Properties

Label 169.2.h.a.12.12
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.12
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62113 - 1.11899i) q^{2} +(0.214934 + 0.112806i) q^{3} +(0.666728 - 1.75802i) q^{4} +(0.457146 + 0.516011i) q^{5} +(0.474664 - 0.0576347i) q^{6} +(-0.520249 - 2.11073i) q^{7} +(0.0564755 + 0.229130i) q^{8} +(-1.67072 - 2.42046i) q^{9} +O(q^{10})\) \(q+(1.62113 - 1.11899i) q^{2} +(0.214934 + 0.112806i) q^{3} +(0.666728 - 1.75802i) q^{4} +(0.457146 + 0.516011i) q^{5} +(0.474664 - 0.0576347i) q^{6} +(-0.520249 - 2.11073i) q^{7} +(0.0564755 + 0.229130i) q^{8} +(-1.67072 - 2.42046i) q^{9} +(1.31850 + 0.324982i) q^{10} +(3.20329 + 2.21107i) q^{11} +(0.341617 - 0.302646i) q^{12} +(-2.77912 + 2.29707i) q^{13} +(-3.20527 - 2.83962i) q^{14} +(0.0400470 + 0.162477i) q^{15} +(3.16265 + 2.80186i) q^{16} +(-3.95902 + 0.975810i) q^{17} +(-5.41692 - 2.05437i) q^{18} +1.37925i q^{19} +(1.21195 - 0.459631i) q^{20} +(0.126284 - 0.512355i) q^{21} +7.66712 q^{22} -6.84453 q^{23} +(-0.0137087 + 0.0556186i) q^{24} +(0.545398 - 4.49176i) q^{25} +(-1.93493 + 6.83364i) q^{26} +(-0.173829 - 1.43161i) q^{27} +(-4.05757 - 0.492678i) q^{28} +(4.25797 + 6.16874i) q^{29} +(0.246731 + 0.218584i) q^{30} +(-5.28453 + 0.641658i) q^{31} +(7.79377 + 0.946335i) q^{32} +(0.439074 + 0.836585i) q^{33} +(-5.32617 + 6.01200i) q^{34} +(0.851331 - 1.23337i) q^{35} +(-5.36912 + 1.32337i) q^{36} +(2.72839 - 0.331287i) q^{37} +(1.54336 + 2.23594i) q^{38} +(-0.856449 + 0.180216i) q^{39} +(-0.0924161 + 0.133888i) q^{40} +(5.43075 - 10.3474i) q^{41} +(-0.368595 - 0.971905i) q^{42} +(-0.238673 + 1.96565i) q^{43} +(6.02283 - 4.15726i) q^{44} +(0.485220 - 1.96861i) q^{45} +(-11.0959 + 7.65893i) q^{46} +(0.501321 - 0.190126i) q^{47} +(0.363693 + 0.958980i) q^{48} +(2.01366 - 1.05685i) q^{49} +(-4.14206 - 7.89203i) q^{50} +(-0.961004 - 0.236866i) q^{51} +(2.18537 + 6.41725i) q^{52} +(9.30260 - 2.29289i) q^{53} +(-1.88375 - 2.12632i) q^{54} +(0.323434 + 2.66372i) q^{55} +(0.454251 - 0.238409i) q^{56} +(-0.155587 + 0.296447i) q^{57} +(13.8055 + 5.23572i) q^{58} +(-6.13211 - 6.92173i) q^{59} +(0.312338 + 0.0379246i) q^{60} +(4.92368 + 1.21358i) q^{61} +(-7.84891 + 6.95353i) q^{62} +(-4.23975 + 4.78569i) q^{63} +(6.21112 - 3.25985i) q^{64} +(-2.45577 - 0.383960i) q^{65} +(1.64792 + 0.864897i) q^{66} +(-9.39667 + 3.56369i) q^{67} +(-0.924096 + 7.61062i) q^{68} +(-1.47112 - 0.772103i) q^{69} -2.95208i q^{70} +(3.06379 - 5.83757i) q^{71} +(0.460245 - 0.519510i) q^{72} +(-2.04047 - 1.40843i) q^{73} +(4.05238 - 3.59009i) q^{74} +(0.623922 - 0.903907i) q^{75} +(2.42474 + 0.919583i) q^{76} +(3.00048 - 7.91160i) q^{77} +(-1.18676 + 1.25051i) q^{78} +(-2.73404 - 7.20907i) q^{79} +2.91282i q^{80} +(-3.00463 + 7.92256i) q^{81} +(-2.77467 - 22.8515i) q^{82} +(-0.674514 - 1.28518i) q^{83} +(-0.816531 - 0.563611i) q^{84} +(-2.31338 - 1.59681i) q^{85} +(1.81261 + 3.45365i) q^{86} +(0.219312 + 1.80620i) q^{87} +(-0.325716 + 0.858843i) q^{88} -2.87983i q^{89} +(-1.41625 - 3.73434i) q^{90} +(6.29432 + 4.67092i) q^{91} +(-4.56343 + 12.0328i) q^{92} +(-1.20821 - 0.458212i) q^{93} +(0.599959 - 0.869190i) q^{94} +(-0.711707 + 0.630517i) q^{95} +(1.56839 + 1.08258i) q^{96} +(-11.2498 + 12.6983i) q^{97} +(2.08181 - 3.96655i) q^{98} -11.4475i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62113 1.11899i 1.14631 0.791243i 0.165503 0.986209i \(-0.447075\pi\)
0.980810 + 0.194966i \(0.0624598\pi\)
\(3\) 0.214934 + 0.112806i 0.124092 + 0.0651286i 0.525627 0.850715i \(-0.323831\pi\)
−0.401535 + 0.915844i \(0.631523\pi\)
\(4\) 0.666728 1.75802i 0.333364 0.879008i
\(5\) 0.457146 + 0.516011i 0.204442 + 0.230767i 0.841785 0.539813i \(-0.181505\pi\)
−0.637343 + 0.770580i \(0.719967\pi\)
\(6\) 0.474664 0.0576347i 0.193781 0.0235293i
