Properties

Label 169.2.h.a.12.3
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.3
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71806 + 1.18589i) q^{2} +(2.94692 + 1.54666i) q^{3} +(0.836178 - 2.20482i) q^{4} +(-0.781452 - 0.882078i) q^{5} +(-6.89716 + 0.837466i) q^{6} +(0.664295 + 2.69515i) q^{7} +(0.178883 + 0.725755i) q^{8} +(4.58799 + 6.64685i) q^{9} +O(q^{10})\) \(q+(-1.71806 + 1.18589i) q^{2} +(2.94692 + 1.54666i) q^{3} +(0.836178 - 2.20482i) q^{4} +(-0.781452 - 0.882078i) q^{5} +(-6.89716 + 0.837466i) q^{6} +(0.664295 + 2.69515i) q^{7} +(0.178883 + 0.725755i) q^{8} +(4.58799 + 6.64685i) q^{9} +(2.38863 + 0.588744i) q^{10} +(-0.562223 - 0.388074i) q^{11} +(5.87427 - 5.20415i) q^{12} +(-1.84768 - 3.09614i) q^{13} +(-4.33745 - 3.84265i) q^{14} +(-0.938602 - 3.80806i) q^{15} +(2.36206 + 2.09261i) q^{16} +(1.85483 - 0.457175i) q^{17} +(-15.7649 - 5.97882i) q^{18} +1.63338i q^{19} +(-2.59826 + 0.985388i) q^{20} +(-2.21087 + 8.96985i) q^{21} +1.42614 q^{22} -6.28383 q^{23} +(-0.595347 + 2.41542i) q^{24} +(0.435291 - 3.58494i) q^{25} +(6.84610 + 3.12820i) q^{26} +(2.03651 + 16.7722i) q^{27} +(6.49780 + 0.788975i) q^{28} +(-4.39880 - 6.37276i) q^{29} +(6.12851 + 5.42939i) q^{30} +(6.06341 - 0.736231i) q^{31} +(-8.02381 - 0.974267i) q^{32} +(-1.05661 - 2.01320i) q^{33} +(-2.64455 + 2.98508i) q^{34} +(1.85822 - 2.69209i) q^{35} +(18.4915 - 4.55774i) q^{36} +(4.15024 - 0.503930i) q^{37} +(-1.93700 - 2.80623i) q^{38} +(-0.656278 - 11.9818i) q^{39} +(0.500384 - 0.724932i) q^{40} +(4.47504 - 8.52648i) q^{41} +(-6.83885 - 18.0326i) q^{42} +(-0.509861 + 4.19909i) q^{43} +(-1.32575 + 0.915101i) q^{44} +(2.27774 - 9.24116i) q^{45} +(10.7960 - 7.45192i) q^{46} +(-3.61133 + 1.36960i) q^{47} +(3.72426 + 9.82007i) q^{48} +(-0.624365 + 0.327692i) q^{49} +(3.50349 + 6.67534i) q^{50} +(6.17315 + 1.52154i) q^{51} +(-8.37142 + 1.48488i) q^{52} +(9.74242 - 2.40129i) q^{53} +(-23.3888 - 26.4005i) q^{54} +(0.0970387 + 0.799186i) q^{55} +(-1.83719 + 0.964232i) q^{56} +(-2.52628 + 4.81343i) q^{57} +(15.1148 + 5.73228i) q^{58} +(5.57925 + 6.29767i) q^{59} +(-9.18092 - 1.11477i) q^{60} +(1.36238 + 0.335797i) q^{61} +(-9.54420 + 8.45542i) q^{62} +(-14.8665 + 16.7808i) q^{63} +(9.35230 - 4.90847i) q^{64} +(-1.28716 + 4.04928i) q^{65} +(4.20274 + 2.20577i) q^{66} +(-1.61021 + 0.610672i) q^{67} +(0.542981 - 4.47185i) q^{68} +(-18.5180 - 9.71897i) q^{69} +6.82881i q^{70} +(-2.23850 + 4.26510i) q^{71} +(-4.00327 + 4.51876i) q^{72} +(-9.42952 - 6.50872i) q^{73} +(-6.53274 + 5.78751i) q^{74} +(6.82747 - 9.89130i) q^{75} +(3.60130 + 1.36579i) q^{76} +(0.672438 - 1.77307i) q^{77} +(15.3366 + 19.8072i) q^{78} +(-3.64067 - 9.59966i) q^{79} -3.71880i q^{80} +(-11.3476 + 29.9211i) q^{81} +(2.42308 + 19.9559i) q^{82} +(3.03191 + 5.77682i) q^{83} +(17.9282 + 12.3750i) q^{84} +(-1.85273 - 1.27885i) q^{85} +(-4.10368 - 7.81891i) q^{86} +(-3.10640 - 25.5835i) q^{87} +(0.181075 - 0.477456i) q^{88} -9.41856i q^{89} +(7.04570 + 18.5780i) q^{90} +(7.11716 - 7.03653i) q^{91} +(-5.25440 + 13.8547i) q^{92} +(19.0071 + 7.20844i) q^{93} +(4.58028 - 6.63568i) q^{94} +(1.44076 - 1.27641i) q^{95} +(-22.1387 - 15.2812i) q^{96} +(-7.86426 + 8.87691i) q^{97} +(0.684088 - 1.30342i) q^{98} -5.51749i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71806 + 1.18589i −1.21485 + 0.838551i −0.990708 0.136006i \(-0.956573\pi\)
−0.224142 + 0.974556i \(0.571958\pi\)
\(3\) 2.94692 + 1.54666i 1.70141 + 0.892967i 0.979622 + 0.200849i \(0.0643701\pi\)
0.721784 + 0.692118i \(0.243322\pi\)
\(4\) 0.836178 2.20482i 0.418089 1.10241i
\(5\) −0.781452 0.882078i −0.349476 0.394477i 0.547318 0.836925i \(-0.315649\pi\)
−0.896794 + 0.442448i \(0.854110\pi\)
\(6\) −6.89716 + 0.837466i −2.81575 + 0.341894i
\(7\) 0.664295 + 2.69515i 0.251080 + 1.01867i 0.952163 + 0.305592i \(0.0988543\pi\)
−0.701083 + 0.713080i \(0.747300\pi\)
\(8\) 0.178883 + 0.725755i 0.0632445 + 0.256593i
\(9\) 4.58799 + 6.64685i 1.52933 + 2.21562i
\(10\) 2.38863 + 0.588744i 0.755350 + 0.186177i
\(11\) −0.562223 0.388074i −0.169517 0.117009i 0.480286 0.877112i \(-0.340533\pi\)
−0.649802 + 0.760103i \(0.725148\pi\)
\(12\) 5.87427 5.20415i 1.69576 1.50231i
\(13\) −1.84768 3.09614i −0.512454 0.858715i
\(14\) −4.33745 3.84265i −1.15923 1.02699i
\(15\) −0.938602 3.80806i −0.242346 0.983237i
\(16\) 2.36206 + 2.09261i 0.590516 + 0.523152i
\(17\) 1.85483 0.457175i 0.449863 0.110881i −0.00787380 0.999969i \(-0.502506\pi\)
0.457737 + 0.889088i \(0.348660\pi\)
\(18\) −15.7649 5.97882i −3.71581 1.40922i
\(19\) 1.63338i 0.374722i 0.982291 + 0.187361i \(0.0599934\pi\)
−0.982291 + 0.187361i \(0.940007\pi\)
\(20\) −2.59826 + 0.985388i −0.580988 + 0.220340i
\(21\) −2.21087 + 8.96985i −0.482451 + 1.95738i
\(22\) 1.42614 0.304055
\(23\) −6.28383 −1.31027 −0.655134 0.755513i \(-0.727388\pi\)
−0.655134 + 0.755513i \(0.727388\pi\)
\(24\) −0.595347 + 2.41542i −0.121525 + 0.493045i
\(25\) 0.435291 3.58494i 0.0870581 0.716988i
\(26\) 6.84610 + 3.12820i 1.34263 + 0.613491i
\(27\) 2.03651 + 16.7722i 0.391927 + 3.22781i
\(28\) 6.49780 + 0.788975i 1.22797 + 0.149102i
\(29\) −4.39880 6.37276i −0.816836 1.18339i −0.980431 0.196864i \(-0.936924\pi\)
0.163595 0.986528i \(-0.447691\pi\)
\(30\) 6.12851 + 5.42939i 1.11891 + 0.991266i
\(31\) 6.06341 0.736231i 1.08902 0.132231i 0.443724 0.896163i \(-0.353657\pi\)
0.645296 + 0.763932i \(0.276734\pi\)
\(32\) −8.02381 0.974267i −1.41842 0.172228i
\(33\) −1.05661 2.01320i −0.183932 0.350452i
\(34\) −2.64455 + 2.98508i −0.453537 + 0.511937i
\(35\) 1.85822 2.69209i 0.314096 0.455047i
\(36\) 18.4915 4.55774i 3.08191 0.759624i
\(37\) 4.15024 0.503930i 0.682295 0.0828456i 0.227952 0.973672i \(-0.426797\pi\)
0.454343 + 0.890827i \(0.349874\pi\)
\(38\) −1.93700 2.80623i −0.314223 0.455231i
\(39\) −0.656278 11.9818i −0.105089 1.91863i
\(40\) 0.500384 0.724932i 0.0791177 0.114622i
\(41\) 4.47504 8.52648i 0.698884 1.33161i −0.234282 0.972169i \(-0.575274\pi\)
0.933167 0.359444i \(-0.117034\pi\)
\(42\) −6.83885 18.0326i −1.05526 2.78248i
\(43\) −0.509861 + 4.19909i −0.0777531 + 0.640355i 0.900782 + 0.434272i \(0.142994\pi\)
