10.4678i −0.595957 0.464891i
\(508\) −14.2144 −0.630661
\(509\) 10.0284 6.92214i 0.444503 0.306818i −0.324707 0.945815i \(-0.605266\pi\)
0.769210 + 0.638996i \(0.220650\pi\)
\(510\) 1.74069 + 0.913584i 0.0770790 + 0.0404542i
\(511\) 5.75489 15.1744i 0.254581 0.671276i
\(512\) −0.993903 1.12188i −0.0439247 0.0495808i
\(513\) −13.0600 + 1.58577i −0.576611 + 0.0700133i
\(514\) −0.373710 1.51620i −0.0164836 0.0668768i
\(515\) −4.22924 17.1587i −0.186362 0.756102i
\(516\) 9.93727 + 14.3966i 0.437464 + 0.633776i
\(517\) 13.7708 + 3.39420i 0.605639 + 0.149277i
\(518\) 6.95546 + 4.80100i 0.305605 + 0.210944i
\(519\) 3.83918 3.40121i 0.168521 0.149297i
\(520\) 7.93980 9.54737i 0.348183 0.418680i
\(521\) 6.81211 + 6.03500i 0.298444 + 0.264398i 0.799034 0.601286i \(-0.205345\pi\)
−0.500590 + 0.865685i \(0.666883\pi\)
\(522\) 0.845460 + 3.43016i 0.0370048 + 0.150134i
\(523\) −24.4155 21.6302i −1.06762 0.945825i −0.0689576 0.997620i \(-0.521967\pi\)
−0.998658 + 0.0517949i \(0.983506\pi\)
\(524\) −10.8269 + 2.66858i −0.472974 + 0.116578i
\(525\) −5.86460 2.22415i −0.255952 0.0970698i
\(526\) 1.79741i 0.0783708i
\(527\) 1.36762 0.518668i 0.0595743 0.0225935i
\(528\) 0.219028 0.888630i 0.00953195 0.0386727i
\(529\) −20.5064 −0.891582
\(530\) −13.7070 −0.595395
\(531\) −0.0526598 + 0.213649i −0.00228524 + 0.00927159i
\(532\) 0.491588 4.04859i 0.0213131 0.175529i
\(533\) −17.3431 + 26.8858i −0.751211 + 1.16455i
\(534\) −1.76411 14.5287i −0.0763404 0.628720i
\(535\) −7.73727 0.939474i −0.334511 0.0406170i
\(536\) −2.21106 3.20328i −0.0955034 0.138361i
\(537\) 16.3110 + 14.4502i 0.703870 + 0.623574i
\(538\) −17.8158 + 2.16323i −0.768094 + 0.0932635i
\(539\) −26.7596 3.24921i −1.15262 0.139953i
\(540\) 4.06098 + 7.73756i 0.174757 + 0.332972i
\(541\) −25.7412 + 29.0558i −1.10670 + 1.24921i −0.140871 + 0.990028i \(0.544990\pi\)
−0.965830 + 0.259178i \(0.916548\pi\)
\(542\) −11.0020 + 15.9391i −0.472575 + 0.684644i
\(543\) −25.4872 + 6.28204i −1.09376 + 0.269588i
\(544\) −8.07195 + 0.980112i −0.346082 + 0.0420219i
\(545\) 13.1273 + 19.0182i 0.562313 + 0.814652i
\(546\) −1.49874 5.35456i −0.0641403 0.229154i
\(547\) 24.1324 34.9619i 1.03183 1.49486i 0.171458 0.985191i \(-0.445152\pi\)
0.860370 0.509670i \(-0.170232\pi\)
\(548\) 8.93765 17.0293i 0.381797 0.727454i
\(549\) −1.91681 5.05422i −0.0818075 0.215709i
\(550\) 1.89920 15.6413i 0.0809820 0.666947i
\(551\) −6.18443 + 4.26880i −0.263466 + 0.181857i
\(552\) −1.38458 + 5.61745i −0.0589316 + 0.239095i