\(7\) −0.520249 2.11073i −0.196636 0.797782i −0.983538 0.180704i \(-0.942162\pi\)
0.786902 0.617078i \(-0.211684\pi\)
\(8\) 0.0564755 + 0.229130i 0.0199671 + 0.0810097i
\(9\) −1.67072 2.42046i −0.556908 0.806820i
\(10\) 1.31850 + 0.324982i 0.416947 + 0.102768i
\(11\) 3.20329 + 2.21107i 0.965830 + 0.666664i 0.942901 0.333073i \(-0.108086\pi\)
0.0229286 + 0.999737i \(0.492701\pi\)
\(12\) 0.341617 0.302646i 0.0986163 0.0873665i
\(13\) −2.77912 + 2.29707i −0.770788 + 0.637092i
\(14\) −3.20527 2.83962i −0.856645 0.758921i
\(15\) 0.0400470 + 0.162477i 0.0103401 + 0.0419514i
\(16\) 3.16265 + 2.80186i 0.790661 + 0.700465i
\(17\) −3.95902 + 0.975810i −0.960203 + 0.236669i −0.688113 0.725603i \(-0.741561\pi\)
−0.272090 + 0.962272i \(0.587715\pi\)
\(18\) −5.41692 2.05437i −1.27678 0.484219i
\(19\) 1.37925i 0.316421i 0.987405 + 0.158211i \(0.0505725\pi\)
−0.987405 + 0.158211i \(0.949427\pi\)
\(20\) 1.21195 0.459631i 0.271000 0.102777i
\(21\) 0.126284 0.512355i 0.0275575 0.111805i
\(22\) 7.66712 1.63464
\(23\) −6.84453 −1.42718 −0.713591 0.700562i \(-0.752933\pi\)
−0.713591 + 0.700562i \(0.752933\pi\)
\(24\) −0.0137087 + 0.0556186i −0.00279829 + 0.0113531i
\(25\) 0.545398 4.49176i 0.109080 0.898352i
\(26\) −1.93493 + 6.83364i −0.379470 + 1.34019i
\(27\) −0.173829 1.43161i −0.0334534 0.275514i
\(28\) −4.05757 0.492678i −0.766808 0.0931073i
\(29\) 4.25797 + 6.16874i 0.790686 + 1.14551i 0.986322 + 0.164829i \(0.0527074\pi\)
−0.195636 + 0.980676i \(0.562677\pi\)
\(30\) 0.246731 + 0.218584i 0.0450467 + 0.0399079i
\(31\) −5.28453 + 0.641658i −0.949129 + 0.115245i −0.580436 0.814306i \(-0.697118\pi\)
−0.368693 + 0.929551i \(0.620195\pi\)
\(32\) 7.79377 + 0.946335i 1.37776 + 0.167290i
\(33\) 0.439074 + 0.836585i 0.0764330 + 0.145631i
\(34\) −5.32617 + 6.01200i −0.913431 + 1.03105i
\(35\) 0.851331 1.23337i 0.143901 0.208477i
\(36\) −5.36912 + 1.32337i −0.894854 + 0.220562i
\(37\) 2.72839 0.331287i 0.448545 0.0544632i 0.106852 0.994275i \(-0.465923\pi\)
0.341693 + 0.939812i \(0.389000\pi\)
\(38\) 1.54336 + 2.23594i 0.250366 + 0.362718i
\(39\) −0.856449 + 0.180216i −0.137142 + 0.0288577i
\(40\) −0.0924161 + 0.133888i −0.0146123 + 0.0211695i
\(41\) 5.43075 10.3474i 0.848141 1.61600i 0.0618960 0.998083i \(-0.480285\pi\)
0.786245 0.617915i \(-0.212022\pi\)
\(42\) −0.368595 0.971905i −0.0568754 0.149968i
\(43\) −0.238673 + 1.96565i −0.0363973 + 0.299758i 0.963131 + 0.269034i \(0.0867045\pi\)
−0.999528 + 0.0307243i \(0.990219\pi\)
\(44\) 6.02283 4.15726i 0.907976 0.626730i
\(45\) 0.485220 1.96861i 0.0723323 0.293464i
\(46\) −11.0959 + 7.65893i −1.63600 + 1.12925i
\(47\) 0.501321 0.190126i 0.0731251 0.0277327i −0.317771 0.948167i \(-0.602934\pi\)
0.390896 + 0.920435i \(0.372165\pi\)
\(48\) 0.363693 + 0.958980i 0.0524946 + 0.138417i
\(49\) 2.01366 1.05685i 0.287666 0.150979i
\(50\) −4.14206 7.89203i −0.585775 1.11610i
\(51\) −0.961004 0.236866i −0.134568 0.0331679i
\(52\) 2.18537 + 6.41725i 0.303056 + 0.889912i
\(53\) 9.30260 2.29289i 1.27781 0.314952i 0.458702 0.888590i \(-0.348315\pi\)
0.819109 + 0.573638i \(0.194468\pi\)
\(54\) −1.88375 2.12632i −0.256346 0.289355i
\(55\) 0.323434 + 2.66372i 0.0436118 + 0.359176i
\(56\) 0.454251 0.238409i 0.0607018 0.0318588i
\(57\) −0.155587 + 0.296447i −0.0206081 + 0.0392654i
\(58\) 13.8055 + 5.23572i 1.81275 + 0.687484i
\(59\) −6.13211 6.92173i −0.798333 0.901132i 0.198544 0.980092i \(-0.436379\pi\)
−0.996878 + 0.0789598i \(0.974840\pi\)
\(60\) 0.312338 + 0.0379246i 0.0403226 + 0.00489605i
\(61\) 4.92368 + 1.21358i 0.630413 + 0.155383i 0.541560 0.840662i \(-0.317834\pi\)
0.0888525 + 0.996045i \(0.471680\pi\)
\(62\) −7.84891 + 6.95353i −0.996812 + 0.883099i
\(63\) −4.23975 + 4.78569i −0.534158 + 0.602940i
\(64\) 6.21112 3.25985i 0.776390 0.407481i
\(65\) −2.45577 0.383960i −0.304601 0.0476243i
\(66\) 1.64792 + 0.864897i 0.202845 + 0.106462i