−0.978535 + 0.206082i \(0.933929\pi\)
\(44\) −1.32575 + 0.915101i −0.199865 + 0.137957i
\(45\) 2.27774 9.24116i 0.339546 1.37759i
\(46\) 10.7960 7.45192i 1.59178 1.09873i
\(47\) −3.61133 + 1.36960i −0.526766 + 0.199776i −0.603629 0.797266i \(-0.706279\pi\)
0.0768623 + 0.997042i \(0.475510\pi\)
\(48\) 3.72426 + 9.82007i 0.537551 + 1.41740i
\(49\) −0.624365 + 0.327692i −0.0891950 + 0.0468131i
\(50\) 3.50349 + 6.67534i 0.495468 + 0.944036i
\(51\) 6.17315 + 1.52154i 0.864413 + 0.213059i
\(52\) −8.37142 + 1.48488i −1.16091 + 0.205915i
\(53\) 9.74242 2.40129i 1.33822 0.329843i 0.495697 0.868496i \(-0.334913\pi\)
0.842528 + 0.538653i \(0.181067\pi\)
\(54\) −23.3888 26.4005i −3.18282 3.59266i
\(55\) 0.0970387 + 0.799186i 0.0130847 + 0.107762i
\(56\) −1.83719 + 0.964232i −0.245505 + 0.128851i
\(57\) −2.52628 + 4.81343i −0.334614 + 0.637555i
\(58\) 15.1148 + 5.73228i 1.98467 + 0.752685i
\(59\) 5.57925 + 6.29767i 0.726356 + 0.819887i 0.989449 0.144884i \(-0.0462808\pi\)
−0.263092 + 0.964771i \(0.584742\pi\)
\(60\) −9.18092 1.11477i −1.18525 0.143916i
\(61\) 1.36238 + 0.335797i 0.174435 + 0.0429944i 0.325566 0.945519i \(-0.394445\pi\)
−0.151131 + 0.988514i \(0.548291\pi\)
\(62\) −9.54420 + 8.45542i −1.21211 + 1.07384i
\(63\) −14.8665 + 16.7808i −1.87300 + 2.11418i
\(64\) 9.35230 4.90847i 1.16904 0.613559i
\(65\) −1.28716 + 4.04928i −0.159653 + 0.502252i
\(66\) 4.20274 + 2.20577i 0.517321 + 0.271511i
\(67\) −1.61021 + 0.610672i −0.196718 + 0.0746055i −0.450997 0.892526i \(-0.648931\pi\)
0.254278 + 0.967131i \(0.418162\pi\)
\(68\) 0.542981 4.47185i 0.0658462 0.542292i
\(69\) −18.5180 9.71897i −2.22930 1.17003i
\(70\) 6.82881i 0.816199i
\(71\) −2.23850 + 4.26510i −0.265661 + 0.506175i −0.981346 0.192248i \(-0.938422\pi\)
0.715685 + 0.698423i \(0.246114\pi\)
\(72\) −4.00327 + 4.51876i −0.471790 + 0.532541i
\(73\) −9.42952 6.50872i −1.10364 0.761789i −0.130374 0.991465i \(-0.541618\pi\)
−0.973267 + 0.229676i \(0.926233\pi\)
\(74\) −6.53274 + 5.78751i −0.759416 + 0.672784i
\(75\) 6.82747 9.89130i 0.788368 1.14215i
\(76\) 3.60130 + 1.36579i 0.413097 + 0.156667i
\(77\) 0.672438 1.77307i 0.0766314 0.202060i
\(78\) 15.3366 + 19.8072i 1.73653 + 2.24272i
\(79\) −3.64067 9.59966i −0.409607 1.08005i −0.968106 0.250541i \(-0.919392\pi\)
0.558499 0.829505i \(-0.311378\pi\)
\(80\) 3.71880i 0.415774i
\(81\) −11.3476 + 29.9211i −1.26084 + 3.32457i
\(82\) 2.42308 + 19.9559i 0.267585 + 2.20376i
\(83\) 3.03191 + 5.77682i 0.332795 + 0.634089i 0.993148 0.116867i \(-0.0372853\pi\)
−0.660352 + 0.750956i \(0.729593\pi\)
\(84\) 17.9282 + 12.3750i 1.95613 + 1.35022i
\(85\) −1.85273 1.27885i −0.200957 0.138710i
\(86\) −4.10368 7.81891i −0.442511 0.843135i
\(87\) −3.10640 25.5835i −0.333041 2.74284i
\(88\) 0.181075 0.477456i 0.0193027 0.0508970i
\(89\) 9.41856i 0.998365i −0.866497 0.499183i \(-0.833634\pi\)
0.866497 0.499183i \(-0.166366\pi\)
\(90\) 7.04570 + 18.5780i 0.742682 + 1.95829i
\(91\) 7.11716 7.03653i 0.746081 0.737629i
\(92\) −5.25440 + 13.8547i −0.547809 + 1.44445i
\(93\) 19.0071 + 7.20844i 1.97095 + 0.747481i
\(94\) 4.58028 6.63568i 0.472420 0.684418i
\(95\) 1.44076 1.27641i 0.147819 0.130956i
\(96\) −22.1387 15.2812i −2.25952 1.55963i
\(97\) −7.86426 + 8.87691i −0.798494 + 0.901314i −0.996890 0.0788082i \(-0.974889\pi\)
0.198395 + 0.980122i \(0.436427\pi\)
\(98\) 0.684088 1.30342i 0.0691033 0.131665i
\(99\) 5.51749i 0.554529i
\(100\) −7.54017 3.95739i −0.754017 0.395739i
\(101\) −1.55335 + 12.7930i −0.154564 + 1.27295i 0.684539 + 0.728976i \(0.260004\pi\)
−0.839103 + 0.543973i \(0.816920\pi\)
\(102\) −12.4102 + 4.70657i −1.22879 + 0.466020i
\(103\) −16.2051 8.50508i −1.59673 0.838030i −0.999349 0.0360750i \(-0.988514\pi\)
−0.597384 0.801955i \(-0.703793\pi\)
\(104\) 1.91652 1.89481i 0.187930 0.185801i
\(105\) 9.63979 5.05935i 0.940747 0.493742i
\(106\) −13.8904 + 15.6790i −1.34915 + 1.52288i
\(107\) −4.70163 + 4.16528i −0.454523 + 0.402673i −0.859081 0.511840i \(-0.828964\pi\)
0.404557 + 0.914513i \(0.367426\pi\)
\(108\) 38.6826 + 9.53440i 3.72223 + 0.917448i
\(109\) −0.0587053 0.00712811i −0.00562295 0.000682749i 0.117725 0.993046i \(-0.462440\pi\)
−0.123348 + 0.992364i \(0.539363\pi\)
\(110\) −1.11446 1.25797i −0.106260 0.119943i
\(111\) 13.0098 + 4.93398i 1.23484 + 0.468313i
\(112\) −4.07078 + 7.75623i −0.384653 + 0.732895i
\(113\) −5.61202 + 2.94541i −0.527934 + 0.277081i −0.707559 0.706654i \(-0.750204\pi\)
0.179625 + 0.983735i \(0.442511\pi\)
\(114\) −1.36790 11.2656i −0.128115 1.05512i
\(115\) 4.91051 + 5.54282i 0.457908 + 0.516871i
\(116\) −17.7290 + 4.36980i −1.64609 + 0.405725i
\(117\) 12.1024 26.4863i 1.11887 2.44866i
\(118\) −17.0538 4.20339i −1.56993 0.386953i
\(119\) 2.46431 + 4.69536i 0.225903 + 0.430423i
\(120\) 2.59582 1.36239i 0.236965 0.124369i
\(121\) −3.73516 9.84881i −0.339560 0.895346i
\(122\) −2.73887 + 1.03872i −0.247966 + 0.0940410i
\(123\) 26.3752 18.2055i 2.37817 1.64153i
\(124\) 3.44683 13.9844i 0.309535 1.25583i
\(125\) −8.35155 + 5.76466i −0.746986 + 0.515607i
\(126\) 5.64131 46.4604i 0.502568 4.13902i
\(127\) 0.249279 + 0.657293i 0.0221199 + 0.0583254i 0.945621 0.325270i \(-0.105455\pi\)
−0.923501 + 0.383595i \(0.874686\pi\)
\(128\) −2.73442 + 5.21000i −0.241691 + 0.460503i
\(129\) −7.99710 + 11.5858i −0.704105 + 1.02007i
\(130\) −2.59058 8.48333i −0.227209 0.744037i
\(131\) 0.615944 + 0.892349i 0.0538153 + 0.0779649i 0.848968 0.528445i \(-0.177225\pi\)
−0.795152 + 0.606410i \(0.792609\pi\)
\(132\) −5.32225 + 0.646238i −0.463242 + 0.0562478i
\(133\) −4.40220 + 1.08504i −0.381719 + 0.0940852i
\(134\) 2.04224 2.95870i 0.176423 0.255593i
\(135\) 13.2029 14.9030i 1.13633 1.28265i
\(136\) 0.663595 + 1.26437i 0.0569028 + 0.108419i
\(137\) 18.8970 + 2.29451i 1.61448 + 0.196034i 0.877396 0.479766i \(-0.159278\pi\)
0.737085 + 0.675800i \(0.236202\pi\)
\(138\) 43.3405 5.26249i 3.68939 0.447973i
\(139\) −3.90177 3.45667i −0.330944 0.293191i 0.481244 0.876587i \(-0.340185\pi\)
−0.812188 + 0.583396i \(0.801724\pi\)
\(140\) −4.38178 6.34811i −0.370328 0.536513i
