Properties

Label 169.2.h.a.12.5
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.5
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19961 + 0.828028i) q^{2} +(0.960584 + 0.504153i) q^{3} +(0.0442133 - 0.116581i) q^{4} +(2.00541 + 2.26364i) q^{5} +(-1.56977 + 0.190605i) q^{6} +(0.228271 + 0.926132i) q^{7} +(-0.654173 - 2.65409i) q^{8} +(-1.03564 - 1.50039i) q^{9} +O(q^{10})\) \(q+(-1.19961 + 0.828028i) q^{2} +(0.960584 + 0.504153i) q^{3} +(0.0442133 - 0.116581i) q^{4} +(2.00541 + 2.26364i) q^{5} +(-1.56977 + 0.190605i) q^{6} +(0.228271 + 0.926132i) q^{7} +(-0.654173 - 2.65409i) q^{8} +(-1.03564 - 1.50039i) q^{9} +(-4.28006 - 1.05494i) q^{10} +(0.351207 + 0.242421i) q^{11} +(0.101245 - 0.0896954i) q^{12} +(1.73944 + 3.15822i) q^{13} +(-1.04070 - 0.921978i) q^{14} +(0.785144 + 3.18545i) q^{15} +(3.16906 + 2.80754i) q^{16} +(-4.48180 + 1.10466i) q^{17} +(2.48473 + 0.942332i) q^{18} -0.428231i q^{19} +(0.352563 - 0.133710i) q^{20} +(-0.247639 + 1.00471i) q^{21} -0.622040 q^{22} +0.363115 q^{23} +(0.709678 - 2.87928i) q^{24} +(-0.499715 + 4.11552i) q^{25} +(-4.70173 - 2.34832i) q^{26} +(-0.630688 - 5.19418i) q^{27} +(0.118062 + 0.0143353i) q^{28} +(-2.64175 - 3.82724i) q^{29} +(-3.57951 - 3.17117i) q^{30} +(8.18388 - 0.993703i) q^{31} +(-0.699172 - 0.0848949i) q^{32} +(0.215146 + 0.409927i) q^{33} +(4.46170 - 5.03621i) q^{34} +(-1.63865 + 2.37400i) q^{35} +(-0.220706 + 0.0543991i) q^{36} +(4.25411 - 0.516542i) q^{37} +(0.354587 + 0.513708i) q^{38} +(0.0786471 + 3.91068i) q^{39} +(4.69601 - 6.80335i) q^{40} +(-0.958910 + 1.82705i) q^{41} +(-0.534860 - 1.41031i) q^{42} +(0.489882 - 4.03454i) q^{43} +(0.0437896 - 0.0302258i) q^{44} +(1.31945 - 5.35322i) q^{45} +(-0.435595 + 0.300669i) q^{46} +(10.4726 - 3.97174i) q^{47} +(1.62872 + 4.29457i) q^{48} +(5.39258 - 2.83024i) q^{49} +(-2.80831 - 5.35078i) q^{50} +(-4.86206 - 1.19839i) q^{51} +(0.445094 - 0.0631497i) q^{52} +(-8.46335 + 2.08603i) q^{53} +(5.05750 + 5.70874i) q^{54} +(0.155561 + 1.28116i) q^{55} +(2.30870 - 1.21170i) q^{56} +(0.215894 - 0.411352i) q^{57} +(6.33812 + 2.40373i) q^{58} +(-8.45125 - 9.53949i) q^{59} +(0.406077 + 0.0493066i) q^{60} +(-0.778766 - 0.191949i) q^{61} +(-8.99461 + 7.96853i) q^{62} +(1.15315 - 1.30164i) q^{63} +(-6.58870 + 3.45802i) q^{64} +(-3.66079 + 10.2710i) q^{65} +(-0.597522 - 0.313604i) q^{66} +(1.97707 - 0.749805i) q^{67} +(-0.0693723 + 0.571333i) q^{68} +(0.348803 + 0.183066i) q^{69} -4.20471i q^{70} +(0.0435937 - 0.0830608i) q^{71} +(-3.30467 + 3.73020i) q^{72} +(7.28536 + 5.02872i) q^{73} +(-4.67554 + 4.14217i) q^{74} +(-2.55487 + 3.70137i) q^{75} +(-0.0499235 - 0.0189335i) q^{76} +(-0.144343 + 0.380601i) q^{77} +(-3.33250 - 4.62615i) q^{78} +(-0.959418 - 2.52978i) q^{79} +12.8039i q^{80} +(0.0733877 - 0.193508i) q^{81} +(-0.362535 - 2.98574i) q^{82} +(7.46757 + 14.2283i) q^{83} +(0.106181 + 0.0732916i) q^{84} +(-11.4884 - 7.92988i) q^{85} +(2.75304 + 5.24549i) q^{86} +(-0.608109 - 5.00823i) q^{87} +(0.413655 - 1.09072i) q^{88} -12.6640i q^{89} +(2.84980 + 7.51429i) q^{90} +(-2.52787 + 2.33188i) q^{91} +(0.0160545 - 0.0423323i) q^{92} +(8.36228 + 3.17139i) q^{93} +(-9.27430 + 13.4361i) q^{94} +(0.969361 - 0.858779i) q^{95} +(-0.628814 - 0.434039i) q^{96} +(-11.4690 + 12.9459i) q^{97} +(-4.12545 + 7.86038i) q^{98} -0.778008i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19961 + 0.828028i −0.848249 + 0.585504i −0.910945 0.412529i \(-0.864646\pi\)
0.0626955 + 0.998033i \(0.480030\pi\)
\(3\) 0.960584 + 0.504153i 0.554593 + 0.291073i 0.718643 0.695379i \(-0.244763\pi\)
−0.164050 + 0.986452i \(0.552456\pi\)
\(4\) 0.0442133 0.116581i 0.0221066 0.0582904i
\(5\) 2.00541 + 2.26364i 0.896847 + 1.01233i 0.999844 + 0.0176496i \(0.00561835\pi\)
−0.102997 + 0.994682i \(0.532843\pi\)
\(6\) −1.56977 + 0.190605i −0.640858 + 0.0778142i
\(7\) 0.228271 + 0.926132i 0.0862783 + 0.350045i 0.998176 0.0603729i \(-0.0192290\pi\)
−0.911898 + 0.410418i \(0.865383\pi\)
\(8\) −0.654173 2.65409i −0.231285 0.938361i
\(9\) −1.03564 1.50039i −0.345214 0.500129i
\(10\) −4.28006 1.05494i −1.35347 0.333601i
\(11\) 0.351207 + 0.242421i 0.105893 + 0.0730925i 0.619834 0.784733i \(-0.287200\pi\)
−0.513942 + 0.857825i \(0.671815\pi\)
\(12\) 0.101245 0.0896954i 0.0292270 0.0258928i
\(13\) 1.73944 + 3.15822i 0.482433 + 0.875933i
\(14\) −1.04070 0.921978i −0.278138 0.246409i
\(15\) 0.785144 + 3.18545i 0.202723 + 0.822480i
\(16\) 3.16906 + 2.80754i 0.792265 + 0.701886i
\(17\) −4.48180 + 1.10466i −1.08700 + 0.267920i −0.741807 0.670613i \(-0.766031\pi\)
−0.345188 + 0.938533i \(0.612185\pi\)
\(18\) 2.48473 + 0.942332i 0.585656 + 0.222110i
\(19\) 0.428231i 0.0982429i −0.998793 0.0491215i \(-0.984358\pi\)
0.998793 0.0491215i \(-0.0156421\pi\)
\(20\) 0.352563 0.133710i 0.0788355 0.0298984i
\(21\) −0.247639 + 1.00471i −0.0540393 + 0.219246i
\(22\) −0.622040 −0.132619
\(23\) 0.363115 0.0757147 0.0378574 0.999283i \(-0.487947\pi\)
0.0378574 + 0.999283i \(0.487947\pi\)
\(24\) 0.709678 2.87928i 0.144862 0.587730i
\(25\) −0.499715 + 4.11552i −0.0999430 + 0.823104i
\(26\) −4.70173 2.34832i −0.922086 0.460543i
\(27\) −0.630688 5.19418i −0.121376 0.999621i
\(28\) 0.118062 + 0.0143353i 0.0223116 + 0.00270912i
\(29\) −2.64175 3.82724i −0.490561 0.710700i 0.497033 0.867732i \(-0.334423\pi\)
−0.987594 + 0.157032i \(0.949807\pi\)
\(30\) −3.57951 3.17117i −0.653526 0.578973i
\(31\) 8.18388 0.993703i 1.46987 0.178474i 0.653904 0.756578i \(-0.273130\pi\)
0.815964 + 0.578103i \(0.196207\pi\)
\(32\) −0.699172 0.0848949i −0.123597 0.0150074i
\(33\) 0.215146 + 0.409927i 0.0374522 + 0.0713592i
\(34\) 4.46170 5.03621i 0.765175 0.863704i
\(35\) −1.63865 + 2.37400i −0.276983 + 0.401279i
\(36\) −0.220706 + 0.0543991i −0.0367843 + 0.00906651i
\(37\) 4.25411 0.516542i 0.699371 0.0849191i 0.236875 0.971540i \(-0.423877\pi\)
0.462496 + 0.886621i \(0.346954\pi\)
\(38\) 0.354587 + 0.513708i 0.0575216 + 0.0833345i
\(39\) 0.0786471 + 3.91068i 0.0125936 + 0.626210i
\(40\) 4.69601 6.80335i 0.742505 1.07570i
\(41\) −0.958910 + 1.82705i −0.149757 + 0.285337i −0.948765 0.315983i \(-0.897666\pi\)
0.799008 + 0.601320i \(0.205358\pi\)
\(42\) −0.534860 1.41031i −0.0825307 0.217615i