\(67\) −9.39667 + 3.56369i −1.14799 + 0.435374i −0.853916 0.520411i \(-0.825779\pi\)
−0.294069 + 0.955784i \(0.595010\pi\)
\(68\) −0.924096 + 7.61062i −0.112063 + 0.922923i
\(69\) −1.47112 0.772103i −0.177102 0.0929503i
\(70\) 2.95208i 0.352841i
\(71\) 3.06379 5.83757i 0.363605 0.692792i −0.633085 0.774082i \(-0.718212\pi\)
0.996690 + 0.0812904i \(0.0259041\pi\)
\(72\) 0.460245 0.519510i 0.0542404 0.0612248i
\(73\) −2.04047 1.40843i −0.238818 0.164844i 0.442644 0.896697i \(-0.354040\pi\)
−0.681463 + 0.731853i \(0.738656\pi\)
\(74\) 4.05238 3.59009i 0.471079 0.417340i
\(75\) 0.623922 0.903907i 0.0720443 0.104374i
\(76\) 2.42474 + 0.919583i 0.278137 + 0.105483i
\(77\) 3.00048 7.91160i 0.341936 0.901611i
\(78\) −1.18676 + 1.25051i −0.134374 + 0.141592i
\(79\) −2.73404 7.20907i −0.307603 0.811083i −0.996293 0.0860270i \(-0.972583\pi\)
0.688689 0.725056i \(-0.258186\pi\)
\(80\) 2.91282i 0.325663i
\(81\) −3.00463 + 7.92256i −0.333848 + 0.880284i
\(82\) −2.77467 22.8515i −0.306411 2.52352i
\(83\) −0.674514 1.28518i −0.0740376 0.141067i 0.845624 0.533780i \(-0.179229\pi\)
−0.919661 + 0.392713i \(0.871537\pi\)
\(84\) −0.816531 0.563611i −0.0890908 0.0614950i
\(85\) −2.31338 1.59681i −0.250921 0.173198i
\(86\) 1.81261 + 3.45365i 0.195459 + 0.372416i
\(87\) 0.219312 + 1.80620i 0.0235127 + 0.193644i
\(88\) −0.325716 + 0.858843i −0.0347214 + 0.0915529i
\(89\) 2.87983i 0.305262i −0.988283 0.152631i \(-0.951225\pi\)
0.988283 0.152631i \(-0.0487746\pi\)
\(90\) −1.41625 3.73434i −0.149286 0.393634i
\(91\) 6.29432 + 4.67092i 0.659824 + 0.489646i
\(92\) −4.56343 + 12.0328i −0.475771 + 1.25450i
\(93\) −1.20821 0.458212i −0.125285 0.0475144i
\(94\) 0.599959 0.869190i 0.0618810 0.0896501i
\(95\) −0.711707 + 0.630517i −0.0730196 + 0.0646897i
\(96\) 1.56839 + 1.08258i 0.160073 + 0.110491i
\(97\) −11.2498 + 12.6983i −1.14224 + 1.28932i −0.190751 + 0.981638i \(0.561092\pi\)
−0.951489 + 0.307684i \(0.900446\pi\)
\(98\) 2.08181 3.96655i 0.210294 0.400682i
\(99\) 11.4475i 1.15052i
\(100\) −7.53296 3.95360i −0.753296 0.395360i
\(101\) −0.652546 + 5.37420i −0.0649307 + 0.534752i 0.923558 + 0.383459i \(0.125267\pi\)
−0.988489 + 0.151294i \(0.951656\pi\)
\(102\) −1.82296 + 0.691359i −0.180500 + 0.0684548i
\(103\) 0.977542 + 0.513054i 0.0963201 + 0.0505527i 0.512195 0.858869i \(-0.328832\pi\)
−0.415875 + 0.909422i \(0.636525\pi\)
\(104\) −0.683279 0.507051i −0.0670010 0.0497205i
\(105\) 0.322111 0.169057i 0.0314348 0.0164983i
\(106\) 12.5150 14.1266i 1.21557 1.37209i
\(107\) 5.60738 4.96771i 0.542086 0.480247i −0.347077 0.937837i \(-0.612826\pi\)
0.889163 + 0.457590i \(0.151287\pi\)
\(108\) −2.63269 0.648900i −0.253331 0.0624404i
\(109\) −3.77091 0.457872i −0.361188 0.0438562i −0.0620687 0.998072i \(-0.519770\pi\)
−0.299119 + 0.954216i \(0.596693\pi\)
\(110\) 3.50499 + 3.95632i 0.334188 + 0.377220i
\(111\) 0.623795 + 0.236574i 0.0592080 + 0.0224546i
\(112\) 4.26861 8.13316i 0.403346 0.768511i
\(113\) 17.9940 9.44398i 1.69273 0.888415i 0.709812 0.704392i \(-0.248780\pi\)
0.982922 0.184023i \(-0.0589122\pi\)
\(114\) 0.0794926 + 0.654680i 0.00744516 + 0.0613164i
\(115\) −3.12895 3.53185i −0.291776 0.329347i
\(116\) 13.6836 3.37272i 1.27049 0.313149i
\(117\) 10.2031 + 2.88898i 0.943276 + 0.267086i
\(118\) −17.6863 4.35928i −1.62815 0.401304i
\(119\) 4.11935 + 7.84876i 0.377620 + 0.719495i
\(120\) −0.0349667 + 0.0183519i −0.00319201 + 0.00167529i
\(121\) 1.47159 + 3.88027i 0.133781 + 0.352751i
\(122\) 9.33991 3.54216i 0.845596 0.320692i
\(123\) 2.33450 1.61139i 0.210495 0.145294i
\(124\) −2.39530 + 9.71810i −0.215104 + 0.872711i
\(125\) 5.40388 3.73003i 0.483338 0.333624i
\(126\) −1.51807 + 12.5025i −0.135241 + 1.11381i
\(127\) 4.53470 + 11.9570i 0.402390 + 1.06102i 0.971141 + 0.238506i \(0.0766575\pi\)
−0.568751 + 0.822510i \(0.692573\pi\)
\(128\) −0.875777 + 1.66865i −0.0774085 + 0.147489i