\(141\) −12.7606 1.54942i −1.07464 0.130485i
\(142\) −1.21207 9.98231i −0.101715 0.837697i
\(143\) −0.162725 + 2.45776i −0.0136078 + 0.205528i
\(144\) −3.07211 + 25.3011i −0.256010 + 2.10843i
\(145\) −2.18382 + 8.86009i −0.181356 + 0.735790i
\(146\) 23.9191 1.97956
\(147\) −2.34678 −0.193560
\(148\) 2.35926 9.57191i 0.193930 0.786806i
\(149\) −18.5062 + 7.01848i −1.51609 + 0.574976i −0.965638 0.259892i \(-0.916313\pi\)
−0.550450 + 0.834868i \(0.685544\pi\)
\(150\) 25.0904i 2.04863i
\(151\) −11.1146 4.21522i −0.904494 0.343029i −0.141881 0.989884i \(-0.545315\pi\)
−0.762614 + 0.646854i \(0.776084\pi\)
\(152\) −1.18543 + 0.292182i −0.0961511 + 0.0236991i
\(153\) 11.5487 + 10.2313i 0.933659 + 0.827150i
\(154\) 0.947381 + 3.84368i 0.0763422 + 0.309732i
\(155\) −5.38768 4.77307i −0.432749 0.383382i
\(156\) −26.9665 8.57196i −2.15905 0.686306i
\(157\) −4.41726 + 3.91335i −0.352536 + 0.312319i −0.820741 0.571300i \(-0.806439\pi\)
0.468206 + 0.883620i \(0.344901\pi\)
\(158\) 17.6390 + 12.1753i 1.40328 + 0.968618i
\(159\) 32.4242 + 7.99184i 2.57140 + 0.633794i
\(160\) 5.41085 + 7.83897i 0.427765 + 0.619725i
\(161\) −4.17432 16.9359i −0.328982 1.33473i
\(162\) −15.9874 64.8632i −1.25609 5.09614i
\(163\) −1.44841 + 0.175869i −0.113448 + 0.0137751i −0.177064 0.984199i \(-0.556660\pi\)
0.0636156 + 0.997974i \(0.479737\pi\)
\(164\) −15.0574 16.9963i −1.17579 1.32719i
\(165\) −0.950107 + 2.50523i −0.0739657 + 0.195032i
\(166\) −12.0597 6.32940i −0.936012 0.491257i
\(167\) 2.60190 1.79596i 0.201341 0.138976i −0.463128 0.886291i \(-0.653273\pi\)
0.664469 + 0.747316i \(0.268658\pi\)
\(168\) −6.90540 −0.532763
\(169\) −6.17216 + 11.4413i −0.474782 + 0.880104i
\(170\) 4.69966 0.360448
\(171\) −10.8568 + 7.49391i −0.830240 + 0.573074i
\(172\) 8.83189 + 4.63534i 0.673426 + 0.353441i
\(173\) −3.10538 + 8.18821i −0.236098 + 0.622538i −0.999733 0.0231097i \(-0.992643\pi\)
0.763635 + 0.645648i \(0.223413\pi\)
\(174\) 35.6762 + 40.2701i 2.70460 + 3.05287i
\(175\) 9.95112 1.20829i 0.752234 0.0913378i
\(176\) −0.515920 2.09317i −0.0388889 0.157778i
\(177\) 6.70123 + 27.1880i 0.503696 + 2.04357i
\(178\) 11.1694 + 16.1816i 0.837180 + 1.21286i
\(179\) −1.62281 0.399988i −0.121295 0.0298965i 0.178201 0.983994i \(-0.442972\pi\)
−0.299496 + 0.954098i \(0.596818\pi\)
\(180\) −18.4705 12.7493i −1.37671 0.950274i
\(181\) 3.94330 3.49346i 0.293103 0.259667i −0.503737 0.863857i \(-0.668042\pi\)
0.796840 + 0.604191i \(0.206503\pi\)
\(182\) −3.88315 + 20.5293i −0.287838 + 1.52174i
\(183\) 3.49547 + 3.09672i 0.258393 + 0.228916i
\(184\) −1.12407 4.56052i −0.0828673 0.336206i
\(185\) −3.68772 3.26703i −0.271127 0.240197i
\(186\) −41.2037 + 10.1558i −3.02120 + 0.744660i
\(187\) −1.22025 0.462779i −0.0892333 0.0338417i
\(188\) 9.10756i 0.664237i
\(189\) −43.8508 + 16.6304i −3.18968 + 1.20968i
\(190\) −0.961640 + 3.90153i −0.0697647 + 0.283046i
\(191\) 15.3410 1.11004 0.555019 0.831838i \(-0.312711\pi\)
0.555019 + 0.831838i \(0.312711\pi\)
\(192\) 35.1523 2.53690
\(193\) −1.35552 + 5.49956i −0.0975724 + 0.395867i −0.999339 0.0363568i \(-0.988425\pi\)
0.901766 + 0.432224i \(0.142271\pi\)
\(194\) 2.98421 24.5772i 0.214254 1.76454i
\(195\) −10.0560 + 9.94211i −0.720129 + 0.711970i
\(196\) 0.200422 + 1.65062i 0.0143158 + 0.117902i
\(197\) −1.78472 0.216704i −0.127156 0.0154395i 0.0567113 0.998391i \(-0.481939\pi\)
−0.183867 + 0.982951i \(0.558862\pi\)
\(198\) 6.54314 + 9.47937i 0.465000 + 0.673669i
\(199\) −0.792846 0.702401i −0.0562034 0.0497919i 0.634553 0.772879i \(-0.281184\pi\)
−0.690757 + 0.723087i \(0.742722\pi\)
\(200\) 2.67966 0.325369i 0.189480 0.0230071i
\(201\) −5.68967 0.690851i −0.401318 0.0487289i
\(202\) −12.5023 23.8212i −0.879660 1.67605i
\(203\) 14.2535 16.0888i 1.00040 1.12921i
\(204\) 8.51658 12.3384i 0.596280 0.863861i
\(205\) −11.0181 + 2.71571i −0.769534 + 0.189673i
\(206\) 37.9273 4.60521i 2.64252 0.320860i
\(207\) −28.8301 41.7676i −2.00383 2.90305i
\(208\) 2.11467 11.1797i 0.146626 0.775176i
\(209\) 0.633871 0.918321i 0.0438458 0.0635216i
\(210\) −10.5619 + 20.1240i −0.728839 + 1.38869i
\(211\) 1.46788 + 3.87049i 0.101053 + 0.266455i 0.976003 0.217759i \(-0.0698747\pi\)
−0.874949 + 0.484214i \(0.839105\pi\)
\(212\) 2.85198 23.4882i 0.195875 1.61318i
\(213\) −13.1934 + 9.10673i −0.903995 + 0.623983i
\(214\) 3.13811 12.7318i 0.214516 0.870327i
\(215\) 4.10235 2.83165i 0.279778 0.193117i
\(216\) −11.8082 + 4.47827i −0.803447 + 0.304707i
\(217\) 6.01215 + 15.8527i 0.408131 + 1.07615i
\(218\) 0.109312 0.0573715i 0.00740356 0.00388569i
\(219\) −17.7212 33.7650i −1.19749 2.28163i
\(220\) 1.84320 + 0.454309i 0.124269 + 0.0306295i
\(221\) −4.84261 4.89811i −0.325749 0.329482i
\(222\) −28.2028 + 6.95137i −1.89285 + 0.466545i
\(223\) 8.08947 + 9.13113i 0.541711 + 0.611465i 0.954080 0.299551i \(-0.0968370\pi\)
−0.412369 + 0.911017i \(0.635299\pi\)
\(224\) −2.70438 22.2726i −0.180694 1.48815i
\(225\) 25.8257 13.5544i 1.72171 0.903624i
\(226\) 6.14883 11.7156i 0.409014 0.779311i
\(227\) 4.52954 + 1.71783i 0.300636 + 0.114016i 0.500310 0.865846i \(-0.333219\pi\)
−0.199674 + 0.979862i \(0.563988\pi\)
\(228\) 8.50033 + 9.59489i 0.562948 + 0.635437i
\(229\) 12.2540 + 1.48791i 0.809769 + 0.0983238i 0.514940 0.857226i \(-0.327814\pi\)
0.294829 + 0.955550i \(0.404737\pi\)
\(230\) −15.0097 3.69956i −0.989711 0.243942i
\(231\) 4.72397 4.18507i 0.310814 0.275358i
\(232\) 3.83819 4.33243i 0.251990 0.284438i
\(233\) −18.0237 + 9.45955i −1.18077 + 0.619716i −0.936731 0.350050i \(-0.886165\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(234\) 10.6171 + 59.8571i 0.694063 + 3.91298i
\(235\) 4.03017 + 2.11520i 0.262899 + 0.137980i
\(236\) 18.5505 7.03527i 1.20753 0.457957i
\(237\) 4.11868 33.9203i 0.267537 2.20336i
\(238\) −9.80201 5.14449i −0.635370 0.333468i
\(239\) 15.9608i 1.03242i −0.856462 0.516210i \(-0.827342\pi\)
0.856462 0.516210i \(-0.172658\pi\)
\(240\) 5.75173 10.9590i 0.371272 0.707401i
\(241\) −2.09977 + 2.37015i −0.135258 + 0.152675i −0.812237 0.583328i \(-0.801750\pi\)
0.676979 + 0.736002i \(0.263289\pi\)
