Properties

Label 169.2.h.a.12.2
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.2
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.08715 + 1.44065i) q^{2} +(-1.12364 - 0.589730i) q^{3} +(1.57149 - 4.14367i) q^{4} +(-2.16703 - 2.44607i) q^{5} +(3.19479 - 0.387918i) q^{6} +(1.08188 + 4.38937i) q^{7} +(1.47582 + 5.98765i) q^{8} +(-0.789415 - 1.14367i) q^{9} +O(q^{10})\) \(q+(-2.08715 + 1.44065i) q^{2} +(-1.12364 - 0.589730i) q^{3} +(1.57149 - 4.14367i) q^{4} +(-2.16703 - 2.44607i) q^{5} +(3.19479 - 0.387918i) q^{6} +(1.08188 + 4.38937i) q^{7} +(1.47582 + 5.98765i) q^{8} +(-0.789415 - 1.14367i) q^{9} +(8.04684 + 1.98337i) q^{10} +(3.32000 + 2.29163i) q^{11} +(-4.20943 + 3.72923i) q^{12} +(1.49453 + 3.28122i) q^{13} +(-8.58159 - 7.60263i) q^{14} +(0.992433 + 4.02646i) q^{15} +(-5.07210 - 4.49349i) q^{16} +(-2.12143 + 0.522885i) q^{17} +(3.29525 + 1.24972i) q^{18} +1.05650i q^{19} +(-13.5412 + 5.13548i) q^{20} +(1.37290 - 5.57007i) q^{21} -10.2308 q^{22} +3.61172 q^{23} +(1.87281 - 7.59828i) q^{24} +(-0.684560 + 5.63786i) q^{25} +(-7.84639 - 4.69528i) q^{26} +(0.671443 + 5.52983i) q^{27} +(19.8882 + 2.41487i) q^{28} +(3.38752 + 4.90767i) q^{29} +(-7.87208 - 6.97405i) q^{30} +(0.311167 - 0.0377825i) q^{31} +(4.81598 + 0.584766i) q^{32} +(-2.37903 - 4.53286i) q^{33} +(3.67443 - 4.14758i) q^{34} +(8.39223 - 12.1582i) q^{35} +(-5.97952 + 1.47382i) q^{36} +(10.3500 - 1.25672i) q^{37} +(-1.52205 - 2.20507i) q^{38} +(0.255728 - 4.56827i) q^{39} +(11.4481 - 16.5854i) q^{40} +(-1.87980 + 3.58166i) q^{41} +(5.15910 + 13.6034i) q^{42} +(0.189699 - 1.56231i) q^{43} +(14.7131 - 10.1557i) q^{44} +(-1.08680 + 4.40932i) q^{45} +(-7.53819 + 5.20324i) q^{46} +(-6.60753 + 2.50591i) q^{47} +(3.04925 + 8.04022i) q^{48} +(-11.8979 + 6.24449i) q^{49} +(-6.69342 - 12.7532i) q^{50} +(2.69208 + 0.663537i) q^{51} +(15.9449 - 1.03643i) q^{52} +(-2.83732 + 0.699337i) q^{53} +(-9.36796 - 10.5742i) q^{54} +(-1.58905 - 13.0870i) q^{55} +(-24.6853 + 12.9559i) q^{56} +(0.623052 - 1.18713i) q^{57} +(-14.1405 - 5.36278i) q^{58} +(5.02059 + 5.66707i) q^{59} +(18.2439 + 2.21521i) q^{60} +(-1.29766 - 0.319844i) q^{61} +(-0.595019 + 0.527140i) q^{62} +(4.16591 - 4.70234i) q^{63} +(1.10604 - 0.580495i) q^{64} +(4.78741 - 10.7662i) q^{65} +(11.4957 + 6.03339i) q^{66} +(-5.61892 + 2.13098i) q^{67} +(-1.16713 + 9.61220i) q^{68} +(-4.05827 - 2.12994i) q^{69} +37.4663i q^{70} +(2.89052 - 5.50742i) q^{71} +(5.68283 - 6.41459i) q^{72} +(-2.50797 - 1.73113i) q^{73} +(-19.7915 + 17.5337i) q^{74} +(4.09402 - 5.93121i) q^{75} +(4.37780 + 1.66028i) q^{76} +(-6.46695 + 17.0520i) q^{77} +(6.04754 + 9.90305i) q^{78} +(-5.57461 - 14.6990i) q^{79} +22.1442i q^{80} +(1.02831 - 2.71144i) q^{81} +(-1.23651 - 10.1836i) q^{82} +(4.29364 + 8.18084i) q^{83} +(-20.9231 - 14.4421i) q^{84} +(5.87621 + 4.05605i) q^{85} +(1.85482 + 3.53406i) q^{86} +(-0.912141 - 7.51216i) q^{87} +(-8.82174 + 23.2610i) q^{88} +11.6712i q^{89} +(-4.08399 - 10.7686i) q^{90} +(-12.7856 + 10.1099i) q^{91} +(5.67578 - 14.9658i) q^{92} +(-0.371920 - 0.141051i) q^{93} +(10.1807 - 14.7493i) q^{94} +(2.58428 - 2.28947i) q^{95} +(-5.06657 - 3.49720i) q^{96} +(-6.62836 + 7.48187i) q^{97} +(15.8365 - 30.1739i) q^{98} -5.60601i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08715 + 1.44065i −1.47583 + 1.01870i −0.486397 + 0.873738i \(0.661689\pi\)
−0.989438 + 0.144957i \(0.953696\pi\)
\(3\) −1.12364 0.589730i −0.648732 0.340481i 0.108052 0.994145i \(-0.465539\pi\)
−0.756785 + 0.653664i \(0.773231\pi\)
\(4\) 1.57149 4.14367i 0.785743 2.07183i
\(5\) −2.16703 2.44607i −0.969125 1.09392i −0.995547 0.0942647i \(-0.969950\pi\)
0.0264226 0.999651i \(-0.491588\pi\)
\(6\) 3.19479 0.387918i 1.30427 0.158367i
\(7\) 1.08188 + 4.38937i 0.408913 + 1.65902i 0.709073 + 0.705136i \(0.249114\pi\)
−0.300160 + 0.953889i \(0.597040\pi\)
\(8\) 1.47582 + 5.98765i 0.521782 + 2.11695i
\(9\) −0.789415 1.14367i −0.263138 0.381222i
\(10\) 8.04684 + 1.98337i 2.54463 + 0.627196i
\(11\) 3.32000 + 2.29163i 1.00102 + 0.690952i 0.951445 0.307819i \(-0.0995990\pi\)
0.0495718 + 0.998771i \(0.484214\pi\)
\(12\) −4.20943 + 3.72923i −1.21516 + 1.07654i
\(13\) 1.49453 + 3.28122i 0.414507 + 0.910046i
\(14\) −8.58159 7.60263i −2.29353 2.03189i
\(15\) 0.992433 + 4.02646i 0.256245 + 1.03963i
\(16\) −5.07210 4.49349i −1.26802 1.12337i
\(17\) −2.12143 + 0.522885i −0.514522 + 0.126818i −0.488023 0.872831i \(-0.662282\pi\)
−0.0264984 + 0.999649i \(0.508436\pi\)
\(18\) 3.29525 + 1.24972i 0.776697 + 0.294562i
\(19\) 1.05650i 0.242378i 0.992629 + 0.121189i \(0.0386708\pi\)
−0.992629 + 0.121189i \(0.961329\pi\)
\(20\) −13.5412 + 5.13548i −3.02789 + 1.14833i
\(21\) 1.37290 5.57007i 0.299591 1.21549i
\(22\) −10.2308 −2.18120
\(23\) 3.61172 0.753097 0.376548 0.926397i \(-0.377111\pi\)
0.376548 + 0.926397i \(0.377111\pi\)
\(24\) 1.87281 7.59828i 0.382286 1.55099i
\(25\) −0.684560 + 5.63786i −0.136912 + 1.12757i
\(26\) −7.84639 4.69528i −1.53880 0.920821i
\(27\) 0.671443 + 5.52983i 0.129219 + 1.06422i
\(28\) 19.8882 + 2.41487i 3.75852 + 0.456367i
\(29\) 3.38752 + 4.90767i 0.629046 + 0.911331i 0.999849 0.0173809i \(-0.00553279\pi\)
−0.370803 + 0.928712i \(0.620917\pi\)
\(30\) −7.87208 6.97405i −1.43724 1.27328i
\(31\) 0.311167 0.0377825i 0.0558872 0.00678593i −0.0925453 0.995708i \(-0.529500\pi\)
0.148433 + 0.988923i \(0.452577\pi\)
\(32\) 4.81598 + 0.584766i 0.851354 + 0.103373i
\(33\) −2.37903 4.53286i −0.414136 0.789070i
\(34\) 3.67443 4.14758i 0.630160 0.711303i
\(35\) 8.39223 12.1582i 1.41855 2.05512i
\(36\) −5.97952 + 1.47382i −0.996587 + 0.245637i
\(37\) 10.3500 1.25672i 1.70153 0.206603i 0.788653 0.614838i \(-0.210779\pi\)
0.912877 + 0.408235i \(0.133856\pi\)
\(38\) −1.52205 2.20507i −0.246910 0.357710i
\(39\) 0.255728 4.56827i 0.0409492 0.731508i
\(40\) 11.4481 16.5854i 1.81010 2.62238i
\(41\) −1.87980 + 3.58166i −0.293576 + 0.559362i −0.986913 0.161251i \(-0.948447\pi\)
0.693338 + 0.720613i \(0.256139\pi\)
\(42\) 5.15910 + 13.6034i 0.796066 + 2.09905i
\(43\) 0.189699 1.56231i 0.0289288 0.238250i −0.971071 0.238791i \(-0.923249\pi\)