\(129\) −0.273036 + 0.395560i −0.0240395 + 0.0348272i
\(130\) −4.41078 + 2.12553i −0.386851 + 0.186421i
\(131\) 5.17969 + 7.50407i 0.452551 + 0.655634i 0.981152 0.193237i \(-0.0618985\pi\)
−0.528601 + 0.848871i \(0.677283\pi\)
\(132\) 1.76347 0.214124i 0.153491 0.0186371i
\(133\) 2.91122 0.717552i 0.252435 0.0622197i
\(134\) −11.2455 + 16.2919i −0.971465 + 1.40741i
\(135\) 0.659261 0.744152i 0.0567402 0.0640464i
\(136\) −0.447175 0.852021i −0.0383449 0.0730602i
\(137\) 2.90549 + 0.352790i 0.248233 + 0.0301409i 0.243707 0.969849i \(-0.421636\pi\)
0.00452548 + 0.999990i \(0.498559\pi\)
\(138\) −3.24885 + 0.394482i −0.276561 + 0.0335805i
\(139\) 7.77123 + 6.88471i 0.659147 + 0.583954i 0.924957 0.380072i \(-0.124101\pi\)
−0.265810 + 0.964026i \(0.585639\pi\)
\(140\) −1.60067 2.31897i −0.135281 0.195989i
\(141\) 0.129198 + 0.0156875i 0.0108804 + 0.00132112i
\(142\) −1.56535 12.8918i −0.131361 1.08186i
\(143\) −13.9813 + 1.21335i −1.16918 + 0.101465i
\(144\) 1.49788 12.3362i 0.124824 1.02802i
\(145\) −1.23662 + 5.01717i −0.102696 + 0.416653i
\(146\) −4.88388 −0.404193
\(147\) 0.552023 0.0455301
\(148\) 1.23669 5.01743i 0.101655 0.412431i
\(149\) 3.43627 1.30320i 0.281510 0.106763i −0.209809 0.977742i \(-0.567284\pi\)
0.491319 + 0.870980i \(0.336515\pi\)
\(150\) 2.16351i 0.176650i
\(151\) −0.704508 0.267184i −0.0573320 0.0217432i 0.325772 0.945448i \(-0.394376\pi\)
−0.383104 + 0.923705i \(0.625145\pi\)
\(152\) −0.316027 + 0.0778937i −0.0256332 + 0.00631802i
\(153\) 8.97633 + 7.95234i 0.725693 + 0.642908i
\(154\) −3.98881 16.1832i −0.321428 1.30408i
\(155\) −2.74690 2.43354i −0.220636 0.195467i
\(156\) −0.254195 + 1.62581i −0.0203519 + 0.130169i
\(157\) −10.8701 + 9.63008i −0.867529 + 0.768564i −0.974190 0.225732i \(-0.927523\pi\)
0.106660 + 0.994296i \(0.465984\pi\)
\(158\) −12.4991 8.62750i −0.994374 0.686367i
\(159\) 2.25810 + 0.556570i 0.179079 + 0.0441389i
\(160\) 3.07457 + 4.45428i 0.243066 + 0.352142i
\(161\) 3.56086 + 14.4470i 0.280635 + 1.13858i
\(162\) 3.99433 + 16.2056i 0.313824 + 1.27324i
\(163\) −19.1764 + 2.32844i −1.50201 + 0.182378i −0.829834 0.558010i \(-0.811565\pi\)
−0.672180 + 0.740387i \(0.734642\pi\)
\(164\) −14.5701 16.4463i −1.13774 1.28424i
\(165\) −0.230966 + 0.609008i −0.0179807 + 0.0474112i
\(166\) −2.53157 1.32867i −0.196488 0.103125i
\(167\) −18.3745 + 12.6830i −1.42186 + 0.981439i −0.424762 + 0.905305i \(0.639642\pi\)
−0.997098 + 0.0761340i \(0.975742\pi\)
\(168\) 0.124528 0.00960753
\(169\) 2.44697 12.7676i 0.188228 0.982125i
\(170\) −5.53710 −0.424676
\(171\) 3.33842 2.30434i 0.255295 0.176217i
\(172\) 3.29651 + 1.73014i 0.251357 + 0.131922i
\(173\) −3.24139 + 8.54684i −0.246438 + 0.649804i −0.999971 0.00760593i \(-0.997579\pi\)
0.753533 + 0.657410i \(0.228348\pi\)
\(174\) 2.37664 + 2.68267i 0.180173 + 0.203373i
\(175\) −9.76465 + 1.18564i −0.738138 + 0.0896262i
\(176\) 3.93576 + 15.9680i 0.296669 + 1.20364i
\(177\) −0.537187 2.17945i −0.0403774 0.163818i
\(178\) −3.22250 4.66859i −0.241536 0.349926i
\(179\) 0.401341 + 0.0989216i 0.0299976 + 0.00739374i 0.254286 0.967129i \(-0.418160\pi\)
−0.224288 + 0.974523i \(0.572006\pi\)
\(180\) −3.13735 2.16555i −0.233844 0.161411i
\(181\) −14.1452 + 12.5316i −1.05141 + 0.931465i −0.997747 0.0670941i \(-0.978627\pi\)
−0.0536601 + 0.998559i \(0.517089\pi\)
\(182\) 15.4306 + 0.528919i 1.14379 + 0.0392061i
\(183\) 0.921366 + 0.816259i 0.0681094 + 0.0603396i
\(184\) −0.386548 1.56829i −0.0284967 0.115616i
\(185\) 1.41822 + 1.25643i 0.104270 + 0.0923748i
\(186\) −2.47140 + 0.609144i −0.181211 + 0.0446646i
\(187\) −14.8395 5.62788i −1.08517 0.411551i
\(188\) 1.00809i 0.0735227i
\(189\) −2.93131 + 1.11170i −0.213222 + 0.0808643i
\(190\) −0.448230 + 1.81854i −0.0325181 + 0.131931i
\(191\) −2.67180 −0.193325 −0.0966625 0.995317i \(-0.530817\pi\)