\(242\) 18.0968 + 12.4913i 1.16331 + 0.802973i
\(243\) −41.7793 + 37.0132i −2.68014 + 2.37440i
\(244\) 1.87957 2.72302i 0.120327 0.174324i
\(245\) 0.776961 + 0.294662i 0.0496382 + 0.0188253i
\(246\) −23.7244 + 62.5562i −1.51261 + 3.98844i
\(247\) 5.05716 3.01795i 0.321779 0.192028i
\(248\) 1.61896 + 4.26885i 0.102804 + 0.271072i
\(249\) 21.7132i 1.37602i
\(250\) 7.51220 19.8080i 0.475113 1.25277i
\(251\) 2.48417 + 20.4590i 0.156800 + 1.29136i 0.832434 + 0.554124i \(0.186947\pi\)
−0.675635 + 0.737237i \(0.736130\pi\)
\(252\) 24.5676 + 46.8097i 1.54761 + 2.94873i
\(253\) 3.53291 + 2.43859i 0.222112 + 0.153313i
\(254\) −1.20775 0.833651i −0.0757811 0.0523079i
\(255\) −3.48190 6.63421i −0.218045 0.415450i
\(256\) 1.06565 + 8.77645i 0.0666033 + 0.548528i
\(257\) −2.27633 + 6.00219i −0.141994 + 0.374406i −0.987081 0.160222i \(-0.948779\pi\)
0.845087 + 0.534628i \(0.179548\pi\)
\(258\) 29.3887i 1.82966i
\(259\) 4.11515 + 10.8508i 0.255703 + 0.674234i
\(260\) 7.85164 + 6.22388i 0.486938 + 0.385989i
\(261\) 22.1771 58.4763i 1.37273 3.61959i
\(262\) −2.11646 0.802666i −0.130755 0.0495889i
\(263\) −4.82714 + 6.99333i −0.297654 + 0.431227i −0.943065 0.332609i \(-0.892071\pi\)
0.645410 + 0.763836i \(0.276686\pi\)
\(264\) 1.27208 1.12696i 0.0782910 0.0693598i
\(265\) −9.73136 6.71708i −0.597793 0.412627i
\(266\) 6.27648 7.08469i 0.384836 0.434390i
\(267\) 14.5674 27.7558i 0.891507 1.69863i
\(268\) 4.06085i 0.248056i
\(269\) −13.0319 6.83965i −0.794567 0.417021i 0.0180371 0.999837i \(-0.494258\pi\)
−0.812604 + 0.582817i \(0.801951\pi\)
\(270\) −5.01006 + 41.2615i −0.304902 + 2.51110i
\(271\) 14.1519 5.36709i 0.859664 0.326028i 0.114918 0.993375i \(-0.463340\pi\)
0.744747 + 0.667347i \(0.232570\pi\)
\(272\) 5.33792 + 2.80156i 0.323659 + 0.169869i
\(273\) 31.8569 9.72824i 1.92807 0.588780i
\(274\) −35.1872 + 18.4677i −2.12574 + 1.11567i
\(275\) −1.63595 + 1.84661i −0.0986518 + 0.111355i
\(276\) −36.9129 + 32.7020i −2.22189 + 1.96843i
\(277\) 14.7389 + 3.63282i 0.885577 + 0.218275i 0.655770 0.754961i \(-0.272344\pi\)
0.229808 + 0.973236i \(0.426190\pi\)
\(278\) 10.8027 + 1.31168i 0.647903 + 0.0786696i
\(279\) 32.7125 + 36.9248i 1.95844 + 2.21063i
\(280\) 2.28620 + 0.867043i 0.136627 + 0.0518157i
\(281\) 6.13493 11.6891i 0.365979 0.697315i −0.630933 0.775837i \(-0.717328\pi\)
0.996912 + 0.0785223i \(0.0250202\pi\)
\(282\) 23.7609 12.4707i 1.41494 0.742619i
\(283\) 2.14414 + 17.6586i 0.127456 + 1.04970i 0.906346 + 0.422535i \(0.138860\pi\)
−0.778890 + 0.627160i \(0.784217\pi\)
\(284\) 7.53201 + 8.50188i 0.446942 + 0.504494i
\(285\) 6.21999 1.53309i 0.368440 0.0908124i
\(286\) −2.63506 4.41554i −0.155814 0.261097i
\(287\) 25.9529 + 6.39682i 1.53195 + 0.377592i
\(288\) −30.3374 57.8030i −1.78765 3.40607i
\(289\) −11.8214 + 6.20433i −0.695374 + 0.364960i
\(290\) −6.75516 17.8119i −0.396677 1.04595i
\(291\) −36.9050 + 13.9962i −2.16341 + 0.820472i
\(292\) −22.2353 + 15.3479i −1.30122 + 0.898170i
\(293\) −2.14322 + 8.69539i −0.125208 + 0.507990i 0.874527 + 0.484977i \(0.161172\pi\)
−0.999735 + 0.0230129i \(0.992674\pi\)
\(294\) 4.03191 2.78303i 0.235146 0.162309i
\(295\) 1.19512 9.84266i 0.0695823 0.573062i
\(296\) 1.10814 + 2.92191i 0.0644091 + 0.169833i
\(297\) 5.36389 10.2200i 0.311244 0.593027i
\(298\) 23.4716 34.0045i 1.35967 1.96983i
\(299\) 11.6105 + 19.4556i 0.671452 + 1.12515i
\(300\) −16.0996 23.3242i −0.929508 1.34662i
\(301\) −11.6559 + 1.41528i −0.671833 + 0.0815753i
\(302\) 24.0943 5.93872i 1.38647 0.341735i
\(303\) −24.3640 + 35.2974i −1.39968 + 2.02778i
\(304\) −3.41801 + 3.85814i −0.196036 + 0.221279i
\(305\) −0.768438 1.46414i −0.0440006 0.0838362i
\(306\) −31.9745 3.88241i −1.82786 0.221943i
\(307\) −19.8578 + 2.41118i −1.13335 + 0.137613i −0.665642 0.746272i \(-0.731842\pi\)
−0.467705 + 0.883885i \(0.654919\pi\)
\(308\) −3.34703 2.96521i −0.190715 0.168958i
\(309\) −34.6006 50.1276i −1.96836 2.85166i
\(310\) 14.9167 + 1.81121i 0.847210 + 0.102870i
\(311\) 0.635282 + 5.23202i 0.0360235 + 0.296681i 0.999575 + 0.0291570i \(0.00928227\pi\)
−0.963551 + 0.267524i \(0.913795\pi\)
\(312\) 8.57847 2.61964i 0.485660 0.148308i
\(313\) 2.42724 19.9901i 0.137196 1.12991i −0.747672 0.664068i \(-0.768829\pi\)
0.884868 0.465842i \(-0.154248\pi\)
\(314\) 2.94830 11.9617i 0.166382 0.675040i
\(315\) 26.4194 1.48857
\(316\) −24.2098 −1.36191
\(317\) −1.65509 + 6.71495i −0.0929590 + 0.377149i −0.998933 0.0461840i \(-0.985294\pi\)
0.905974 + 0.423333i \(0.139140\pi\)
\(318\) −65.1840 + 24.7210i −3.65534 + 1.38629i
\(319\) 5.28997i 0.296182i
\(320\) −11.6380 4.41372i −0.650586 0.246735i
\(321\) −20.2976 + 5.00291i −1.13290 + 0.279235i
\(322\) 27.2558 + 24.1465i 1.51891 + 1.34563i
\(323\) 0.746739 + 3.02964i 0.0415497 + 0.168574i
\(324\) 56.4821 + 50.0388i 3.13790 + 2.77993i
\(325\) −11.9038 + 5.27610i −0.660302 + 0.292665i
\(326\) 2.27989 2.01981i 0.126271 0.111867i
\(327\) −0.161975 0.111803i −0.00895724 0.00618274i
\(328\) 6.98865 + 1.72255i 0.385883 + 0.0951117i
\(329\) −6.09026 8.82326i −0.335767 0.486442i
\(330\) −1.33858 5.43084i −0.0736865 0.298958i
\(331\) −5.77019 23.4106i −0.317158 1.28676i −0.885758 0.464147i \(-0.846361\pi\)
0.568600 0.822614i \(-0.307485\pi\)
\(332\) 15.2721 1.85437i 0.838164 0.101772i
\(333\) 22.3908 + 25.2740i 1.22701 + 1.38501i
\(334\) −2.34040 + 6.17113i −0.128061 + 0.337669i
\(335\) 1.79696 + 0.943119i 0.0981785 + 0.0515281i
\(336\) −23.9926 + 16.5609i −1.30890 + 0.903470i
\(337\) 33.8161 1.84208 0.921039 0.389470i \(-0.127342\pi\)
0.921039 + 0.389470i \(0.127342\pi\)
\(338\) −2.96404 26.9764i −0.161222 1.46732i
\(339\) −21.0937 −1.14565
\(340\) −4.36884 + 3.01559i −0.236933 + 0.163543i
\(341\) −3.69470 1.93913i −0.200079 0.105010i
\(342\) 9.76566 25.7499i 0.528067 1.39240i
\(343\) 11.5870 + 13.0790i 0.625638 + 0.706200i
\(344\) −3.13871 + 0.381109i −0.169228 + 0.0205480i
\(345\) 5.89801 + 23.9292i 0.317538 + 1.28830i
\(346\) −4.37509 17.7504i −0.235206 0.954270i
\(347\) −0.258425 0.374393i −0.0138730 0.0200985i 0.815986 0.578072i \(-0.196195\pi\)
−0.829859 + 0.557973i \(0.811579\pi\)