1.00000 0.000540492i \(0.000172044\pi\)
\(44\) 14.7131 10.1557i 2.21808 1.53103i
\(45\) −1.08680 + 4.40932i −0.162011 + 0.657303i
\(46\) −7.53819 + 5.20324i −1.11145 + 0.767176i
\(47\) −6.60753 + 2.50591i −0.963808 + 0.365524i −0.785783 0.618502i \(-0.787740\pi\)
−0.178024 + 0.984026i \(0.556971\pi\)
\(48\) 3.04925 + 8.04022i 0.440122 + 1.16051i
\(49\) −11.8979 + 6.24449i −1.69970 + 0.892070i
\(50\) −6.69342 12.7532i −0.946593 1.80358i
\(51\) 2.69208 + 0.663537i 0.376966 + 0.0929138i
\(52\) 15.9449 1.03643i 2.21116 0.143728i
\(53\) −2.83732 + 0.699337i −0.389736 + 0.0960614i −0.429314 0.903155i \(-0.641245\pi\)
0.0395781 + 0.999216i \(0.487399\pi\)
\(54\) −9.36796 10.5742i −1.27482 1.43897i
\(55\) −1.58905 13.0870i −0.214267 1.76465i
\(56\) −24.6853 + 12.9559i −3.29871 + 1.73130i
\(57\) 0.623052 1.18713i 0.0825252 0.157239i
\(58\) −14.1405 5.36278i −1.85674 0.704167i
\(59\) 5.02059 + 5.66707i 0.653625 + 0.737790i 0.978107 0.208102i \(-0.0667285\pi\)
−0.324482 + 0.945892i \(0.605190\pi\)
\(60\) 18.2439 + 2.21521i 2.35528 + 0.285982i
\(61\) −1.29766 0.319844i −0.166148 0.0409518i 0.155364 0.987857i \(-0.450345\pi\)
−0.321512 + 0.946905i \(0.604191\pi\)
\(62\) −0.595019 + 0.527140i −0.0755674 + 0.0669469i
\(63\) 4.16591 4.70234i 0.524856 0.592439i
\(64\) 1.10604 0.580495i 0.138255 0.0725618i
\(65\) 4.78741 10.7662i 0.593805 1.33538i
\(66\) 11.4957 + 6.03339i 1.41502 + 0.742659i
\(67\) −5.61892 + 2.13098i −0.686461 + 0.260340i −0.673079 0.739570i \(-0.735029\pi\)
−0.0133814 + 0.999910i \(0.504260\pi\)
\(68\) −1.16713 + 9.61220i −0.141536 + 1.16565i
\(69\) −4.05827 2.12994i −0.488558 0.256415i
\(70\) 37.4663i 4.47808i
\(71\) 2.89052 5.50742i 0.343041 0.653611i −0.651420 0.758718i \(-0.725826\pi\)
0.994461 + 0.105107i \(0.0335185\pi\)
\(72\) 5.68283 6.41459i 0.669728 0.755966i
\(73\) −2.50797 1.73113i −0.293536 0.202613i 0.412191 0.911098i \(-0.364764\pi\)
−0.705726 + 0.708485i \(0.749379\pi\)
\(74\) −19.7915 + 17.5337i −2.30071 + 2.03825i
\(75\) 4.09402 5.93121i 0.472736 0.684877i
\(76\) 4.37780 + 1.66028i 0.502168 + 0.190447i
\(77\) −6.46695 + 17.0520i −0.736978 + 1.94325i
\(78\) 6.04754 + 9.90305i 0.684749 + 1.12130i
\(79\) −5.57461 14.6990i −0.627192 1.65377i −0.750078 0.661349i \(-0.769984\pi\)
0.122886 0.992421i \(-0.460785\pi\)
\(80\) 22.1442i 2.47580i
\(81\) 1.02831 2.71144i 0.114257 0.301271i
\(82\) −1.23651 10.1836i −0.136550 1.12459i
\(83\) 4.29364 + 8.18084i 0.471288 + 0.897964i 0.998826 + 0.0484327i \(0.0154226\pi\)
−0.527539 + 0.849531i \(0.676885\pi\)
\(84\) −20.9231 14.4421i −2.28289 1.57577i
\(85\) 5.87621 + 4.05605i 0.637364 + 0.439941i
\(86\) 1.85482 + 3.53406i 0.200010 + 0.381088i
\(87\) −0.912141 7.51216i −0.0977918 0.805388i
\(88\) −8.82174 + 23.2610i −0.940401 + 2.47963i
\(89\) 11.6712i 1.23714i 0.785728 + 0.618572i \(0.212289\pi\)
−0.785728 + 0.618572i \(0.787711\pi\)
\(90\) −4.08399 10.7686i −0.430490 1.13511i
\(91\) −12.7856 + 10.1099i −1.34029 + 1.05981i
\(92\) 5.67578 14.9658i 0.591740 1.56029i
\(93\) −0.371920 0.141051i −0.0385663 0.0146263i
\(94\) 10.1807 14.7493i 1.05006 1.52128i
\(95\) 2.58428 2.28947i 0.265141 0.234895i
\(96\) −5.06657 3.49720i −0.517104 0.356931i
\(97\) −6.62836 + 7.48187i −0.673008 + 0.759669i −0.981480 0.191564i \(-0.938644\pi\)
0.308472 + 0.951233i \(0.400182\pi\)
\(98\) 15.8365 30.1739i 1.59972 3.04802i
\(99\) 5.60601i 0.563425i
\(100\) 22.2856 + 11.6964i 2.22856 + 1.16964i
\(101\) 0.442420 3.64365i 0.0440224 0.362557i −0.954006 0.299788i \(-0.903084\pi\)
0.998028 0.0627686i \(-0.0199930\pi\)
\(102\) −6.57468 + 2.49345i −0.650990 + 0.246888i
\(103\) −2.07723 1.09022i −0.204676 0.107422i 0.359271 0.933233i \(-0.383025\pi\)
−0.563947 + 0.825811i \(0.690718\pi\)
\(104\) −17.4411 + 13.7912i −1.71024 + 1.35234i
\(105\) −16.5999 + 8.71230i −1.61998 + 0.850234i
\(106\) 4.91440 5.54722i 0.477329 0.538793i
\(107\) 7.96086 7.05271i 0.769605 0.681811i −0.183981 0.982930i \(-0.558899\pi\)
0.953587 + 0.301119i \(0.0973601\pi\)
\(108\) 23.9689 + 5.90781i 2.30641 + 0.568480i
\(109\) −2.95191 0.358426i −0.282741 0.0343310i −0.0220626 0.999757i \(-0.507023\pi\)
−0.260679 + 0.965426i \(0.583946\pi\)
\(110\) 22.1703 + 25.0251i 2.11386 + 2.38605i
\(111\) −12.3708 4.69162i −1.17418 0.445309i
\(112\) 14.2361 27.1247i 1.34519 2.56304i
\(113\) 4.24363 2.22723i 0.399207 0.209520i −0.253158 0.967425i \(-0.581469\pi\)
0.652365 + 0.757905i \(0.273777\pi\)
\(114\) 0.409836 + 3.37531i 0.0383847 + 0.316126i
\(115\) −7.82671 8.83453i −0.729844 0.823824i
\(116\) 25.6592 6.32442i 2.38240 0.587208i
\(117\) 2.57281 4.29948i 0.237857 0.397487i
\(118\) −18.6430 4.59508i −1.71623 0.423012i
\(119\) −4.59027 8.74602i −0.420789 0.801746i
\(120\) −22.6444 + 11.8847i −2.06714 + 1.08492i
\(121\) 1.87017 + 4.93122i 0.170015 + 0.448293i
\(122\) 3.16918 1.20191i 0.286924 0.108816i
\(123\) 4.22443 2.91591i 0.380904 0.262919i
\(124\) 0.332436 1.34875i 0.0298536 0.121121i
\(125\) 1.82685 1.26099i 0.163399 0.112786i
\(126\) −1.92042 + 15.8161i −0.171085 + 1.40901i
\(127\) 3.32053 + 8.75552i 0.294649 + 0.776926i 0.997826 + 0.0659108i \(0.0209953\pi\)
−0.703176 + 0.711016i \(0.748235\pi\)
\(128\) −5.98125 + 11.3963i −0.528673 + 1.00730i
\(129\) −1.13450 + 1.64360i −0.0998868 + 0.144711i
\(130\) 5.51835 + 29.3676i 0.483992 + 2.57571i
\(131\) 3.39091 + 4.91258i 0.296265 + 0.429214i 0.942643 0.333804i \(-0.108332\pi\)
−0.646377 + 0.763018i \(0.723717\pi\)
\(132\) −22.5213 + 2.73458i −1.96023 + 0.238015i
\(133\) −4.63738 + 1.14301i −0.402112 + 0.0991116i
\(134\) 8.65751 12.5426i 0.747895 1.08351i
\(135\) 12.0713 13.6257i 1.03893 1.17271i
\(136\) −6.26170 11.9307i −0.536936 1.02305i
\(137\) −11.3377 1.37665i −0.968645 0.117615i −0.379105 0.925354i \(-0.623768\pi\)
−0.589540 + 0.807739i \(0.700691\pi\)
\(138\) 11.5387 1.40105i 0.982240 0.119266i
\(139\) 7.79404 + 6.90491i 0.661082 + 0.585667i 0.925503 0.378740i \(-0.123643\pi\)
−0.264422 + 0.964407i \(0.585181\pi\)
\(140\) −37.1914 53.8811i −3.14325 4.55379i
\(141\) 8.90228 + 1.08093i 0.749707 + 0.0910309i
