Properties

Label 169.2.h.a.12.13
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.13
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63772 - 1.13043i) q^{2} +(1.71106 + 0.898032i) q^{3} +(0.695024 - 1.83263i) q^{4} +(-2.41202 - 2.72261i) q^{5} +(3.81739 - 0.463516i) q^{6} +(0.903389 + 3.66519i) q^{7} +(0.0190509 + 0.0772924i) q^{8} +(0.417062 + 0.604219i) q^{9} +O(q^{10})\) \(q+(1.63772 - 1.13043i) q^{2} +(1.71106 + 0.898032i) q^{3} +(0.695024 - 1.83263i) q^{4} +(-2.41202 - 2.72261i) q^{5} +(3.81739 - 0.463516i) q^{6} +(0.903389 + 3.66519i) q^{7} +(0.0190509 + 0.0772924i) q^{8} +(0.417062 + 0.604219i) q^{9} +(-7.02794 - 1.73223i) q^{10} +(-3.80102 - 2.62366i) q^{11} +(2.83499 - 2.51158i) q^{12} +(-2.55888 + 2.54010i) q^{13} +(5.62276 + 4.98133i) q^{14} +(-1.68212 - 6.82461i) q^{15} +(3.05273 + 2.70448i) q^{16} +(2.84446 - 0.701095i) q^{17} +(1.36606 + 0.518078i) q^{18} -1.26518i q^{19} +(-6.66594 + 2.52806i) q^{20} +(-1.74571 + 7.08263i) q^{21} -9.19086 q^{22} +4.29299 q^{23} +(-0.0368140 + 0.149360i) q^{24} +(-0.992070 + 8.17043i) q^{25} +(-1.31931 + 7.05261i) q^{26} +(-0.527767 - 4.34655i) q^{27} +(7.34482 + 0.891822i) q^{28} +(-2.02128 - 2.92833i) q^{29} +(-10.4696 - 9.27526i) q^{30} +(-3.31023 + 0.401935i) q^{31} +(7.89870 + 0.959076i) q^{32} +(-4.14764 - 7.90266i) q^{33} +(3.86587 - 4.36367i) q^{34} +(7.79989 - 11.3001i) q^{35} +(1.39718 - 0.344373i) q^{36} +(1.65918 - 0.201461i) q^{37} +(-1.43021 - 2.07201i) q^{38} +(-6.65949 + 2.04830i) q^{39} +(0.164486 - 0.238299i) q^{40} +(-5.13358 + 9.78122i) q^{41} +(5.14747 + 13.5728i) q^{42} +(0.701553 - 5.77781i) q^{43} +(-7.44999 + 5.14236i) q^{44} +(0.639089 - 2.59289i) q^{45} +(7.03071 - 4.85295i) q^{46} +(3.14343 - 1.19215i) q^{47} +(2.79469 + 7.36898i) q^{48} +(-6.41934 + 3.36913i) q^{49} +(7.61140 + 14.5023i) q^{50} +(5.49663 + 1.35480i) q^{51} +(2.87657 + 6.45492i) q^{52} +(-0.861654 + 0.212379i) q^{53} +(-5.77782 - 6.52181i) q^{54} +(2.02495 + 16.6770i) q^{55} +(-0.266081 + 0.139650i) q^{56} +(1.13618 - 2.16480i) q^{57} +(-6.62057 - 2.51085i) q^{58} +(-8.59852 - 9.70573i) q^{59} +(-13.6761 - 1.66058i) q^{60} +(12.3810 + 3.05165i) q^{61} +(-4.96686 + 4.40026i) q^{62} +(-1.83781 + 2.07446i) q^{63} +(6.79750 - 3.56760i) q^{64} +(13.0878 + 0.840067i) q^{65} +(-15.7261 - 8.25369i) q^{66} +(11.2990 - 4.28513i) q^{67} +(0.692119 - 5.70011i) q^{68} +(7.34556 + 3.85525i) q^{69} -27.3236i q^{70} +(-0.912946 + 1.73947i) q^{71} +(-0.0387561 + 0.0437466i) q^{72} +(-5.47692 - 3.78045i) q^{73} +(2.48953 - 2.20553i) q^{74} +(-9.03480 + 13.0892i) q^{75} +(-2.31861 - 0.879333i) q^{76} +(6.18240 - 16.3017i) q^{77} +(-8.59090 + 10.8826i) q^{78} +(2.89225 + 7.62624i) q^{79} -14.8347i q^{80} +(3.78134 - 9.97057i) q^{81} +(2.64968 + 21.8220i) q^{82} +(3.41513 + 6.50698i) q^{83} +(11.7665 + 8.12184i) q^{84} +(-8.76969 - 6.05328i) q^{85} +(-5.38249 - 10.2555i) q^{86} +(-0.828792 - 6.82572i) q^{87} +(0.130376 - 0.343773i) q^{88} -4.91886i q^{89} +(-1.88444 - 4.96886i) q^{90} +(-11.6216 - 7.08411i) q^{91} +(2.98374 - 7.86746i) q^{92} +(-6.02495 - 2.28496i) q^{93} +(3.80041 - 5.50584i) q^{94} +(-3.44460 + 3.05165i) q^{95} +(12.6538 + 8.73432i) q^{96} +(1.72450 - 1.94656i) q^{97} +(-6.70448 + 12.7743i) q^{98} -3.39088i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63772 1.13043i 1.15804 0.799338i 0.175334 0.984509i \(-0.443899\pi\)
0.982706 + 0.185171i \(0.0592840\pi\)
\(3\) 1.71106 + 0.898032i 0.987880 + 0.518479i 0.879637 0.475645i \(-0.157785\pi\)
0.108242 + 0.994125i \(0.465478\pi\)
\(4\) 0.695024 1.83263i 0.347512 0.916314i
\(5\) −2.41202 2.72261i −1.07869 1.21759i −0.974819 0.222997i \(-0.928416\pi\)
−0.103869 0.994591i \(-0.533122\pi\)
\(6\) 3.81739 0.463516i 1.55844 0.189229i
\(7\) 0.903389 + 3.66519i 0.341449 + 1.38531i 0.851132 + 0.524951i \(0.175916\pi\)
−0.509683 + 0.860362i \(0.670237\pi\)
\(8\) 0.0190509 + 0.0772924i 0.00673550 + 0.0273270i
\(9\) 0.417062 + 0.604219i 0.139021 + 0.201406i
\(10\) −7.02794 1.73223i −2.22243 0.547779i
\(11\) −3.80102 2.62366i −1.14605 0.791062i −0.165284 0.986246i \(-0.552854\pi\)
−0.980767 + 0.195184i \(0.937470\pi\)
\(12\) 2.83499 2.51158i 0.818390 0.725030i
\(13\) −2.55888 + 2.54010i −0.709707 + 0.704497i
\(14\) 5.62276 + 4.98133i 1.50274 + 1.33132i
\(15\) −1.68212 6.82461i −0.434320 1.76211i
\(16\) 3.05273 + 2.70448i 0.763183 + 0.676121i
\(17\) 2.84446 0.701095i 0.689882 0.170041i 0.121237 0.992624i \(-0.461314\pi\)
0.568645 + 0.822583i \(0.307468\pi\)
\(18\) 1.36606 + 0.518078i 0.321983 + 0.122112i
\(19\) 1.26518i 0.290253i −0.989413 0.145126i \(-0.953641\pi\)
0.989413 0.145126i \(-0.0463589\pi\)
\(20\) −6.66594 + 2.52806i −1.49055 + 0.565291i
\(21\) −1.74571 + 7.08263i −0.380946 + 1.54556i
\(22\) −9.19086 −1.95950
\(23\) 4.29299 0.895151 0.447576 0.894246i \(-0.352288\pi\)
0.447576 + 0.894246i \(0.352288\pi\)
\(24\) −0.0368140 + 0.149360i −0.00751462 + 0.0304880i
\(25\) −0.992070 + 8.17043i −0.198414 + 1.63409i
\(26\) −1.31931 + 7.05261i −0.258738 + 1.38313i
\(27\) −0.527767 4.34655i −0.101569 0.836494i
\(28\) 7.34482 + 0.891822i 1.38804 + 0.168539i
\(29\) −2.02128 2.92833i −0.375342 0.543777i 0.589104 0.808058i \(-0.299481\pi\)
−0.964446 + 0.264280i \(0.914866\pi\)
\(30\) −10.4696 9.27526i −1.91148 1.69342i
\(31\) −3.31023 + 0.401935i −0.594536 + 0.0721897i −0.412273 0.911060i \(-0.635265\pi\)
−0.182262 + 0.983250i \(0.558342\pi\)
\(32\) 7.89870 + 0.959076i 1.39631 + 0.169542i
\(33\) −4.14764 7.90266i −0.722011 1.37568i
\(34\) 3.86587 4.36367i 0.662991 0.748362i
\(35\) 7.79989 11.3001i 1.31842 1.91007i
\(36\) 1.39718 0.344373i 0.232863 0.0573955i
\(37\) 1.65918 0.201461i 0.272768 0.0331200i 0.0169901 0.999856i \(-0.494592\pi\)
0.255778 + 0.966736i \(0.417669\pi\)
\(38\) −1.43021 2.07201i −0.232010 0.336125i
\(39\) −6.65949 + 2.04830i −1.06637 + 0.327990i
\(40\) 0.164486 0.238299i 0.0260075 0.0376784i
\(41\) −5.13358 + 9.78122i −0.801731 + 1.52757i 0.0470912 + 0.998891i \(0.485005\pi\)
−0.848822 + 0.528679i \(0.822687\pi\)
\(42\) 5.14747 + 13.5728i 0.794271 + 2.09432i