\(348\) −59.0045 14.5433i −3.16297 0.779603i
\(349\) 14.4032 + 9.94183i 0.770987 + 0.532174i 0.887385 0.461029i \(-0.152519\pi\)
−0.116398 + 0.993203i \(0.537135\pi\)
\(350\) −15.6637 + 13.8768i −0.837261 + 0.741748i
\(351\) 48.1663 37.2950i 2.57092 1.99066i
\(352\) 4.13308 + 3.66159i 0.220294 + 0.195164i
\(353\) 1.59460 + 6.46956i 0.0848722 + 0.344340i 0.997991 0.0633531i \(-0.0201794\pi\)
−0.913119 + 0.407693i \(0.866333\pi\)
\(354\) −43.7550 38.7636i −2.32555 2.06026i
\(355\) 5.51143 1.35845i 0.292517 0.0720988i
\(356\) −20.7662 7.87559i −1.10061 0.417406i
\(357\) 17.6483i 0.934048i
\(358\) 3.26243 1.23728i 0.172425 0.0653921i
\(359\) 3.58758 14.5554i 0.189345 0.768203i −0.797064 0.603895i \(-0.793615\pi\)
0.986409 0.164308i \(-0.0525391\pi\)
\(360\) 7.11427 0.374955
\(361\) 16.3321 0.859583
\(362\) −2.63196 + 10.6783i −0.138333 + 0.561238i
\(363\) 4.22557 34.8007i 0.221785 1.82656i
\(364\) −9.56306 21.5759i −0.501241 1.13088i
\(365\) 1.62752 + 13.4038i 0.0851882 + 0.701588i
\(366\) −9.67778 1.17510i −0.505866 0.0614232i
\(367\) −16.5605 23.9920i −0.864451 1.25237i −0.966260 0.257570i \(-0.917078\pi\)
0.101808 0.994804i \(-0.467537\pi\)
\(368\) −14.8428 13.1496i −0.773734 0.685469i
\(369\) 77.2057 9.37447i 4.01917 0.488015i
\(370\) 10.2101 + 1.23973i 0.530796 + 0.0644503i
\(371\) 12.9437 + 24.6621i 0.672003 + 1.28039i
\(372\) 31.7866 35.8797i 1.64806 1.86028i
\(373\) 4.67844 6.77789i 0.242240 0.350946i −0.682939 0.730475i \(-0.739299\pi\)
0.925180 + 0.379529i \(0.123914\pi\)
\(374\) 2.64526 0.651998i 0.136783 0.0337140i
\(375\) −33.5274 + 4.07096i −1.73135 + 0.210224i
\(376\) −1.64000 2.37594i −0.0845763 0.122530i
\(377\) −11.6034 + 25.3941i −0.597605 + 1.30786i
\(378\) 55.6164 80.5742i 2.86060 4.14429i
\(379\) −0.867937 + 1.65372i −0.0445829 + 0.0849456i −0.906728 0.421715i \(-0.861428\pi\)
0.862145 + 0.506661i \(0.169120\pi\)
\(380\) −1.60951 4.24393i −0.0825661 0.217709i
\(381\) −0.282008 + 2.32254i −0.0144477 + 0.118987i
\(382\) −26.3568 + 18.1928i −1.34853 + 0.930823i
\(383\) 1.46805 5.95610i 0.0750137 0.304342i −0.921436 0.388530i \(-0.872983\pi\)
0.996450 + 0.0841870i \(0.0268293\pi\)
\(384\) −16.1162 + 11.1242i −0.822429 + 0.567682i
\(385\) −2.08947 + 0.792430i −0.106489 + 0.0403860i
\(386\) −4.19301 11.0561i −0.213418 0.562738i
\(387\) −30.2499 + 15.8764i −1.53769 + 0.807042i
\(388\) 12.9961 + 24.7620i 0.659776 + 1.25710i
\(389\) 32.3576 + 7.97544i 1.64060 + 0.404371i 0.948334 0.317274i \(-0.102768\pi\)
0.692263 + 0.721645i \(0.256614\pi\)
\(390\) 5.48662 29.0065i 0.277826 1.46880i
\(391\) −11.6554 + 2.87281i −0.589441 + 0.145284i
\(392\) −0.349512 0.394518i −0.0176530 0.0199261i
\(393\) 0.434975 + 3.58234i 0.0219416 + 0.180705i
\(394\) 3.32324 1.74417i 0.167422 0.0878700i
\(395\) −5.62263 + 10.7130i −0.282905 + 0.539031i
\(396\) −12.1651 4.61361i −0.611318 0.231842i
\(397\) −13.3863 15.1101i −0.671841 0.758352i 0.309443 0.950918i \(-0.399857\pi\)
−0.981284 + 0.192566i \(0.938319\pi\)
\(398\) 2.19513 + 0.266536i 0.110032 + 0.0133603i
\(399\) −14.6511 3.61118i −0.733474 0.180785i
\(400\) 8.53005 7.55697i 0.426503 0.377848i
\(401\) −7.03223 + 7.93775i −0.351173 + 0.396392i −0.897381 0.441258i \(-0.854533\pi\)
0.546208 + 0.837650i \(0.316071\pi\)
\(402\) 10.5944 5.56040i 0.528403 0.277327i
\(403\) −13.4827 17.4128i −0.671622 0.867396i
\(404\) 26.9073 + 14.1221i 1.33869 + 0.702599i
\(405\) 35.2604 13.3725i 1.75210 0.664485i
\(406\) −5.40869 + 44.5445i −0.268429 + 2.21071i
\(407\) −2.52892 1.32728i −0.125354 0.0657909i
\(408\) 4.75237i 0.235277i
\(409\) 11.4290 21.7761i 0.565127 1.07676i −0.420415 0.907332i \(-0.638116\pi\)
0.985543 0.169428i \(-0.0541921\pi\)
\(410\) 15.7091 17.7319i 0.775818 0.875718i
\(411\) 52.1392 + 35.9891i 2.57184 + 1.77521i
\(412\) −32.3025 + 28.6175i −1.59143 + 1.40988i
\(413\) −13.2669 + 19.2204i −0.652822 + 0.945776i
\(414\) 99.0636 + 37.5699i 4.86871 + 1.84646i
\(415\) 2.72631 7.18869i 0.133829 0.352879i
\(416\) 11.8090 + 26.6430i 0.578982 + 1.30628i
\(417\) −6.15191 16.2213i −0.301261 0.794359i
\(418\) 2.32943i 0.113936i
\(419\) 13.7994 36.3860i 0.674145 1.77757i 0.0467045 0.998909i \(-0.485128\pi\)
0.627440 0.778665i \(-0.284103\pi\)
\(420\) −3.09438 25.4845i −0.150990 1.24352i
\(421\) 5.16794 + 9.84669i 0.251870 + 0.479898i 0.978259 0.207385i \(-0.0664953\pi\)
−0.726389 + 0.687283i \(0.758803\pi\)
\(422\) −7.11188 4.90898i −0.346201 0.238965i
\(423\) −25.6722 17.7203i −1.24823 0.861589i
\(424\) 3.48550 + 6.64106i 0.169271 + 0.322519i
\(425\) −0.831555 6.84847i −0.0403363 0.332200i
\(426\) 11.8674 31.2918i 0.574977 1.51609i
\(427\) 3.89490i 0.188487i
\(428\) 5.25229 + 13.8492i 0.253879 + 0.669424i
\(429\) −4.28087 + 6.99114i −0.206682 + 0.337535i
\(430\) −3.69005 + 9.72987i −0.177950 + 0.469216i
\(431\) 17.2388 + 6.53780i 0.830362 + 0.314915i 0.732910 0.680325i \(-0.238162\pi\)
0.0974518 + 0.995240i \(0.468931\pi\)
\(432\) −30.2872 + 43.8786i −1.45720 + 2.11111i
\(433\) 0.222728 0.197320i 0.0107036 0.00948259i −0.657754 0.753233i \(-0.728493\pi\)
0.668458 + 0.743750i \(0.266955\pi\)
\(434\) −29.1288 20.1062i −1.39823 0.965127i
\(435\) −20.1391 + 22.7324i −0.965597 + 1.08993i
\(436\) −0.0648043 + 0.123474i −0.00310356 + 0.00591334i
\(437\) 10.2639i 0.490987i
\(438\) 70.4877 + 36.9948i 3.36803 + 1.76768i
\(439\) −1.45464 + 11.9801i −0.0694264 + 0.571777i 0.915938 + 0.401319i \(0.131448\pi\)
−0.985365 + 0.170459i \(0.945475\pi\)
\(440\) −0.562655 + 0.213387i −0.0268235 + 0.0101728i
\(441\) −5.04270 2.64661i −0.240128 0.126029i
\(442\) 14.1285 + 2.67243i 0.672025 + 0.127114i
\(443\) −7.72754 + 4.05573i −0.367147 + 0.192693i −0.638199 0.769871i \(-0.720320\pi\)
0.271053 + 0.962564i \(0.412628\pi\)
\(444\) 21.7571 24.5587i 1.03255 1.16550i
\(445\) −8.30790 + 7.36016i −0.393832 + 0.348905i
\(446\) −24.7267 6.09458i −1.17084 0.288587i
\(447\) −65.3916 7.93998i −3.09292 0.375548i
\(448\) 19.4418 + 21.9452i 0.918537 + 1.03681i
\(449\) −36.4802 13.8351i −1.72161 0.652919i −0.722353 0.691525i \(-0.756939\pi\)
−0.999255 + 0.0386056i \(0.987708\pi\)
\(450\) −28.2960 + 53.9136i −1.33389 + 2.54151i