\(142\) 1.90135 + 15.6590i 0.159558 + 1.31408i
\(143\) −2.55751 + 14.3185i −0.213870 + 1.19738i
\(144\) −1.13505 + 9.34801i −0.0945878 + 0.779000i
\(145\) 4.66365 18.9212i 0.387295 1.57132i
\(146\) 7.72845 0.639611
\(147\) 17.0515 1.40638
\(148\) 11.0575 44.8619i 0.908918 3.68763i
\(149\) 15.0501 5.70774i 1.23295 0.467596i 0.349860 0.936802i \(-0.386229\pi\)
0.883089 + 0.469206i \(0.155460\pi\)
\(150\) 18.2773i 1.49234i
\(151\) −2.53250 0.960451i −0.206092 0.0781604i 0.249399 0.968401i \(-0.419767\pi\)
−0.455491 + 0.890240i \(0.650536\pi\)
\(152\) −6.32597 + 1.55921i −0.513104 + 0.126469i
\(153\) 2.27269 + 2.01343i 0.183736 + 0.162776i
\(154\) −11.0685 44.9065i −0.891923 3.61867i
\(155\) −0.766726 0.679260i −0.0615849 0.0545594i
\(156\) −18.5275 8.23862i −1.48339 0.659618i
\(157\) 6.33967 5.61646i 0.505961 0.448242i −0.371120 0.928585i \(-0.621026\pi\)
0.877081 + 0.480343i \(0.159488\pi\)
\(158\) 32.8112 + 22.6479i 2.61032 + 1.80177i
\(159\) 3.60054 + 0.887454i 0.285542 + 0.0703797i
\(160\) −9.00600 13.0474i −0.711987 1.03149i
\(161\) 3.90746 + 15.8532i 0.307951 + 1.24941i
\(162\) 1.76000 + 7.14060i 0.138279 + 0.561019i
\(163\) 1.95998 0.237984i 0.153517 0.0186404i −0.0434172 0.999057i \(-0.513824\pi\)
0.196934 + 0.980417i \(0.436901\pi\)
\(164\) 11.8871 + 13.4178i 0.928229 + 1.04775i
\(165\) −5.93227 + 15.6421i −0.461827 + 1.21774i
\(166\) −20.7472 10.8890i −1.61029 0.845147i
\(167\) −6.27653 + 4.33238i −0.485693 + 0.335250i −0.785617 0.618714i \(-0.787654\pi\)
0.299924 + 0.953963i \(0.403039\pi\)
\(168\) 35.3778 2.72946
\(169\) −8.53278 + 9.80773i −0.656368 + 0.754441i
\(170\) −18.1079 −1.38881
\(171\) 1.20829 0.834019i 0.0923999 0.0637790i
\(172\) −6.17559 3.24120i −0.470885 0.247139i
\(173\) −2.64025 + 6.96176i −0.200734 + 0.529293i −0.997149 0.0754579i \(-0.975958\pi\)
0.796415 + 0.604751i \(0.206727\pi\)
\(174\) 12.7262 + 14.3649i 0.964769 + 1.08900i
\(175\) −25.4872 + 3.09471i −1.92665 + 0.233938i
\(176\) −6.54195 26.5417i −0.493118 2.00066i
\(177\) −2.29928 9.32853i −0.172824 0.701175i
\(178\) −16.8141 24.3595i −1.26027 1.82582i
\(179\) 18.1263 + 4.46772i 1.35482 + 0.333933i 0.848857 0.528622i \(-0.177291\pi\)
0.505963 + 0.862555i \(0.331137\pi\)
\(180\) 16.5629 + 11.4325i 1.23452 + 0.852130i
\(181\) 10.9966 9.74215i 0.817372 0.724128i −0.146869 0.989156i \(-0.546920\pi\)
0.964241 + 0.265028i \(0.0853811\pi\)
\(182\) 12.1205 39.5204i 0.898428 2.92945i
\(183\) 1.26947 + 1.12466i 0.0938423 + 0.0831370i
\(184\) 5.33027 + 21.6257i 0.392952 + 1.59427i
\(185\) −25.5028 22.5935i −1.87500 1.66111i
\(186\) 0.979456 0.241414i 0.0718172 0.0177013i
\(187\) −8.24139 3.12555i −0.602670 0.228563i
\(188\) 31.3174i 2.28406i
\(189\) −23.5460 + 8.92983i −1.71272 + 0.649549i
\(190\) −2.09543 + 8.50151i −0.152019 + 0.616764i
\(191\) 5.43446 0.393224 0.196612 0.980481i \(-0.437006\pi\)
0.196612 + 0.980481i \(0.437006\pi\)
\(192\) −1.58512 −0.114396
\(193\) 1.80581 7.32645i 0.129985 0.527370i −0.869458 0.494006i \(-0.835532\pi\)
0.999443 0.0333634i \(-0.0106219\pi\)
\(194\) 3.05557 25.1649i 0.219377 1.80674i
\(195\) −11.7285 + 9.27404i −0.839893 + 0.664128i
\(196\) 7.17774 + 59.1140i 0.512696 + 4.22243i
\(197\) −24.6410 2.99196i −1.75560 0.213169i −0.821508 0.570197i \(-0.806867\pi\)
−0.934093 + 0.357029i \(0.883790\pi\)
\(198\) 8.07631 + 11.7006i 0.573959 + 0.831523i
\(199\) 7.84415 + 6.94931i 0.556057 + 0.492623i 0.893709 0.448648i \(-0.148094\pi\)
−0.337652 + 0.941271i \(0.609633\pi\)
\(200\) −34.7678 + 4.22158i −2.45846 + 0.298511i
\(201\) 7.57033 + 0.919205i 0.533970 + 0.0648357i
\(202\) 4.32584 + 8.24221i 0.304365 + 0.579920i
\(203\) −17.8767 + 20.1786i −1.25470 + 1.41626i
\(204\) 6.98004 10.1123i 0.488700 0.708005i
\(205\) 12.8346 3.16344i 0.896406 0.220944i
\(206\) 5.90611 0.717131i 0.411498 0.0499649i
\(207\) −2.85115 4.13060i −0.198169 0.287097i
\(208\) 7.16372 23.3583i 0.496715 1.61961i
\(209\) −2.42111 + 3.50759i −0.167472 + 0.242625i
\(210\) 22.0950 42.0985i 1.52470 2.90507i
\(211\) 8.54221 + 22.5240i 0.588070 + 1.55061i 0.816677 + 0.577095i \(0.195814\pi\)
−0.228607 + 0.973519i \(0.573417\pi\)
\(212\) −1.56099 + 12.8559i −0.107209 + 0.882949i
\(213\) −6.49579 + 4.48372i −0.445084 + 0.307219i
\(214\) −6.45497 + 26.1888i −0.441253 + 1.79023i
\(215\) −4.23261 + 2.92156i −0.288661 + 0.199249i
\(216\) −32.1197 + 12.1814i −2.18547 + 0.828840i
\(217\) 0.502487 + 1.32495i 0.0341110 + 0.0899434i
\(218\) 6.67743 3.50458i 0.452252 0.237360i
\(219\) 1.79715 + 3.42419i 0.121440 + 0.231385i
\(220\) −56.7252 13.9815i −3.82441 0.942633i
\(221\) −4.88623 6.17940i −0.328683 0.415671i
\(222\) 32.5786 8.02990i 2.18653 0.538932i
\(223\) 2.46404 + 2.78132i 0.165004 + 0.186251i 0.825197 0.564845i \(-0.191064\pi\)
−0.660193 + 0.751096i \(0.729526\pi\)
\(224\) 2.64357 + 21.7718i 0.176631 + 1.45469i
\(225\) 6.98823 3.66770i 0.465882 0.244514i
\(226\) −5.64841 + 10.7621i −0.375726 + 0.715887i
\(227\) 5.26039 + 1.99500i 0.349144 + 0.132413i 0.522942 0.852368i \(-0.324835\pi\)
−0.173797 + 0.984781i \(0.555604\pi\)
\(228\) −3.93994 4.44727i −0.260929 0.294528i
\(229\) −17.8893 2.17215i −1.18216 0.143540i −0.494237 0.869327i \(-0.664553\pi\)
−0.687919 + 0.725787i \(0.741476\pi\)
\(230\) 29.0630 + 7.16338i 1.91636 + 0.472339i
\(231\) 17.3226 15.3465i 1.13974 1.00972i
\(232\) −24.3860 + 27.5261i −1.60102 + 1.80718i
\(233\) −9.30221 + 4.88217i −0.609408 + 0.319842i −0.741044 0.671456i \(-0.765669\pi\)
0.131636 + 0.991298i \(0.457977\pi\)
\(234\) 0.824223 + 12.6802i 0.0538812 + 0.828929i
\(235\) 20.4483 + 10.7321i 1.33390 + 0.700086i
\(236\) 31.3723 11.8979i 2.04216 0.774489i
\(237\) −2.40463 + 19.8039i −0.156197 + 1.28640i
\(238\) 22.1805 + 11.6412i 1.43775 + 0.754589i
\(239\) 9.48356i 0.613441i −0.951800 0.306720i \(-0.900768\pi\)
0.951800 0.306720i \(-0.0992316\pi\)
\(240\) 13.0591 24.8821i 0.842962 1.60613i
\(241\) 18.3608 20.7251i 1.18272 1.33502i 0.252689 0.967548i \(-0.418685\pi\)
0.930035 0.367471i \(-0.119776\pi\)
\(242\) −11.0075 7.59792i −0.707588 0.488413i