\(43\) 0.489882 4.03454i 0.0747062 0.615261i −0.906487 0.422234i \(-0.861246\pi\)
0.981193 0.193028i \(-0.0618307\pi\)
\(44\) 0.0437896 0.0302258i 0.00660153 0.00455671i
\(45\) 1.31945 5.35322i 0.196692 0.798011i
\(46\) −0.435595 + 0.300669i −0.0642250 + 0.0443313i
\(47\) 10.4726 3.97174i 1.52759 0.579338i 0.559255 0.828996i \(-0.311087\pi\)
0.968334 + 0.249658i \(0.0803181\pi\)
\(48\) 1.62872 + 4.29457i 0.235085 + 0.619868i
\(49\) 5.39258 2.83024i 0.770368 0.404321i
\(50\) −2.80831 5.35078i −0.397154 0.756715i
\(51\) −4.86206 1.19839i −0.680825 0.167808i
\(52\) 0.445094 0.0631497i 0.0617235 0.00875728i
\(53\) −8.46335 + 2.08603i −1.16253 + 0.286538i −0.772958 0.634457i \(-0.781224\pi\)
−0.389573 + 0.920996i \(0.627377\pi\)
\(54\) 5.05750 + 5.70874i 0.688239 + 0.776861i
\(55\) 0.155561 + 1.28116i 0.0209758 + 0.172751i
\(56\) 2.30870 1.21170i 0.308514 0.161920i
\(57\) 0.215894 0.411352i 0.0285959 0.0544849i
\(58\) 6.33812 + 2.40373i 0.832235 + 0.315625i
\(59\) −8.45125 9.53949i −1.10026 1.24194i −0.968062 0.250712i \(-0.919335\pi\)
−0.132197 0.991223i \(-0.542203\pi\)
\(60\) 0.406077 + 0.0493066i 0.0524243 + 0.00636546i
\(61\) −0.778766 0.191949i −0.0997108 0.0245765i 0.189145 0.981949i \(-0.439429\pi\)
−0.288855 + 0.957373i \(0.593275\pi\)
\(62\) −8.99461 + 7.96853i −1.14232 + 1.01200i
\(63\) 1.15315 1.30164i 0.145283 0.163991i
\(64\) −6.58870 + 3.45802i −0.823587 + 0.432252i
\(65\) −3.66079 + 10.2710i −0.454066 + 1.27396i
\(66\) −0.597522 0.313604i −0.0735499 0.0386020i
\(67\) 1.97707 0.749805i 0.241538 0.0916032i −0.230866 0.972986i \(-0.574156\pi\)
0.472403 + 0.881382i \(0.343387\pi\)
\(68\) −0.0693723 + 0.571333i −0.00841263 + 0.0692843i
\(69\) 0.348803 + 0.183066i 0.0419909 + 0.0220385i
\(70\) 4.20471i 0.502559i
\(71\) 0.0435937 0.0830608i 0.00517362 0.00985750i −0.882855 0.469645i \(-0.844382\pi\)
0.888029 + 0.459787i \(0.152074\pi\)
\(72\) −3.30467 + 3.73020i −0.389459 + 0.439608i
\(73\) 7.28536 + 5.02872i 0.852687 + 0.588568i 0.912239 0.409658i \(-0.134352\pi\)
−0.0595520 + 0.998225i \(0.518967\pi\)
\(74\) −4.67554 + 4.14217i −0.543521 + 0.481517i
\(75\) −2.55487 + 3.70137i −0.295011 + 0.427398i
\(76\) −0.0499235 0.0189335i −0.00572662 0.00217182i
\(77\) −0.144343 + 0.380601i −0.0164494 + 0.0433736i
\(78\) −3.33250 4.62615i −0.377331 0.523808i
\(79\) −0.959418 2.52978i −0.107943 0.284622i 0.870151 0.492785i \(-0.164021\pi\)
−0.978094 + 0.208162i \(0.933252\pi\)
\(80\) 12.8039i 1.43152i
\(81\) 0.0733877 0.193508i 0.00815419 0.0215008i
\(82\) −0.362535 2.98574i −0.0400353 0.329720i
\(83\) 7.46757 + 14.2283i 0.819672 + 1.56175i 0.827284 + 0.561783i \(0.189885\pi\)
−0.00761251 + 0.999971i \(0.502423\pi\)
\(84\) 0.106181 + 0.0732916i 0.0115853 + 0.00799677i
\(85\) −11.4884 7.92988i −1.24609 0.860116i
\(86\) 2.75304 + 5.24549i 0.296868 + 0.565636i
\(87\) −0.608109 5.00823i −0.0651961 0.536939i
\(88\) 0.413655 1.09072i 0.0440957 0.116271i
\(89\) 12.6640i 1.34238i −0.741283 0.671192i \(-0.765783\pi\)
0.741283 0.671192i \(-0.234217\pi\)
\(90\) 2.84980 + 7.51429i 0.300395 + 0.792076i
\(91\) −2.52787 + 2.33188i −0.264992 + 0.244447i
\(92\) 0.0160545 0.0423323i 0.00167380 0.00441344i
\(93\) 8.36228 + 3.17139i 0.867128 + 0.328858i
\(94\) −9.27430 + 13.4361i −0.956571 + 1.38583i
\(95\) 0.969361 0.858779i 0.0994544 0.0881089i
\(96\) −0.628814 0.434039i −0.0641781 0.0442989i
\(97\) −11.4690 + 12.9459i −1.16451 + 1.31445i −0.224034 + 0.974581i \(0.571923\pi\)
−0.940471 + 0.339873i \(0.889616\pi\)
\(98\) −4.12545 + 7.86038i −0.416733 + 0.794018i
\(99\) 0.778008i 0.0781927i
\(100\) 0.457697 + 0.240218i 0.0457697 + 0.0240218i
\(101\) −0.438558 + 3.61185i −0.0436381 + 0.359392i 0.954490 + 0.298241i \(0.0964001\pi\)
−0.998129 + 0.0611506i \(0.980523\pi\)
\(102\) 6.82486 2.58833i 0.675762 0.256283i
\(103\) 10.3677 + 5.44137i 1.02156 + 0.536154i 0.890386 0.455205i \(-0.150434\pi\)
0.131170 + 0.991360i \(0.458126\pi\)
\(104\) 7.24430 6.68264i 0.710362 0.655287i
\(105\) −2.77092 + 1.45429i −0.270415 + 0.141925i
\(106\) 8.42539 9.51030i 0.818347 0.923722i
\(107\) −4.06757 + 3.60355i −0.393226 + 0.348368i −0.836450 0.548043i \(-0.815373\pi\)
0.443224 + 0.896411i \(0.353835\pi\)
\(108\) −0.633427 0.156126i −0.0609516 0.0150232i
\(109\) −16.8946 2.05138i −1.61821 0.196486i −0.739266 0.673414i \(-0.764827\pi\)
−0.878943 + 0.476927i \(0.841750\pi\)
\(110\) −1.24745 1.40808i −0.118939 0.134255i
\(111\) 4.34685 + 1.64854i 0.412584 + 0.156473i
\(112\) −1.87675 + 3.57585i −0.177336 + 0.337886i
\(113\) −0.0947873 + 0.0497482i −0.00891684 + 0.00467992i −0.469176 0.883105i \(-0.655449\pi\)
0.460259 + 0.887785i \(0.347757\pi\)
\(114\) 0.0816230 + 0.672226i 0.00764470 + 0.0629598i
\(115\) 0.728195 + 0.821962i 0.0679045 + 0.0766484i
\(116\) −0.562983 + 0.138763i −0.0522717 + 0.0128838i
\(117\) 2.93712 5.88062i 0.271537 0.543663i
\(118\) 18.0371 + 4.44575i 1.66045 + 0.409265i
\(119\) −2.04613 3.89857i −0.187568 0.357382i
\(120\) 7.94085 4.16768i 0.724897 0.380455i
\(121\) −3.83608 10.1149i −0.348734 0.919536i
\(122\) 1.09315 0.414577i 0.0989692 0.0375341i
\(123\) −1.84223 + 1.27160i −0.166108 + 0.114656i
\(124\) 0.245989 0.998018i 0.0220905 0.0896247i
\(125\) 2.12611 1.46755i 0.190165 0.131262i
\(126\) −0.305533 + 2.51629i −0.0272191 + 0.224169i
\(127\) −3.58597 9.45543i −0.318204 0.839034i −0.994722 0.102608i \(-0.967281\pi\)
0.676518 0.736426i \(-0.263488\pi\)
\(128\) 5.69512 10.8511i 0.503382 0.959115i
\(129\) 2.50460 3.62854i 0.220518 0.319475i
\(130\) −4.11316 15.3524i −0.360748 1.34649i
\(131\) −12.2425 17.7364i −1.06964 1.54963i −0.812236 0.583329i \(-0.801750\pi\)
−0.257399 0.966305i \(-0.582865\pi\)
\(132\) 0.0573020 0.00695773i 0.00498750 0.000605592i
\(133\) 0.396598 0.0977527i 0.0343894 0.00847624i
\(134\) −1.75085 + 2.53654i −0.151250 + 0.219124i
\(135\) 10.4930 11.8441i 0.903092 1.01938i
\(136\) 5.86375 + 11.1724i 0.502812 + 0.958028i
\(137\) −4.20774 0.510912i −0.359491 0.0436501i −0.0612013 0.998125i \(-0.519493\pi\)
−0.298290 + 0.954475i \(0.596416\pi\)
\(138\) −0.570009 + 0.0692116i −0.0485224 + 0.00589168i
\(139\) 3.52857 + 3.12604i 0.299290 + 0.265147i 0.799380 0.600826i \(-0.205161\pi\)
−0.500090 + 0.865973i \(0.666700\pi\)
\(140\) 0.204313 + 0.295998i 0.0172676 + 0.0250164i