\(451\) −5.82488 + 3.05713i −0.274283 + 0.143955i
\(452\) 1.80146 + 14.8364i 0.0847337 + 0.697844i
\(453\) −26.2344 29.6125i −1.23260 1.39132i
\(454\) −9.81916 + 2.42020i −0.460836 + 0.113586i
\(455\) −11.7685 0.779178i −0.551715 0.0365284i
\(456\) −3.94528 0.972425i −0.184755 0.0455380i
\(457\) 0.983520 + 1.87394i 0.0460071 + 0.0876592i 0.907374 0.420324i \(-0.138084\pi\)
−0.861367 + 0.507983i \(0.830391\pi\)
\(458\) −22.8176 + 11.9756i −1.06620 + 0.559584i
\(459\) 11.4452 + 30.1786i 0.534218 + 1.40862i
\(460\) 16.3270 6.19201i 0.761250 0.288704i
\(461\) −17.4152 + 12.0208i −0.811106 + 0.559866i −0.899856 0.436188i \(-0.856328\pi\)
0.0887498 + 0.996054i \(0.471713\pi\)
\(462\) −3.15302 + 12.7923i −0.146692 + 0.595152i
\(463\) −25.4055 + 17.5362i −1.18069 + 0.814975i −0.986140 0.165917i \(-0.946942\pi\)
−0.194555 + 0.980892i \(0.562326\pi\)
\(464\) 2.94543 24.2578i 0.136738 1.12614i
\(465\) −8.49474 22.3988i −0.393934 1.03872i
\(466\) 19.7477 37.6261i 0.914795 1.74300i
\(467\) −1.73276 + 2.51034i −0.0801828 + 0.116165i −0.861023 0.508566i \(-0.830176\pi\)
0.780840 + 0.624731i \(0.214791\pi\)
\(468\) −48.2777 48.8310i −2.23164 2.25721i
\(469\) −2.71551 3.93409i −0.125391 0.181660i
\(470\) −9.43246 + 1.14531i −0.435087 + 0.0528291i
\(471\) −19.0700 + 4.70032i −0.878697 + 0.216579i
\(472\) −3.57254 + 5.17571i −0.164439 + 0.238231i
\(473\) 1.91621 2.16296i 0.0881076 0.0994529i
\(474\) 33.1497 + 63.1614i 1.52261 + 2.90110i
\(475\) 5.85556 + 0.710993i 0.268671 + 0.0326226i
\(476\) 12.4130 1.50721i 0.568950 0.0690830i
\(477\) 60.6591 + 53.7393i 2.77739 + 2.46055i
\(478\) 18.9278 + 27.4216i 0.865736 + 1.25424i
\(479\) 0.0107135 + 0.00130086i 0.000489513 + 5.94376e-5i 0.120781 0.992679i \(-0.461460\pi\)
−0.120292 + 0.992739i \(0.538383\pi\)
\(480\) 3.82110 + 31.4696i 0.174409 + 1.43638i
\(481\) −9.22855 11.9186i −0.420786 0.543442i
\(482\) 0.796788 6.56214i 0.0362927 0.298897i
\(483\) 13.8927 56.3650i 0.632140 2.56469i
\(484\) −24.8381 −1.12901
\(485\) 13.9757 0.634602
\(486\) 27.8856 113.137i 1.26492 5.13198i
\(487\) 15.3091 5.80598i 0.693722 0.263094i 0.0175585 0.999846i \(-0.494411\pi\)
0.676163 + 0.736752i \(0.263641\pi\)
\(488\) 1.04882i 0.0474781i
\(489\) −4.54036 1.72193i −0.205322 0.0778685i
\(490\) −1.68430 + 0.415143i −0.0760890 + 0.0187542i
\(491\) 15.0592 + 13.3413i 0.679613 + 0.602084i 0.930658 0.365891i \(-0.119236\pi\)
−0.251045 + 0.967975i \(0.580774\pi\)
\(492\) −18.0855 73.3756i −0.815356 3.30803i
\(493\) −11.0725 9.80938i −0.498680 0.441792i
\(494\) −5.10953 + 11.1823i −0.229889 + 0.503113i
\(495\) −4.86686 + 4.31166i −0.218749 + 0.193795i
\(496\) 15.8628 + 10.9493i 0.712261 + 0.491638i
\(497\) −12.9821 3.19981i −0.582328 0.143531i
\(498\) −25.7495 37.3045i −1.15386 1.67166i
\(499\) 2.93964 + 11.9266i 0.131596 + 0.533908i 0.999320 + 0.0368614i \(0.0117360\pi\)
−0.867724 + 0.497047i \(0.834418\pi\)
\(500\) 5.72666 + 23.2340i 0.256104 + 1.03905i
\(501\) 10.4453 1.26830i 0.466664 0.0566632i
\(502\) −28.5301 32.2038i −1.27336 1.43733i
\(503\) −1.06196 + 2.80015i −0.0473504 + 0.124853i −0.956605 0.291387i \(-0.905883\pi\)
0.909255 + 0.416240i \(0.136652\pi\)
\(504\) −14.8381 7.78764i −0.660942 0.346889i
\(505\) 12.4983 8.62693i 0.556166 0.383893i
\(506\) −8.96165 −0.398394
\(507\) −35.8848 + 24.1705i −1.59370 + 1.07345i
\(508\) 1.65766 0.0735466
\(509\) 25.1803 17.3807i 1.11610 0.770386i 0.140528 0.990077i \(-0.455120\pi\)
0.975570 + 0.219690i \(0.0705047\pi\)
\(510\) 13.8495 + 7.26880i 0.613268 + 0.321868i
\(511\) 11.2780 29.7377i 0.498910 1.31552i
\(512\) −20.0423 22.6231i −0.885755 0.999811i
\(513\) −27.3953 + 3.32639i −1.20953 + 0.146864i
\(514\) −3.20707 13.0116i −0.141458 0.573916i
\(515\) 5.16136 + 20.9404i 0.227437 + 0.922746i
\(516\) 18.8576 + 27.3200i 0.830160 + 1.20269i
\(517\) 2.56188 + 0.631446i 0.112671 + 0.0277710i
\(518\) −19.9379 13.7621i −0.876020 0.604673i
\(519\) −21.8157 + 19.3270i −0.957604 + 0.848363i
\(520\) −3.16904 0.209818i −0.138972 0.00920115i
\(521\) −2.55075 2.25977i −0.111750 0.0990022i 0.605397 0.795923i \(-0.293014\pi\)
−0.717148 + 0.696921i \(0.754553\pi\)
\(522\) 31.2448 + 126.765i 1.36755 + 5.54836i
\(523\) 30.4081 + 26.9392i 1.32965 + 1.17797i 0.969505 + 0.245073i \(0.0788120\pi\)
0.360147 + 0.932895i \(0.382726\pi\)
\(524\) 2.48251 0.611884i 0.108449 0.0267303i
\(525\) 31.1940 + 11.8303i 1.36142 + 0.516318i
\(526\) 17.7394i 0.773474i
\(527\) 10.9100 4.13763i 0.475248 0.180238i
\(528\) 1.71705 6.96636i 0.0747251 0.303172i
\(529\) 16.4865 0.716803
\(530\) 24.6848 1.07224
\(531\) −16.2621 + 65.9781i −0.705716 + 2.86320i
\(532\) −1.28869 + 10.6133i −0.0558719 + 0.460147i
\(533\) −34.6676 + 1.89884i −1.50162 + 0.0822480i
\(534\) 7.88773 + 64.9613i 0.341335 + 2.81115i
\(535\) 7.34819 + 0.892232i 0.317690 + 0.0385746i
\(536\) −0.731237 1.05938i −0.0315846 0.0457582i
\(537\) −4.16366 3.68868i −0.179675 0.159178i
\(538\) 30.5006 3.70344i 1.31497 0.159667i
\(539\) 0.478201 + 0.0580641i 0.0205976 + 0.00250100i
\(540\) −21.8185 41.5717i −0.938920 1.78896i
\(541\) −6.49620 + 7.33269i −0.279293 + 0.315257i −0.871372 0.490623i \(-0.836769\pi\)
0.592078 + 0.805880i \(0.298308\pi\)
\(542\) −17.9489 + 26.0035i −0.770973 + 1.11695i
\(543\) 17.0238 4.19599i 0.730561 0.180067i
\(544\) −15.3282 + 1.86119i −0.657193 + 0.0797977i
\(545\) 0.0395878 + 0.0573529i 0.00169576 + 0.00245673i
\(546\) −43.1953 + 54.4924i −1.84859 + 2.33206i
\(547\) −7.63215 + 11.0571i −0.326327 + 0.472767i −0.951469 0.307745i \(-0.900426\pi\)
0.625142 + 0.780511i \(0.285041\pi\)
\(548\) 20.8603 39.7459i 0.891107 1.69786i
\(549\) 4.01860 + 10.5962i 0.171510 + 0.452234i
\(550\) 0.620787 5.11264i 0.0264705 0.218004i
\(551\) 10.4091 7.18489i 0.443443 0.306087i
\(552\) 3.74105 15.1781i 0.159230 0.646021i
\(553\) 23.4541 16.1892i 0.997368 0.688433i
\(554\) −29.6305 + 11.2374i −1.25888 + 0.477430i
\(555\) −5.81442 15.3314i −0.246808 0.650780i
\(556\) −10.8839 + 5.71232i −0.461581 + 0.242256i
\(557\) −11.2419 21.4197i −0.476335 0.907580i −0.998501 0.0547363i \(-0.982568\pi\)