\(243\) 9.75414 8.64142i 0.625729 0.554347i
\(244\) −3.36458 + 4.87443i −0.215395 + 0.312054i
\(245\) 41.0575 + 15.5711i 2.62307 + 0.994798i
\(246\) −4.61618 + 12.1719i −0.294317 + 0.776050i
\(247\) −3.46662 + 1.57897i −0.220575 + 0.100468i
\(248\) 0.685455 + 1.80740i 0.0435264 + 0.114770i
\(249\) 11.7244i 0.743003i
\(250\) −1.99627 + 5.26372i −0.126255 + 0.332907i
\(251\) −3.16323 26.0516i −0.199661 1.64436i −0.656150 0.754630i \(-0.727816\pi\)
0.456489 0.889729i \(-0.349107\pi\)
\(252\) −12.9383 24.6518i −0.815035 1.55292i
\(253\) 11.9909 + 8.27673i 0.753862 + 0.520354i
\(254\) −19.5441 13.4903i −1.22630 0.846457i
\(255\) −4.21075 8.02291i −0.263687 0.502414i
\(256\) −3.63327 29.9227i −0.227079 1.87017i
\(257\) 10.5134 27.7215i 0.655805 1.72922i −0.0280578 0.999606i \(-0.508932\pi\)
0.683863 0.729610i \(-0.260299\pi\)
\(258\) 5.06485i 0.315324i
\(259\) 16.7137 + 44.0703i 1.03854 + 2.73840i
\(260\) −37.0883 36.7564i −2.30012 2.27953i
\(261\) 2.93857 7.74837i 0.181893 0.479612i
\(262\) −14.1546 5.36815i −0.874477 0.331645i
\(263\) 2.23291 3.23493i 0.137687 0.199474i −0.748074 0.663615i \(-0.769021\pi\)
0.885762 + 0.464141i \(0.153637\pi\)
\(264\) 23.6302 20.9345i 1.45434 1.28843i
\(265\) 7.85919 + 5.42481i 0.482786 + 0.333243i
\(266\) 8.03220 9.06648i 0.492486 0.555901i
\(267\) 6.88286 13.1142i 0.421224 0.802575i
\(268\) 26.6318i 1.62679i
\(269\) −12.2557 6.43227i −0.747241 0.392182i 0.0477059 0.998861i \(-0.484809\pi\)
−0.794947 + 0.606679i \(0.792501\pi\)
\(270\) −5.56469 + 45.8294i −0.338656 + 2.78909i
\(271\) −18.0214 + 6.83460i −1.09472 + 0.415172i −0.834854 0.550472i \(-0.814448\pi\)
−0.259866 + 0.965645i \(0.583678\pi\)
\(272\) 13.1097 + 6.88048i 0.794890 + 0.417190i
\(273\) 20.3285 3.81984i 1.23033 0.231187i
\(274\) 25.6467 13.4604i 1.54937 0.813174i
\(275\) −15.1926 + 17.1489i −0.916149 + 1.03412i
\(276\) −15.2033 + 13.4689i −0.915131 + 0.810735i
\(277\) −15.5133 3.82368i −0.932103 0.229743i −0.256107 0.966648i \(-0.582440\pi\)
−0.675996 + 0.736906i \(0.736286\pi\)
\(278\) −26.2149 3.18306i −1.57226 0.190907i
\(279\) −0.288850 0.326044i −0.0172930 0.0195198i
\(280\) 85.1847 + 32.3063i 5.09076 + 1.93067i
\(281\) 11.3344 21.5959i 0.676155 1.28830i −0.269459 0.963012i \(-0.586845\pi\)
0.945613 0.325293i \(-0.105463\pi\)
\(282\) −20.1376 + 10.5690i −1.19918 + 0.629376i
\(283\) −2.00640 16.5242i −0.119268 0.982260i −0.922340 0.386378i \(-0.873726\pi\)
0.803072 0.595881i \(-0.203197\pi\)
\(284\) −18.2785 20.6322i −1.08463 1.22429i
\(285\) −4.25396 + 1.04851i −0.251983 + 0.0621082i
\(286\) −15.2901 33.5693i −0.904125 1.98500i
\(287\) −17.7549 4.37620i −1.04804 0.258319i
\(288\) −3.13303 5.96950i −0.184616 0.351756i
\(289\) −10.8257 + 5.68177i −0.636806 + 0.334222i
\(290\) 17.5251 + 46.2099i 1.02911 + 2.71354i
\(291\) 11.8602 4.49797i 0.695255 0.263675i
\(292\) −11.1145 + 7.67176i −0.650425 + 0.448956i
\(293\) 1.44135 5.84777i 0.0842043 0.341630i −0.913696 0.406398i \(-0.866785\pi\)
0.997900 + 0.0647679i \(0.0206307\pi\)
\(294\) −35.5889 + 24.5652i −2.07559 + 1.43267i
\(295\) 2.98230 24.5614i 0.173636 1.43002i
\(296\) 22.7996 + 60.1175i 1.32520 + 3.49426i
\(297\) −10.4431 + 19.8977i −0.605972 + 1.15458i
\(298\) −23.1888 + 33.5948i −1.34329 + 1.94609i
\(299\) 5.39782 + 11.8509i 0.312164 + 0.685353i
\(300\) −18.1433 26.2850i −1.04750 1.51757i
\(301\) 7.06279 0.857578i 0.407093 0.0494300i
\(302\) 6.66937 1.64385i 0.383779 0.0945931i
\(303\) −2.64589 + 3.83324i −0.152003 + 0.220214i
\(304\) 4.74738 5.35868i 0.272281 0.307342i
\(305\) 2.02970 + 3.86727i 0.116220 + 0.221439i
\(306\) −7.64409 0.928160i −0.436983 0.0530594i
\(307\) 22.3992 2.71976i 1.27839 0.155225i 0.546971 0.837152i \(-0.315781\pi\)
0.731420 + 0.681927i \(0.238858\pi\)
\(308\) 60.4949 + 53.5938i 3.44702 + 3.05379i
\(309\) 1.69112 + 2.45001i 0.0962046 + 0.139376i
\(310\) 2.57884 + 0.313128i 0.146469 + 0.0177845i
\(311\) −0.827340 6.81376i −0.0469142 0.386373i −0.997187 0.0749543i \(-0.976119\pi\)
0.950273 0.311419i \(-0.100804\pi\)
\(312\) 27.7306 5.21074i 1.56994 0.295000i
\(313\) −2.16036 + 17.7921i −0.122111 + 1.00567i 0.794881 + 0.606765i \(0.207533\pi\)
−0.916992 + 0.398906i \(0.869390\pi\)
\(314\) −5.14045 + 20.8556i −0.290093 + 1.17695i
\(315\) −20.5299 −1.15673
\(316\) −69.6683 −3.91915
\(317\) 3.63805 14.7601i 0.204333 0.829012i −0.775850 0.630917i \(-0.782679\pi\)
0.980183 0.198094i \(-0.0634752\pi\)
\(318\) −8.79337 + 3.33489i −0.493108 + 0.187011i
\(319\) 24.0564i 1.34690i
\(320\) −3.81675 1.44750i −0.213363 0.0809178i
\(321\) −13.1043 + 3.22992i −0.731411 + 0.180277i
\(322\) −30.9944 27.4586i −1.72725 1.53021i
\(323\) −0.552429 2.24129i −0.0307380 0.124709i
\(324\) −9.61932 8.52197i −0.534407 0.473443i
\(325\) −19.5221 + 6.17974i −1.08289 + 0.342790i
\(326\) −3.74790 + 3.32035i −0.207577 + 0.183897i
\(327\) 3.10550 + 2.14357i 0.171734 + 0.118540i
\(328\) −24.2200 5.96969i −1.33732 0.329621i
\(329\) −18.1479 26.2918i −1.00053 1.44951i
\(330\) −10.1533 41.1937i −0.558923 2.26764i
\(331\) −8.40186 34.0877i −0.461808 1.87363i −0.486065 0.873923i \(-0.661568\pi\)
0.0242567 0.999706i \(-0.492278\pi\)
\(332\) 40.6461 4.93533i 2.23074 0.270861i
\(333\) −9.60771 10.8449i −0.526499 0.594295i
\(334\) 6.85859 18.0846i 0.375285 0.989546i
\(335\) 17.3889 + 9.12639i 0.950056 + 0.498628i
\(336\) −31.9925 + 22.0828i −1.74534 + 1.20472i
\(337\) 17.8241 0.970941 0.485470 0.874253i \(-0.338648\pi\)
0.485470 + 0.874253i \(0.338648\pi\)
\(338\) 3.67962 32.7629i 0.200145 1.78207i
\(339\) −6.08176 −0.330316
\(340\) 26.0413 17.9750i 1.41229 0.974832i
\(341\) 1.11966 + 0.587641i 0.0606328 + 0.0318225i
\(342\) −1.32034 + 3.48144i −0.0713956 + 0.188255i
\(343\) −19.2968 21.7816i −1.04193 1.17610i
\(344\) 9.63454 1.16984i 0.519460 0.0630738i
\(345\) 3.58439 + 14.5425i 0.192977 + 0.782940i
\(346\) −4.51890 18.3339i −0.242938 0.985636i
\(347\) −3.11548 4.51355i −0.167248 0.242300i 0.730394 0.683026i \(-0.239336\pi\)
−0.897642 + 0.440726i \(0.854721\pi\)
\(348\) −32.5613 8.02564i −1.74547 0.430220i