\(553\) 4.30381 2.97071i 0.183017 0.126327i
\(554\) −16.1029 + 6.10701i −0.684145 + 0.259462i
\(555\) −4.09865 10.8073i −0.173978 0.458743i
\(556\) 5.21599 2.73756i 0.221207 0.116098i
\(557\) −4.57233 8.71184i −0.193736 0.369133i 0.769139 0.639082i \(-0.220685\pi\)
−0.962875 + 0.269949i \(0.912993\pi\)
\(558\) −1.09941 0.270981i −0.0465418 0.0114715i
\(559\) 7.95124 37.2307i 0.336302 1.57469i
\(560\) −0.217682 + 0.0536537i −0.00919873 + 0.00226728i
\(561\) −6.51954 7.35904i −0.275255 0.310699i
\(562\) 1.36076 + 11.2069i 0.0574002 + 0.472733i
\(563\) 40.4314 21.2200i 1.70398 0.894318i 0.725434 0.688292i \(-0.241639\pi\)
0.978547 0.206026i \(-0.0660531\pi\)
\(564\) −2.07032 + 3.94466i −0.0871761 + 0.166100i
\(565\) 8.76836 + 3.32540i 0.368888 + 0.139901i
\(566\) 14.8069 + 16.7135i 0.622380 + 0.702521i
\(567\) 4.75860 + 0.577799i 0.199843 + 0.0242653i
\(568\) −0.817395 0.201470i −0.0342971 0.00845349i
\(569\) 5.24809 4.64940i 0.220011 0.194913i −0.545917 0.837840i \(-0.683818\pi\)
0.765928 + 0.642927i \(0.222280\pi\)
\(570\) 2.14663 2.42304i 0.0899124 0.101490i
\(571\) 13.2488 6.95352i 0.554446 0.290996i −0.164136 0.986438i \(-0.552484\pi\)
0.718582 + 0.695442i \(0.244791\pi\)
\(572\) −20.9500 + 11.8448i −0.875965 + 0.495256i
\(573\) 27.8788 + 14.6319i 1.16465 + 0.611258i
\(574\) −9.77375 + 3.70669i −0.407948 + 0.154714i
\(575\) 0.663460 5.46408i 0.0276682 0.227868i
\(576\) 5.27184 + 2.76687i 0.219660 + 0.115286i
\(577\) 40.2907i 1.67732i 0.544652 + 0.838662i \(0.316662\pi\)
−0.544652 + 0.838662i \(0.683338\pi\)
\(578\) 5.96331 11.3621i 0.248041 0.472603i
\(579\) 1.38101 1.55884i 0.0573928 0.0647831i
\(580\) 4.10787 + 2.83546i 0.170570 + 0.117736i
\(581\) 7.71348 6.83355i 0.320009 0.283503i
\(582\) 9.07617 13.1491i 0.376219 0.545048i
\(583\) 64.0960 + 24.3084i 2.65459 + 1.00675i
\(584\) −11.7174 + 30.8962i −0.484869 + 1.27849i
\(585\) 1.85585 5.39637i 0.0767298 0.223112i
\(586\) 1.16865 + 3.08147i 0.0482764 + 0.127294i
\(587\) 33.6048i 1.38702i 0.720449 + 0.693508i \(0.243936\pi\)
−0.720449 + 0.693508i \(0.756064\pi\)
\(588\) 3.00248 7.91688i 0.123820 0.326487i
\(589\) −0.290317 2.39098i −0.0119623 0.0985185i
\(590\) −0.0838542 0.159771i −0.00345222 0.00657766i
\(591\) −6.92954 4.78311i −0.285043 0.196751i
\(592\) 0.782609 + 0.540196i 0.0321650 + 0.0222019i
\(593\) −11.3216 21.5715i −0.464922 0.885836i −0.999179 0.0405133i \(-0.987101\pi\)
0.534257 0.845322i \(-0.320592\pi\)
\(594\) 3.05734 + 25.1794i 0.125444 + 1.03312i
\(595\) −0.854021 + 2.25187i −0.0350115 + 0.0923176i