\(43\) 0.701553 5.77781i 0.106986 0.881108i −0.836104 0.548570i \(-0.815172\pi\)
0.943090 0.332537i \(-0.107905\pi\)
\(44\) −7.44999 + 5.14236i −1.12313 + 0.775239i
\(45\) 0.639089 2.59289i 0.0952697 0.386525i
\(46\) 7.03071 4.85295i 1.03662 0.715528i
\(47\) 3.14343 1.19215i 0.458516 0.173892i −0.114522 0.993421i \(-0.536534\pi\)
0.573039 + 0.819528i \(0.305764\pi\)
\(48\) 2.79469 + 7.36898i 0.403378 + 1.06362i
\(49\) −6.41934 + 3.36913i −0.917049 + 0.481304i
\(50\) 7.61140 + 14.5023i 1.07642 + 2.05094i
\(51\) 5.49663 + 1.35480i 0.769683 + 0.189710i
\(52\) 2.87657 + 6.45492i 0.398909 + 0.895136i
\(53\) −0.861654 + 0.212379i −0.118357 + 0.0291725i −0.298049 0.954550i \(-0.596336\pi\)
0.179692 + 0.983723i \(0.442490\pi\)
\(54\) −5.77782 6.52181i −0.786262 0.887506i
\(55\) 2.02495 + 16.6770i 0.273045 + 2.24873i
\(56\) −0.266081 + 0.139650i −0.0355566 + 0.0186616i
\(57\) 1.13618 2.16480i 0.150490 0.286735i
\(58\) −6.62057 2.51085i −0.869323 0.329691i
\(59\) −8.59852 9.70573i −1.11943 1.26358i −0.961103 0.276192i \(-0.910928\pi\)
−0.158330 0.987386i \(-0.550611\pi\)
\(60\) −13.6761 1.66058i −1.76558 0.214380i
\(61\) 12.3810 + 3.05165i 1.58523 + 0.390724i 0.930837 0.365434i \(-0.119079\pi\)
0.654390 + 0.756157i \(0.272925\pi\)
\(62\) −4.96686 + 4.40026i −0.630792 + 0.558833i
\(63\) −1.83781 + 2.07446i −0.231542 + 0.261357i
\(64\) 6.79750 3.56760i 0.849688 0.445950i
\(65\) 13.0878 + 0.840067i 1.62334 + 0.104198i
\(66\) −15.7261 8.25369i −1.93575 1.01596i
\(67\) 11.2990 4.28513i 1.38039 0.523512i 0.450969 0.892540i \(-0.351078\pi\)
0.929418 + 0.369028i \(0.120309\pi\)
\(68\) 0.692119 5.70011i 0.0839317 0.691240i
\(69\) 7.34556 + 3.85525i 0.884302 + 0.464117i
\(70\) 27.3236i 3.26580i
\(71\) −0.912946 + 1.73947i −0.108347 + 0.206437i −0.933593 0.358336i \(-0.883344\pi\)
0.825246 + 0.564774i \(0.191036\pi\)
\(72\) −0.0387561 + 0.0437466i −0.00456746 + 0.00515559i
\(73\) −5.47692 3.78045i −0.641026 0.442468i 0.202701 0.979241i \(-0.435028\pi\)
−0.843727 + 0.536773i \(0.819643\pi\)
\(74\) 2.48953 2.20553i 0.289402 0.256388i
\(75\) −9.03480 + 13.0892i −1.04325 + 1.51141i
\(76\) −2.31861 0.879333i −0.265963 0.100866i
\(77\) 6.18240 16.3017i 0.704550 1.85775i
\(78\) −8.59090 + 10.8826i −0.972727 + 1.23222i
\(79\) 2.89225 + 7.62624i 0.325404 + 0.858019i 0.993488 + 0.113934i \(0.0363452\pi\)
−0.668085 + 0.744085i \(0.732886\pi\)
\(80\) 14.8347i 1.65857i
\(81\) 3.78134 9.97057i 0.420149 1.10784i
\(82\) 2.64968 + 21.8220i 0.292608 + 2.40984i
\(83\) 3.41513 + 6.50698i 0.374859 + 0.714234i 0.997676 0.0681335i \(-0.0217044\pi\)
−0.622817 + 0.782367i \(0.714012\pi\)
\(84\) 11.7665 + 8.12184i 1.28383 + 0.886166i
\(85\) −8.76969 6.05328i −0.951207 0.656571i
\(86\) −5.38249 10.2555i −0.580409 1.10588i
\(87\) −0.828792 6.82572i −0.0888558 0.731794i
\(88\) 0.130376 0.343773i 0.0138981 0.0366463i
\(89\) 4.91886i 0.521398i −0.965420 0.260699i \(-0.916047\pi\)
0.965420 0.260699i \(-0.0839530\pi\)
\(90\) −1.88444 4.96886i −0.198637 0.523764i
\(91\) −11.6216 7.08411i −1.21828 0.742617i
\(92\) 2.98374 7.86746i 0.311076 0.820240i
\(93\) −6.02495 2.28496i −0.624758 0.236940i
\(94\) 3.80041 5.50584i 0.391982 0.567884i
\(95\) −3.44460 + 3.05165i −0.353408 + 0.313092i
\(96\) 12.6538 + 8.73432i 1.29148 + 0.891443i
\(97\) 1.72450 1.94656i 0.175097 0.197643i −0.654410 0.756140i \(-0.727083\pi\)
0.829507 + 0.558496i \(0.188622\pi\)
\(98\) −6.70448 + 12.7743i −0.677255 + 1.29040i
\(99\) 3.39088i 0.340796i
\(100\) 14.2839 + 7.49674i 1.42839 + 0.749674i
\(101\) −1.17230 + 9.65478i −0.116649 + 0.960687i 0.810434 + 0.585830i \(0.199231\pi\)
−0.927083 + 0.374857i \(0.877692\pi\)
\(102\) 10.5334 3.99481i 1.04297 0.395545i
\(103\) −10.5012 5.51148i −1.03472 0.543062i −0.140214 0.990121i \(-0.544779\pi\)
−0.894504 + 0.447059i \(0.852471\pi\)
\(104\) −0.245079 0.149391i −0.0240320 0.0146490i
\(105\) 23.4939 12.3306i 2.29277 1.20334i
\(106\) −1.17107 + 1.32186i −0.113744 + 0.128390i
\(107\) −9.20575 + 8.15558i −0.889953 + 0.788430i −0.978199 0.207669i \(-0.933412\pi\)
0.0882460 + 0.996099i \(0.471874\pi\)
\(108\) −8.33243 2.05376i −0.801788 0.197623i
\(109\) −4.14191 0.502919i −0.396723 0.0481709i −0.0802558 0.996774i \(-0.525574\pi\)
−0.316467 + 0.948603i \(0.602497\pi\)
\(110\) 22.1686 + 25.0231i 2.11369 + 2.38586i
\(111\) 3.01987 + 1.14529i 0.286634 + 0.108706i
\(112\) −7.15465 + 13.6321i −0.676051 + 1.28811i
\(113\) 8.18046 4.29343i 0.769553 0.403892i −0.0337753 0.999429i \(-0.510753\pi\)
0.803328 + 0.595537i \(0.203061\pi\)
\(114\) −0.586432 4.82970i −0.0549244 0.452343i
\(115\) −10.3548 11.6881i −0.965589 1.08992i
\(116\) −6.77138 + 1.66900i −0.628707 + 0.154962i
\(117\) −2.60199 0.486747i −0.240554 0.0449998i
\(118\) −25.0536 6.17516i −2.30637 0.568470i
\(119\) 5.13930 + 9.79212i 0.471119 + 0.897642i
\(120\) 0.495445 0.260030i 0.0452277 0.0237373i
\(121\) 3.66354 + 9.65995i 0.333049 + 0.878178i
\(122\) 23.7263 8.99820i 2.14808 0.814658i
\(123\) −17.5677 + 12.1261i −1.58403 + 1.09337i
\(124\) −1.56410 + 6.34578i −0.140460 + 0.569868i
\(125\) 9.67030 6.67493i 0.864938 0.597024i
\(126\) −0.664773 + 5.47490i −0.0592227 + 0.487743i
\(127\) 3.47833 + 9.17159i 0.308652 + 0.813847i 0.996150 + 0.0876617i \(0.0279395\pi\)
−0.687499 + 0.726186i \(0.741291\pi\)
\(128\) −0.295897 + 0.563785i −0.0261539 + 0.0498321i
\(129\) 6.38906 9.25615i 0.562525 0.814958i
\(130\) 22.3837 13.4191i 1.96318 1.17693i
\(131\) −3.41682 4.95012i −0.298529 0.432494i 0.644801 0.764351i \(-0.276940\pi\)
−0.943330 + 0.331856i \(0.892325\pi\)
\(132\) −17.3654 + 2.10854i −1.51146 + 0.183525i
\(133\) 4.63714 1.14295i 0.402091 0.0991066i
\(134\) 13.6604 19.7906i 1.18008 1.70964i
\(135\) −10.5610 + 11.9209i −0.908944 + 1.02599i
\(136\) 0.108379 + 0.206498i 0.00929340 + 0.0177071i
\(137\) 6.68322 + 0.811490i 0.570986 + 0.0693303i 0.400937 0.916105i \(-0.368684\pi\)
0.170049 + 0.985436i \(0.445608\pi\)
\(138\) 16.3880 1.98987i 1.39504 0.169389i
\(139\) −2.68151 2.37561i −0.227443 0.201497i 0.541703 0.840570i \(-0.317780\pi\)
−0.769146 + 0.639073i \(0.779318\pi\)
\(140\) −15.2878 22.1482i −1.29205 1.87186i