\(349\) 12.9358 + 8.92893i 0.692437 + 0.477955i 0.861570 0.507639i \(-0.169481\pi\)
−0.169133 + 0.985593i \(0.554097\pi\)
\(350\) 48.7372 43.1774i 2.60511 2.30793i
\(351\) −17.1411 + 10.4676i −0.914923 + 0.558721i
\(352\) 14.6490 + 12.9779i 0.780794 + 0.691723i
\(353\) 1.40183 + 5.68743i 0.0746117 + 0.302711i 0.996378 0.0850343i \(-0.0271000\pi\)
−0.921766 + 0.387746i \(0.873254\pi\)
\(354\) 18.2381 + 16.1575i 0.969344 + 0.858764i
\(355\) −19.7354 + 4.86433i −1.04744 + 0.258172i
\(356\) 48.3616 + 18.3411i 2.56316 + 0.972077i
\(357\) 12.5344i 0.663390i
\(358\) −44.2686 + 16.7889i −2.33967 + 0.887319i
\(359\) −4.40190 + 17.8592i −0.232323 + 0.942572i 0.732730 + 0.680519i \(0.238246\pi\)
−0.965053 + 0.262053i \(0.915600\pi\)
\(360\) −28.0054 −1.47601
\(361\) 17.8838 0.941253
\(362\) −8.91648 + 36.1756i −0.468640 + 1.90135i
\(363\) 0.806704 6.64380i 0.0423410 0.348709i
\(364\) 21.7998 + 68.8667i 1.14262 + 3.60960i
\(365\) 1.20039 + 9.88607i 0.0628311 + 0.517461i
\(366\) −4.26982 0.518450i −0.223187 0.0270998i
\(367\) −5.09446 7.38061i −0.265929 0.385264i 0.667158 0.744917i \(-0.267511\pi\)
−0.933086 + 0.359652i \(0.882895\pi\)
\(368\) −18.3190 16.2292i −0.954945 0.846007i
\(369\) 5.58016 0.677555i 0.290492 0.0352721i
\(370\) 85.7773 + 10.4153i 4.45935 + 0.541463i
\(371\) −6.13930 11.6975i −0.318736 0.607301i
\(372\) −1.16893 + 1.31945i −0.0606064 + 0.0684105i
\(373\) 5.84708 8.47095i 0.302750 0.438609i −0.641851 0.766829i \(-0.721833\pi\)
0.944601 + 0.328220i \(0.106449\pi\)
\(374\) 21.7038 5.34951i 1.12228 0.276616i
\(375\) −2.79636 + 0.339540i −0.144404 + 0.0175338i
\(376\) −24.7560 35.8653i −1.27670 1.84961i
\(377\) −11.0404 + 18.4498i −0.568609 + 0.950214i
\(378\) 36.2792 52.5595i 1.86600 2.70337i
\(379\) −1.19735 + 2.28137i −0.0615040 + 0.117186i −0.914267 0.405112i \(-0.867233\pi\)
0.852763 + 0.522298i \(0.174925\pi\)
\(380\) −5.42565 14.3063i −0.278330 0.733896i
\(381\) 1.43232 11.7962i 0.0733801 0.604340i
\(382\) −11.3425 + 7.82917i −0.580333 + 0.400575i
\(383\) 5.70627 23.1513i 0.291577 1.18297i −0.624193 0.781270i \(-0.714572\pi\)
0.915770 0.401704i \(-0.131582\pi\)
\(384\) 13.4415 9.27801i 0.685934 0.473466i
\(385\) 55.7243 21.1335i 2.83998 1.07706i
\(386\) 6.78589 + 17.8929i 0.345393 + 0.910725i
\(387\) −1.93651 + 1.01636i −0.0984385 + 0.0516645i
\(388\) 20.5860 + 39.2234i 1.04510 + 1.99127i
\(389\) 21.9652 + 5.41395i 1.11368 + 0.274498i 0.752889 0.658148i \(-0.228660\pi\)
0.360793 + 0.932646i \(0.382506\pi\)
\(390\) 11.1184 36.2529i 0.563000 1.83574i
\(391\) −7.66201 + 1.88852i −0.387485 + 0.0955064i
\(392\) −54.9490 62.0246i −2.77534 3.13271i
\(393\) −0.913055 7.51968i −0.0460575 0.379318i
\(394\) 55.7398 29.2545i 2.80813 1.47382i
\(395\) −23.8745 + 45.4891i −1.20126 + 2.28880i
\(396\) −23.2295 8.80977i −1.16732 0.442708i
\(397\) −23.2522 26.2463i −1.16699 1.31726i −0.939127 0.343571i \(-0.888363\pi\)
−0.227867 0.973692i \(-0.573175\pi\)
\(398\) −26.3834 3.20353i −1.32248 0.160578i
\(399\) 5.88480 + 1.45047i 0.294608 + 0.0726145i
\(400\) 28.8058 25.5197i 1.44029 1.27599i
\(401\) −9.43276 + 10.6474i −0.471049 + 0.531705i −0.935232 0.354034i \(-0.884810\pi\)
0.464183 + 0.885739i \(0.346348\pi\)
\(402\) −17.1246 + 8.98771i −0.854100 + 0.448266i
\(403\) 0.589019 + 0.964539i 0.0293411 + 0.0480471i
\(404\) −14.4028 7.55919i −0.716568 0.376084i
\(405\) −8.86075 + 3.36044i −0.440294 + 0.166982i
\(406\) 8.24087 67.8696i 0.408987 3.36831i
\(407\) 37.2419 + 19.5461i 1.84601 + 0.968862i
\(408\) 17.0985i 0.846500i
\(409\) −16.0734 + 30.6252i −0.794776 + 1.51432i 0.0616781 + 0.998096i \(0.480355\pi\)
−0.856454 + 0.516223i \(0.827338\pi\)
\(410\) −22.2302 + 25.0927i −1.09787 + 1.23924i
\(411\) 11.9276 + 8.23304i 0.588346 + 0.406106i
\(412\) −7.78184 + 6.89410i −0.383384 + 0.339648i
\(413\) −19.4432 + 28.1683i −0.956736 + 1.38607i
\(414\) 11.9015 + 4.51365i 0.584928 + 0.221834i
\(415\) 10.7065 28.2306i 0.525560 1.38579i
\(416\) 5.27887 + 16.6762i 0.258818 + 0.817620i
\(417\) −4.68563 12.3550i −0.229456 0.605027i
\(418\) 10.8088i 0.528677i
\(419\) −0.299663 + 0.790146i −0.0146395 + 0.0386012i −0.942137 0.335229i \(-0.891186\pi\)
0.927497 + 0.373830i \(0.121956\pi\)
\(420\) 10.0144 + 82.4758i 0.488651 + 4.02441i
\(421\) 5.96064 + 11.3571i 0.290504 + 0.553509i 0.986346 0.164686i \(-0.0526610\pi\)
−0.695842 + 0.718195i \(0.744969\pi\)
\(422\) −50.2780 34.7044i −2.44750 1.68939i
\(423\) 8.08200 + 5.57860i 0.392960 + 0.271241i
\(424\) −8.37477 15.9568i −0.406715 0.774931i
\(425\) −1.49571 12.3183i −0.0725524 0.597523i
\(426\) 7.09817 18.7163i 0.343908 0.906810i
\(427\) 6.04193i 0.292389i
\(428\) −16.7137 44.0704i −0.807887 2.13022i
\(429\) 11.3178 14.5806i 0.546428 0.703958i
\(430\) 4.62512 12.1954i 0.223043 0.588116i
\(431\) 35.6530 + 13.5214i 1.71734 + 0.651303i 0.999014 0.0443995i \(-0.0141375\pi\)
0.718330 + 0.695702i \(0.244907\pi\)
\(432\) 21.4426 31.0649i 1.03166 1.49461i
\(433\) −27.2456 + 24.1375i −1.30934 + 1.15997i −0.333192 + 0.942859i \(0.608126\pi\)
−0.976146 + 0.217113i \(0.930336\pi\)
\(434\) −2.95755 2.04145i −0.141967 0.0979928i
\(435\) −16.3986 + 18.5102i −0.786254 + 0.887497i
\(436\) −6.12408 + 11.6685i −0.293290 + 0.558818i
\(437\) 3.81580i 0.182534i
\(438\) −8.68398 4.55770i −0.414936 0.217775i
\(439\) 2.71002 22.3190i 0.129342 1.06523i −0.773060 0.634334i \(-0.781275\pi\)
0.902402 0.430896i \(-0.141802\pi\)
\(440\) 76.0150 28.8287i 3.62387 1.37435i
\(441\) 16.5340 + 8.67770i 0.787332 + 0.413224i
\(442\) 19.1006 + 5.85795i 0.908524 + 0.278634i
\(443\) −34.7850 + 18.2566i −1.65268 + 0.867395i −0.659386 + 0.751805i \(0.729184\pi\)
−0.993297 + 0.115590i \(0.963124\pi\)
\(444\) −38.8810 + 43.8876i −1.84521 + 2.08281i
\(445\) 28.5486 25.2918i 1.35333 1.19895i
\(446\) −9.14972 2.25520i −0.433252 0.106787i
\(447\) −20.2768 2.46205i −0.959062 0.116451i
\(448\) 3.74461 + 4.22679i 0.176916 + 0.199697i
\(449\) 1.21196 + 0.459636i 0.0571960 + 0.0216916i 0.383037 0.923733i \(-0.374878\pi\)
−0.325841 + 0.945425i \(0.605647\pi\)
\(450\) −9.30156 + 17.7226i −0.438480 + 0.835453i