\(596\) 25.3447i 1.03816i
\(597\) 11.1987 + 29.5286i 0.458333 + 1.20853i
\(598\) 4.24764 2.40155i 0.173699 0.0982065i
\(599\) −11.3243 + 29.8597i −0.462698 + 1.22004i 0.477265 + 0.878759i \(0.341628\pi\)
−0.939963 + 0.341276i \(0.889141\pi\)
\(600\) 11.9408 + 4.52853i 0.487479 + 0.184876i
\(601\) 2.19752 3.18366i 0.0896388 0.129864i −0.775599 0.631226i \(-0.782552\pi\)
0.865238 + 0.501362i \(0.167167\pi\)
\(602\) 9.31013 8.24805i 0.379452 0.336166i
\(603\) −1.47210 1.01612i −0.0599486 0.0413795i
\(604\) −2.55662 + 2.88582i −0.104027 + 0.117423i
\(605\) 9.61909 18.3276i 0.391072 0.745125i
\(606\) 6.93874i 0.281867i
\(607\) 20.1689 + 10.5854i 0.818629 + 0.429650i 0.821404 0.570346i \(-0.193191\pi\)
−0.00277517 + 0.999996i \(0.500883\pi\)
\(608\) −1.61393 + 13.2919i −0.0654534 + 0.539058i
\(609\) 5.39262 2.04515i 0.218520 0.0828737i
\(610\) 3.92486 + 2.05992i 0.158913 + 0.0834039i
\(611\) 9.33644 2.61327i 0.377712 0.105722i
\(612\) −2.05200 + 1.07697i −0.0829472 + 0.0435340i
\(613\) 24.0162 27.1087i 0.970007 1.09491i −0.0254480 0.999676i \(-0.508101\pi\)
0.995455 0.0952352i \(-0.0303603\pi\)
\(614\) 4.89473 4.33635i 0.197535 0.175001i
\(615\) 13.8803 + 3.42118i 0.559706 + 0.137955i
\(616\) −20.1416 2.44563i −0.811527 0.0985372i
\(617\) −18.3810 20.7478i −0.739990 0.835276i 0.251170 0.967943i \(-0.419185\pi\)
−0.991161 + 0.132667i \(0.957646\pi\)
\(618\) 15.0652 + 5.71346i 0.606010 + 0.229829i
\(619\) 14.6747 27.9602i 0.589824 1.12382i −0.389407 0.921066i \(-0.627320\pi\)
0.979231 0.202750i \(-0.0649878\pi\)
\(620\) −1.41657 + 0.743473i −0.0568908 + 0.0298586i
\(621\) 1.06804 + 8.79611i 0.0428590 + 0.352976i
\(622\) −4.14137 4.67464i −0.166054 0.187436i
\(623\) 17.4088 4.29089i 0.697469 0.171911i
\(624\) −0.168635 0.602481i −0.00675078 0.0241185i
\(625\) −4.44469 1.09552i −0.177788 0.0438207i
\(626\) −1.16572 2.22109i −0.0465914 0.0887724i
\(627\) −14.3350 + 7.52361i −0.572486 + 0.300464i
\(628\) 4.96469 + 13.0908i 0.198113 + 0.522380i
\(629\) 9.55142 3.62238i 0.380840 0.144434i
\(630\) 1.53440 1.05912i 0.0611318 0.0421962i
\(631\) −11.3476 + 46.0391i −0.451742 + 1.83279i 0.0949878 + 0.995478i \(0.469719\pi\)
−0.546729 + 0.837309i \(0.684127\pi\)
\(632\) −8.76288 + 6.04858i −0.348568 + 0.240599i
\(633\) 0.584556 4.81425i 0.0232340 0.191349i
\(634\) 0.519485 + 1.36977i 0.0206314 + 0.0544005i
\(635\) 6.42351 12.2390i 0.254909 0.485689i
\(636\) −12.2317 + 17.7207i −0.485018 + 0.702670i
\(637\) −17.0168 + 7.06950i −0.674232 + 0.280104i