\(141\) 6.44918 + 0.783072i 0.543119 + 0.0659465i
\(142\) 0.471213 + 3.88079i 0.0395433 + 0.325668i
\(143\) 16.3907 2.94134i 1.37066 0.245967i
\(144\) −0.360921 + 2.97246i −0.0300768 + 0.247705i
\(145\) −3.09733 + 12.5663i −0.257219 + 1.04358i
\(146\) −13.2432 −1.09601
\(147\) −14.0095 −1.15548
\(148\) 0.783968 3.18068i 0.0644418 0.261450i
\(149\) 2.44485 0.927209i 0.200290 0.0759599i −0.252420 0.967618i \(-0.581227\pi\)
0.452710 + 0.891658i \(0.350457\pi\)
\(150\) 31.6496i 2.58418i
\(151\) 0.929723 + 0.352597i 0.0756598 + 0.0286940i 0.392144 0.919904i \(-0.371733\pi\)
−0.316485 + 0.948598i \(0.602503\pi\)
\(152\) 0.0977891 0.0241028i 0.00793174 0.00195500i
\(153\) 1.60993 + 1.42627i 0.130155 + 0.115307i
\(154\) −8.30293 33.6863i −0.669069 2.71452i
\(155\) 9.07866 + 8.04299i 0.729216 + 0.646029i
\(156\) −0.874742 + 13.6280i −0.0700354 + 1.09111i
\(157\) −15.2411 + 13.5025i −1.21637 + 1.07761i −0.221640 + 0.975129i \(0.571141\pi\)
−0.994735 + 0.102485i \(0.967321\pi\)
\(158\) 13.3577 + 9.22012i 1.06268 + 0.733513i
\(159\) −1.66506 0.410401i −0.132048 0.0325469i
\(160\) −16.4406 23.8184i −1.29975 1.88301i
\(161\) 3.87824 + 15.7347i 0.305648 + 1.24006i
\(162\) −5.07831 20.6035i −0.398990 1.61876i
\(163\) 7.39981 0.898500i 0.579598 0.0703759i 0.174513 0.984655i \(-0.444165\pi\)
0.405085 + 0.914279i \(0.367242\pi\)
\(164\) 14.3574 + 16.2061i 1.12112 + 1.26549i
\(165\) −11.5117 + 30.3538i −0.896182 + 2.36304i
\(166\) 12.9487 + 6.79601i 1.00502 + 0.527473i
\(167\) −14.7958 + 10.2128i −1.14494 + 0.790292i −0.980582 0.196110i \(-0.937169\pi\)
−0.164353 + 0.986402i \(0.552554\pi\)
\(168\) −0.580691 −0.0448013
\(169\) 0.0957826 12.9996i 0.00736789 0.999973i
\(170\) −21.2051 −1.62636
\(171\) 0.764447 0.527660i 0.0584588 0.0403512i
\(172\) −10.1010 5.30140i −0.770193 0.404228i
\(173\) −9.12493 + 24.0605i −0.693755 + 1.82928i −0.152748 + 0.988265i \(0.548812\pi\)
−0.541008 + 0.841018i \(0.681957\pi\)
\(174\) −9.07335 10.2417i −0.687849 0.776421i
\(175\) −30.8424 + 3.74495i −2.33147 + 0.283092i
\(176\) −4.50786 18.2891i −0.339793 1.37859i
\(177\) −5.99651 24.3288i −0.450726 1.82867i
\(178\) −5.56045 8.05570i −0.416773 0.603800i
\(179\) −9.86848 2.43236i −0.737605 0.181803i −0.147423 0.989074i \(-0.547098\pi\)
−0.590182 + 0.807270i \(0.700944\pi\)
\(180\) −4.30761 2.97333i −0.321071 0.221619i
\(181\) −3.89561 + 3.45121i −0.289558 + 0.256526i −0.795379 0.606112i \(-0.792728\pi\)
0.505821 + 0.862639i \(0.331190\pi\)
\(182\) −27.0411 + 1.53572i −2.00442 + 0.113835i
\(183\) 18.4442 + 16.3401i 1.36343 + 1.20790i
\(184\) 0.0817853 + 0.331816i 0.00602929 + 0.0244618i
\(185\) −4.55048 4.03137i −0.334558 0.296392i
\(186\) −12.4502 + 3.06869i −0.912890 + 0.225007i
\(187\) −12.6513 4.79799i −0.925152 0.350864i
\(188\) 6.58931i 0.480575i
\(189\) 15.4542 5.86100i 1.12413 0.426325i
\(190\) −2.19159 + 8.89162i −0.158995 + 0.645066i
\(191\) 20.7770 1.50337 0.751684 0.659524i \(-0.229242\pi\)
0.751684 + 0.659524i \(0.229242\pi\)
\(192\) 14.8347 1.07061
\(193\) −0.378098 + 1.53400i −0.0272161 + 0.110420i −0.982979 0.183718i \(-0.941187\pi\)
0.955763 + 0.294138i \(0.0950327\pi\)
\(194\) 0.623787 5.13735i 0.0447853 0.368840i
\(195\) 21.6395 + 13.1907i 1.54964 + 0.944602i
\(196\) 1.71277 + 14.1059i 0.122340 + 1.00756i
\(197\) 9.98608 + 1.21253i 0.711479 + 0.0863892i 0.468271 0.883585i \(-0.344877\pi\)
0.243208 + 0.969974i \(0.421800\pi\)
\(198\) −3.83316 5.55329i −0.272411 0.394655i
\(199\) −11.4902 10.1794i −0.814515 0.721598i 0.149120 0.988819i \(-0.452356\pi\)
−0.963635 + 0.267221i \(0.913894\pi\)
\(200\) −0.650412 + 0.0789743i −0.0459911 + 0.00558433i
\(201\) 23.1814 + 2.81473i 1.63509 + 0.198535i
\(202\) 8.99420 + 17.1370i 0.632829 + 1.20576i
\(203\) 8.90690 10.0538i 0.625141 0.705639i
\(204\) 6.30314 9.13167i 0.441308 0.639345i
\(205\) 39.0127 9.61577i 2.72477 0.671595i
\(206\) −23.4284 + 2.84472i −1.63234 + 0.198201i
\(207\) 1.79045 + 2.59391i 0.124445 + 0.180289i
\(208\) −14.6812 + 0.833780i −1.01796 + 0.0578123i
\(209\) −3.31940 + 4.80899i −0.229608 + 0.332645i
\(210\) 24.5375 46.7523i 1.69325 3.22622i
\(211\) −0.829178 2.18636i −0.0570830 0.150515i 0.903441 0.428712i \(-0.141033\pi\)
−0.960524 + 0.278197i \(0.910263\pi\)
\(212\) −0.209659 + 1.72670i −0.0143995 + 0.118590i
\(213\) −3.12420 + 2.15648i −0.214067 + 0.147760i
\(214\) −5.85706 + 23.7630i −0.400380 + 1.62441i
\(215\) −17.4229 + 12.0261i −1.18823 + 0.820176i
\(216\) 0.325901 0.123598i 0.0221748 0.00840978i
\(217\) −4.46360 11.7695i −0.303009 0.798969i
\(218\) −7.35179 + 3.85852i −0.497926 + 0.261332i
\(219\) −5.97637 11.3870i −0.403846 0.769464i
\(220\) 31.9701 + 7.87993i 2.15543 + 0.531265i
\(221\) −5.49778 + 9.01923i −0.369821 + 0.606699i
\(222\) 6.24037 1.53811i 0.418826 0.103231i
\(223\) 2.93099 + 3.30840i 0.196274 + 0.221547i 0.838405 0.545047i \(-0.183488\pi\)
−0.642132 + 0.766594i \(0.721950\pi\)
\(224\) 3.62040 + 29.8167i 0.241898 + 1.99221i
\(225\) −5.35048 + 2.80815i −0.356699 + 0.187210i
\(226\) 8.54382 16.2789i 0.568327 1.08286i
\(227\) 3.95870 + 1.50134i 0.262748 + 0.0996471i 0.482461 0.875917i \(-0.339743\pi\)
−0.219713 + 0.975564i \(0.570512\pi\)
\(228\) −3.17761 3.58678i −0.210442 0.237540i
\(229\) −1.84669 0.224229i −0.122033 0.0148174i 0.0592925 0.998241i \(-0.481116\pi\)
−0.181325 + 0.983423i \(0.558039\pi\)
\(230\) −30.1709 7.43646i −1.98941 0.490345i
\(231\) 25.2179 22.3411i 1.65921 1.46994i
\(232\) 0.187831 0.212017i 0.0123317 0.0139196i
\(233\) 2.07031 1.08658i 0.135630 0.0711843i −0.395543 0.918447i \(-0.629444\pi\)
0.531173 + 0.847263i \(0.321751\pi\)
\(234\) −4.81156 + 2.14423i −0.314541 + 0.140172i
\(235\) −10.8278 5.68285i −0.706325 0.370708i
\(236\) −23.7632 + 9.01218i −1.54685 + 0.586643i
\(237\) −1.89980 + 15.6463i −0.123405 + 1.01633i
\(238\) 19.4861 + 10.2271i 1.26309 + 0.662923i
\(239\) 2.01629i 0.130423i −0.997871 0.0652116i \(-0.979228\pi\)
0.997871 0.0652116i \(-0.0207722\pi\)
\(240\) 13.3220 25.3830i 0.859932 1.63846i
\(241\) −8.21949 + 9.27788i −0.529464 + 0.597641i −0.951008 0.309167i \(-0.899950\pi\)
0.421544 + 0.906808i \(0.361488\pi\)