\(451\) −14.4488 + 7.58330i −0.680366 + 0.357084i
\(452\) −2.56009 21.0842i −0.120417 0.991719i
\(453\) 2.27921 + 2.57269i 0.107086 + 0.120876i
\(454\) −13.8533 + 3.41453i −0.650168 + 0.160252i
\(455\) 52.4362 + 9.36591i 2.45825 + 0.439081i
\(456\) 8.02761 + 1.97863i 0.375927 + 0.0926577i
\(457\) 5.86972 + 11.1838i 0.274574 + 0.523157i 0.983224 0.182404i \(-0.0583877\pi\)
−0.708650 + 0.705560i \(0.750695\pi\)
\(458\) 40.4668 21.2386i 1.89089 0.992416i
\(459\) −4.31588 11.3800i −0.201448 0.531175i
\(460\) −48.9069 + 18.5480i −2.28030 + 0.864803i
\(461\) 10.8881 7.51553i 0.507111 0.350033i −0.286877 0.957968i \(-0.592617\pi\)
0.793987 + 0.607934i \(0.208002\pi\)
\(462\) −14.0458 + 56.9861i −0.653470 + 2.65123i
\(463\) 20.2963 14.0095i 0.943248 0.651077i 0.00608952 0.999981i \(-0.498062\pi\)
0.937158 + 0.348905i \(0.113446\pi\)
\(464\) 4.87071 40.1139i 0.226117 1.86224i
\(465\) 0.460942 + 1.21540i 0.0213757 + 0.0563630i
\(466\) 12.3815 23.5911i 0.573564 1.09283i
\(467\) −3.50539 + 5.07843i −0.162210 + 0.235002i −0.895658 0.444744i \(-0.853295\pi\)
0.733448 + 0.679746i \(0.237910\pi\)
\(468\) −13.7725 17.4175i −0.636633 0.805122i
\(469\) −15.4326 22.3581i −0.712613 1.03240i
\(470\) −58.1399 + 7.05946i −2.68179 + 0.325629i
\(471\) −10.4357 + 2.57217i −0.480851 + 0.118519i
\(472\) −26.5230 + 38.4251i −1.22082 + 1.76866i
\(473\) 4.21004 4.75215i 0.193578 0.218504i
\(474\) −23.5117 44.7978i −1.07993 2.05763i
\(475\) −5.95641 0.723240i −0.273299 0.0331845i
\(476\) −43.4542 + 5.27629i −1.99172 + 0.241838i
\(477\) 3.03963 + 2.69288i 0.139175 + 0.123299i
\(478\) 13.6625 + 19.7936i 0.624909 + 0.905337i
\(479\) −0.994422 0.120745i −0.0454363 0.00551697i 0.0977870 0.995207i \(-0.468824\pi\)
−0.143223 + 0.989690i \(0.545747\pi\)
\(480\) 2.42500 + 19.9717i 0.110686 + 0.911579i
\(481\) 19.5919 + 32.0824i 0.893315 + 1.46283i
\(482\) −8.46406 + 69.7078i −0.385527 + 3.17510i
\(483\) 4.95854 20.1176i 0.225621 0.915381i
\(484\) 23.3723 1.06238
\(485\) 32.6650 1.48324
\(486\) −7.90904 + 32.0882i −0.358761 + 1.45555i
\(487\) 9.99546 3.79078i 0.452938 0.171777i −0.117577 0.993064i \(-0.537513\pi\)
0.570515 + 0.821287i \(0.306744\pi\)
\(488\) 8.24195i 0.373096i
\(489\) −2.34265 0.888450i −0.105938 0.0401771i
\(490\) −108.125 + 26.6505i −4.88461 + 1.20395i
\(491\) 18.5849 + 16.4648i 0.838725 + 0.743045i 0.968637 0.248480i \(-0.0799311\pi\)
−0.129912 + 0.991526i \(0.541470\pi\)
\(492\) −5.44394 22.0870i −0.245432 0.995757i
\(493\) −9.75252 8.63997i −0.439231 0.389125i
\(494\) 4.96058 8.28973i 0.223187 0.372973i
\(495\) −13.7127 + 12.1484i −0.616340 + 0.546029i
\(496\) −1.74804 1.20659i −0.0784894 0.0541773i
\(497\) 27.3013 + 6.72916i 1.22463 + 0.301844i
\(498\) 16.8908 + 24.4705i 0.756893 + 1.09655i
\(499\) −2.87551 11.6664i −0.128726 0.522261i −0.999531 0.0306322i \(-0.990248\pi\)
0.870805 0.491629i \(-0.163598\pi\)
\(500\) −2.35423 9.55150i −0.105284 0.427156i
\(501\) 9.60749 1.16656i 0.429231 0.0521181i
\(502\) 44.1334 + 49.8163i 1.96977 + 2.22341i
\(503\) 9.27902 24.4668i 0.413731 1.09092i −0.552561 0.833472i \(-0.686349\pi\)
0.966292 0.257447i \(-0.0828813\pi\)
\(504\) 34.3041 + 18.0042i 1.52803 + 0.801971i
\(505\) −9.87137 + 6.81371i −0.439270 + 0.303206i
\(506\) −36.9507 −1.64266
\(507\) 15.3717 5.98830i 0.682680 0.265950i
\(508\) 41.4981 1.84118
\(509\) −19.5537 + 13.4970i −0.866703 + 0.598242i −0.916285 0.400528i \(-0.868827\pi\)
0.0495811 + 0.998770i \(0.484211\pi\)
\(510\) 20.3467 + 10.6788i 0.900965 + 0.472863i
\(511\) 4.88522 12.8813i 0.216110 0.569834i
\(512\) 33.6218 + 37.9511i 1.48589 + 1.67722i
\(513\) −5.84228 + 0.709381i −0.257943 + 0.0313199i
\(514\) 17.9941 + 73.0048i 0.793684 + 3.22010i
\(515\) 1.83468 + 7.44358i 0.0808456 + 0.328004i
\(516\) 5.02769 + 7.28387i 0.221332 + 0.320655i
\(517\) −27.6796 6.82241i −1.21735 0.300049i
\(518\) −98.3739 67.9026i −4.32230 2.98347i
\(519\) 7.07225 6.26546i 0.310437 0.275023i
\(520\) 71.5296 + 12.7763i 3.13678 + 0.560277i
\(521\) 8.91445 + 7.89751i 0.390549 + 0.345996i 0.835433 0.549592i \(-0.185217\pi\)
−0.444884 + 0.895588i \(0.646755\pi\)
\(522\) 5.02949 + 20.4054i 0.220135 + 0.893122i
\(523\) 6.23027 + 5.51954i 0.272431 + 0.241353i 0.788265 0.615336i \(-0.210980\pi\)
−0.515834 + 0.856688i \(0.672518\pi\)
\(524\) 25.6849 6.33076i 1.12205 0.276560i
\(525\) 30.4635 + 11.5533i 1.32953 + 0.504226i
\(526\) 9.96861i 0.434652i
\(527\) −0.640362 + 0.242857i −0.0278946 + 0.0105790i
\(528\) −8.30168 + 33.6813i −0.361284 + 1.46579i
\(529\) −9.95545 −0.432845
\(530\) −24.2185 −1.05199
\(531\) 2.51791 10.2155i 0.109268 0.443317i
\(532\) −2.55132 + 21.0120i −0.110614 + 0.910985i
\(533\) −14.5616 0.815148i −0.630734 0.0353080i
\(534\) 4.52746 + 37.2870i 0.195923 + 1.61357i
\(535\) −34.5028 4.18940i −1.49169 0.181124i
\(536\) −21.0521 30.4992i −0.909311 1.31736i
\(537\) −17.7326 15.7097i −0.765218 0.677924i
\(538\) 34.8460 4.23107i 1.50232 0.182414i
\(539\) −53.8110 6.53383i −2.31780 0.281432i
\(540\) −37.4905 71.4321i −1.61333 3.07395i
\(541\) −12.0641 + 13.6175i −0.518675 + 0.585463i −0.948233 0.317576i \(-0.897131\pi\)
0.429558 + 0.903039i \(0.358670\pi\)
\(542\) 27.7669 40.2273i 1.19269 1.72791i
\(543\) −18.1015 + 4.46161i −0.776808 + 0.191466i
\(544\) −10.5225 + 1.27767i −0.451150 + 0.0547795i
\(545\) 5.52013 + 7.99729i 0.236456 + 0.342566i
\(546\) −36.9254 + 37.2588i −1.58026 + 1.59453i
\(547\) −2.57808 + 3.73500i −0.110231 + 0.159697i −0.874217 0.485536i \(-0.838624\pi\)
0.763986 + 0.645233i \(0.223240\pi\)
\(548\) −23.5214 + 44.8163i −1.00478 + 1.91446i
\(549\) 0.658596 + 1.73658i 0.0281082 + 0.0741152i
\(550\) 7.00357 57.6796i 0.298633 2.45947i
\(551\) −5.18496 + 3.57892i −0.220887 + 0.152467i
\(552\) 6.76407 27.4429i 0.287898 1.16805i
\(553\) 58.4884 40.3716i 2.48718 1.71677i
\(554\) 37.8871 14.3687i 1.60967 0.610466i
\(555\) 15.3318 + 40.4266i 0.650799 + 1.71602i
\(556\) 40.8599 21.4449i 1.73285 0.909468i
\(557\) 1.18616 + 2.26005i 0.0502594 + 0.0957613i 0.909290 0.416163i \(-0.136625\pi\)
−0.859031 + 0.511924i \(0.828933\pi\)