\(141\) 12.0622 + 1.46462i 1.01582 + 0.123343i
\(142\) 0.0164814 + 0.135737i 0.00138309 + 0.0113908i
\(143\) −0.154716 + 1.53086i −0.0129380 + 0.128017i
\(144\) 0.930388 7.66243i 0.0775323 0.638536i
\(145\) 3.36569 13.6552i 0.279506 1.13400i
\(146\) −12.9035 −1.06790
\(147\) 6.60690 0.544928
\(148\) 0.127869 0.518786i 0.0105108 0.0426439i
\(149\) −12.0206 + 4.55883i −0.984769 + 0.373474i −0.793838 0.608130i \(-0.791920\pi\)
−0.190932 + 0.981603i \(0.561151\pi\)
\(150\) 6.55569i 0.535270i
\(151\) −4.67435 1.77275i −0.380393 0.144264i 0.156994 0.987599i \(-0.449820\pi\)
−0.537388 + 0.843335i \(0.680589\pi\)
\(152\) −1.13656 + 0.280137i −0.0921873 + 0.0227221i
\(153\) 6.29897 + 5.58040i 0.509241 + 0.451148i
\(154\) −0.141994 0.576092i −0.0114422 0.0464228i
\(155\) 18.6614 + 16.5326i 1.49892 + 1.32793i
\(156\) 0.459388 + 0.163735i 0.0367805 + 0.0131093i
\(157\) −11.7153 + 10.3789i −0.934983 + 0.828322i −0.985374 0.170407i \(-0.945492\pi\)
0.0503910 + 0.998730i \(0.483953\pi\)
\(158\) 3.24565 + 2.24031i 0.258210 + 0.178229i
\(159\) −9.18144 2.26302i −0.728136 0.179469i
\(160\) −1.20996 1.75293i −0.0956555 0.138581i
\(161\) 0.0828887 + 0.336293i 0.00653254 + 0.0265036i
\(162\) 0.0721933 + 0.292900i 0.00567204 + 0.0230124i
\(163\) 9.76586 1.18579i 0.764921 0.0928782i 0.271229 0.962515i \(-0.412570\pi\)
0.493692 + 0.869637i \(0.335647\pi\)
\(164\) 0.170602 + 0.192570i 0.0133218 + 0.0150372i
\(165\) −0.496471 + 1.30909i −0.0386503 + 0.101912i
\(166\) −20.7395 10.8849i −1.60970 0.844835i
\(167\) −4.74797 + 3.27729i −0.367409 + 0.253604i −0.737436 0.675417i \(-0.763964\pi\)
0.370027 + 0.929021i \(0.379348\pi\)
\(168\) 2.82859 0.218230
\(169\) −6.94872 + 10.9871i −0.534517 + 0.845158i
\(170\) 20.3477 1.56060
\(171\) −0.642513 + 0.443494i −0.0491342 + 0.0339149i
\(172\) −0.448691 0.235491i −0.0342123 0.0179560i
\(173\) 3.04707 8.03446i 0.231664 0.610849i −0.767894 0.640577i \(-0.778695\pi\)
0.999558 + 0.0297286i \(0.00946431\pi\)
\(174\) 4.87644 + 5.50437i 0.369682 + 0.417285i
\(175\) −3.92559 + 0.476653i −0.296746 + 0.0360315i
\(176\) 0.432389 + 1.75427i 0.0325926 + 0.132233i
\(177\) −3.30877 13.4242i −0.248702 1.00903i
\(178\) 10.4862 + 15.1918i 0.785971 + 1.13868i
\(179\) 4.52776 + 1.11599i 0.338421 + 0.0834132i 0.404864 0.914377i \(-0.367319\pi\)
−0.0664432 + 0.997790i \(0.521165\pi\)
\(180\) −0.565746 0.390506i −0.0421682 0.0291066i
\(181\) −2.34694 + 2.07921i −0.174446 + 0.154546i −0.745828 0.666138i \(-0.767946\pi\)
0.571382 + 0.820684i \(0.306408\pi\)
\(182\) 1.10158 4.89048i 0.0816547 0.362506i
\(183\) −0.651299 0.577000i −0.0481454 0.0426531i
\(184\) −0.237540 0.963739i −0.0175117 0.0710477i
\(185\) 9.70051 + 8.59390i 0.713195 + 0.631836i
\(186\) −12.6574 + 3.11978i −0.928089 + 0.228753i
\(187\) −1.84183 0.698514i −0.134688 0.0510804i
\(188\) 1.39651i 0.101851i
\(189\) 4.66653 1.76978i 0.339440 0.128733i
\(190\) −0.451758 + 1.83285i −0.0327740 + 0.132969i
\(191\) 11.5891 0.838558 0.419279 0.907857i \(-0.362283\pi\)
0.419279 + 0.907857i \(0.362283\pi\)
\(192\) −8.07237 −0.582573
\(193\) −6.04650 + 24.5316i −0.435236 + 1.76582i 0.186356 + 0.982482i \(0.440332\pi\)
−0.621593 + 0.783341i \(0.713514\pi\)
\(194\) 3.03878 25.0266i 0.218172 1.79681i
\(195\) −8.69466 + 8.02055i −0.622637 + 0.574364i
\(196\) −0.0915286 0.753806i −0.00653776 0.0538433i
\(197\) −20.8181 2.52777i −1.48323 0.180096i −0.661485 0.749958i \(-0.730073\pi\)
−0.821740 + 0.569862i \(0.806997\pi\)
\(198\) 0.644212 + 0.933302i 0.0457821 + 0.0663269i
\(199\) −6.66585 5.90543i −0.472530 0.418625i 0.392957 0.919557i \(-0.371452\pi\)
−0.865487 + 0.500932i \(0.832991\pi\)
\(200\) 11.2498 1.36598i 0.795484 0.0965893i
\(201\) 2.27716 + 0.276497i 0.160619 + 0.0195026i
\(202\) −2.46461 4.69593i −0.173410 0.330404i
\(203\) 2.94149 3.32026i 0.206452 0.233036i
\(204\) −0.354677 + 0.513839i −0.0248324 + 0.0359759i
\(205\) −6.05879 + 1.49336i −0.423165 + 0.104301i
\(206\) −16.9427 + 2.05722i −1.18046 + 0.143333i
\(207\) −0.376058 0.544814i −0.0261378 0.0378672i
\(208\) −3.35446 + 14.8921i −0.232590 + 1.03258i
\(209\) 0.103812 0.150398i 0.00718082 0.0104032i
\(210\) 2.11982 4.03898i 0.146282 0.278716i
\(211\) −8.28860 21.8552i −0.570611 1.50458i −0.840569 0.541705i \(-0.817779\pi\)
0.269958 0.962872i \(-0.412990\pi\)
\(212\) −0.131002 + 1.07890i −0.00899723 + 0.0740988i
\(213\) 0.0837508 0.0578090i 0.00573851 0.00396101i
\(214\) 1.89564 7.69089i 0.129583 0.525739i
\(215\) 10.1152 6.98199i 0.689848 0.476168i
\(216\) −13.3732 + 5.07180i −0.909933 + 0.345092i
\(217\) 2.78844 + 7.35252i 0.189292 + 0.499121i
\(218\) 21.9654 11.5284i 1.48769 0.780799i
\(219\) 4.46296 + 8.50345i 0.301579 + 0.574610i
\(220\) 0.156237 + 0.0385088i 0.0105335 + 0.00259627i
\(221\) −11.2846 12.2330i −0.759083 0.822882i
\(222\) −6.57954 + 1.62171i −0.441590 + 0.108842i
\(223\) −16.0544 18.1217i −1.07508 1.21352i −0.975847 0.218453i \(-0.929899\pi\)
−0.0992347 0.995064i \(-0.531639\pi\)
\(224\) −0.0809769 0.666905i −0.00541050 0.0445595i
\(225\) 6.69241 3.51245i 0.446160 0.234163i
\(226\) 0.0725145 0.138165i 0.00482359 0.00919058i
\(227\) 16.1709 + 6.13283i 1.07330 + 0.407050i 0.827034 0.562152i \(-0.190026\pi\)
0.246268 + 0.969202i \(0.420796\pi\)
\(228\) −0.0384104 0.0433563i −0.00254379 0.00287134i
\(229\) −6.95331 0.844284i −0.459487 0.0557919i −0.112479 0.993654i \(-0.535879\pi\)
−0.347008 + 0.937862i \(0.612802\pi\)
\(230\) −1.55415 0.383065i −0.102478 0.0252585i
\(231\) −0.330535 + 0.292829i −0.0217476 + 0.0192667i
\(232\) −8.42965 + 9.51511i −0.553434 + 0.624697i
\(233\) 1.91201 1.00350i 0.125260 0.0657416i −0.400929 0.916109i \(-0.631313\pi\)
0.526189 + 0.850367i \(0.323620\pi\)
\(234\) 1.34593 + 9.48644i 0.0879862 + 0.620148i
\(235\) 29.9925 + 15.7413i 1.95650 + 1.02685i
\(236\) −1.48578 + 0.563482i −0.0967160 + 0.0366795i
\(237\) 0.353794 2.91376i 0.0229814 0.189269i
\(238\) 5.68268 + 2.98250i 0.368353 + 0.193327i
\(239\) 1.90323i 0.123110i 0.998104 + 0.0615549i \(0.0196059\pi\)
−0.998104 + 0.0615549i \(0.980394\pi\)
\(240\) −6.45513 + 12.2992i −0.416677 + 0.793911i
\(241\) −2.65088 + 2.99223i −0.170758 + 0.192746i −0.827660 0.561230i \(-0.810328\pi\)
0.656901 + 0.753977i \(0.271867\pi\)