\(242\) 16.9198 + 11.6789i 1.08764 + 0.750747i
\(243\) 5.59197 4.95405i 0.358725 0.317803i
\(244\) 14.1977 20.5688i 0.908911 1.31679i
\(245\) 24.6564 + 9.35094i 1.57524 + 0.597410i
\(246\) −15.0631 + 39.7183i −0.960391 + 2.53234i
\(247\) 3.21369 + 3.23746i 0.204482 + 0.205994i
\(248\) −0.0941294 0.248199i −0.00597722 0.0157606i
\(249\) 14.2007i 0.899933i
\(250\) 8.29165 21.8633i 0.524410 1.38276i
\(251\) −1.25372 10.3253i −0.0791340 0.651727i −0.977268 0.212006i \(-0.932000\pi\)
0.898134 0.439721i \(-0.144923\pi\)
\(252\) 2.52439 + 4.80982i 0.159022 + 0.302990i
\(253\) −16.3178 11.2633i −1.02589 0.708120i
\(254\) 16.0644 + 11.0885i 1.00797 + 0.695751i
\(255\) −9.56941 18.2330i −0.599260 1.14179i
\(256\) 2.00341 + 16.4995i 0.125213 + 1.03122i
\(257\) −8.73470 + 23.0315i −0.544855 + 1.43667i 0.326115 + 0.945330i \(0.394260\pi\)
−0.870970 + 0.491336i \(0.836509\pi\)
\(258\) 22.3814i 1.39340i
\(259\) 2.23728 + 5.89922i 0.139018 + 0.366560i
\(260\) 10.6359 23.4012i 0.659608 1.45128i
\(261\) 0.926353 2.44259i 0.0573398 0.151193i
\(262\) −11.1916 4.24441i −0.691418 0.262220i
\(263\) 12.0287 17.4266i 0.741722 1.07457i −0.252538 0.967587i \(-0.581265\pi\)
0.994261 0.106984i \(-0.0341192\pi\)
\(264\) 0.531800 0.471134i 0.0327300 0.0289963i
\(265\) 2.65655 + 1.83369i 0.163191 + 0.112642i
\(266\) 6.30229 7.11381i 0.386418 0.436176i
\(267\) 4.41729 8.41645i 0.270334 0.515078i
\(268\) 23.6851i 1.44680i
\(269\) −13.1469 6.90001i −0.801579 0.420701i 0.0136022 0.999907i \(-0.495670\pi\)
−0.815181 + 0.579207i \(0.803362\pi\)
\(270\) −3.82012 + 31.4615i −0.232485 + 1.91469i
\(271\) 2.00101 0.758883i 0.121553 0.0460989i −0.293079 0.956088i \(-0.594680\pi\)
0.414631 + 0.909989i \(0.363911\pi\)
\(272\) 10.5795 + 5.55253i 0.641474 + 0.336672i
\(273\) −13.5235 22.5579i −0.818481 1.36527i
\(274\) 11.8626 6.22595i 0.716643 0.376123i
\(275\) 25.2073 28.4531i 1.52006 1.71579i
\(276\) 12.1706 10.7822i 0.732583 0.649012i
\(277\) 12.0082 + 2.95975i 0.721500 + 0.177834i 0.582934 0.812519i \(-0.301905\pi\)
0.138566 + 0.990353i \(0.455751\pi\)
\(278\) −7.07703 0.859307i −0.424452 0.0515378i
\(279\) −1.62343 1.83247i −0.0971922 0.109707i
\(280\) 1.02201 + 0.387596i 0.0610766 + 0.0231633i
\(281\) 12.1305 23.1127i 0.723642 1.37879i −0.193850 0.981031i \(-0.562097\pi\)
0.917492 0.397754i \(-0.130210\pi\)
\(282\) 11.4471 6.00792i 0.681667 0.357766i
\(283\) 0.330770 + 2.72413i 0.0196622 + 0.161933i 0.999233 0.0391687i \(-0.0124710\pi\)
−0.979570 + 0.201102i \(0.935548\pi\)
\(284\) 2.55329 + 2.88207i 0.151510 + 0.171019i
\(285\) −8.63438 + 2.12818i −0.511457 + 0.126063i
\(286\) 23.5184 23.3457i 1.39067 1.38046i
\(287\) −40.4877 9.97932i −2.38991 0.589061i
\(288\) 2.71476 + 5.17254i 0.159969 + 0.304795i
\(289\) −7.45336 + 3.91182i −0.438433 + 0.230107i
\(290\) 9.13288 + 24.0814i 0.536301 + 1.41411i
\(291\) 4.69880 1.78202i 0.275448 0.104464i
\(292\) −10.7348 + 7.40967i −0.628204 + 0.433618i
\(293\) 0.282549 1.14635i 0.0165067 0.0669703i −0.962111 0.272658i \(-0.912097\pi\)
0.978618 + 0.205688i \(0.0659433\pi\)
\(294\) −22.9435 + 15.8368i −1.33809 + 0.923619i
\(295\) −5.68508 + 46.8208i −0.330998 + 2.72601i
\(296\) 0.0471802 + 0.124404i 0.00274230 + 0.00723084i
\(297\) −9.39780 + 17.9060i −0.545316 + 1.03901i
\(298\) 2.95582 4.28225i 0.171226 0.248064i
\(299\) −10.9853 + 10.9046i −0.635295 + 0.630631i
\(300\) 17.7082 + 25.6547i 1.02238 + 1.48118i
\(301\) 21.8106 2.64828i 1.25714 0.152644i
\(302\) 1.92121 0.473536i 0.110553 0.0272489i
\(303\) −10.6762 + 15.4671i −0.613331 + 0.888563i
\(304\) 3.42167 3.86226i 0.196246 0.221516i
\(305\) −21.5548 41.0693i −1.23423 2.35162i
\(306\) 4.24892 + 0.515912i 0.242894 + 0.0294927i
\(307\) 27.5721 3.34786i 1.57362 0.191072i 0.713313 0.700846i \(-0.247194\pi\)
0.860309 + 0.509773i \(0.170271\pi\)
\(308\) −25.5780 22.6601i −1.45744 1.29118i
\(309\) −13.0187 18.8609i −0.740611 1.07296i
\(310\) 23.9604 + 2.90931i 1.36086 + 0.165238i
\(311\) −1.46279 12.0472i −0.0829474 0.683133i −0.973570 0.228390i \(-0.926654\pi\)
0.890622 0.454744i \(-0.150269\pi\)
\(312\) −0.285187 0.475706i −0.0161455 0.0269316i
\(313\) 3.42709 28.2246i 0.193710 1.59535i −0.494065 0.869425i \(-0.664490\pi\)
0.687776 0.725923i \(-0.258587\pi\)
\(314\) −9.69700 + 39.3423i −0.547234 + 2.22021i
\(315\) 10.0808 0.567987
\(316\) 15.9863 0.899297
\(317\) 2.40019 9.73795i 0.134808 0.546938i −0.864230 0.503096i \(-0.832194\pi\)
0.999038 0.0438416i \(-0.0139597\pi\)
\(318\) −3.19083 + 1.21012i −0.178933 + 0.0678604i
\(319\) 16.4338i 0.920115i
\(320\) −26.1089 9.90180i −1.45953 0.553527i
\(321\) −23.0755 + 5.68761i −1.28795 + 0.317451i
\(322\) 24.1385 + 21.3848i 1.34518 + 1.19173i
\(323\) −0.887014 3.59876i −0.0493548 0.200240i
\(324\) −15.6442 13.8596i −0.869123 0.769976i
\(325\) −18.2151 23.4271i −1.01039 1.29950i
\(326\) 11.1031 9.83648i 0.614944 0.544793i
\(327\) −6.63541 4.58009i −0.366939 0.253280i
\(328\) −0.853813 0.210446i −0.0471440 0.0116199i
\(329\) 7.20919 + 10.4443i 0.397455 + 0.575813i
\(330\) 15.4601 + 62.7241i 0.851050 + 3.45285i
\(331\) 1.91389 + 7.76494i 0.105197 + 0.426800i 0.999799 0.0200640i \(-0.00638700\pi\)
−0.894602 + 0.446864i \(0.852541\pi\)
\(332\) 14.2985 1.73615i 0.784731 0.0952835i
\(333\) 0.813708 + 0.918486i 0.0445909 + 0.0503327i
\(334\) −12.6864 + 33.4514i −0.694171 + 1.83038i
\(335\) −38.9201 20.4268i −2.12643 1.11604i
\(336\) −24.4840 + 16.9001i −1.33571 + 0.921977i
\(337\) −29.8467 −1.62585 −0.812927 0.582366i \(-0.802127\pi\)
−0.812927 + 0.582366i \(0.802127\pi\)
\(338\) −14.5384 21.3980i −0.790784 1.16390i
\(339\) 17.8529 0.969635
\(340\) −17.1886 + 11.8644i −0.932181 + 0.643438i
\(341\) 13.6368 + 7.15715i 0.738474 + 0.387581i
\(342\) 0.655463 1.72831i 0.0354434 0.0934566i
\(343\) −0.625201 0.705706i −0.0337577 0.0381045i
\(344\) 0.459946 0.0558476i 0.0247986 0.00301110i
\(345\) −7.22131 29.2980i −0.388782 1.57735i
\(346\) 12.2547 + 49.7193i 0.658818 + 2.67293i
\(347\) −19.7318 28.5865i −1.05926 1.53460i −0.827205 0.561900i \(-0.810070\pi\)
−0.232055 0.972703i \(-0.574545\pi\)
\(348\) −13.0850 3.22517i −0.701432 0.172887i