\(638\) 8.23020 + 11.9235i 0.325837 + 0.472056i
\(639\) −0.384064 + 0.0466339i −0.0151934 + 0.00184481i
\(640\) 8.90671 2.19531i 0.352069 0.0867771i
\(641\) −13.8078 + 20.0041i −0.545377 + 0.790115i −0.994653 0.103278i \(-0.967067\pi\)
0.449275 + 0.893393i \(0.351682\pi\)
\(642\) 4.71220 5.31897i 0.185976 0.209923i
\(643\) −6.57071 12.5195i −0.259124 0.493719i 0.720787 0.693157i \(-0.243781\pi\)
−0.979910 + 0.199438i \(0.936088\pi\)
\(644\) −2.72680 0.331093i −0.107451 0.0130469i
\(645\) −16.8866 + 2.05040i −0.664908 + 0.0807345i
\(646\) 2.14148 + 1.89718i 0.0842553 + 0.0746437i
\(647\) −11.7397 17.0080i −0.461537 0.668652i 0.521248 0.853405i \(-0.325467\pi\)
−0.982785 + 0.184754i \(0.940851\pi\)
\(648\) −9.68887 1.17644i −0.380615 0.0462150i
\(649\) 0.108772 + 0.895820i 0.00426969 + 0.0351640i
\(650\) −4.13220 9.94652i −0.162078 0.390135i
\(651\) −0.222816 + 1.83505i −0.00873283 + 0.0719213i
\(652\) 0.321718 1.30526i 0.0125994 0.0511179i
\(653\) 12.6457 0.494864 0.247432 0.968905i \(-0.420413\pi\)
0.247432 + 0.968905i \(0.420413\pi\)
\(654\) −21.0689 −0.823861
\(655\) 2.59496 10.5282i 0.101394 0.411370i
\(656\) −1.09972 + 0.417067i −0.0429367 + 0.0162837i
\(657\) 15.1855i 0.592443i
\(658\) 2.96176 + 1.12325i 0.115462 + 0.0437888i
\(659\) −26.9401 + 6.64015i −1.04944 + 0.258663i −0.726078 0.687612i \(-0.758659\pi\)
−0.323361 + 0.946276i \(0.604813\pi\)
\(660\) 8.04909 + 7.13087i 0.313310 + 0.277569i
\(661\) −1.74142 7.06523i −0.0677335 0.274805i 0.927304 0.374310i \(-0.122120\pi\)
−0.995037 + 0.0995045i \(0.968274\pi\)
\(662\) −10.7475 9.52145i −0.417713 0.370062i
\(663\) −6.35541 2.18567i −0.246824 0.0848842i
\(664\) −15.7052 + 13.9136i −0.609480 + 0.539952i
\(665\) 3.26380 + 2.25284i 0.126565 + 0.0873614i
\(666\) −7.67828 1.89253i −0.297527 0.0733339i
\(667\) 2.87511 + 4.16532i 0.111325 + 0.161282i
\(668\) −1.85156 7.51206i −0.0716389 0.290650i
\(669\) 4.55213 + 18.4687i 0.175995 + 0.714041i
\(670\) 1.45610 0.176802i 0.0562540 0.00683047i
\(671\) −14.7001 16.5929i −0.567490 0.640564i
\(672\) 3.64403 9.60853i 0.140572 0.370657i
\(673\) 30.3994 + 15.9548i 1.17181 + 0.615013i 0.934340 0.356382i \(-0.115990\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(674\) −10.1956 + 7.03752i −0.392720 + 0.271075i
\(675\) 19.5585 0.752806
\(676\) −8.48154 + 14.0968i −0.326213 + 0.542185i
\(677\) 46.3148 1.78002 0.890011 0.455940i \(-0.150697\pi\)
0.890011 + 0.455940i \(0.150697\pi\)
\(678\) −7.03647 + 4.85692i −0.270234 + 0.186529i