−0.0966625 + 0.995317i \(0.530817\pi\)
\(192\) 1.70271 0.122883
\(193\) 2.65867 10.7866i 0.191375 0.776440i −0.794264 0.607573i \(-0.792143\pi\)
0.985639 0.168866i \(-0.0540107\pi\)
\(194\) −4.02806 + 33.1740i −0.289198 + 2.38176i
\(195\) −0.484516 0.359552i −0.0346969 0.0257480i
\(196\) −0.515397 4.24468i −0.0368141 0.303191i
\(197\) 23.2337 + 2.82108i 1.65533 + 0.200994i 0.894221 0.447626i \(-0.147730\pi\)
0.761113 + 0.648619i \(0.224653\pi\)
\(198\) −12.8096 18.5580i −0.910341 1.31886i
\(199\) 0.918566 + 0.813779i 0.0651154 + 0.0576872i 0.695053 0.718959i \(-0.255381\pi\)
−0.629937 + 0.776646i \(0.716919\pi\)
\(200\) 1.06000 0.128707i 0.0749533 0.00910097i
\(201\) −2.42167 0.294044i −0.170811 0.0207402i
\(202\) 4.95579 + 9.44247i 0.348688 + 0.664370i
\(203\) 10.8053 12.1967i 0.758387 0.856042i
\(204\) −1.05714 + 1.53154i −0.0740148 + 0.107229i
\(205\) 7.82203 1.92796i 0.546314 0.134654i
\(206\) 2.15882 0.262129i 0.150412 0.0182634i
\(207\) 11.4353 + 16.5669i 0.794809 + 1.15148i
\(208\) −15.2254 0.521884i −1.05569 0.0361862i
\(209\) −3.04962 + 4.41814i −0.210947 + 0.305609i
\(210\) 0.333012 0.634501i 0.0229800 0.0437847i
\(211\) 3.69438 + 9.74128i 0.254332 + 0.670617i 0.999991 + 0.00428985i \(0.00136550\pi\)
−0.745659 + 0.666328i \(0.767865\pi\)
\(212\) 2.17137 17.8829i 0.149130 1.22820i
\(213\) 1.31702 0.909076i 0.0902410 0.0622889i
\(214\) 3.53151 14.3279i 0.241409 0.979435i
\(215\) −1.12340 + 0.775430i −0.0766155 + 0.0528839i
\(216\) 0.318208 0.120680i 0.0216513 0.00821126i
\(217\) 4.10364 + 10.8204i 0.278573 + 0.734537i
\(218\) −6.62550 + 3.47733i −0.448735 + 0.235515i
\(219\) −0.279686 0.532896i −0.0188994 0.0360098i
\(220\) 4.89850 + 1.20737i 0.330257 + 0.0814010i
\(221\) 8.76107 11.8060i 0.589333 0.794159i
\(222\) 1.27598 0.314500i 0.0856379 0.0211079i
\(223\) 14.2300 + 16.0624i 0.952914 + 1.07562i 0.997063 + 0.0765922i \(0.0244039\pi\)
−0.0441489 + 0.999025i \(0.514058\pi\)
\(224\) −2.05724 16.9429i −0.137455 1.13204i
\(225\) −11.7833 + 6.18437i −0.785556 + 0.412291i
\(226\) 18.6030 35.4450i 1.23745 2.35777i
\(227\) −18.2503 6.92142i −1.21131 0.459391i −0.335501 0.942040i \(-0.608905\pi\)
−0.875814 + 0.482649i \(0.839675\pi\)
\(228\) 0.417424 + 0.471175i 0.0276446 + 0.0312043i
\(229\) 2.31245 + 0.280782i 0.152811 + 0.0185546i 0.196584 0.980487i \(-0.437015\pi\)
−0.0437738 + 0.999041i \(0.513938\pi\)
\(230\) −9.02452 2.22435i −0.595059 0.146669i
\(231\) 1.53738 1.36200i 0.101152 0.0896130i
\(232\) −1.17297 + 1.32401i −0.0770094 + 0.0869257i
\(233\) 7.16160 3.75870i 0.469172 0.246241i −0.213531 0.976936i \(-0.568496\pi\)
0.682703 + 0.730696i \(0.260804\pi\)
\(234\) 19.7733 6.73371i 1.29262 0.440196i
\(235\) 0.327284 + 0.171772i 0.0213496 + 0.0112051i
\(236\) −16.2570 + 6.16545i −1.05824 + 0.401337i
\(237\) 0.225588 1.85789i 0.0146535 0.120683i
\(238\) 15.4607 + 8.11438i 1.00217 + 0.525977i
\(239\) 11.7127i 0.757635i −0.925471 0.378817i \(-0.876331\pi\)
0.925471 0.378817i \(-0.123669\pi\)
\(240\) −0.328583 + 0.626063i −0.0212100 + 0.0404122i
\(241\) 17.0634 19.2606i 1.09915 1.24068i 0.130711 0.991420i \(-0.458274\pi\)
0.968436 0.249261i \(-0.0801877\pi\)
\(242\) 6.72761 + 4.64373i 0.432467 + 0.298510i
\(243\) −4.77785 + 4.23280i −0.306499 + 0.271534i
\(244\) 5.41624 7.84678i 0.346739 0.502339i
\(245\) 1.46588 + 0.555936i 0.0936518 + 0.0355174i
\(246\) 1.98141 5.22456i 0.126330 0.333106i
\(247\) −3.16823 3.83309i −0.201589 0.243894i
\(248\) −0.445469 1.17461i −0.0282873 0.0745876i
\(249\) 0.352318i 0.0223272i
\(250\) 4.58655 12.0937i 0.290079 0.764875i
\(251\) 3.31360 + 27.2899i 0.209152 + 1.72253i 0.598233 + 0.801322i \(0.295870\pi\)
−0.389081 + 0.921204i \(0.627207\pi\)
\(252\) 5.58656 + 10.6443i 0.351920 + 0.670528i
\(253\) −21.9250 15.1338i −1.37841 0.951451i
\(254\) 20.7311 + 14.3097i 1.30079 + 0.897867i