\(349\) 19.4163 + 13.4021i 1.03933 + 0.717397i 0.960156 0.279464i \(-0.0901568\pi\)
0.0791726 + 0.996861i \(0.474772\pi\)
\(350\) −46.2778 + 40.9985i −2.47365 + 2.19146i
\(351\) 12.3912 + 9.78174i 0.661392 + 0.522111i
\(352\) −27.5068 24.3689i −1.46612 1.29887i
\(353\) −1.60792 6.52357i −0.0855808 0.347215i 0.912505 0.409066i \(-0.134146\pi\)
−0.998085 + 0.0618517i \(0.980299\pi\)
\(354\) −37.3227 33.0650i −1.98368 1.75739i
\(355\) 6.93795 1.71005i 0.368228 0.0907600i
\(356\) −9.01444 3.41873i −0.477764 0.181192i
\(357\) 21.3701i 1.13103i
\(358\) −18.9114 + 7.17215i −0.999499 + 0.379060i
\(359\) −2.70328 + 10.9676i −0.142674 + 0.578849i 0.855465 + 0.517861i \(0.173271\pi\)
−0.998138 + 0.0609886i \(0.980575\pi\)
\(360\) 0.212586 0.0112042
\(361\) 17.3993 0.915753
\(362\) −2.47854 + 10.0558i −0.130269 + 0.528523i
\(363\) −2.40643 + 19.8187i −0.126305 + 1.04021i
\(364\) −21.0599 + 16.3745i −1.10384 + 0.858257i
\(365\) 2.91777 + 24.0300i 0.152723 + 1.25779i
\(366\) 48.6777 + 5.91055i 2.54443 + 0.308949i
\(367\) 15.2831 + 22.1415i 0.797774 + 1.15578i 0.984846 + 0.173429i \(0.0554847\pi\)
−0.187073 + 0.982346i \(0.559900\pi\)
\(368\) 13.1054 + 11.6103i 0.683164 + 0.605230i
\(369\) −8.05102 + 0.977571i −0.419119 + 0.0508903i
\(370\) −12.0096 1.45823i −0.624349 0.0758097i
\(371\) −1.55682 2.96627i −0.0808260 0.154001i
\(372\) −8.37498 + 9.45340i −0.434222 + 0.490136i
\(373\) 8.71629 12.6277i 0.451312 0.653839i −0.529609 0.848242i \(-0.677662\pi\)
0.980922 + 0.194403i \(0.0622769\pi\)
\(374\) −26.1430 + 6.44367i −1.35182 + 0.333194i
\(375\) 22.5408 2.73694i 1.16400 0.141335i
\(376\) 0.152029 + 0.220252i 0.00784029 + 0.0113586i
\(377\) 12.6105 + 2.35900i 0.649473 + 0.121495i
\(378\) 18.6841 27.0686i 0.961006 1.39226i
\(379\) −7.29865 + 13.9064i −0.374906 + 0.714325i −0.997680 0.0680776i \(-0.978313\pi\)
0.622774 + 0.782402i \(0.286006\pi\)
\(380\) 3.19846 + 8.43364i 0.164077 + 0.432637i
\(381\) −2.28477 + 18.8168i −0.117052 + 0.964013i
\(382\) 34.0268 23.4870i 1.74096 1.20170i
\(383\) 7.36668 29.8878i 0.376420 1.52719i −0.411496 0.911412i \(-0.634994\pi\)
0.787916 0.615783i \(-0.211160\pi\)
\(384\) −1.01260 + 0.698944i −0.0516738 + 0.0356678i
\(385\) −59.2951 + 22.4877i −3.02196 + 1.14608i
\(386\) 1.11487 + 2.93968i 0.0567455 + 0.149626i
\(387\) 3.78365 1.98581i 0.192334 0.100945i
\(388\) −2.36875 4.51328i −0.120255 0.229127i
\(389\) 5.50879 + 1.35779i 0.279307 + 0.0688429i 0.376481 0.926425i \(-0.377134\pi\)
−0.0971740 + 0.995267i \(0.530980\pi\)
\(390\) 50.3506 2.85952i 2.54960 0.144797i
\(391\) 12.2112 3.00980i 0.617549 0.152212i
\(392\) −0.382702 0.431982i −0.0193294 0.0218184i
\(393\) −1.40101 11.5384i −0.0706717 0.582034i
\(394\) 17.7251 9.30283i 0.892975 0.468670i
\(395\) 13.7871 26.2691i 0.693704 1.32174i
\(396\) −6.21422 2.35674i −0.312276 0.118431i
\(397\) −24.6716 27.8484i −1.23823 1.39767i −0.887250 0.461290i \(-0.847387\pi\)
−0.350980 0.936383i \(-0.614152\pi\)
\(398\) −30.3247 3.68209i −1.52004 0.184567i
\(399\) 8.96082 + 2.20864i 0.448602 + 0.110571i
\(400\) −25.1253 + 22.2591i −1.25627 + 1.11295i
\(401\) 1.93206 2.18085i 0.0964826 0.108906i −0.698286 0.715819i \(-0.746054\pi\)
0.794769 + 0.606912i \(0.207592\pi\)
\(402\) 41.1464 21.5953i 2.05219 1.07707i
\(403\) 7.44955 9.43683i 0.371089 0.470082i
\(404\) 16.8789 + 8.85871i 0.839754 + 0.440737i
\(405\) −36.2666 + 13.7541i −1.80210 + 0.683447i
\(406\) 3.22180 26.5339i 0.159895 1.31686i
\(407\) −6.83514 3.58736i −0.338805 0.177819i
\(408\) 0.450658i 0.0223109i
\(409\) 10.6827 20.3542i 0.528226 1.00645i −0.464445 0.885602i \(-0.653746\pi\)
0.992671 0.120848i \(-0.0385614\pi\)
\(410\) 53.0218 59.8492i 2.61856 2.95574i
\(411\) 10.7066 + 7.39025i 0.528119 + 0.364534i
\(412\) −17.3991 + 15.4143i −0.857193 + 0.759406i
\(413\) 27.8056 40.2833i 1.36822 1.98221i
\(414\) 5.86448 + 2.22411i 0.288224 + 0.109309i
\(415\) 9.47860 24.9930i 0.465286 1.22686i
\(416\) −22.6480 + 17.6093i −1.11041 + 0.863368i
\(417\) −2.45484 6.47289i −0.120214 0.316979i
\(418\) 11.6281i 0.568750i
\(419\) 3.32692 8.77237i 0.162531 0.428558i −0.828866 0.559447i \(-0.811014\pi\)
0.991397 + 0.130888i \(0.0417829\pi\)
\(420\) −6.26849 51.6257i −0.305871 2.51908i
\(421\) 6.30466 + 12.0125i 0.307270 + 0.585454i 0.989304 0.145866i \(-0.0465968\pi\)
−0.682034 + 0.731320i \(0.738904\pi\)
\(422\) −3.82950 2.64331i −0.186417 0.128674i
\(423\) 2.03132 + 1.40212i 0.0987663 + 0.0681735i
\(424\) −0.0328305 0.0625534i −0.00159439 0.00303786i
\(425\) 2.90635 + 23.9360i 0.140979 + 1.16106i
\(426\) −2.67880 + 7.06342i −0.129788 + 0.342224i
\(427\) 48.1357i 2.32945i
\(428\) 8.54793 + 22.5390i 0.413180 + 1.08947i
\(429\) 30.6869 + 9.68659i 1.48158 + 0.467673i
\(430\) −14.9390 + 39.3908i −0.720421 + 1.89959i
\(431\) −14.8509 5.63221i −0.715344 0.271294i −0.0300371 0.999549i \(-0.509563\pi\)
−0.685307 + 0.728255i \(0.740332\pi\)
\(432\) 10.1440 14.6962i 0.488056 0.707071i
\(433\) 17.4400 15.4505i 0.838113 0.742503i −0.130401 0.991461i \(-0.541627\pi\)
0.968514 + 0.248958i \(0.0800881\pi\)
\(434\) −20.6148 14.2294i −0.989542 0.683032i
\(435\) −16.5847 + 18.7202i −0.795175 + 0.897567i
\(436\) −3.80039 + 7.24104i −0.182006 + 0.346783i
\(437\) 5.43142i 0.259820i
\(438\) −22.6599 11.8928i −1.08273 0.568261i
\(439\) 2.00618 16.5224i 0.0957500 0.788572i −0.863174 0.504907i \(-0.831527\pi\)
0.958924 0.283665i \(-0.0915502\pi\)
\(440\) −1.25043 + 0.474225i −0.0596118 + 0.0226078i
\(441\) −4.71296 2.47355i −0.224427 0.117788i
\(442\) 1.19183 + 20.9858i 0.0566896 + 0.998193i
\(443\) −5.38514 + 2.82634i −0.255856 + 0.134283i −0.587775 0.809024i \(-0.699996\pi\)
0.331919 + 0.943308i \(0.392304\pi\)
\(444\) 4.19777 4.73830i 0.199217 0.224870i
\(445\) −13.3921 + 11.8644i −0.634848 + 0.562426i
\(446\) 8.54006 + 2.10494i 0.404384 + 0.0996716i
\(447\) 5.01594 + 0.609045i 0.237246 + 0.0288069i
\(448\) 19.2167 + 21.6912i 0.907906 + 1.02481i
\(449\) 19.9713 + 7.57412i 0.942505 + 0.357445i 0.777525 0.628852i \(-0.216475\pi\)
0.164980 + 0.986297i \(0.447244\pi\)
\(450\) −5.58815 + 10.6473i −0.263428 + 0.501920i