\(679\) 17.3317 + 9.09639i 0.665130 + 0.349087i
\(680\) 1.73885 4.58497i 0.0666819 0.175826i
\(681\) 12.8496 + 14.5042i 0.492397 + 0.555801i
\(682\) −4.60977 + 0.559728i −0.176517 + 0.0214331i
\(683\) −5.56528 22.5792i −0.212949 0.863970i −0.976025 0.217660i \(-0.930158\pi\)
0.763075 0.646310i \(-0.223689\pi\)
\(684\) 0.913251 + 3.70521i 0.0349190 + 0.141672i
\(685\) 10.6237 + 15.3911i 0.405912 + 0.588065i
\(686\) −13.8518 3.41415i −0.528863 0.130353i
\(687\) 5.05350 + 3.48818i 0.192803 + 0.133082i
\(688\) 1.04755 0.928049i 0.0399375 0.0353815i
\(689\) 46.3195 7.09936i 1.76463 0.270464i
\(690\) −1.63196 1.44579i −0.0621277 0.0550403i
\(691\) 4.25961 + 17.2819i 0.162043 + 0.657436i 0.994626 + 0.103535i \(0.0330152\pi\)
−0.832583 + 0.553901i \(0.813139\pi\)
\(692\) −3.71122 3.28785i −0.141079 0.124985i
\(693\) −9.05332 + 2.23144i −0.343907 + 0.0847655i
\(694\) 13.6385 + 5.17238i 0.517709 + 0.196341i
\(695\) 5.72822i 0.217284i
\(696\) −10.9798 + 4.16408i −0.416187 + 0.157839i
\(697\) −3.02362 + 12.2673i −0.114528 + 0.464658i
\(698\) 4.15137 0.157132
\(699\) 32.5433 1.23090
\(700\) −1.45100 + 5.88695i −0.0548428 + 0.222506i
\(701\) 2.20093 18.1263i 0.0831280 0.684621i −0.890259 0.455454i \(-0.849477\pi\)
0.973387 0.229167i \(-0.0736000\pi\)
\(702\) 10.2907 + 13.9548i 0.388396 + 0.526688i
\(703\) −2.02757 16.6986i −0.0764714 0.629799i
\(704\) 24.2386 + 2.94310i 0.913527 + 0.110922i
\(705\) −2.46088 3.56521i −0.0926823 0.134273i
\(706\) −19.0442 16.8717i −0.716738 0.634975i
\(707\) 8.43863 1.02464i 0.317367 0.0385354i
\(708\) −0.281383 0.0341661i −0.0105750 0.00128404i
\(709\) −21.5756 41.1089i −0.810289 1.54388i −0.838900 0.544286i \(-0.816801\pi\)
0.0286104 0.999591i \(-0.490892\pi\)
\(710\) 0.210377 0.237466i 0.00789531 0.00891196i
\(711\) −2.77969 + 4.02708i −0.104247 + 0.151027i
\(712\) −35.4456 + 8.73656i −1.32838 + 0.327416i
\(713\) −1.61036 + 0.195534i −0.0603086 + 0.00732279i
\(714\) −1.24734 1.80709i −0.0466806 0.0676286i
\(715\) −0.731341 23.3913i −0.0273506 0.874784i
\(716\) 11.9662 17.3361i 0.447199 0.647879i
\(717\) 9.12811 17.3922i 0.340896 0.649522i
\(718\) −2.30036 6.06555i −0.0858487 0.226364i
\(719\) 4.74140 39.0489i 0.176824 1.45628i −0.586335 0.810069i \(-0.699430\pi\)
0.763159 0.646210i \(-0.223647\pi\)
\(720\) 0.172646 0.119169i 0.00643414 0.00444117i
\(721\) −4.72384 + 19.1654i −0.175925 + 0.713756i
\(722\) −9.52383 + 6.57382i −0.354440 + 0.244652i
\(723\) 19.5436 7.41190i 0.726834 0.275652i
\(724\) 8.99813 + 23.7261i 0.334413 + 0.881774i