\(242\) 12.9772 + 8.95751i 0.834206 + 0.575811i
\(243\) −11.5813 + 10.2602i −0.742942 + 0.658189i
\(244\) −0.0568093 + 0.0823026i −0.00363685 + 0.00526888i
\(245\) 17.2210 + 6.53106i 1.10021 + 0.417254i
\(246\) 1.15703 3.05083i 0.0737694 0.194514i
\(247\) 1.35245 0.744881i 0.0860542 0.0473956i
\(248\) −7.99105 21.0707i −0.507432 1.33799i
\(249\) 17.4322i 1.10472i
\(250\) −1.33533 + 3.52096i −0.0844534 + 0.222685i
\(251\) 2.02574 + 16.6834i 0.127863 + 1.05305i 0.905503 + 0.424339i \(0.139494\pi\)
−0.777640 + 0.628710i \(0.783583\pi\)
\(252\) −0.100761 0.191985i −0.00634738 0.0120939i
\(253\) 0.127528 + 0.0880265i 0.00801765 + 0.00553418i
\(254\) 12.1311 + 8.37350i 0.761174 + 0.525400i
\(255\) −7.03771 13.4092i −0.440719 0.839719i
\(256\) 0.359321 + 2.95927i 0.0224576 + 0.184955i
\(257\) 6.26821 16.5279i 0.391000 1.03098i −0.584580 0.811336i \(-0.698741\pi\)
0.975580 0.219646i \(-0.0704902\pi\)
\(258\) 6.42669i 0.400108i
\(259\) 1.44948 + 3.82196i 0.0900661 + 0.237485i
\(260\) 1.03555 + 0.880893i 0.0642218 + 0.0546307i
\(261\) −3.00643 + 7.92730i −0.186093 + 0.490688i
\(262\) 29.3724 + 11.1395i 1.81463 + 0.688200i
\(263\) −12.0445 + 17.4494i −0.742694 + 1.07598i 0.251446 + 0.967871i \(0.419094\pi\)
−0.994139 + 0.108106i \(0.965521\pi\)
\(264\) 0.947239 0.839181i 0.0582985 0.0516480i
\(265\) −21.6945 14.9747i −1.33268 0.919886i
\(266\) −0.394820 + 0.445659i −0.0242079 + 0.0273251i
\(267\) 6.38461 12.1649i 0.390732 0.744477i
\(268\) 0.263640i 0.0161044i
\(269\) 22.0959 + 11.5968i 1.34721 + 0.707070i 0.975234 0.221173i \(-0.0709887\pi\)
0.371974 + 0.928243i \(0.378681\pi\)
\(270\) −2.78017 + 22.8968i −0.169196 + 1.39345i
\(271\) 6.81355 2.58404i 0.413894 0.156969i −0.138863 0.990312i \(-0.544345\pi\)
0.552757 + 0.833342i \(0.313576\pi\)
\(272\) −17.3045 9.08209i −1.04924 0.550683i
\(273\) −3.60385 + 0.965533i −0.218115 + 0.0584367i
\(274\) 5.47067 2.87123i 0.330495 0.173457i
\(275\) −1.17319 + 1.32426i −0.0707460 + 0.0798558i
\(276\) 0.0367637 0.0325698i 0.00221291 0.00196047i
\(277\) 6.00822 + 1.48089i 0.360999 + 0.0889783i 0.415643 0.909528i \(-0.363556\pi\)
−0.0546445 + 0.998506i \(0.517403\pi\)
\(278\) −6.82135 0.828261i −0.409117 0.0496758i
\(279\) −9.96651 11.2499i −0.596680 0.673512i
\(280\) 7.37276 + 2.79612i 0.440607 + 0.167100i
\(281\) −7.77918 + 14.8220i −0.464067 + 0.884206i 0.535155 + 0.844754i \(0.320253\pi\)
−0.999221 + 0.0394515i \(0.987439\pi\)
\(282\) −15.6826 + 8.23088i −0.933887 + 0.490142i
\(283\) −3.40082 28.0083i −0.202158 1.66492i −0.641893 0.766794i \(-0.721851\pi\)
0.439735 0.898127i \(-0.355072\pi\)
\(284\) −0.00775588 0.00875458i −0.000460227 0.000519489i
\(285\) 1.36411 0.336223i 0.0808029 0.0199161i
\(286\) −1.08200 1.96454i −0.0639800 0.116166i
\(287\) −1.91098 0.471014i −0.112802 0.0278031i
\(288\) 0.596718 + 1.13695i 0.0351619 + 0.0669955i
\(289\) 3.81348 2.00147i 0.224322 0.117733i
\(290\) 7.26935 + 19.1677i 0.426871 + 1.12557i
\(291\) −17.5437 + 6.65344i −1.02843 + 0.390032i
\(292\) 0.908363 0.626998i 0.0531579 0.0366923i
\(293\) −4.31413 + 17.5031i −0.252034 + 1.02254i 0.699410 + 0.714721i \(0.253446\pi\)
−0.951444 + 0.307822i \(0.900400\pi\)
\(294\) −7.92568 + 5.47070i −0.462235 + 0.319058i
\(295\) 4.64575 38.2612i 0.270486 2.22765i
\(296\) −4.15387 10.9529i −0.241439 0.636622i
\(297\) 1.03767 1.97712i 0.0602120 0.114724i
\(298\) 10.6452 15.4222i 0.616659 0.893385i
\(299\) 0.631616 + 1.14680i 0.0365273 + 0.0663210i
\(300\) 0.318550 + 0.461499i 0.0183915 + 0.0266447i
\(301\) 3.84834 0.467273i 0.221815 0.0269332i
\(302\) 7.07526 1.74389i 0.407135 0.100350i
\(303\) −2.24220 + 3.24838i −0.128811 + 0.186615i
\(304\) 1.20228 1.35709i 0.0689553 0.0778344i
\(305\) −1.12724 2.14778i −0.0645458 0.122982i
\(306\) −12.1770 1.47856i −0.696113 0.0845234i
\(307\) 4.66153 0.566012i 0.266047 0.0323040i 0.0135741 0.999908i \(-0.495679\pi\)
0.252473 + 0.967604i \(0.418756\pi\)
\(308\) 0.0379890 + 0.0336553i 0.00216462 + 0.00191769i
\(309\) 7.21573 + 10.4538i 0.410489 + 0.594696i
\(310\) −36.0758 4.38039i −2.04897 0.248790i
\(311\) 1.30320 + 10.7328i 0.0738979 + 0.608604i 0.981868 + 0.189568i \(0.0607087\pi\)
−0.907970 + 0.419036i \(0.862368\pi\)
\(312\) 10.3278 2.76700i 0.584698 0.156650i
\(313\) −2.06040 + 16.9689i −0.116461 + 0.959140i 0.810955 + 0.585108i \(0.198948\pi\)
−0.927416 + 0.374032i \(0.877975\pi\)
\(314\) 5.45976 22.1511i 0.308112 1.25006i
\(315\) 5.25898 0.296310
\(316\) −0.337343 −0.0189770
\(317\) 4.34382 17.6236i 0.243974 0.989839i −0.713347 0.700811i \(-0.752822\pi\)
0.957321 0.289028i \(-0.0933322\pi\)
\(318\) 12.8880 4.88776i 0.722720 0.274092i
\(319\) 1.98457i 0.111114i
\(320\) −21.0408 7.97971i −1.17621 0.446079i
\(321\) −5.72398 + 1.41083i −0.319481 + 0.0787451i
\(322\) −0.377893 0.334784i −0.0210592 0.0186568i
\(323\) 0.473051 + 1.91924i 0.0263213 + 0.106790i
\(324\) −0.0193146 0.0171112i −0.00107303 0.000950623i
\(325\) −13.8669 + 5.58048i −0.769200 + 0.309549i
\(326\) −10.7333 + 9.50888i −0.594463 + 0.526648i
\(327\) −15.1945 10.4880i −0.840256 0.579987i
\(328\) 5.47644 + 1.34982i 0.302386 + 0.0745314i
\(329\) 6.06895 + 8.79240i 0.334592 + 0.484741i
\(330\) −0.488391 1.98148i −0.0268850 0.109077i
\(331\) 4.42072 + 17.9356i 0.242985 + 0.985828i 0.958011 + 0.286731i \(0.0925685\pi\)
−0.715026 + 0.699097i \(0.753585\pi\)
\(332\) 1.98891 0.241497i 0.109156 0.0132539i
\(333\) −5.18075 5.84786i −0.283904 0.320461i
\(334\) 2.98201 7.86291i 0.163168 0.430239i
\(335\) 5.66213 + 2.97172i 0.309355 + 0.162362i
\(336\) −3.60555 + 2.48873i −0.196699 + 0.135772i
\(337\) 10.8091 0.588812 0.294406 0.955680i \(-0.404878\pi\)
0.294406 + 0.955680i \(0.404878\pi\)
\(338\) −0.761860 18.9339i −0.0414397 1.02987i
\(339\) −0.116132 −0.00630742
\(340\) −1.43241 + 0.988723i −0.0776835 + 0.0536210i
\(341\) 3.11513 + 1.63494i 0.168694 + 0.0885372i
\(342\) 0.403536 1.06404i 0.0218207 0.0575365i
\(343\) 8.27978 + 9.34594i 0.447066 + 0.504633i
\(344\) −11.0285 + 1.33910i −0.594616 + 0.0721994i
\(345\) 0.285098 + 1.15669i 0.0153491 + 0.0622739i
\(346\) 2.99748 + 12.1612i 0.161145 + 0.653792i
\(347\) 8.18284 + 11.8549i 0.439278 + 0.636404i 0.978618 0.205684i \(-0.0659419\pi\)