\(451\) 45.1754 23.7099i 2.12723 1.11645i
\(452\) −2.18265 17.9758i −0.102663 0.845510i
\(453\) 1.27417 + 1.43824i 0.0598655 + 0.0675742i
\(454\) 8.18038 2.01628i 0.383924 0.0946288i
\(455\) 8.74435 + 48.7282i 0.409941 + 2.28441i
\(456\) 0.188968 + 0.0465764i 0.00884923 + 0.00218114i
\(457\) −3.78621 7.21402i −0.177111 0.337457i 0.780676 0.624936i \(-0.214875\pi\)
−0.957787 + 0.287479i \(0.907183\pi\)
\(458\) −3.27783 + 1.72034i −0.153163 + 0.0803860i
\(459\) −4.54856 11.9936i −0.212308 0.559811i
\(460\) −28.6169 + 10.8529i −1.33427 + 0.506021i
\(461\) −1.02681 + 0.708758i −0.0478235 + 0.0330102i −0.591737 0.806131i \(-0.701557\pi\)
0.543913 + 0.839142i \(0.316942\pi\)
\(462\) 16.0446 65.0955i 0.746462 3.02852i
\(463\) 8.69066 5.99873i 0.403889 0.278785i −0.348753 0.937215i \(-0.613395\pi\)
0.752642 + 0.658430i \(0.228779\pi\)
\(464\) 1.74920 14.4059i 0.0812044 0.668778i
\(465\) 8.31125 + 21.9150i 0.385425 + 1.01628i
\(466\) 2.16227 4.11986i 0.100165 0.190849i
\(467\) 11.0810 16.0537i 0.512769 0.742875i −0.478011 0.878354i \(-0.658642\pi\)
0.990780 + 0.135479i \(0.0432574\pi\)
\(468\) −2.70047 + 4.43018i −0.124829 + 0.204785i
\(469\) 25.9132 + 37.5417i 1.19656 + 1.73352i
\(470\) −24.1569 + 2.93318i −1.11427 + 0.135297i
\(471\) −38.2041 + 9.41646i −1.76035 + 0.433888i
\(472\) 0.586370 0.849503i 0.0269899 0.0391016i
\(473\) −17.8256 + 20.1209i −0.819622 + 0.925162i
\(474\) 14.5757 + 27.7718i 0.669486 + 1.27560i
\(475\) 10.3371 + 1.25515i 0.474298 + 0.0575902i
\(476\) 21.5173 2.61267i 0.986242 0.119751i
\(477\) −0.487687 0.432053i −0.0223296 0.0197823i
\(478\) −2.27929 3.30212i −0.104252 0.151035i
\(479\) −34.6383 4.20586i −1.58267 0.192170i −0.718554 0.695471i \(-0.755196\pi\)
−0.864112 + 0.503300i \(0.832119\pi\)
\(480\) −6.74121 55.5188i −0.307693 2.53408i
\(481\) −3.73392 + 4.73000i −0.170252 + 0.215669i
\(482\) −2.97315 + 24.4861i −0.135423 + 1.11531i
\(483\) −7.49433 + 30.4057i −0.341004 + 1.38351i
\(484\) 20.2494 0.920425
\(485\) −9.45926 −0.429523
\(486\) 3.55783 14.4347i 0.161386 0.654770i
\(487\) −28.1167 + 10.6633i −1.27409 + 0.483198i −0.896611 0.442820i \(-0.853978\pi\)
−0.377479 + 0.926018i \(0.623209\pi\)
\(488\) 1.01510i 0.0459512i
\(489\) 13.4684 + 5.10788i 0.609061 + 0.230986i
\(490\) 50.9508 12.5583i 2.30172 0.567324i
\(491\) −1.48662 1.31703i −0.0670901 0.0594367i 0.628911 0.777477i \(-0.283501\pi\)
−0.696001 + 0.718040i \(0.745039\pi\)
\(492\) 10.0127 + 40.6230i 0.451406 + 1.83143i
\(493\) −7.80248 6.91240i −0.351406 0.311319i
\(494\) 8.92285 + 1.66917i 0.401458 + 0.0750996i
\(495\) −9.23203 + 8.17886i −0.414949 + 0.367613i
\(496\) −11.1923 7.72547i −0.502548 0.346884i
\(497\) −7.20025 1.77470i −0.322975 0.0796063i
\(498\) 16.0530 + 23.2567i 0.719351 + 1.04216i
\(499\) −6.75942 27.4241i −0.302593 1.22767i −0.903583 0.428413i \(-0.859073\pi\)
0.600990 0.799257i \(-0.294773\pi\)
\(500\) −5.51157 22.3613i −0.246485 1.00003i
\(501\) −34.4880 + 4.18760i −1.54081 + 0.187088i
\(502\) −13.7253 15.4927i −0.612590 0.691471i
\(503\) 12.2389 32.2714i 0.545707 1.43891i −0.324340 0.945941i \(-0.605142\pi\)
0.870046 0.492970i \(-0.164089\pi\)
\(504\) −0.195352 0.102529i −0.00870166 0.00456698i
\(505\) 29.1138 20.0958i 1.29555 0.894252i
\(506\) −39.4563 −1.75405
\(507\) 11.8380 22.1571i 0.525744 0.984033i
\(508\) 19.2256 0.853000
\(509\) −0.754264 + 0.520631i −0.0334322 + 0.0230765i −0.584664 0.811276i \(-0.698774\pi\)
0.551231 + 0.834352i \(0.314158\pi\)
\(510\) −36.2832 19.0429i −1.60665 0.843233i
\(511\) 8.90828 23.4892i 0.394079 1.03910i
\(512\) 21.0882 + 23.8037i 0.931976 + 1.05198i
\(513\) −5.49918 + 0.667722i −0.242795 + 0.0294806i
\(514\) 11.7306 + 47.5931i 0.517416 + 2.09924i
\(515\) 10.3236 + 41.8846i 0.454913 + 1.84565i
\(516\) −12.5225 18.1420i −0.551274 0.798658i
\(517\) −15.0760 3.71591i −0.663043 0.163425i
\(518\) 10.3327 + 7.13215i 0.453993 + 0.313369i
\(519\) −37.2203 + 32.9744i −1.63379 + 1.44741i
\(520\) 0.184403 + 1.02759i 0.00808660 + 0.0450628i
\(521\) 16.5717 + 14.6812i 0.726018 + 0.643196i 0.942928 0.332996i \(-0.108059\pi\)
−0.216910 + 0.976192i \(0.569598\pi\)
\(522\) −1.24409 5.04745i −0.0544521 0.220921i
\(523\) 17.0527 + 15.1073i 0.745661 + 0.660598i 0.947839 0.318751i \(-0.103263\pi\)
−0.202178 + 0.979349i \(0.564802\pi\)
\(524\) −11.4465 + 2.82131i −0.500043 + 0.123250i
\(525\) −56.1363 21.2897i −2.44999 0.929158i
\(526\) 42.1375i 1.83728i
\(527\) −9.13402 + 3.46408i −0.397884 + 0.150898i
\(528\) 8.71100 35.3419i 0.379098 1.53806i
\(529\) −4.57020 −0.198704
\(530\) 6.42354 0.279021
\(531\) 2.27826 9.24328i 0.0988682 0.401124i
\(532\) 1.12832 9.29254i 0.0489188 0.402883i
\(533\) −11.7090 38.0688i −0.507175 1.64894i
\(534\) −2.27997 18.7772i −0.0986638 0.812570i
\(535\) 44.4089 + 5.39222i 1.91996 + 0.233126i
\(536\) 0.546463 + 0.791688i 0.0236036 + 0.0341957i
\(537\) −14.7012 13.0241i −0.634404 0.562033i
\(538\) −29.3308 + 3.56141i −1.26454 + 0.153543i
\(539\) 33.2395 + 4.03601i 1.43173 + 0.173843i
\(540\) 14.5064 + 27.6396i 0.624256 + 1.18942i
\(541\) −4.64006 + 5.23754i −0.199492 + 0.225180i −0.839740 0.542988i \(-0.817293\pi\)
0.640249 + 0.768168i \(0.278831\pi\)
\(542\) 2.41922 3.50485i 0.103914 0.150546i
\(543\) −9.76491 + 2.40683i −0.419052 + 0.103287i
\(544\) 23.1399 2.80969i 0.992115 0.120465i
\(545\) 8.62112 + 12.4899i 0.369288 + 0.535007i
\(546\) −47.6479 21.6560i −2.03914 0.926793i
\(547\) −0.526092 + 0.762177i −0.0224941 + 0.0325883i −0.834070 0.551659i \(-0.813995\pi\)
0.811576 + 0.584248i \(0.198610\pi\)
\(548\) 6.13216 11.6839i 0.261953 0.499110i
\(549\) 3.31979 + 8.75358i 0.141685 + 0.373593i
\(550\) 9.11798 75.0933i 0.388792 3.20199i
\(551\) −3.70487 + 2.55729i −0.157833 + 0.108944i
\(552\) −0.158042 + 0.641202i −0.00672672 + 0.0272914i
\(553\) −25.3388 + 17.4901i −1.07752 + 0.743756i
\(554\) 23.0118 8.72721i 0.977676 0.370784i
\(555\) −4.16583 10.9844i −0.176830 0.466261i
\(556\) −6.21733 + 3.26311i −0.263674 + 0.138387i
\(557\) −4.87768 9.29365i −0.206674 0.393785i 0.759951 0.649981i \(-0.225223\pi\)
−0.966625 + 0.256196i \(0.917531\pi\)