\(725\) 9.89214 5.19179i 0.367385 0.192818i
\(726\) 8.76996 + 16.7098i 0.325484 + 0.620158i
\(727\) 0.771227 + 0.190090i 0.0286032 + 0.00705006i 0.253591 0.967311i \(-0.418388\pi\)
−0.224988 + 0.974362i \(0.572234\pi\)
\(728\) −12.8083 + 5.32111i −0.474708 + 0.197213i
\(729\) −25.7522 + 6.34734i −0.953785 + 0.235087i
\(730\) −8.25743 9.32072i −0.305621 0.344975i
\(731\) −1.81214 14.9243i −0.0670244 0.551995i
\(732\) 6.16551 3.23591i 0.227884 0.119603i
\(733\) 6.22507 11.8609i 0.229928 0.438092i −0.742970 0.669325i \(-0.766584\pi\)
0.972898 + 0.231233i \(0.0742759\pi\)
\(734\) −2.69721 1.02292i −0.0995560 0.0377566i
\(735\) 5.45983 + 6.16288i 0.201389 + 0.227321i
\(736\) 8.95232 + 1.08701i 0.329987 + 0.0400677i
\(737\) −7.12247 1.75553i −0.262359 0.0646658i
\(738\) 7.32111 6.48593i 0.269494 0.238751i
\(739\) −31.4763 + 35.5294i −1.15787 + 1.30697i −0.213935 + 0.976848i \(0.568628\pi\)
−0.943939 + 0.330121i \(0.892910\pi\)
\(740\) −9.89331 + 5.19241i −0.363685 + 0.190877i
\(741\) −5.99902 + 9.29989i −0.220379 + 0.341640i
\(742\) 13.5564 + 7.11494i 0.497671 + 0.261198i
\(743\) −21.7700 + 8.25627i −0.798663 + 0.302893i −0.719969 0.694006i \(-0.755844\pi\)
−0.0786938 + 0.996899i \(0.525075\pi\)
\(744\) 0.453669 3.73630i 0.0166323 0.136979i
\(745\) −21.8225 11.4533i −0.799514 0.419617i
\(746\) 3.08004i 0.112768i
\(747\) −4.48109 + 8.53800i −0.163954 + 0.312389i
\(748\) −6.30224 + 7.11376i −0.230433 + 0.260105i
\(749\) 7.16458 + 4.94535i 0.261788 + 0.180699i
\(750\) −8.76959 + 7.76918i −0.320220 + 0.283690i
\(751\) 13.3030 19.2727i 0.485433 0.703270i −0.501364 0.865237i \(-0.667168\pi\)
0.986796 + 0.161966i \(0.0517835\pi\)
\(752\) 0.333250 + 0.126385i 0.0121524 + 0.00460878i
\(753\) −3.58627 + 9.45622i −0.130691 + 0.344604i
\(754\) 8.90902 + 4.32628i 0.324447 + 0.157554i
\(755\) −1.32943 3.50543i −0.0483831 0.127576i
\(756\) 9.76047i 0.354985i
\(757\) −9.14640 + 24.1171i −0.332432 + 0.876550i 0.659720 + 0.751511i \(0.270675\pi\)
−0.992152 + 0.125039i \(0.960095\pi\)
\(758\) −0.540111 4.44821i −0.0196177 0.161566i
\(759\) 5.06728 + 9.65489i 0.183931 + 0.350450i
\(760\) −6.64534 4.58695i −0.241052 0.166386i
\(761\) −22.0358 15.2102i −0.798798 0.551371i 0.0972849 0.995257i \(-0.468984\pi\)
−0.896083 + 0.443886i \(0.853600\pi\)
\(762\) 5.85648 + 11.1586i 0.212158 + 0.404233i
\(763\) −3.11123 25.6233i −0.112634 0.927624i
\(764\) 10.7927 28.4580i 0.390466 1.02957i
\(765\) 2.25352i 0.0814761i
\(766\) −7.65134 20.1749i −0.276454 0.728949i
\(767\) 0.366115 +