−0.539341 + 0.842088i \(0.681327\pi\)
\(348\) −0.610750 0.150536i −0.0327397 0.00806960i
\(349\) −14.1086 9.73843i −0.755214 0.521286i 0.127133 0.991886i \(-0.459422\pi\)
−0.882347 + 0.470599i \(0.844038\pi\)
\(350\) 4.31447 3.82229i 0.230618 0.204310i
\(351\) 15.3073 11.0268i 0.817045 0.588567i
\(352\) −0.224974 0.199309i −0.0119911 0.0106232i
\(353\) 6.03846 + 24.4990i 0.321395 + 1.30395i 0.880181 + 0.474639i \(0.157421\pi\)
−0.558786 + 0.829312i \(0.688733\pi\)
\(354\) 15.0848 + 13.3640i 0.801750 + 0.710288i
\(355\) 0.275443 0.0678906i 0.0146190 0.00360326i
\(356\) −1.47638 0.559918i −0.0782482 0.0296756i
\(357\) 4.77647i 0.252798i
\(358\) −6.35560 + 2.41036i −0.335904 + 0.127391i
\(359\) 3.41544 13.8570i 0.180260 0.731343i −0.809321 0.587366i \(-0.800165\pi\)
0.989581 0.143977i \(-0.0459891\pi\)
\(360\) −15.0711 −0.794314
\(361\) 18.8166 0.990348
\(362\) 1.09376 4.43756i 0.0574867 0.233233i
\(363\) 1.41459 11.6502i 0.0742466 0.611476i
\(364\) 0.160087 + 0.397801i 0.00839084 + 0.0208504i
\(365\) 3.22692 + 26.5761i 0.168905 + 1.39106i
\(366\) 1.25907 + 0.152879i 0.0658128 + 0.00799113i
\(367\) 2.50254 + 3.62555i 0.130631 + 0.189252i 0.882841 0.469671i \(-0.155628\pi\)
−0.752210 + 0.658923i \(0.771012\pi\)
\(368\) 1.15073 + 1.01946i 0.0599861 + 0.0531431i
\(369\) 3.73437 0.453435i 0.194404 0.0236049i
\(370\) −18.7528 2.27700i −0.974910 0.118376i
\(371\) −3.86388 7.36200i −0.200603 0.382216i
\(372\) 0.739448 0.834664i 0.0383386 0.0432753i
\(373\) 18.5350 26.8525i 0.959704 1.39037i 0.0393753 0.999224i \(-0.487463\pi\)
0.920328 0.391146i \(-0.127921\pi\)
\(374\) 2.78786 0.687146i 0.144157 0.0355315i
\(375\) 2.78218 0.337818i 0.143671 0.0174448i
\(376\) −17.3923 25.1970i −0.896937 1.29944i
\(377\) 7.49210 15.0005i 0.385863 0.772563i
\(378\) −4.13257 + 5.98706i −0.212556 + 0.307941i
\(379\) −3.32596 + 6.33708i −0.170843 + 0.325514i −0.955791 0.294048i \(-0.904997\pi\)
0.784948 + 0.619562i \(0.212690\pi\)
\(380\) −0.0572586 0.150978i −0.00293730 0.00774503i
\(381\) 1.32236 10.8906i 0.0677466 0.557943i
\(382\) −13.9024 + 9.59610i −0.711306 + 0.490979i
\(383\) 8.16872 33.1418i 0.417402 1.69347i −0.266453 0.963848i \(-0.585852\pi\)
0.683855 0.729618i \(-0.260302\pi\)
\(384\) 10.9413 7.55222i 0.558345 0.385398i
\(385\) −1.15101 + 0.436521i −0.0586610 + 0.0222472i
\(386\) −13.0594 34.4349i −0.664708 1.75269i
\(387\) −6.56071 + 3.44333i −0.333500 + 0.175034i
\(388\) 1.00216 + 1.90945i 0.0508768 + 0.0969377i
\(389\) −18.3951 4.53399i −0.932669 0.229882i −0.256429 0.966563i \(-0.582546\pi\)
−0.676241 + 0.736681i \(0.736392\pi\)
\(390\) 3.78892 16.8209i 0.191859 0.851760i
\(391\) −1.62741 + 0.401120i −0.0823016 + 0.0202855i
\(392\) −11.0394 12.4609i −0.557573 0.629370i
\(393\) −2.81813 23.2094i −0.142156 1.17076i
\(394\) 27.0665 14.2056i 1.36359 0.715668i
\(395\) 3.80248 7.24502i 0.191324 0.364537i
\(396\) −0.0907008 0.0343983i −0.00455789 0.00172858i
\(397\) 11.7270 + 13.2370i 0.588561 + 0.664348i 0.965048 0.262074i \(-0.0844064\pi\)
−0.376487 + 0.926422i \(0.622868\pi\)
\(398\) 12.8862 + 1.56467i 0.645929 + 0.0784300i
\(399\) 0.430248 + 0.106047i 0.0215394 + 0.00530898i
\(400\) −13.1381 + 11.6394i −0.656906 + 0.581968i
\(401\) 10.4201 11.7619i 0.520356 0.587360i −0.428314 0.903630i \(-0.640892\pi\)
0.948669 + 0.316270i \(0.102431\pi\)
\(402\) −2.96064 + 1.55386i −0.147663 + 0.0774997i
\(403\) 17.3737 + 24.1180i 0.865444 + 1.20140i
\(404\) 0.401682 + 0.210819i 0.0199844 + 0.0104886i
\(405\) 0.585204 0.221939i 0.0290790 0.0110282i
\(406\) −0.779363 + 6.41863i −0.0386792 + 0.318551i
\(407\) 1.61929 + 0.849870i 0.0802654 + 0.0421265i
\(408\) 13.6883i 0.677671i
\(409\) 5.54879 10.5723i 0.274370 0.522769i −0.708812 0.705398i \(-0.750768\pi\)
0.983182 + 0.182629i \(0.0584608\pi\)
\(410\) 6.03162 6.80829i 0.297880 0.336238i
\(411\) −3.78431 2.61212i −0.186666 0.128846i
\(412\) 1.09275 0.968091i 0.0538359 0.0476944i
\(413\) 6.90565 10.0046i 0.339805 0.492292i
\(414\) 0.902242 + 0.342175i 0.0443428 + 0.0168170i
\(415\) −17.2321 + 45.4374i −0.845892 + 2.23043i
\(416\) −0.948049 2.35581i −0.0464819 0.115503i
\(417\) 1.81349 + 4.78177i 0.0888068 + 0.234164i
\(418\) 0.266377i 0.0130289i
\(419\) −9.40349 + 24.7950i −0.459391 + 1.21131i 0.482649 + 0.875814i \(0.339675\pi\)
−0.942040 + 0.335500i \(0.891095\pi\)
\(420\) 0.0470311 + 0.387336i 0.00229488 + 0.0189001i
\(421\) −1.04329 1.98783i −0.0508469 0.0968807i 0.858707 0.512468i \(-0.171269\pi\)
−0.909553 + 0.415587i \(0.863576\pi\)
\(422\) 28.0398 + 19.3545i 1.36496 + 0.942161i
\(423\) −16.8051 11.5997i −0.817090 0.563996i
\(424\) 11.0730 + 21.0978i 0.537752 + 1.02460i
\(425\) −2.30665 18.9970i −0.111889 0.921488i
\(426\) −0.0526004 + 0.138696i −0.00254850 + 0.00671984i
\(427\) 0.765057i 0.0370237i
\(428\) 0.240264 + 0.633525i 0.0116136 + 0.0306226i
\(429\) −0.920408 + 1.39252i −0.0444377 + 0.0672316i
\(430\) −6.35292 + 16.7513i −0.306365 + 0.807818i
\(431\) 3.86166 + 1.46453i 0.186010 + 0.0705441i 0.445851 0.895107i \(-0.352901\pi\)
−0.259842 + 0.965651i \(0.583670\pi\)
\(432\) 12.5842 18.2314i 0.605458 0.877157i
\(433\) 7.73125 6.84929i 0.371540 0.329156i −0.456605 0.889670i \(-0.650935\pi\)
0.828145 + 0.560514i \(0.189396\pi\)
\(434\) −9.43312 6.51121i −0.452804 0.312548i
\(435\) 10.1173 11.4201i 0.485089 0.547552i
\(436\) −0.986117 + 1.87889i −0.0472264 + 0.0899824i
\(437\) 0.155497i 0.00743844i
\(438\) −12.3949 6.50534i −0.592250 0.310837i
\(439\) −3.91352 + 32.2308i −0.186782 + 1.53829i 0.534212 + 0.845350i \(0.320608\pi\)
−0.720995 + 0.692941i \(0.756315\pi\)
\(440\) 3.29854 1.25097i 0.157252 0.0596378i
\(441\) −9.83125 5.15984i −0.468155 0.245707i
\(442\) 23.6663 + 5.33085i 1.12569 + 0.253563i
\(443\) −28.4156 + 14.9136i −1.35007 + 0.708569i −0.975782 0.218746i \(-0.929803\pi\)
−0.374283 + 0.927314i \(0.622111\pi\)
\(444\) 0.384377 0.433872i 0.0182417 0.0205906i
\(445\) 28.6668 25.3966i 1.35894 1.20391i
\(446\) 34.2642 + 8.44537i 1.62246 + 0.399900i
\(447\) −13.8452 1.68111i −0.654855 0.0795138i
\(448\) −4.70659 5.31264i −0.222365 0.250999i
\(449\) 31.9429 + 12.1143i 1.50748 + 0.571710i 0.963575 0.267439i \(-0.0861773\pi\)
0.543902 + 0.839149i \(0.316947\pi\)
\(450\) −5.11984 + 9.75505i −0.241352 + 0.459857i