\(558\) −4.73021 1.16589i −0.200246 0.0493561i
\(559\) 12.8810 + 16.5668i 0.544809 + 0.700699i
\(560\) 54.3719 13.4015i 2.29763 0.566316i
\(561\) −17.3383 19.5709i −0.732023 0.826284i
\(562\) −6.26108 51.5647i −0.264108 2.17512i
\(563\) −33.2748 + 17.4639i −1.40236 + 0.736018i −0.984973 0.172709i \(-0.944748\pi\)
−0.417392 + 0.908727i \(0.637056\pi\)
\(564\) 5.91741 11.2747i 0.249168 0.474750i
\(565\) −31.4208 11.9163i −1.32188 0.501324i
\(566\) 3.62116 + 4.08744i 0.152209 + 0.171808i
\(567\) 39.9601 + 4.85203i 1.67817 + 0.203766i
\(568\) −0.151840 0.0374253i −0.00637108 0.00157033i
\(569\) −24.7657 + 21.9405i −1.03823 + 0.919794i −0.996847 0.0793489i \(-0.974716\pi\)
−0.0413863 + 0.999143i \(0.513177\pi\)
\(570\) −11.7349 + 13.2460i −0.491521 + 0.554812i
\(571\) 17.1470 8.99946i 0.717581 0.376616i −0.0660715 0.997815i \(-0.521047\pi\)
0.783653 + 0.621199i \(0.213354\pi\)
\(572\) 6.00156 32.0824i 0.250938 1.34143i
\(573\) 35.5506 + 18.6584i 1.48515 + 0.779465i
\(574\) −77.5883 + 29.4254i −3.23847 + 1.22819i
\(575\) −4.25895 + 35.0756i −0.177610 + 1.46275i
\(576\) 4.99059 + 2.61927i 0.207941 + 0.109136i
\(577\) 43.1555i 1.79659i 0.439394 + 0.898294i \(0.355193\pi\)
−0.439394 + 0.898294i \(0.644807\pi\)
\(578\) −7.78443 + 14.8320i −0.323790 + 0.616929i
\(579\) −2.02453 + 2.28522i −0.0841367 + 0.0949707i
\(580\) 20.8767 + 14.4102i 0.866859 + 0.598350i
\(581\) −20.7642 + 18.3954i −0.861442 + 0.763171i
\(582\) 5.68084 8.23012i 0.235478 0.341149i
\(583\) 3.83237 + 1.45343i 0.158721 + 0.0601948i
\(584\) 0.187860 0.495346i 0.00777369 0.0204975i
\(585\) 4.95083 + 8.25824i 0.204692 + 0.341436i
\(586\) −0.833134 2.19679i −0.0344165 0.0907488i
\(587\) 38.4606i 1.58744i 0.608285 + 0.793719i \(0.291858\pi\)
−0.608285 + 0.793719i \(0.708142\pi\)
\(588\) −9.73691 + 25.6741i −0.401544 + 1.05878i
\(589\) 0.508522 + 4.18805i 0.0209533 + 0.172566i
\(590\) 43.6173 + 83.1058i 1.79570 + 3.42141i
\(591\) 15.9979 + 11.0425i 0.658065 + 0.454229i
\(592\) 5.60988 + 3.87222i 0.230565 + 0.159147i
\(593\) 21.0399 + 40.0881i 0.864004 + 1.64622i 0.758377 + 0.651816i \(0.225993\pi\)
0.105627 + 0.994406i \(0.466315\pi\)
\(594\) 4.85063 + 39.9486i 0.199024 + 1.63911i
\(595\) 14.2640 37.6111i 0.584767 1.54190i
\(596\) 5.12493i 0.209925i
\(597\) −10.5189 27.7361i −0.430510 1.13516i
\(598\) −5.66380 + 30.2768i −0.231610 + 1.23811i
\(599\) 13.6373 35.9587i 0.557207 1.46923i −0.299838 0.953990i \(-0.596932\pi\)
0.857044 0.515243i \(-0.172298\pi\)
\(600\) −1.18381 0.448962i −0.0483290 0.0183288i
\(601\) 0.967183 1.40121i 0.0394522 0.0571564i −0.802761 0.596300i \(-0.796637\pi\)
0.842214 + 0.539144i \(0.181252\pi\)
\(602\) 32.7258 28.9925i 1.33380 1.18165i
\(603\) 7.30153 + 5.03988i 0.297341 + 0.205240i
\(604\) 1.29236 1.45877i 0.0525854 0.0593566i
\(605\) 17.4637 33.2744i 0.710002 1.35280i
\(606\) 37.3995i 1.51925i
\(607\) −8.14219 4.27335i −0.330481 0.173450i 0.291319 0.956626i \(-0.405906\pi\)
−0.621800 + 0.783176i \(0.713598\pi\)
\(608\) 1.21341 9.99330i 0.0492101 0.405282i
\(609\) 24.2689 9.20396i 0.983424 0.372963i
\(610\) −81.7269 42.8936i −3.30902 1.73671i
\(611\) −5.01551 + 11.0352i −0.202906 + 0.446436i
\(612\) 3.73277 1.95911i 0.150888 0.0791923i
\(613\) 13.7762 15.5501i 0.556416 0.628064i −0.401242 0.915972i \(-0.631421\pi\)
0.957658 + 0.287908i \(0.0929598\pi\)
\(614\) 41.3707 36.6513i 1.66959 1.47912i
\(615\) 75.3883 + 18.5816i 3.03995 + 0.749280i
\(616\) 1.37777 + 0.167292i 0.0555121 + 0.00674039i
\(617\) 25.8779 + 29.2101i 1.04180 + 1.17595i 0.984099 + 0.177620i \(0.0568398\pi\)
0.0577051 + 0.998334i \(0.481622\pi\)
\(618\) −42.6420 16.1720i −1.71531 0.650533i
\(619\) 1.23329 2.34983i 0.0495700 0.0944477i −0.859411 0.511286i \(-0.829169\pi\)
0.908981 + 0.416838i \(0.136862\pi\)
\(620\) 21.0497 11.0477i 0.845377 0.443688i
\(621\) −2.26570 18.6597i −0.0909194 0.748789i
\(622\) −16.0142 18.0763i −0.642110 0.724793i
\(623\) 18.0286 4.44364i 0.722299 0.178031i
\(624\) −25.8692 11.7576i −1.03560 0.470680i
\(625\) −1.54180 0.380020i −0.0616720 0.0152008i
\(626\) −26.2934 50.0980i −1.05090 2.00232i
\(627\) −9.99832 + 5.24752i −0.399294 + 0.209566i
\(628\) 14.1520 + 37.3159i 0.564728 + 1.48907i
\(629\) 4.57822 1.73629i 0.182546 0.0692304i
\(630\) 16.5095 11.3957i 0.657752 0.454014i
\(631\) 5.00465 20.3047i 0.199232 0.808316i −0.783212 0.621755i \(-0.786420\pi\)
0.982443 0.186560i \(-0.0597340\pi\)
\(632\) −0.534351 + 0.368836i −0.0212553 + 0.0146715i
\(633\) 0.544653 4.48562i 0.0216480 0.178288i
\(634\) −7.07728 18.6613i −0.281075 0.741133i
\(635\) 16.5809 31.5922i 0.657991 1.25370i
\(636\) −1.90937 + 2.76620i −0.0757116 + 0.109687i
\(637\) 7.86843 24.9270i 0.311759 0.987643i
\(638\) 18.5773 + 26.9139i 0.735483 + 1.06553i
\(639\) −1.43178 + 0.173849i −0.0566402 + 0.00687737i
\(640\) 2.24868 0.554249i 0.0888868 0.0219086i
\(641\) −16.5939 + 24.0404i −0.655418 + 0.949537i 0.344524 + 0.938778i \(0.388040\pi\)
−0.999942 + 0.0107595i \(0.996575\pi\)
\(642\) −31.3617 + 35.4001i −1.23775 + 1.39713i
\(643\) 14.3305 + 27.3044i 0.565138 + 1.07678i 0.985540 + 0.169443i \(0.0541969\pi\)
−0.420402 + 0.907338i \(0.638111\pi\)
\(644\) 31.5313 + 3.82859i 1.24251 + 0.150867i
\(645\) −40.6114 + 4.93112i −1.59907 + 0.194163i
\(646\) −5.52084 4.89103i −0.217214 0.192435i
\(647\) −6.41594 9.29509i −0.252237 0.365428i 0.676327 0.736602i \(-0.263571\pi\)
−0.928563 + 0.371174i \(0.878955\pi\)
\(648\) 0.842687 + 0.102321i 0.0331039 + 0.00401954i
\(649\) 7.21869 + 59.4512i 0.283358 + 2.33366i
\(650\) −56.3140 17.7760i −2.20882 0.697233i
\(651\) 2.93196 24.1468i 0.114912 0.946389i
\(652\) 3.49643 14.1856i 0.136931 0.555550i
\(653\) 13.2532 0.518638 0.259319 0.965792i \(-0.416502\pi\)
0.259319 + 0.965792i \(0.416502\pi\)
\(654\) −16.0444 −0.627386
\(655\) −5.23580 + 21.2425i −0.204580 + 0.830012i
\(656\) −42.1246 + 15.9757i −1.64469 + 0.623748i
\(657\) 4.88594i 0.190619i
\(658\) 23.6132 + 8.95531i 0.920539 + 0.349114i
\(659\) −6.83636 + 1.68501i −0.266307 + 0.0656388i −0.370208 0.928949i \(-0.620714\pi\)
0.103901 + 0.994588i \(0.466867\pi\)