\(558\) 1.07259 + 0.264369i 0.0454063 + 0.0111917i
\(559\) 5.40980 1.71247i 0.228810 0.0724299i
\(560\) −97.1991 + 23.9574i −4.10741 + 1.01239i
\(561\) 7.41710 + 8.37218i 0.313150 + 0.353474i
\(562\) 7.45565 + 61.4028i 0.314497 + 2.59012i
\(563\) −5.22213 + 2.74078i −0.220086 + 0.115510i −0.571164 0.820836i \(-0.693508\pi\)
0.351077 + 0.936347i \(0.385816\pi\)
\(564\) 18.4688 35.1894i 0.777678 1.48174i
\(565\) −14.6440 5.55374i −0.616078 0.233648i
\(566\) 27.9932 + 31.5978i 1.17664 + 1.32816i
\(567\) 13.0140 + 1.58019i 0.546537 + 0.0663616i
\(568\) 37.2424 + 9.17943i 1.56266 + 0.385160i
\(569\) −29.9105 + 26.4984i −1.25391 + 1.11087i −0.264708 + 0.964329i \(0.585276\pi\)
−0.989205 + 0.146541i \(0.953186\pi\)
\(570\) 7.36810 8.31687i 0.308616 0.348355i
\(571\) −11.0784 + 5.81437i −0.463615 + 0.243324i −0.680323 0.732913i \(-0.738160\pi\)
0.216708 + 0.976236i \(0.430468\pi\)
\(572\) 55.3122 + 33.0988i 2.31272 + 1.38393i
\(573\) −6.10636 3.20487i −0.255097 0.133885i
\(574\) 43.3617 16.4449i 1.80988 0.686398i
\(575\) −2.47244 + 20.3624i −0.103108 + 0.849171i
\(576\) −1.53702 0.806688i −0.0640423 0.0336120i
\(577\) 22.7952i 0.948976i −0.880262 0.474488i \(-0.842633\pi\)
0.880262 0.474488i \(-0.157367\pi\)
\(578\) 14.4094 27.4548i 0.599351 1.14197i
\(579\) −6.34971 + 7.16734i −0.263885 + 0.297864i
\(580\) −71.0741 49.0589i −2.95119 2.03706i
\(581\) −31.2635 + 27.6970i −1.29703 + 1.14907i
\(582\) −18.2739 + 26.4743i −0.757476 + 1.09739i
\(583\) −11.0225 4.18029i −0.456506 0.173130i
\(584\) 6.66406 17.5717i 0.275761 0.727122i
\(585\) −16.0922 + 3.02382i −0.665330 + 0.125020i
\(586\) 5.41631 + 14.2816i 0.223746 + 0.589968i
\(587\) 29.2514i 1.20733i −0.797236 0.603667i \(-0.793706\pi\)
0.797236 0.603667i \(-0.206294\pi\)
\(588\) 26.7961 70.6556i 1.10505 2.91379i
\(589\) 0.0399173 + 0.328748i 0.00164476 + 0.0135458i
\(590\) 29.1600 + 55.5597i 1.20050 + 2.28736i
\(591\) 25.9231 + 17.8935i 1.06634 + 0.736038i
\(592\) −58.1433 40.1334i −2.38967 1.64947i
\(593\) −3.78380 7.20943i −0.155382 0.296056i 0.795304 0.606211i \(-0.207311\pi\)
−0.950686 + 0.310155i \(0.899619\pi\)
\(594\) −6.86937 56.5743i −0.281854 2.32127i
\(595\) −11.4461 + 30.1810i −0.469246 + 1.23730i
\(596\) 71.3321i 2.92188i
\(597\) −4.71576 12.4344i −0.193003 0.508907i
\(598\) −28.3390 16.9581i −1.15887 0.693467i
\(599\) 14.8492 39.1542i 0.606723 1.59980i −0.180806 0.983519i \(-0.557870\pi\)
0.787529 0.616278i \(-0.211360\pi\)
\(600\) 41.5560 + 15.7601i 1.69652 + 0.643404i
\(601\) 5.59308 8.10298i 0.228147 0.330527i −0.692147 0.721757i \(-0.743335\pi\)
0.920293 + 0.391230i \(0.127950\pi\)
\(602\) −13.5056 + 11.9649i −0.550447 + 0.487654i
\(603\) 6.87279 + 4.74394i 0.279882 + 0.193188i
\(604\) −7.95958 + 8.98451i −0.323871 + 0.365574i
\(605\) 8.00941 15.2607i 0.325629 0.620434i
\(606\) 11.8123i 0.479843i
\(607\) 25.9914 + 13.6413i 1.05496 + 0.553684i 0.900743 0.434353i \(-0.143023\pi\)
0.154214 + 0.988037i \(0.450715\pi\)
\(608\) −0.617807 + 5.08810i −0.0250554 + 0.206350i
\(609\) 31.9868 12.1310i 1.29617 0.491573i
\(610\) −9.80767 5.14746i −0.397101 0.208415i
\(611\) −18.0976 17.9356i −0.732149 0.725597i
\(612\) 11.9145 6.25321i 0.481615 0.252771i
\(613\) 10.7644 12.1505i 0.434770 0.490754i −0.489763 0.871856i \(-0.662917\pi\)
0.924533 + 0.381102i \(0.124455\pi\)
\(614\) −42.8322 + 37.9460i −1.72857 + 1.53138i
\(615\) −16.2870 4.01438i −0.656755 0.161875i
\(616\) −111.645 13.5562i −4.49831 0.546194i
\(617\) −3.60302 4.06697i −0.145052 0.163730i 0.671494 0.741010i \(-0.265653\pi\)
−0.816547 + 0.577280i \(0.804114\pi\)
\(618\) −7.05924 2.67722i −0.283964 0.107693i
\(619\) −17.6554 + 33.6395i −0.709629 + 1.35209i 0.217024 + 0.976166i \(0.430365\pi\)
−0.926653 + 0.375919i \(0.877327\pi\)
\(620\) −4.01953 + 2.10961i −0.161428 + 0.0847240i
\(621\) 2.42507 + 19.9722i 0.0973146 + 0.801458i
\(622\) 11.5430 + 13.0294i 0.462834 + 0.522431i
\(623\) −51.2291 + 12.6269i −2.05245 + 0.505884i
\(624\) −21.8245 + 22.0216i −0.873680 + 0.881569i
\(625\) 20.5279 + 5.05967i 0.821116 + 0.202387i
\(626\) −21.1233 40.2471i −0.844258 1.60860i
\(627\) 4.78898 2.51345i 0.191254 0.100378i
\(628\) −13.3100 35.0957i −0.531129 1.40047i
\(629\) −21.2997 + 8.07789i −0.849273 + 0.322087i
\(630\) 42.8489 29.5765i 1.70714 1.17835i
\(631\) −2.67268 + 10.8435i −0.106398 + 0.431672i −0.999847 0.0174918i \(-0.994432\pi\)
0.893449 + 0.449164i \(0.148278\pi\)
\(632\) 79.7855 55.0719i 3.17370 2.19064i
\(633\) 3.68472 30.3464i 0.146454 1.20616i
\(634\) 13.6711 + 36.0477i 0.542948 + 1.43164i
\(635\) 14.2209 27.0957i 0.564340 1.07526i
\(636\) 9.33552 13.5248i 0.370177 0.536295i
\(637\) −38.2712 29.7070i −1.51636 1.17703i
\(638\) −34.6569 50.2091i −1.37208 1.98780i
\(639\) −8.58046 + 1.04186i −0.339438 + 0.0412152i
\(640\) 40.8377 10.0656i 1.61425 0.397878i
\(641\) −3.38476 + 4.90367i −0.133690 + 0.193683i −0.884111 0.467276i \(-0.845235\pi\)
0.750421 + 0.660960i \(0.229851\pi\)
\(642\) 22.6974 25.6201i 0.895795 1.01114i
\(643\) −4.65804 8.87516i −0.183695 0.350002i 0.776143 0.630558i \(-0.217174\pi\)
−0.959838 + 0.280555i \(0.909481\pi\)
\(644\) 71.8309 + 8.72184i 2.83053 + 0.343689i
\(645\) 6.47885 0.786674i 0.255104 0.0309753i
\(646\) 4.38192 + 3.88205i 0.172405 + 0.152737i
\(647\) −10.3001 14.9223i −0.404938 0.586654i 0.566466 0.824085i \(-0.308310\pi\)
−0.971404 + 0.237431i \(0.923695\pi\)
\(648\) 17.7527 + 2.15557i 0.697394 + 0.0846789i
\(649\) 3.68151 + 30.3200i 0.144512 + 1.19016i
\(650\) 31.8427 41.0226i 1.24897 1.60904i
\(651\) 0.216750 1.78509i 0.00849508 0.0699633i
\(652\) 2.09395 8.49548i 0.0820053 0.332709i
\(653\) 0.0295751 0.00115736 0.000578682 1.00000i \(-0.499816\pi\)
0.000578682 1.00000i \(0.499816\pi\)
\(654\) −9.56977 −0.374207
\(655\) 4.66832 18.9401i 0.182406 0.740051i
\(656\) 25.6287 9.71967i 1.00063 0.379489i
\(657\) 4.23486i 0.165218i
\(658\) 75.7546 + 28.7299i 2.95322 + 1.12001i
\(659\) 42.9704 10.5913i 1.67389 0.412577i 0.715632 0.698478i \(-0.246139\pi\)
0.958259 + 0.285901i \(0.0922928\pi\)
\(660\) 55.4933 + 49.1627i 2.16007 + 1.91366i