\(451\) −0.779690 + 0.409213i −0.0367142 + 0.0192691i
\(452\) 0.00160883 + 0.0132499i 7.56731e−5 + 0.000623224i
\(453\) −3.59637 4.05946i −0.168972 0.190730i
\(454\) −24.4769 + 6.03301i −1.14876 + 0.283143i
\(455\) −10.3480 1.04581i −0.485119 0.0490283i
\(456\) −1.23300 0.303906i −0.0577403 0.0142317i
\(457\) −17.1842 32.7417i −0.803841 1.53159i −0.846431 0.532498i \(-0.821253\pi\)
0.0425900 0.999093i \(-0.486439\pi\)
\(458\) 9.04032 4.74472i 0.422426 0.221706i
\(459\) 8.56444 + 22.5826i 0.399754 + 1.05406i
\(460\) 0.128021 0.0485520i 0.00596901 0.00226375i
\(461\) 31.8403 21.9778i 1.48295 1.02361i 0.494989 0.868899i \(-0.335172\pi\)
0.987960 0.154707i \(-0.0494432\pi\)
\(462\) 0.154042 0.624971i 0.00716666 0.0290763i
\(463\) −12.7202 + 8.78014i −0.591159 + 0.408048i −0.825742 0.564049i \(-0.809243\pi\)
0.234583 + 0.972096i \(0.424628\pi\)
\(464\) 2.37326 19.5456i 0.110176 0.907380i
\(465\) 9.59091 + 25.2892i 0.444768 + 1.17276i
\(466\) −1.46273 + 2.78701i −0.0677599 + 0.129106i
\(467\) −12.1026 + 17.5337i −0.560042 + 0.811361i −0.996070 0.0885721i \(-0.971770\pi\)
0.436028 + 0.899933i \(0.356385\pi\)
\(468\) −0.555708 0.602414i −0.0256876 0.0278466i
\(469\) 1.14573 + 1.65987i 0.0529047 + 0.0766457i
\(470\) −49.0134 + 5.95131i −2.26082 + 0.274513i
\(471\) −16.4861 + 4.06345i −0.759638 + 0.187234i
\(472\) −19.7900 + 28.6708i −0.910910 + 1.31968i
\(473\) 1.15010 1.29820i 0.0528819 0.0596913i
\(474\) 1.98826 + 3.78831i 0.0913237 + 0.174003i
\(475\) 1.76239 + 0.213993i 0.0808642 + 0.00981869i
\(476\) −0.544965 + 0.0661708i −0.0249784 + 0.00303293i
\(477\) 11.8949 + 10.5379i 0.544629 + 0.482499i
\(478\) −1.57593 2.28313i −0.0720812 0.104428i
\(479\) −0.829008 0.100660i −0.0378784 0.00459926i 0.101576 0.994828i \(-0.467612\pi\)
−0.139454 + 0.990229i \(0.544535\pi\)
\(480\) −0.278522 2.29384i −0.0127127 0.104699i
\(481\) 9.03111 + 12.5369i 0.411783 + 0.571635i
\(482\) 0.702366 5.78450i 0.0319919 0.263477i
\(483\) −0.0899215 + 0.364826i −0.00409157 + 0.0166002i
\(484\) −1.34881 −0.0613095
\(485\) −52.3050 −2.37505
\(486\) 5.39732 21.8978i 0.244827 0.993304i
\(487\) −2.89173 + 1.09669i −0.131037 + 0.0496957i −0.419252 0.907870i \(-0.637707\pi\)
0.288215 + 0.957566i \(0.406938\pi\)
\(488\) 2.19248i 0.0992489i
\(489\) 9.97875 + 3.78444i 0.451255 + 0.171138i
\(490\) −26.0663 + 6.42477i −1.17756 + 0.290241i
\(491\) 19.6215 + 17.3832i 0.885507 + 0.784491i 0.977427 0.211275i \(-0.0677617\pi\)
−0.0919193 + 0.995766i \(0.529300\pi\)
\(492\) 0.0667930 + 0.270990i 0.00301126 + 0.0122172i
\(493\) 16.0676 + 14.2347i 0.723648 + 0.641096i
\(494\) −1.00562 + 2.01343i −0.0452451 + 0.0905884i
\(495\) 1.76113 1.56023i 0.0791569 0.0701269i
\(496\) 28.7251 + 19.8275i 1.28979 + 0.890280i
\(497\) 0.0868764 + 0.0214131i 0.00389694 + 0.000960510i
\(498\) −14.4344 20.9118i −0.646820 0.937081i
\(499\) 6.08259 + 24.6780i 0.272294 + 1.10474i 0.934655 + 0.355556i \(0.115708\pi\)
−0.662361 + 0.749185i \(0.730445\pi\)
\(500\) −0.0770858 0.312749i −0.00344738 0.0139866i
\(501\) −6.21309 + 0.754405i −0.277580 + 0.0337043i
\(502\) −16.2444 18.3362i −0.725025 0.818384i
\(503\) 7.16655 18.8966i 0.319541 0.842559i −0.674962 0.737852i \(-0.735840\pi\)
0.994503 0.104707i \(-0.0333906\pi\)
\(504\) −4.20902 2.20906i −0.187485 0.0983995i
\(505\) −9.05541 + 6.25050i −0.402961 + 0.278144i
\(506\) −0.225872 −0.0100412
\(507\) −12.2140 + 7.05076i −0.542442 + 0.313135i
\(508\) −1.26087 −0.0559421
\(509\) 2.77375 1.91458i 0.122944 0.0848622i −0.505006 0.863116i \(-0.668510\pi\)
0.627950 + 0.778254i \(0.283894\pi\)
\(510\) 19.5457 + 10.2584i 0.865498 + 0.454248i
\(511\) −2.99422 + 7.89512i −0.132457 + 0.349260i
\(512\) 13.3716 + 15.0934i 0.590945 + 0.667039i
\(513\) −2.22431 + 0.270080i −0.0982057 + 0.0119243i
\(514\) 6.16619 + 25.0172i 0.271979 + 1.10346i
\(515\) 8.47413 + 34.3809i 0.373415 + 1.51500i
\(516\) −0.312281 0.452418i −0.0137474 0.0199166i
\(517\) 4.64089 + 1.14388i 0.204106 + 0.0503076i
\(518\) −4.90349 3.38463i −0.215447 0.148712i
\(519\) 6.97757 6.18159i 0.306281 0.271341i
\(520\) 29.6549 + 2.99705i 1.30045 + 0.131429i
\(521\) −23.3136 20.6541i −1.02139 0.904872i −0.0258923 0.999665i \(-0.508243\pi\)
−0.995497 + 0.0947927i \(0.969781\pi\)
\(522\) −2.95750 11.9990i −0.129446 0.525184i
\(523\) −26.0304 23.0609i −1.13823 1.00838i −0.999838 0.0180040i \(-0.994269\pi\)
−0.138390 0.990378i \(-0.544193\pi\)
\(524\) −2.60900 + 0.643062i −0.113975 + 0.0280923i
\(525\) −4.01116 1.52123i −0.175061 0.0663921i
\(526\) 30.9056i 1.34755i
\(527\) −35.5808 + 13.4940i −1.54992 + 0.587808i
\(528\) −0.469076 + 1.90312i −0.0204139 + 0.0828226i
\(529\) −22.8681 −0.994267
\(530\) 38.4243 1.66905
\(531\) −5.56046 + 22.5597i −0.241303 + 0.979006i
\(532\) 0.00613882 0.0505578i 0.000266152 0.00219196i
\(533\) −7.43819 + 0.149588i −0.322184 + 0.00647939i
\(534\) 2.41383 + 19.8797i 0.104457 + 0.860278i
\(535\) −16.3143 1.98091i −0.705328 0.0856423i
\(536\) −3.28339 4.75682i −0.141821 0.205463i
\(537\) 3.78666 + 3.35469i 0.163406 + 0.144766i
\(538\) −36.1088 + 4.38440i −1.55676 + 0.189025i
\(539\) 2.58002 + 0.313271i 0.111129 + 0.0134935i
\(540\) −0.916869 1.74695i −0.0394558 0.0751767i
\(541\) 14.7258 16.6220i 0.633113 0.714637i −0.341161 0.940005i \(-0.610820\pi\)
0.974274 + 0.225368i \(0.0723584\pi\)
\(542\) −6.03392 + 8.74164i −0.259179 + 0.375485i
\(543\) −3.30267 + 0.814035i −0.141731 + 0.0349336i
\(544\) 3.22733 0.391869i 0.138371 0.0168012i
\(545\) −29.2370 42.3572i −1.25238 1.81438i
\(546\) 3.52371 4.14235i 0.150801 0.177276i
\(547\) 13.6811 19.8204i 0.584960 0.847461i −0.413038 0.910714i \(-0.635532\pi\)
0.997998 + 0.0632532i \(0.0201476\pi\)
\(548\) −0.245600 + 0.467953i −0.0104915 + 0.0199899i
\(549\) 0.518526 + 1.36724i 0.0221302 + 0.0583525i
\(550\) 0.310843 2.56002i 0.0132544 0.109160i
\(551\) −1.63894 + 1.13128i −0.0698212 + 0.0481941i
\(552\) 0.257695 1.04551i 0.0109682 0.0444998i
\(553\) 2.12390 1.46602i 0.0903174 0.0623416i
\(554\) −8.43371 + 3.19849i −0.358314 + 0.135891i
\(555\) 4.98551 + 13.1457i 0.211623 + 0.558004i
\(556\) 0.520447 0.273151i 0.0220719 0.0115842i
\(557\) 18.4252 + 35.1063i 0.780701 + 1.48750i 0.870837 + 0.491572i \(0.163578\pi\)