\(255\) −0.317093 0.604171i −0.0198572 0.0378346i
\(256\) 2.13848 + 17.6120i 0.133655 + 1.10075i
\(257\) 9.59298 25.2946i 0.598394 1.57783i −0.202665 0.979248i \(-0.564960\pi\)
0.801058 0.598586i \(-0.204271\pi\)
\(258\) 0.946779i 0.0589439i
\(259\) −2.11870 5.58655i −0.131650 0.347131i
\(260\) −2.31234 + 4.06129i −0.143405 + 0.251871i
\(261\) 7.81729 20.6125i 0.483878 1.27588i
\(262\) 16.7939 + 6.36909i 1.03753 + 0.393484i
\(263\) −5.49462 + 7.96033i −0.338813 + 0.490855i −0.954943 0.296789i \(-0.904084\pi\)
0.616130 + 0.787644i \(0.288699\pi\)
\(264\) −0.166890 + 0.147852i −0.0102714 + 0.00909964i
\(265\) 5.43580 + 3.75206i 0.333918 + 0.230487i
\(266\) 3.91655 4.42087i 0.240139 0.271061i
\(267\) 0.324862 0.618974i 0.0198813 0.0378806i
\(268\) 18.8955i 1.15423i
\(269\) −20.9755 11.0088i −1.27890 0.671217i −0.317991 0.948094i \(-0.603008\pi\)
−0.960905 + 0.276877i \(0.910701\pi\)
\(270\) 0.236053 1.94407i 0.0143657 0.118313i
\(271\) 21.6059 8.19405i 1.31247 0.497753i 0.403637 0.914919i \(-0.367746\pi\)
0.908830 + 0.417166i \(0.136977\pi\)
\(272\) −15.2551 8.00647i −0.924974 0.485464i
\(273\) 0.825955 + 1.71398i 0.0499891 + 0.103735i
\(274\) 5.10495 2.67928i 0.308401 0.161861i
\(275\) 11.6787 13.1825i 0.704251 0.794935i
\(276\) −2.33821 + 2.07147i −0.140744 + 0.124688i
\(277\) −11.1292 2.74310i −0.668689 0.164817i −0.109665 0.993969i \(-0.534978\pi\)
−0.559024 + 0.829152i \(0.688824\pi\)
\(278\) 20.3021 + 2.46512i 1.21764 + 0.147848i
\(279\) 10.3821 + 11.7190i 0.621559 + 0.701595i
\(280\) 0.330681 + 0.125411i 0.0197619 + 0.00749472i
\(281\) −6.06070 + 11.5477i −0.361551 + 0.688877i −0.996492 0.0836826i \(-0.973332\pi\)
0.634942 + 0.772560i \(0.281024\pi\)
\(282\) 0.227001 0.119139i 0.0135177 0.00709465i
\(283\) −2.08429 17.1657i −0.123898 1.02039i −0.913518 0.406798i \(-0.866645\pi\)
0.789620 0.613596i \(-0.210278\pi\)
\(284\) −8.21982 9.27826i −0.487757 0.550563i
\(285\) −0.224096 + 0.0552347i −0.0132743 + 0.00327182i
\(286\) −21.3078 + 17.6119i −1.25996 + 1.04141i
\(287\) −24.6660 6.07962i −1.45599 0.358869i
\(288\) −10.7307 20.4456i −0.632311 1.20477i
\(289\) −0.331133 + 0.173792i −0.0194784 + 0.0102231i
\(290\) 3.60942 + 9.51726i 0.211952 + 0.558873i
\(291\) −3.85040 + 1.46027i −0.225715 + 0.0856023i
\(292\) −3.83648 + 2.64813i −0.224513 + 0.154970i
\(293\) 4.21762 17.1115i 0.246396 0.999667i −0.709205 0.705002i \(-0.750946\pi\)
0.955601 0.294665i \(-0.0952079\pi\)
\(294\) 0.894902 0.617706i 0.0521917 0.0360254i
\(295\) 0.768416 6.32847i 0.0447389 0.368458i
\(296\) 0.229995 + 0.606447i 0.0133682 + 0.0352490i
\(297\) 2.60857 4.97022i 0.151365 0.288401i
\(298\) 4.11237 5.95780i 0.238223 0.345126i
\(299\) 19.0217 15.7223i 1.10006 0.909246i
\(300\) −1.17310 1.69952i −0.0677288 0.0981221i
\(301\) 4.27312 0.518851i 0.246299 0.0299061i
\(302\) −1.44108 + 0.355193i −0.0829246 + 0.0204391i
\(303\) −0.746496 + 1.08149i −0.0428850 + 0.0621297i
\(304\) −3.86446 + 4.36207i −0.221642 + 0.250182i
\(305\) 1.62462 + 3.09545i 0.0930254 + 0.177245i
\(306\) 23.4504 + 2.84739i 1.34057 + 0.162774i
\(307\) −11.0892 + 1.34647i −0.632893 + 0.0768471i −0.430695 0.902498i \(-0.641732\pi\)
−0.202198 + 0.979345i \(0.564808\pi\)
\(308\) −11.9082 10.5498i −0.678534 0.601129i
\(309\) 0.152231 + 0.220545i 0.00866014 + 0.0125464i
\(310\) −7.17619 0.871347i −0.407580 0.0494892i
\(311\) 1.50830 + 12.4220i 0.0855278 + 0.704385i 0.970897 + 0.239497i \(0.0769824\pi\)
−0.885369 + 0.464888i \(0.846095\pi\)
\(312\) −0.0896614 0.186060i −0.00507608 0.0105336i
\(313\) −1.17589 + 9.68432i −0.0664652 + 0.547390i 0.921001 + 0.389560i \(0.127373\pi\)
−0.987466 + 0.157830i \(0.949550\pi\)
\(314\) −6.84596 + 27.7751i −0.386340 + 1.56744i
\(315\) −4.40765 −0.248343
\(316\) −14.4965 −0.815493
\(317\) −5.09312 + 20.6636i −0.286058 + 1.16058i 0.635424 + 0.772163i \(0.280825\pi\)