0.522166 0.852844i \(-0.325124\pi\)
\(558\) −99.9906 24.6455i −4.23294 1.04333i
\(559\) 13.9430 6.17996i 0.589727 0.261384i
\(560\) 10.0227 2.47038i 0.423537 0.104393i
\(561\) −2.88021 3.25109i −0.121603 0.137261i
\(562\) 3.32185 + 27.3579i 0.140124 + 1.15402i
\(563\) 14.0158 7.35607i 0.590697 0.310022i −0.142760 0.989757i \(-0.545598\pi\)
0.733457 + 0.679736i \(0.237906\pi\)
\(564\) −14.0863 + 26.8393i −0.593142 + 1.13014i
\(565\) 6.98361 + 2.64853i 0.293803 + 0.111425i
\(566\) −24.6249 27.7958i −1.03506 1.16834i
\(567\) −88.1802 10.7070i −3.70322 0.449652i
\(568\) −3.49585 0.861650i −0.146683 0.0361540i
\(569\) 14.0174 12.4183i 0.587639 0.520603i −0.316078 0.948733i \(-0.602366\pi\)
0.903717 + 0.428130i \(0.140828\pi\)
\(570\) −8.86823 + 10.0102i −0.371449 + 0.419279i
\(571\) 26.0765 13.6860i 1.09127 0.572741i 0.179629 0.983734i \(-0.442510\pi\)
0.911638 + 0.410993i \(0.134818\pi\)
\(572\) 5.28285 + 2.41390i 0.220887 + 0.100930i
\(573\) 45.2088 + 23.7274i 1.88863 + 0.991228i
\(574\) −52.1745 + 19.7872i −2.17772 + 0.825901i
\(575\) −2.73529 + 22.5271i −0.114070 + 0.939447i
\(576\) 75.5341 + 39.6434i 3.14725 + 1.65181i
\(577\) 22.5686i 0.939545i 0.882788 + 0.469772i \(0.155664\pi\)
−0.882788 + 0.469772i \(0.844336\pi\)
\(578\) 12.9521 24.6782i 0.538737 1.02648i
\(579\) −12.5006 + 14.1102i −0.519506 + 0.586401i
\(580\) 17.7088 + 12.2235i 0.735320 + 0.507554i
\(581\) −13.5553 + 12.0090i −0.562370 + 0.498216i
\(582\) 46.8069 67.8115i 1.94021 2.81088i
\(583\) −6.40929 2.43072i −0.265446 0.100670i
\(584\) 3.03696 8.00782i 0.125670 0.331366i
\(585\) −32.8205 + 10.0225i −1.35696 + 0.414379i
\(586\) −6.62959 17.4808i −0.273866 0.722125i
\(587\) 2.05306i 0.0847388i 0.999102 + 0.0423694i \(0.0134906\pi\)
−0.999102 + 0.0423694i \(0.986509\pi\)
\(588\) −1.96233 + 5.17424i −0.0809251 + 0.213382i
\(589\) 1.20254 + 9.90383i 0.0495499 + 0.408080i
\(590\) 9.61903 + 18.3275i 0.396009 + 0.754533i
\(591\) −4.92426 3.39897i −0.202557 0.139815i
\(592\) 10.8577 + 7.49450i 0.446247 + 0.308022i
\(593\) 6.19000 + 11.7941i 0.254193 + 0.484324i 0.978795 0.204844i \(-0.0656686\pi\)
−0.724602 + 0.689168i \(0.757976\pi\)
\(594\) 2.90436 + 23.9196i 0.119167 + 0.981433i
\(595\) 2.21593 5.84291i 0.0908441 0.239536i
\(596\) 46.6716i 1.91174i
\(597\) −1.25008 3.29619i −0.0511623 0.134904i
\(598\) −43.0197 19.6571i −1.75921 0.803838i
\(599\) −1.83443 + 4.83700i −0.0749529 + 0.197634i −0.967256 0.253802i \(-0.918319\pi\)
0.892303 + 0.451436i \(0.149088\pi\)
\(600\) 8.39997 + 3.18569i 0.342928 + 0.130055i
\(601\) 2.38770 3.45919i 0.0973965 0.141103i −0.771256 0.636525i \(-0.780371\pi\)
0.868652 + 0.495422i \(0.164987\pi\)
\(602\) 18.3471 16.2541i 0.747772 0.662468i
\(603\) −11.4467 7.90106i −0.466144 0.321756i
\(604\) −18.5876 + 20.9810i −0.756318 + 0.853707i
\(605\) −5.76856 + 10.9911i −0.234525 + 0.446851i
\(606\) 89.5360i 3.63715i
\(607\) 2.09806 + 1.10114i 0.0851575 + 0.0446941i 0.506764 0.862085i \(-0.330841\pi\)
−0.421607 + 0.906779i \(0.638534\pi\)
\(608\) 1.59134 13.1059i 0.0645375 0.531514i
\(609\) 66.8878 25.3672i 2.71043 1.02793i
\(610\) 3.05652 + 1.60419i 0.123755 + 0.0649517i
\(611\) 10.9130 + 8.65061i 0.441494 + 0.349966i
\(612\) 32.2149 16.9077i 1.30221 0.683453i
\(613\) −16.3721 + 18.4802i −0.661261 + 0.746409i −0.979465 0.201613i \(-0.935382\pi\)
0.318204 + 0.948022i \(0.396920\pi\)
\(614\) 31.2575 27.6917i 1.26145 1.11755i
\(615\) −36.6696 9.03825i −1.47866 0.364457i
\(616\) 1.40710 + 0.170853i 0.0566938 + 0.00688388i
\(617\) −16.3897 18.5001i −0.659823 0.744786i 0.319390 0.947623i \(-0.396522\pi\)
−0.979212 + 0.202838i \(0.934984\pi\)
\(618\) 118.892 + 45.0896i 4.78252 + 1.81377i
\(619\) 16.0853 30.6480i 0.646522 1.23185i −0.312877 0.949794i \(-0.601293\pi\)
0.959399 0.282052i \(-0.0910150\pi\)
\(620\) −15.0288 + 7.88773i −0.603572 + 0.316779i
\(621\) −12.7971 105.394i −0.513530 4.22930i
\(622\) −7.29605 8.23554i −0.292545 0.330215i
\(623\) 25.3845 6.25671i 1.01701 0.250670i
\(624\) 23.5231 29.6752i 0.941676 1.18796i
\(625\) −5.92045 1.45926i −0.236818 0.0583704i
\(626\) 19.5360 + 37.2227i 0.780814 + 1.48772i
\(627\) 3.28830 1.72584i 0.131322 0.0689232i
\(628\) 4.93462 + 13.0115i 0.196913 + 0.519216i
\(629\) 7.46762 2.83209i 0.297753 0.112923i
\(630\) −45.3901 + 31.3305i −1.80838 + 1.24824i
\(631\) −11.5283 + 46.7723i −0.458936 + 1.86198i 0.0461941 + 0.998932i \(0.485291\pi\)
−0.505130 + 0.863043i \(0.668555\pi\)
\(632\) 6.31575 4.35945i 0.251227 0.173410i
\(633\) −1.66061 + 13.6764i −0.0660033 + 0.543586i
\(634\) −5.11966 13.4994i −0.203328 0.536131i
\(635\) 0.384984 0.733527i 0.0152776 0.0291091i
\(636\) 44.7329 64.8068i 1.77378 2.56976i
\(637\) 2.16821 + 1.32765i 0.0859074 + 0.0526035i
\(638\) −6.27332 9.08847i −0.248363 0.359816i
\(639\) −38.6197 + 4.68928i −1.52777 + 0.185505i
\(640\) 6.73244 1.65940i 0.266123 0.0655935i
\(641\) 14.5296 21.0497i 0.573883 0.831413i −0.423333 0.905974i \(-0.639140\pi\)
0.997216 + 0.0745608i \(0.0237555\pi\)
\(642\) 28.9396 32.6660i 1.14215 1.28922i
\(643\) −15.7498 30.0087i −0.621111 1.18343i −0.969272 0.245993i \(-0.920886\pi\)
0.348161 0.937435i \(-0.386806\pi\)
\(644\) −40.8310 4.95778i −1.60897 0.195364i
\(645\) 16.4689 1.99969i 0.648463 0.0787377i
\(646\) −4.87576 4.31954i −0.191834 0.169950i
\(647\) −0.297211 0.430585i −0.0116846 0.0169280i 0.817098 0.576499i \(-0.195581\pi\)
−0.828783 + 0.559571i \(0.810966\pi\)
\(648\) −23.7453 2.88320i −0.932804 0.113263i
\(649\) −0.692817 5.70586i −0.0271954 0.223975i
\(650\) 14.1945 23.1812i 0.556753 0.909241i
\(651\) −6.80152 + 56.0156i −0.266573 + 2.19542i
\(652\) −0.823369 + 3.34054i −0.0322456 + 0.130826i
\(653\) 24.2882 0.950470 0.475235 0.879859i \(-0.342363\pi\)
0.475235 + 0.879859i \(0.342363\pi\)
\(654\) 0.410869 0.0160662
\(655\) 0.305790 1.24064i 0.0119482 0.0484758i
\(656\) 28.4129 10.7756i 1.10934 0.420716i
\(657\) 92.5385i 3.61027i
\(658\) 20.9268 + 7.93650i 0.815813 + 0.309397i
\(659\) −6.88578 + 1.69719i −0.268232 + 0.0661132i −0.371138 0.928578i \(-0.621032\pi\)
0.102906 + 0.994691i \(0.467186\pi\)
\(660\) 4.72911 + 4.18963i 0.184081 + 0.163081i