−0.0901356 + 0.995930i \(0.528730\pi\)
\(558\) 21.2711 + 5.24285i 0.900477 + 0.221948i
\(559\) 13.5941 5.47067i 0.574968 0.231385i
\(560\) −11.8581 + 2.92276i −0.501096 + 0.123509i
\(561\) −1.41708 1.59955i −0.0598290 0.0675329i
\(562\) −2.94107 24.2219i −0.124062 1.02174i
\(563\) −24.8600 + 13.0475i −1.04772 + 0.549887i −0.898526 0.438920i \(-0.855361\pi\)
−0.149197 + 0.988808i \(0.547669\pi\)
\(564\) 0.704056 1.34147i 0.0296461 0.0564859i
\(565\) −0.302700 0.114799i −0.0127347 0.00482962i
\(566\) 27.2713 + 30.7829i 1.14630 + 1.29390i
\(567\) 0.195966 + 0.0237946i 0.00822979 + 0.000999277i
\(568\) −0.248968 0.0613652i −0.0104465 0.00257483i
\(569\) −13.7440 + 12.1761i −0.576177 + 0.510448i −0.900128 0.435626i \(-0.856527\pi\)
0.323951 + 0.946074i \(0.394989\pi\)
\(570\) −1.35799 + 1.53286i −0.0568800 + 0.0642043i
\(571\) −9.15371 + 4.80424i −0.383071 + 0.201051i −0.645256 0.763967i \(-0.723249\pi\)
0.262185 + 0.965018i \(0.415557\pi\)
\(572\) 0.171629 + 0.0857214i 0.00717617 + 0.00358419i
\(573\) 11.1323 + 5.84269i 0.465059 + 0.244082i
\(574\) 2.68244 1.01731i 0.111963 0.0424619i
\(575\) −0.181454 + 1.49441i −0.00756715 + 0.0623211i
\(576\) 12.0119 + 6.30433i 0.500496 + 0.262681i
\(577\) 8.84858i 0.368371i 0.982891 + 0.184186i \(0.0589648\pi\)
−0.982891 + 0.184186i \(0.941035\pi\)
\(578\) −2.91740 + 5.55864i −0.121348 + 0.231209i
\(579\) −18.1759 + 20.5163i −0.755363 + 0.852628i
\(580\) −1.44312 0.996115i −0.0599224 0.0413614i
\(581\) −11.4726 + 10.1639i −0.475964 + 0.421668i
\(582\) 15.5363 22.5082i 0.643999 0.932994i
\(583\) −3.47808 1.31906i −0.144047 0.0546300i
\(584\) 8.58077 22.6256i 0.355075 0.936256i
\(585\) 19.2018 5.14447i 0.793895 0.212698i
\(586\) −9.31782 24.5691i −0.384915 1.01494i
\(587\) 26.0426i 1.07489i 0.843298 + 0.537446i \(0.180611\pi\)
−0.843298 + 0.537446i \(0.819389\pi\)
\(588\) 0.292113 0.770238i 0.0120465 0.0317641i
\(589\) −0.425534 3.50459i −0.0175338 0.144404i
\(590\) 26.1083 + 49.7451i 1.07486 + 2.04798i
\(591\) −18.7231 12.9236i −0.770166 0.531607i
\(592\) 14.9317 + 10.3066i 0.613691 + 0.423600i
\(593\) −8.73396 16.6412i −0.358661 0.683371i 0.637544 0.770414i \(-0.279951\pi\)
−0.996205 + 0.0870431i \(0.972258\pi\)
\(594\) 0.392313 + 3.23099i 0.0160968 + 0.132569i
\(595\) 4.72164 12.4499i 0.193568 0.510398i
\(596\) 1.60294i 0.0656589i
\(597\) −3.42587 9.03327i −0.140211 0.369707i
\(598\) −1.70727 0.852709i −0.0698155 0.0348699i
\(599\) 12.4384 32.7974i 0.508220 1.34007i −0.398049 0.917364i \(-0.630313\pi\)
0.906269 0.422702i \(-0.138918\pi\)
\(600\) 11.4951 + 4.35951i 0.469285 + 0.177976i
\(601\) 24.6046 35.6459i 1.00364 1.45403i 0.116136 0.993233i \(-0.462949\pi\)
0.887507 0.460794i \(-0.152435\pi\)
\(602\) −4.22957 + 3.74708i −0.172385 + 0.152719i
\(603\) −3.17254 2.18985i −0.129196 0.0891774i
\(604\) −0.413337 + 0.466561i −0.0168184 + 0.0189841i
\(605\) 15.2036 28.9680i 0.618114 1.17772i
\(606\) 5.75338i 0.233715i
\(607\) 7.82681 + 4.10783i 0.317680 + 0.166732i 0.616025 0.787727i \(-0.288742\pi\)
−0.298344 + 0.954458i \(0.596434\pi\)
\(608\) −0.0363546 + 0.299407i −0.00147437 + 0.0121426i
\(609\) 4.49947 1.70642i 0.182328 0.0691478i
\(610\) 3.13067 + 1.64310i 0.126757 + 0.0665273i
\(611\) 30.7601 + 26.1663i 1.24442 + 1.05857i
\(612\) 0.929066 0.487611i 0.0375553 0.0197105i
\(613\) −17.2365 + 19.4560i −0.696177 + 0.785822i −0.985183 0.171506i \(-0.945137\pi\)
0.289006 + 0.957327i \(0.406675\pi\)
\(614\) −5.12332 + 4.53886i −0.206760 + 0.183174i
\(615\) −6.57286 1.62007i −0.265043 0.0653273i
\(616\) 1.10457 + 0.134120i 0.0445046 + 0.00540383i
\(617\) 7.11435 + 8.03044i 0.286413 + 0.323293i 0.874054 0.485828i \(-0.161482\pi\)
−0.587642 + 0.809121i \(0.699943\pi\)
\(618\) −17.3121 6.56560i −0.696393 0.264107i
\(619\) 9.98809 19.0307i 0.401455 0.764909i −0.597872 0.801592i \(-0.703987\pi\)
0.999327 + 0.0366829i \(0.0116792\pi\)
\(620\) 2.75247 1.44461i 0.110542 0.0580168i
\(621\) −0.229012 1.88609i −0.00918995 0.0756860i
\(622\) −10.4504 11.7961i −0.419024 0.472980i
\(623\) 11.7286 2.89083i 0.469895 0.115819i
\(624\) −10.7302 + 12.6140i −0.429550 + 0.504964i
\(625\) 27.7121 + 6.83043i 1.10849 + 0.273217i
\(626\) −11.5791 22.0621i −0.462793 0.881778i
\(627\) 0.175544 0.0921324i 0.00701054 0.00367941i
\(628\) 0.692003 + 1.82466i 0.0276139 + 0.0728120i
\(629\) −18.4955 + 7.01440i −0.737462 + 0.279682i
\(630\) −6.30870 + 4.35458i −0.251345 + 0.173491i
\(631\) 0.566141 2.29692i 0.0225377 0.0914391i −0.958596 0.284770i \(-0.908083\pi\)
0.981134 + 0.193331i \(0.0619290\pi\)
\(632\) −6.08662 + 4.20129i −0.242113 + 0.167118i
\(633\) 3.05650 25.1725i 0.121485 1.00052i
\(634\) 9.38195 + 24.7382i 0.372605 + 0.982478i
\(635\) 14.2124 27.0794i 0.564000 1.07461i
\(636\) −0.669767 + 0.970325i −0.0265580 + 0.0384759i
\(637\) 18.3186 + 12.1079i 0.725809 + 0.479734i
\(638\) 1.64328 + 2.38070i 0.0650579 + 0.0942526i
\(639\) −0.169771 + 0.0206139i −0.00671603 + 0.000815474i
\(640\) 35.9842 8.86930i 1.42240 0.350590i
\(641\) −9.41535 + 13.6405i −0.371884 + 0.538767i −0.963589 0.267388i \(-0.913840\pi\)
0.591705 + 0.806154i \(0.298455\pi\)
\(642\) 5.69831 6.43206i 0.224894 0.253853i
\(643\) −14.4642 27.5592i −0.570412 1.08683i −0.984300 0.176502i \(-0.943522\pi\)
0.413888 0.910328i \(-0.364171\pi\)
\(644\) 0.0428701 + 0.00520537i 0.00168932 + 0.000205120i
\(645\) 13.2365 1.60720i 0.521185 0.0632833i
\(646\) −2.15666 1.91064i −0.0848528 0.0751730i
\(647\) −17.4796 25.3236i −0.687194 0.995573i −0.998968 0.0454165i \(-0.985539\pi\)
0.311774 0.950156i \(-0.399077\pi\)
\(648\) −0.561594 0.0681898i −0.0220615 0.00267875i
\(649\) −0.655568 5.39909i −0.0257333 0.211933i
\(650\) 12.0141 18.1766i 0.471231 0.712945i
\(651\) −1.02826 + 8.46851i −0.0403008 + 0.331907i
\(652\) 0.293540 1.19094i 0.0114959 0.0466408i
\(653\) 17.1206 0.669981 0.334990 0.942222i \(-0.391267\pi\)
0.334990 + 0.942222i \(0.391267\pi\)
\(654\) 26.9117 1.05233
\(655\) 15.5975 63.2814i 0.609444 2.47261i
\(656\) −8.16836 + 3.09785i −0.318921 + 0.120951i
\(657\) 16.1388i 0.629636i
\(658\) −14.5607 5.52215i −0.567635 0.215276i
\(659\) −16.0050 + 3.94488i −0.623466 + 0.153671i −0.538379 0.842703i \(-0.680963\pi\)
−0.0850871 + 0.996374i \(0.527117\pi\)