−0.921482 + 0.388420i \(0.873021\pi\)
\(318\) 4.28346 1.62450i 0.240205 0.0910976i
\(319\) 29.1750i 1.63349i
\(320\) 4.52150 + 1.71478i 0.252760 + 0.0958592i
\(321\) 1.76560 0.435182i 0.0985464 0.0242895i
\(322\) 21.9386 + 19.4359i 1.22259 + 1.08312i
\(323\) −1.34588 5.46047i −0.0748870 0.303829i
\(324\) 11.9247 + 10.5644i 0.662484 + 0.586910i
\(325\) 8.80215 + 13.7359i 0.488255 + 0.761933i
\(326\) −28.4820 + 25.2329i −1.57747 + 1.39752i
\(327\) −0.758846 0.523794i −0.0419643 0.0289659i
\(328\) 2.67761 + 0.659972i 0.147846 + 0.0364409i
\(329\) −0.662116 0.959241i −0.0365036 0.0528847i
\(330\) 0.307045 + 1.24573i 0.0169023 + 0.0685752i
\(331\) −6.55964 26.6135i −0.360550 1.46281i −0.818848 0.574011i \(-0.805387\pi\)
0.458297 0.888799i \(-0.348459\pi\)
\(332\) −2.70908 + 0.328942i −0.148680 + 0.0180531i
\(333\) −5.36025 6.05047i −0.293740 0.331564i
\(334\) −15.5954 + 41.1216i −0.853340 + 2.25007i
\(335\) −6.13455 3.21966i −0.335166 0.175909i
\(336\) 1.83494 1.26657i 0.100104 0.0690969i
\(337\) −10.1055 −0.550484 −0.275242 0.961375i \(-0.588758\pi\)
−0.275242 + 0.961375i \(0.588758\pi\)
\(338\) −10.3199 23.4361i −0.561331 1.27476i
\(339\) 4.93286 0.267916
\(340\) −4.34961 + 3.00232i −0.235891 + 0.162824i
\(341\) −18.3466 9.62906i −0.993527 0.521443i
\(342\) 2.83348 7.47128i 0.153217 0.404001i
\(343\) −13.3693 15.0908i −0.721873 0.814826i
\(344\) −0.463868 + 0.0563238i −0.0250101 + 0.00303678i
\(345\) −0.274102 1.11208i −0.0147572 0.0598722i
\(346\) 4.30908 + 17.4826i 0.231658 + 0.939872i
\(347\) −18.2925 26.5012i −0.981992 1.42266i −0.904894 0.425637i \(-0.860050\pi\)
−0.0770981 0.997024i \(-0.524565\pi\)
\(348\) 3.32154 + 0.818687i 0.178053 + 0.0438862i
\(349\) −1.99739 1.37870i −0.106918 0.0738000i 0.513406 0.858146i \(-0.328383\pi\)
−0.620324 + 0.784346i \(0.712999\pi\)
\(350\) −14.5031 + 12.8486i −0.775221 + 0.686786i
\(351\) 3.77160 + 3.57932i 0.201313 + 0.191050i
\(352\) 22.8733 + 20.2640i 1.21915 + 1.08008i
\(353\) −0.434272 1.76191i −0.0231140 0.0937771i 0.958252 0.285925i \(-0.0923008\pi\)
−0.981366 + 0.192148i \(0.938455\pi\)
\(354\) −3.30963 2.93207i −0.175905 0.155838i
\(355\) 4.41285 1.08767i 0.234209 0.0577275i
\(356\) −5.06279 1.92006i −0.268328 0.101763i
\(357\) 2.15165i 0.113877i
\(358\) 0.761318 0.288730i 0.0402369 0.0152598i
\(359\) 5.38548 21.8498i 0.284235 1.15319i −0.639080 0.769141i \(-0.720685\pi\)
0.923314 0.384045i \(-0.125469\pi\)
\(360\) 0.478472 0.0252177
\(361\) 17.0977 0.899878
\(362\) −8.90861 + 36.1437i −0.468226 + 1.89967i
\(363\) −0.121423 + 1.00000i −0.00637303 + 0.0524866i
\(364\) 12.4082 7.95129i 0.650364 0.416761i
\(365\) −0.206024 1.69676i −0.0107838 0.0888125i
\(366\) 2.40704 + 0.292268i 0.125818 + 0.0152771i
\(367\) 14.2840 + 20.6939i 0.745617 + 1.08021i 0.993765 + 0.111491i \(0.0355626\pi\)
−0.248148 + 0.968722i \(0.579822\pi\)
\(368\) −21.6468 19.1774i −1.12842 0.999691i
\(369\) −34.1188 + 4.14278i −1.77616 + 0.215664i
\(370\) 3.70505 + 0.449875i 0.192617 + 0.0233879i
\(371\) −9.67933 18.4424i −0.502526 0.957483i
\(372\) −1.61109 + 1.81854i −0.0835311 + 0.0942871i
\(373\) −3.47676 + 5.03696i −0.180020 + 0.260804i −0.902597 0.430487i \(-0.858342\pi\)
0.722577 + 0.691290i \(0.242957\pi\)
\(374\) −30.3543 + 7.48166i −1.56958 + 0.386867i
\(375\) 1.58225 0.192119i 0.0817068 0.00992101i
\(376\) 0.0718759 + 0.104130i 0.00370672 + 0.00537010i
\(377\) −26.0034 7.36279i −1.33924 0.379203i
\(378\) −3.50807 + 5.08231i −0.180435 + 0.261406i
\(379\) −9.83120 + 18.7318i −0.504995 + 0.962188i 0.490861 + 0.871238i \(0.336682\pi\)
−0.995856 + 0.0909494i \(0.971010\pi\)
\(380\) 0.633945 + 1.67158i 0.0325207 + 0.0857500i
\(381\) −0.374163 + 3.08151i −0.0191690 + 0.157871i
\(382\) −4.33135 + 2.98971i −0.221611 + 0.152967i
\(383\) −2.00020 + 8.11513i −0.102205 + 0.414664i −0.999650 0.0264640i \(-0.991575\pi\)