\(661\) −10.4381 42.3492i −0.405997 1.64719i −0.717213 0.696854i \(-0.754582\pi\)
0.311216 0.950339i \(-0.399264\pi\)
\(662\) 66.6444 + 59.0418i 2.59021 + 2.29472i
\(663\) 1.84617 + 9.82496i 0.0716993 + 0.381570i
\(664\) −42.6473 + 37.7823i −1.65504 + 1.46624i
\(665\) 12.8452 + 8.86641i 0.498116 + 0.343825i
\(666\) 35.6764 + 8.79344i 1.38243 + 0.340739i
\(667\) 12.2348 + 17.7251i 0.473733 + 0.686320i
\(668\) 8.08846 + 32.8162i 0.312952 + 1.26970i
\(669\) −1.12845 4.57831i −0.0436285 0.177008i
\(670\) −49.4411 + 6.00323i −1.91008 + 0.231925i
\(671\) −3.57526 4.03563i −0.138021 0.155794i
\(672\) 9.86906 26.0226i 0.380707 1.00384i
\(673\) 0.595279 + 0.312426i 0.0229463 + 0.0120431i 0.476157 0.879360i \(-0.342029\pi\)
−0.453211 + 0.891403i \(0.649722\pi\)
\(674\) −37.2015 + 25.6783i −1.43295 + 0.989093i
\(675\) −31.6360 −1.21767
\(676\) 27.2309 + 50.7697i 1.04734 + 1.95268i
\(677\) −2.61448 −0.100483 −0.0502413 0.998737i \(-0.515999\pi\)
−0.0502413 + 0.998737i \(0.515999\pi\)
\(678\) 12.6935 8.76170i 0.487492 0.336491i
\(679\) −40.0118 20.9998i −1.53551 0.805898i
\(680\) −15.6140 + 41.1707i −0.598769 + 1.57882i
\(681\) −4.73426 5.34387i −0.181417 0.204778i
\(682\) −3.18347 + 0.386543i −0.121901 + 0.0148015i
\(683\) 10.2731 + 41.6796i 0.393089 + 1.59483i 0.750494 + 0.660877i \(0.229815\pi\)
−0.357405 + 0.933950i \(0.616338\pi\)
\(684\) −1.55710 6.31738i −0.0595370 0.241551i
\(685\) 21.2017 + 30.7160i 0.810077 + 1.17360i
\(686\) 71.6551 + 17.6614i 2.73580 + 0.674315i
\(687\) 18.8201 + 12.9906i 0.718031 + 0.495621i
\(688\) −7.98240 + 7.07179i −0.304326 + 0.269609i
\(689\) −6.53513 8.26470i −0.248969 0.314860i
\(690\) −28.4318 25.1884i −1.08238 0.958904i
\(691\) −0.376207 1.52633i −0.0143116 0.0580644i 0.963352 0.268241i \(-0.0864423\pi\)
−0.977663 + 0.210176i \(0.932596\pi\)
\(692\) 24.6981 + 21.8806i 0.938882 + 0.831777i
\(693\) 24.6068 6.06504i 0.934737 0.230392i
\(694\) 13.0049 + 4.93211i 0.493660 + 0.187220i
\(695\) 34.0279i 1.29075i
\(696\) 43.6340 16.5482i 1.65394 0.627258i
\(697\) 2.11506 8.58115i 0.0801138 0.325034i
\(698\) −39.8624 −1.50881
\(699\) 13.3315 0.504243
\(700\) −27.2294 + 110.474i −1.02917 + 4.17552i
\(701\) 5.37817 44.2932i 0.203131 1.67293i −0.433034 0.901378i \(-0.642557\pi\)
0.636165 0.771553i \(-0.280520\pi\)
\(702\) 20.6957 46.5418i 0.781110 1.75661i
\(703\) 1.32773 + 10.9348i 0.0500761 + 0.412414i
\(704\) 5.00233 + 0.607393i 0.188532 + 0.0228920i
\(705\) −16.6475 24.1180i −0.626980 0.908337i
\(706\) −11.1194 9.85095i −0.418485 0.370745i
\(707\) 16.4720 2.00006i 0.619492 0.0752200i
\(708\) −42.2676 5.13222i −1.58851 0.192881i
\(709\) −14.7541 28.1116i −0.554103 1.05575i −0.987951 0.154769i \(-0.950537\pi\)
0.433848 0.900986i \(-0.357156\pi\)
\(710\) 34.1828 38.5844i 1.28286 1.44805i
\(711\) −12.4101 + 17.9791i −0.465415 + 0.674270i
\(712\) −69.8830 + 17.2246i −2.61898 + 0.645520i
\(713\) 1.12385 0.136460i 0.0420884 0.00511046i
\(714\) −18.0577 26.1611i −0.675792 0.979053i
\(715\) 40.5663 24.7728i 1.51709 0.926451i
\(716\) 46.9979 68.0883i 1.75640 2.54458i
\(717\) −5.59275 + 10.6561i −0.208865 + 0.397959i
\(718\) −16.5415 43.6163i −0.617323 1.62775i
\(719\) −2.47863 + 20.4134i −0.0924374 + 0.761291i 0.870613 + 0.491969i \(0.163723\pi\)
−0.963050 + 0.269322i \(0.913200\pi\)
\(720\) 25.3256 17.4810i 0.943828 0.651477i
\(721\) 2.53804 10.2972i 0.0945214 0.383488i
\(722\) −37.3261 + 25.7643i −1.38913 + 0.958849i
\(723\) −32.8531 + 12.4595i −1.22182 + 0.463375i
\(724\) −23.0872 60.8760i −0.858030 2.26244i
\(725\) −29.9877 + 15.7388i −1.11372 + 0.584523i
\(726\) 7.88770 + 15.0288i 0.292740 + 0.557770i
\(727\) −35.9185 8.85312i −1.33214 0.328344i −0.491947 0.870625i \(-0.663715\pi\)
−0.840197 + 0.542281i \(0.817561\pi\)
\(728\) −79.4039 61.6350i −2.94290 2.28435i
\(729\) −24.5031 + 6.03947i −0.907521 + 0.223684i
\(730\) −16.7478 18.9043i −0.619863 0.699681i
\(731\) 0.414477 + 3.41352i 0.0153300 + 0.126254i
\(732\) 6.65517 3.49290i 0.245982 0.129101i
\(733\) 8.19602 15.6162i 0.302727 0.576798i −0.685809 0.727781i \(-0.740552\pi\)
0.988536 + 0.150983i \(0.0482439\pi\)
\(734\) 21.2658 + 8.06504i 0.784934 + 0.297686i
\(735\) −36.9510 41.7091i −1.36296 1.53846i
\(736\) 17.3940 + 2.11202i 0.641152 + 0.0778499i
\(737\) −23.5382 5.80165i −0.867041 0.213707i
\(738\) −10.6705 + 9.45323i −0.392786 + 0.347978i
\(739\) −25.4694 + 28.7490i −0.936906 + 1.05755i 0.0613270 + 0.998118i \(0.480467\pi\)
−0.998232 + 0.0594300i \(0.981072\pi\)
\(740\) −133.697 + 70.1697i −4.91481 + 2.57949i
\(741\) 4.82639 + 0.270177i 0.177302 + 0.00992521i
\(742\) 29.6656 + 15.5697i 1.08906 + 0.571581i
\(743\) −25.1278 + 9.52972i −0.921850 + 0.349611i −0.769450 0.638708i \(-0.779469\pi\)
−0.152400 + 0.988319i \(0.548700\pi\)
\(744\) 0.295674 2.43509i 0.0108399 0.0892748i
\(745\) −46.5754 24.4447i −1.70639 0.895584i
\(746\) 26.1037i 0.955725i
\(747\) 5.96668 11.3686i 0.218309 0.415954i
\(748\) −25.9025 + 29.2378i −0.947088 + 1.06904i
\(749\) 39.5696 + 27.3129i 1.44584 + 0.997993i
\(750\) 5.34726 4.73725i 0.195254 0.172980i
\(751\) −0.267879 + 0.388090i −0.00977505 + 0.0141616i −0.827841 0.560963i \(-0.810431\pi\)
0.818066 + 0.575125i \(0.195046\pi\)
\(752\) 44.7743 + 16.9806i 1.63275 + 0.619221i
\(753\) −11.8091 + 31.1380i −0.430346 + 1.13473i
\(754\) −3.53689 54.4128i −0.128806 1.98160i
\(755\) 3.13867 + 8.27600i 0.114228 + 0.301194i
\(756\) 111.600i 4.05885i
\(757\) 0.0741439 0.195501i 0.00269481 0.00710562i −0.933662 0.358155i \(-0.883406\pi\)
0.936357 + 0.351050i \(0.114175\pi\)
\(758\) −0.787606 6.48652i −0.0286071 0.235601i
\(759\) −8.59240 16.3715i −0.311884 0.594246i
\(760\) 17.5225 + 12.0949i 0.635608 + 0.438728i
\(761\) 21.0116 + 14.5033i 0.761670 + 0.525743i 0.884418 0.466695i \(-0.154556\pi\)
−0.122749 + 0.992438i \(0.539171\pi\)
\(762\) 14.0048 + 26.6840i 0.507341 + 0.966658i
\(763\) −1.62035 13.3448i −0.0586606 0.483113i
\(764\) 8.54018 22.5186i 0.308973 0.814695i
\(765\) 9.92232i 0.358742i
\(766\) 21.4431 + 56.5408i 0.774771 + 2.04290i
\(767\) −11.0915 + 24.9432i −0.400491 + 0.900648i