\(661\) −5.95474 24.1593i −0.231613 0.939690i −0.965497 0.260415i \(-0.916141\pi\)
0.733884 0.679275i \(-0.237705\pi\)
\(662\) 37.6759 + 33.3779i 1.46431 + 1.29727i
\(663\) −6.69508 21.9242i −0.260015 0.851467i
\(664\) −3.65020 + 3.23380i −0.141655 + 0.125496i
\(665\) 4.39720 + 3.03517i 0.170516 + 0.117699i
\(666\) −68.4408 16.8691i −2.65203 0.653666i
\(667\) 27.6413 + 40.0453i 1.07027 + 1.55056i
\(668\) −1.78412 7.23847i −0.0690297 0.280065i
\(669\) 9.71626 + 39.4204i 0.375652 + 1.52408i
\(670\) −4.20572 + 0.510667i −0.162481 + 0.0197288i
\(671\) −0.635648 0.717499i −0.0245389 0.0276987i
\(672\) 26.4786 69.8184i 1.02144 2.69330i
\(673\) −15.6687 8.22355i −0.603982 0.316994i 0.134868 0.990864i \(-0.456939\pi\)
−0.738851 + 0.673869i \(0.764631\pi\)
\(674\) −58.0979 + 40.1021i −2.23785 + 1.54468i
\(675\) 61.0138 2.34842
\(676\) 20.0651 + 23.1755i 0.771734 + 0.891366i
\(677\) 39.4430 1.51592 0.757958 0.652303i \(-0.226197\pi\)
0.757958 + 0.652303i \(0.226197\pi\)
\(678\) 36.2403 25.0148i 1.39180 0.960689i
\(679\) −29.1488 15.2985i −1.11863 0.587102i
\(680\) 0.596708 1.57339i 0.0228827 0.0603368i
\(681\) 10.6913 + 12.0680i 0.409691 + 0.462446i
\(682\) 8.64730 1.04997i 0.331122 0.0402055i
\(683\) 1.68997 + 6.85649i 0.0646650 + 0.262356i 0.994372 0.105943i \(-0.0337862\pi\)
−0.929707 + 0.368300i \(0.879940\pi\)
\(684\) 7.44450 + 30.2035i 0.284648 + 1.15486i
\(685\) −12.7432 18.4617i −0.486892 0.705385i
\(686\) −35.4174 8.72960i −1.35224 0.333298i
\(687\) 33.8104 + 23.3376i 1.28995 + 0.890386i
\(688\) −9.99136 + 8.85157i −0.380917 + 0.337463i
\(689\) −25.4356 25.7271i −0.969019 0.980124i
\(690\) −38.5105 34.1173i −1.46607 1.29882i
\(691\) −9.32311 37.8253i −0.354668 1.43894i −0.829322 0.558771i \(-0.811273\pi\)
0.474654 0.880172i \(-0.342573\pi\)
\(692\) 15.4569 + 13.6936i 0.587582 + 0.520553i
\(693\) 14.8705 3.66524i 0.564883 0.139231i
\(694\) 0.887979 + 0.336766i 0.0337072 + 0.0127835i
\(695\) 6.14289i 0.233013i
\(696\) 18.0117 6.83092i 0.682731 0.258926i
\(697\) 4.40236 17.8611i 0.166751 0.676537i
\(698\) −36.5355 −1.38289
\(699\) −67.7451 −2.56235
\(700\) 5.65686 22.9508i 0.213809 0.867458i
\(701\) −3.04060 + 25.0416i −0.114842 + 0.945807i 0.815410 + 0.578884i \(0.196512\pi\)
−0.930251 + 0.366923i \(0.880411\pi\)
\(702\) −38.5247 + 121.195i −1.45402 + 4.57420i
\(703\) 0.823107 + 6.77890i 0.0310441 + 0.255671i
\(704\) −7.16293 0.869737i −0.269963 0.0327795i
\(705\) 8.60511 + 12.4666i 0.324087 + 0.469521i
\(706\) −10.4118 9.22406i −0.391854 0.347152i
\(707\) −35.5109 + 4.31180i −1.33553 + 0.162162i
\(708\) 65.5480 + 7.95897i 2.46345 + 0.299116i
\(709\) 4.09557 + 7.80346i 0.153812 + 0.293065i 0.950153 0.311783i \(-0.100926\pi\)
−0.796341 + 0.604848i \(0.793234\pi\)
\(710\) −7.85799 + 8.86984i −0.294905 + 0.332879i
\(711\) 47.1041 68.2421i 1.76654 2.55928i
\(712\) 6.83557 1.68482i 0.256174 0.0631412i
\(713\) −38.1014 + 4.62635i −1.42691 + 0.173258i
\(714\) −20.9290 30.3208i −0.783247 1.13473i
\(715\) 2.29509 1.77708i 0.0858317 0.0664592i
\(716\) −2.23886 + 3.24355i −0.0836703 + 0.121217i
\(717\) 24.6860 47.0353i 0.921917 1.75657i
\(718\) 11.0974 + 29.2614i 0.414151 + 1.09203i
\(719\) 1.70788 14.0657i 0.0636933 0.524562i −0.925587 0.378534i \(-0.876428\pi\)
0.989281 0.146027i \(-0.0466487\pi\)
\(720\) 24.7183 17.0618i 0.921196 0.635855i
\(721\) 12.1575 49.3250i 0.452770 1.83696i
\(722\) −28.0595 + 19.3680i −1.04426 + 0.720804i
\(723\) −9.85367 + 3.73700i −0.366462 + 0.138981i
\(724\) −4.40514 11.6154i −0.163716 0.431683i
\(725\) −24.7607 + 12.9954i −0.919590 + 0.482638i
\(726\) 34.0100 + 64.8007i 1.26223 + 2.40498i
\(727\) −24.4721 6.03182i −0.907619 0.223708i −0.242242 0.970216i \(-0.577883\pi\)
−0.665377 + 0.746508i \(0.731729\pi\)
\(728\) 6.37993 + 3.90661i 0.236456 + 0.144788i
\(729\) −87.1551 + 21.4818i −3.22797 + 0.795622i
\(730\) −18.6916 21.0985i −0.691808 0.780890i
\(731\) 0.974011 + 8.02170i 0.0360251 + 0.296693i
\(732\) 9.75054 5.11748i 0.360390 0.189147i
\(733\) 13.1057 24.9708i 0.484069 0.922316i −0.513853 0.857878i \(-0.671782\pi\)
0.997922 0.0644376i \(-0.0205254\pi\)
\(734\) 56.9038 + 21.5808i 2.10036 + 0.796561i
\(735\) 1.83390 + 2.07005i 0.0676444 + 0.0763548i
\(736\) 50.4202 + 6.12213i 1.85851 + 0.225665i
\(737\) 1.14228 + 0.281547i 0.0420765 + 0.0103709i
\(738\) −121.527 + 107.663i −4.47346 + 3.96314i
\(739\) 24.5597 27.7222i 0.903443 1.01978i −0.0962584 0.995356i \(-0.530688\pi\)
0.999702 0.0244204i \(-0.00777403\pi\)
\(740\) −10.2868 + 5.39894i −0.378151 + 0.198469i
\(741\) 19.5708 1.07195i 0.718952 0.0393790i
\(742\) −51.4846 27.0212i −1.89006 0.991979i
\(743\) −23.0857 + 8.75526i −0.846933 + 0.321200i −0.739619 0.673026i \(-0.764994\pi\)
−0.107314 + 0.994225i \(0.534225\pi\)
\(744\) −1.83153 + 15.0840i −0.0671470 + 0.553005i
\(745\) 20.6526 + 10.8393i 0.756651 + 0.397121i
\(746\) 17.1929i 0.629477i
\(747\) −24.4873 + 46.6566i −0.895943 + 1.70708i
\(748\) −2.04069 + 2.30346i −0.0746150 + 0.0842229i
\(749\) −14.3493 9.90462i −0.524313 0.361907i
\(750\) 52.7743 46.7539i 1.92704 1.70721i
\(751\) −15.2972 + 22.1618i −0.558203 + 0.808697i −0.995903 0.0904240i \(-0.971178\pi\)
0.437700 + 0.899121i \(0.355793\pi\)
\(752\) −11.3962 4.32201i −0.415577 0.157608i
\(753\) −24.3225 + 64.1333i −0.886363 + 2.33715i
\(754\) −10.1793 57.3889i −0.370709 2.08998i
\(755\) 4.96739 + 13.0979i 0.180782 + 0.476683i
\(756\) 110.589i 4.02209i
\(757\) −12.1221 + 31.9633i −0.440584 + 1.16173i 0.512411 + 0.858740i \(0.328753\pi\)
−0.952995 + 0.302985i \(0.902017\pi\)
\(758\) −0.469958 3.87045i −0.0170697 0.140581i
\(759\) 6.63953 + 12.6506i 0.241000 + 0.459187i
\(760\) 1.18409 + 0.817315i 0.0429513 + 0.0296471i
\(761\) −36.7778 25.3859i −1.33319 0.920237i −0.333447 0.942769i \(-0.608212\pi\)
−0.999746 + 0.0225320i \(0.992827\pi\)
\(762\) −2.26977 4.32469i −0.0822252 0.156667i
\(763\) −0.0197863 0.162955i −0.000716312 0.00589936i
\(764\) 12.8278 33.8242i 0.464095 1.22372i
\(765\) 18.1821i 0.657376i
\(766\) 4.54109 + 11.9739i 0.164076 + 0.432633i
\(767\) 9.18981 28.9102i 0.331825 1.04389i