\(660\) 0.130664 + 0.115758i 0.00508609 + 0.00450588i
\(661\) −4.66122 18.9113i −0.181301 0.735565i −0.989240 0.146300i \(-0.953263\pi\)
0.807940 0.589265i \(-0.200583\pi\)
\(662\) −20.1543 17.8551i −0.783318 0.693959i
\(663\) −4.67247 17.4400i −0.181464 0.677313i
\(664\) 32.8779 29.1273i 1.27591 1.13036i
\(665\) 1.01662 + 0.701722i 0.0394228 + 0.0272116i
\(666\) 11.0571 + 2.72532i 0.428452 + 0.105604i
\(667\) −0.959259 1.38973i −0.0371427 0.0538105i
\(668\) 0.172146 + 0.698423i 0.00666052 + 0.0270228i
\(669\) −6.28550 25.5013i −0.243011 0.985936i
\(670\) −9.25299 + 1.12352i −0.357474 + 0.0434052i
\(671\) −0.226976 0.256203i −0.00876230 0.00989059i
\(672\) 0.258437 0.681443i 0.00996944 0.0262872i
\(673\) 15.2380 + 7.99751i 0.587381 + 0.308281i 0.732106 0.681191i \(-0.238537\pi\)
−0.144725 + 0.989472i \(0.546230\pi\)
\(674\) −12.9667 + 8.95027i −0.499459 + 0.344752i
\(675\) 21.6919 0.834923
\(676\) 0.973654 + 1.29586i 0.0374482 + 0.0498408i
\(677\) −12.2080 −0.469192 −0.234596 0.972093i \(-0.575377\pi\)
−0.234596 + 0.972093i \(0.575377\pi\)
\(678\) 0.139312 0.0961605i 0.00535026 0.00369302i
\(679\) −14.6076 7.66668i −0.560590 0.294220i
\(680\) −13.5312 + 35.6787i −0.518896 + 1.36822i
\(681\) 12.4417 + 14.0437i 0.476765 + 0.538157i
\(682\) −5.09070 + 0.618123i −0.194933 + 0.0236692i
\(683\) 0.929362 + 3.77057i 0.0355610 + 0.144277i 0.986039 0.166516i \(-0.0532517\pi\)
−0.950478 + 0.310793i \(0.899406\pi\)
\(684\) 0.0232954 + 0.0945130i 0.000890721 + 0.00361380i
\(685\) −7.28172 10.5494i −0.278220 0.403072i
\(686\) −17.6712 4.35555i −0.674688 0.166296i
\(687\) −6.25359 4.31654i −0.238589 0.164686i
\(688\) 12.8796 11.4103i 0.491030 0.435015i
\(689\) −21.3096 23.1006i −0.811831 0.880064i
\(690\) −1.29977 1.15150i −0.0494815 0.0438368i
\(691\) 8.47892 + 34.4003i 0.322553 + 1.30865i 0.878624 + 0.477515i \(0.158462\pi\)
−0.556071 + 0.831135i \(0.687692\pi\)
\(692\) −0.801943 0.710460i −0.0304853 0.0270076i
\(693\) 0.720538 0.177597i 0.0273710 0.00674634i
\(694\) −19.6323 7.44557i −0.745234 0.282630i
\(695\) 14.2564i 0.540777i
\(696\) −12.8945 + 4.89022i −0.488763 + 0.185363i
\(697\) 2.27936 9.24774i 0.0863370 0.350283i
\(698\) 24.9884 0.945825
\(699\) 2.34257 0.0886041
\(700\) −0.117995 + 0.478723i −0.00445977 + 0.0180940i
\(701\) 3.59515 29.6087i 0.135787 1.11831i −0.752362 0.658750i \(-0.771085\pi\)
0.888149 0.459556i \(-0.151992\pi\)
\(702\) −9.23226 + 25.9027i −0.348449 + 0.977635i
\(703\) −0.221199 1.82174i −0.00834270 0.0687083i
\(704\) −3.15229 0.382757i −0.118806 0.0144257i
\(705\) 20.8743 + 30.2417i 0.786172 + 1.13897i
\(706\) −27.5296 24.3891i −1.03609 0.917897i
\(707\) −3.44516 + 0.418318i −0.129568 + 0.0157325i
\(708\) −1.71130 0.207789i −0.0643145 0.00780919i
\(709\) 12.7121 + 24.2208i 0.477412 + 0.909633i 0.998426 + 0.0560848i \(0.0178617\pi\)
−0.521014 + 0.853548i \(0.674446\pi\)
\(710\) −0.274208 + 0.309517i −0.0102908 + 0.0116159i
\(711\) −2.80203 + 4.05944i −0.105084 + 0.152241i
\(712\) −33.6114 + 8.28447i −1.25964 + 0.310474i
\(713\) 2.97169 0.360828i 0.111291 0.0135131i
\(714\) 3.95505 + 5.72988i 0.148014 + 0.214435i
\(715\) −3.77560 + 2.71979i −0.141199 + 0.101714i
\(716\) 0.330290 0.478508i 0.0123435 0.0178827i
\(717\) −0.959520 + 1.82821i −0.0358339 + 0.0682758i
\(718\) 7.37678 + 19.4510i 0.275299 + 0.725904i
\(719\) 4.49471 37.0172i 0.167624 1.38051i −0.629644 0.776884i \(-0.716799\pi\)
0.797268 0.603626i \(-0.206278\pi\)
\(720\) 19.2108 13.2603i 0.715945 0.494181i
\(721\) −2.67279 + 10.8439i −0.0995399 + 0.403849i
\(722\) −22.5725 + 15.5807i −0.840062 + 0.579853i
\(723\) −4.05494 + 1.53784i −0.150805 + 0.0571927i
\(724\) 0.138630 + 0.365536i 0.00515213 + 0.0135851i
\(725\) 17.0712 8.95965i 0.634008 0.332753i
\(726\) 7.94973 + 15.1469i 0.295042 + 0.562156i
\(727\) −40.5981 10.0065i −1.50570 0.371122i −0.601723 0.798704i \(-0.705519\pi\)
−0.903976 + 0.427583i \(0.859365\pi\)
\(728\) 7.84267 + 5.18372i 0.290669 + 0.192122i
\(729\) −16.9003 + 4.16556i −0.625939 + 0.154280i
\(730\) −25.8768 29.2089i −0.957743 1.08107i
\(731\) 2.26126 + 18.6231i 0.0836357 + 0.688802i
\(732\) −0.0960633 + 0.0504179i −0.00355060 + 0.00186350i
\(733\) −9.71652 + 18.5133i −0.358888 + 0.683803i −0.996228 0.0867794i \(-0.972342\pi\)
0.637340 + 0.770583i \(0.280035\pi\)
\(734\) −6.00411 2.27706i −0.221616 0.0840478i
\(735\) 13.2496 + 14.9557i 0.488717 + 0.551648i
\(736\) −0.253880 0.0308266i −0.00935814 0.00113628i
\(737\) 0.876129 + 0.215946i 0.0322726 + 0.00795449i
\(738\) −4.10432 + 3.63611i −0.151082 + 0.133847i
\(739\) −15.3454 + 17.3214i −0.564489 + 0.637176i −0.959570 0.281470i \(-0.909178\pi\)
0.395081 + 0.918646i \(0.370716\pi\)
\(740\) 1.43078 0.750929i 0.0525964 0.0276047i
\(741\) 1.67467 0.0336791i 0.0615207 0.00123723i
\(742\) 10.7311 + 5.63210i 0.393950 + 0.206761i
\(743\) −18.4348 + 6.99138i −0.676306 + 0.256489i −0.668755 0.743483i \(-0.733173\pi\)
−0.00755038 + 0.999971i \(0.502403\pi\)
\(744\) 2.94677 24.2688i 0.108034 0.889739i
\(745\) −34.4259 18.0681i −1.26127 0.661964i
\(746\) 47.5599i 1.74129i
\(747\) 13.6142 25.9396i 0.498117 0.949082i
\(748\) −0.162867 + 0.183839i −0.00595500 + 0.00672181i
\(749\) −4.26587 2.94452i −0.155871 0.107590i
\(750\) −3.05780 + 2.70897i −0.111655 + 0.0989177i
\(751\) 7.18630 10.4111i 0.262232 0.379908i −0.669646 0.742680i \(-0.733554\pi\)
0.931878 + 0.362772i \(0.118170\pi\)
\(752\) 44.3392 + 16.8156i 1.61688 + 0.613203i
\(753\) −6.46512 + 17.0471i −0.235602 + 0.621232i
\(754\) 3.43324 + 24.1983i 0.125031 + 0.881250i
\(755\) −5.36113 14.1361i −0.195112 0.514467i
\(756\) 0.622276i 0.0226320i
\(757\) 4.51157 11.8960i 0.163976 0.432369i −0.827693 0.561181i \(-0.810347\pi\)
0.991669 + 0.128812i \(0.0411164\pi\)
\(758\) −1.25744 10.3560i −0.0456724 0.376146i
\(759\) 0.0781229 + 0.148851i 0.00283568 + 0.00540294i
\(760\) −2.91340 2.01098i −0.105680 0.0729458i
\(761\) 11.1489 + 7.69555i 0.404149 + 0.278964i 0.752749 0.658308i \(-0.228728\pi\)
−0.348600 + 0.937272i \(0.613343\pi\)
\(762\) 7.43142 + 14.1594i 0.269212 + 0.512941i
\(763\) −1.95670 16.1149i −0.0708374 0.583398i
\(764\) 0.512392 1.35107i 0.0185377 0.0488799i
\(765\) 25.4496i 0.920132i
\(766\) 17.6431 + 46.5210i 0.637471 + 1.68087i