\(660\) 47.6263 + 42.1932i 1.85385 + 1.64237i
\(661\) −5.01035 20.3278i −0.194880 0.790659i −0.984256 0.176749i \(-0.943442\pi\)
0.789376 0.613910i \(-0.210404\pi\)
\(662\) 11.9122 + 10.5533i 0.462979 + 0.410164i
\(663\) −17.5066 + 10.4952i −0.679899 + 0.407601i
\(664\) −0.437879 + 0.387927i −0.0169930 + 0.0150545i
\(665\) −14.2967 9.86829i −0.554402 0.382676i
\(666\) 2.37091 + 0.584377i 0.0918710 + 0.0226442i
\(667\) −8.67734 12.5713i −0.335988 0.486763i
\(668\) 8.43285 + 34.2134i 0.326277 + 1.32376i
\(669\) 2.04404 + 8.29299i 0.0790271 + 0.320626i
\(670\) −86.8312 + 10.5432i −3.35458 + 0.407320i
\(671\) −39.0541 44.0829i −1.50766 1.70180i
\(672\) −20.5816 + 54.2693i −0.793954 + 2.09348i
\(673\) 12.2974 + 6.45416i 0.474029 + 0.248790i 0.684780 0.728750i \(-0.259898\pi\)
−0.210750 + 0.977540i \(0.567591\pi\)
\(674\) −48.8805 + 33.7397i −1.88280 + 1.29961i
\(675\) 36.0368 1.38706
\(676\) −23.7570 9.21061i −0.913729 0.354254i
\(677\) −6.91227 −0.265660 −0.132830 0.991139i \(-0.542406\pi\)
−0.132830 + 0.991139i \(0.542406\pi\)
\(678\) 29.2379 20.1815i 1.12288 0.775066i
\(679\) 8.69242 + 4.56213i 0.333584 + 0.175079i
\(680\) 0.300803 0.793151i 0.0115353 0.0304160i
\(681\) 5.42531 + 6.12391i 0.207898 + 0.234669i
\(682\) 30.4239 3.69413i 1.16499 0.141456i
\(683\) −2.19588 8.90902i −0.0840229 0.340894i 0.913852 0.406046i \(-0.133093\pi\)
−0.997875 + 0.0651522i \(0.979247\pi\)
\(684\) −0.435695 1.76768i −0.0166592 0.0675891i
\(685\) −13.9107 20.1531i −0.531500 0.770011i
\(686\) −1.82166 0.448998i −0.0695511 0.0171428i
\(687\) −2.95843 2.04205i −0.112871 0.0779092i
\(688\) 17.7676 15.7408i 0.677385 0.600111i
\(689\) 1.66541 2.73214i 0.0634471 0.104086i
\(690\) −44.9459 39.8186i −1.71106 1.51587i
\(691\) −6.93468 28.1351i −0.263808 1.07031i −0.942050 0.335471i \(-0.891104\pi\)
0.678243 0.734838i \(-0.262742\pi\)
\(692\) 37.7518 + 33.4452i 1.43511 + 1.27140i
\(693\) 12.4282 3.06328i 0.472109 0.116364i
\(694\) −64.6303 24.5110i −2.45333 0.930426i
\(695\) 13.0307i 0.494284i
\(696\) 0.511787 0.194095i 0.0193992 0.00735716i
\(697\) −7.74467 + 31.4214i −0.293350 + 1.19017i
\(698\) 46.9485 1.77703
\(699\) 4.51820 0.170894
\(700\) −14.5731 + 59.1256i −0.550813 + 2.23474i
\(701\) −2.65231 + 21.8438i −0.100176 + 0.825027i 0.852853 + 0.522151i \(0.174870\pi\)
−0.953030 + 0.302877i \(0.902053\pi\)
\(702\) 31.3508 + 2.01232i 1.18326 + 0.0759502i
\(703\) −0.254885 2.09917i −0.00961317 0.0791716i
\(704\) −35.1976 4.27376i −1.32656 0.161073i
\(705\) −13.4235 19.4474i −0.505560 0.732430i
\(706\) −10.0078 8.86612i −0.376648 0.333681i
\(707\) −36.4457 + 4.42531i −1.37068 + 0.166431i
\(708\) −48.7534 5.91973i −1.83226 0.222477i
\(709\) −2.60743 4.96805i −0.0979242 0.186579i 0.831566 0.555426i \(-0.187445\pi\)
−0.929490 + 0.368847i \(0.879753\pi\)
\(710\) 9.42929 10.6435i 0.353875 0.399442i
\(711\) −3.40167 + 4.92817i −0.127573 + 0.184821i
\(712\) 0.380191 0.0937085i 0.0142482 0.00351188i
\(713\) −14.2108 + 1.72551i −0.532199 + 0.0646207i
\(714\) 24.1575 + 34.9982i 0.904073 + 1.30978i
\(715\) −47.5429 37.5309i −1.77800 1.40358i
\(716\) −11.3165 + 16.3947i −0.422916 + 0.612699i
\(717\) 1.81070 3.44999i 0.0676217 0.128842i
\(718\) 7.97098 + 21.0177i 0.297474 + 0.784375i
\(719\) 0.733788 6.04329i 0.0273657 0.225377i −0.972609 0.232446i \(-0.925327\pi\)
0.999975 + 0.00706924i \(0.00225023\pi\)
\(720\) 8.96338 6.18698i 0.334046 0.230575i
\(721\) 10.7139 43.4681i 0.399007 1.61884i
\(722\) 28.4951 19.6688i 1.06048 0.731996i
\(723\) −22.3959 + 8.49363i −0.832911 + 0.315881i
\(724\) 3.61724 + 9.53788i 0.134434 + 0.354473i
\(725\) 25.9310 13.6096i 0.963052 0.505449i
\(726\) 18.4627 + 35.1777i 0.685215 + 1.30557i
\(727\) 3.88142 + 0.956683i 0.143954 + 0.0354814i 0.310634 0.950530i \(-0.399459\pi\)
−0.166680 + 0.986011i \(0.553305\pi\)
\(728\) 0.326146 1.03322i 0.0120878 0.0382938i
\(729\) −17.0439 + 4.20094i −0.631255 + 0.155590i
\(730\) 31.9429 + 36.0560i 1.18226 + 1.33449i
\(731\) −2.05526 16.9266i −0.0760165 0.626052i
\(732\) 42.7645 22.4445i 1.58062 0.829574i
\(733\) −1.79061 + 3.41173i −0.0661379 + 0.126015i −0.916280 0.400538i \(-0.868823\pi\)
0.850142 + 0.526553i \(0.176516\pi\)
\(734\) 50.0589 + 18.9848i 1.84771 + 0.700744i
\(735\) 33.7911 + 38.1423i 1.24640 + 1.40690i
\(736\) 33.9091 + 4.11731i 1.24990 + 0.151766i
\(737\) −54.1903 13.3567i −1.99612 0.492001i
\(738\) −12.0802 + 10.7021i −0.444679 + 0.393951i
\(739\) −9.02719 + 10.1896i −0.332070 + 0.374830i −0.890703 0.454585i \(-0.849788\pi\)
0.558633 + 0.829415i \(0.311326\pi\)
\(740\) −10.5507 + 5.53743i −0.387851 + 0.203560i
\(741\) 2.59147 + 8.42548i 0.0952000 + 0.309518i
\(742\) −5.90280 3.09803i −0.216699 0.113732i
\(743\) 2.82747 1.07232i 0.103730 0.0393396i −0.302194 0.953246i \(-0.597719\pi\)
0.405924 + 0.913907i \(0.366950\pi\)
\(744\) 0.0618297 0.509214i 0.00226679 0.0186687i
\(745\) −8.42145 4.41992i −0.308538 0.161933i
\(746\) 30.5338i 1.11792i
\(747\) −2.50732 + 4.77730i −0.0917380 + 0.174792i
\(748\) −17.5859 + 19.8504i −0.643003 + 0.725801i
\(749\) −38.2082 26.3732i −1.39610 0.963655i
\(750\) 33.8214 29.9632i 1.23498 1.09410i
\(751\) −25.5551 + 37.0229i −0.932518 + 1.35099i 0.00386028 + 0.999993i \(0.498771\pi\)
−0.936378 + 0.350993i \(0.885844\pi\)
\(752\) 12.8202 + 4.86206i 0.467504 + 0.177301i
\(753\) 7.12727 18.7931i 0.259732 0.684857i
\(754\) 23.3191 10.3919i 0.849231 0.378452i
\(755\) −1.28253 3.38174i −0.0466759 0.123074i
\(756\) 32.3953i 1.17821i
\(757\) −14.6780 + 38.7026i −0.533480 + 1.40667i 0.349357 + 0.936990i \(0.386400\pi\)
−0.882837 + 0.469680i \(0.844369\pi\)
\(758\) 3.76717 + 31.0254i 0.136830 + 1.12689i
\(759\) −17.8058 33.9261i −0.646309 1.23144i
\(760\) −0.301492 0.208105i −0.0109363 0.00754875i
\(761\) 40.8034 + 28.1646i 1.47912 + 1.02097i 0.988771 + 0.149442i \(0.0477477\pi\)
0.490353 + 0.871524i \(0.336868\pi\)
\(762\) 17.5293 + 33.3993i 0.635020 + 1.20993i
\(763\) −1.89846 15.6352i −0.0687289 0.566034i
\(764\) 14.4405 38.0764i 0.522439 1.37756i
\(765\) 7.82341i 0.282856i
\(766\) −21.7216 57.2753i −0.784835 2.06944i
\(767\) 46.6561 + 2.99473i 1.68466 + 0.108133i