0.897444 + 0.441128i \(0.145421\pi\)
\(384\) −0.376468 + 0.259857i −0.0192116 + 0.0132608i
\(385\) 5.45413 2.06848i 0.277968 0.105419i
\(386\) −7.76005 20.4616i −0.394976 1.04147i
\(387\) 5.15653 2.70635i 0.262121 0.137572i
\(388\) 14.8234 + 28.2436i 0.752543 + 1.43385i
\(389\) 21.9538 + 5.41113i 1.11310 + 0.274355i 0.752649 0.658422i \(-0.228776\pi\)
0.360454 + 0.932777i \(0.382622\pi\)
\(390\) −1.18780 0.0407143i −0.0601464 0.00206165i
\(391\) 27.0976 6.67896i 1.37038 0.337769i
\(392\) 0.355879 + 0.401704i 0.0179746 + 0.0202891i
\(393\) 0.266786 + 2.19718i 0.0134576 + 0.110833i
\(394\) 40.8217 21.4249i 2.05657 1.07937i
\(395\) 2.47010 4.70639i 0.124284 0.236804i
\(396\) −20.1250 7.63239i −1.01132 0.383542i
\(397\) −8.69631 9.81610i −0.436455 0.492656i 0.488590 0.872514i \(-0.337511\pi\)
−0.925045 + 0.379858i \(0.875973\pi\)
\(398\) 2.39972 + 0.291379i 0.120287 + 0.0146055i
\(399\) 0.706665 + 0.174177i 0.0353775 + 0.00871977i
\(400\) 14.3102 12.6777i 0.715509 0.633886i
\(401\) −7.80285 + 8.80760i −0.389656 + 0.439830i −0.910304 0.413941i \(-0.864152\pi\)
0.520648 + 0.853771i \(0.325690\pi\)
\(402\) −4.25487 + 2.23313i −0.212214 + 0.111378i
\(403\) 13.2124 13.9222i 0.658156 0.693512i
\(404\) 9.01285 + 4.73031i 0.448406 + 0.235342i
\(405\) −5.46168 + 2.07134i −0.271393 + 0.102926i
\(406\) 3.86893 31.8635i 0.192012 1.58136i
\(407\) 9.47234 + 4.97147i 0.469526 + 0.246427i
\(408\) 0.233572i 0.0115635i
\(409\) −1.32410 + 2.52287i −0.0654727 + 0.124748i −0.915993 0.401195i \(-0.868595\pi\)
0.850520 + 0.525943i \(0.176287\pi\)
\(410\) 10.5232 11.8782i 0.519703 0.586624i
\(411\) 0.584691 + 0.403583i 0.0288407 + 0.0199073i
\(412\) 1.55371 1.37647i 0.0765458 0.0678137i
\(413\) −11.4197 + 16.5443i −0.561926 + 0.814090i
\(414\) 37.0763 + 14.0612i 1.82220 + 0.691069i
\(415\) 0.354815 0.935571i 0.0174172 0.0459254i
\(416\) −23.8336 + 15.2728i −1.16854 + 0.748813i
\(417\) 0.893664 + 2.35640i 0.0437629 + 0.115393i
\(418\) 10.5749i 0.517234i
\(419\) 1.51853 4.00404i 0.0741851 0.195610i −0.892794 0.450465i \(-0.851258\pi\)
0.966979 + 0.254855i \(0.0820276\pi\)
\(420\) −0.0824444 0.678991i −0.00402288 0.0331314i
\(421\) 12.0267 + 22.9149i 0.586144 + 1.11681i 0.980254 + 0.197742i \(0.0633607\pi\)
−0.394110 + 0.919063i \(0.628947\pi\)
\(422\) 16.8894 + 11.6579i 0.822165 + 0.567499i
\(423\) −1.29776 0.895779i −0.0630992 0.0435543i
\(424\) 1.05074 + 2.00201i 0.0510284 + 0.0972264i
\(425\) 2.22386 + 18.3152i 0.107873 + 0.888416i
\(426\) 1.11783 2.94746i 0.0541588 0.142805i
\(427\) 11.0239i 0.533485i
\(428\) −4.99472 13.1700i −0.241429 0.636595i
\(429\) −3.14193 1.31639i −0.151694 0.0635557i
\(430\) −0.953490 + 2.51415i −0.0459814 + 0.121243i
\(431\) −16.7482 6.35175i −0.806732 0.305953i −0.0834553 0.996512i \(-0.526596\pi\)
−0.723277 + 0.690558i \(0.757365\pi\)
\(432\) 3.46141 5.01472i 0.166537 0.241271i
\(433\) 11.8828 10.5273i 0.571053 0.505909i −0.327454 0.944867i \(-0.606191\pi\)
0.898508 + 0.438958i \(0.144652\pi\)
\(434\) 18.7604 + 12.9494i 0.900529 + 0.621590i
\(435\) −0.831759 + 0.938862i −0.0398798 + 0.0450150i
\(436\) −3.31912 + 6.32405i −0.158957 + 0.302867i
\(437\) 9.44030i 0.451591i
\(438\) −1.04971 0.550931i −0.0501571 0.0263245i
\(439\) −3.32093 + 27.3503i −0.158499 + 1.30536i 0.668734 + 0.743501i \(0.266836\pi\)
−0.827234 + 0.561858i \(0.810087\pi\)
\(440\) −0.592072 + 0.224543i −0.0282259 + 0.0107047i
\(441\) −5.92233 3.10828i −0.282016 0.148013i
\(442\) 0.992072 28.9426i 0.0471881 1.37666i
\(443\) 30.5590 16.0386i 1.45190 0.762017i 0.459868 0.887987i \(-0.347897\pi\)
0.992034 + 0.125971i \(0.0402045\pi\)
\(444\) 0.831802 0.938911i 0.0394756 0.0445587i
\(445\) 1.48603 1.31650i 0.0704444 0.0624083i
\(446\) 41.0424 + 10.1160i 1.94341 + 0.479008i
\(447\) 0.885580 + 0.107529i 0.0418865 + 0.00508594i
\(448\) −10.1120 11.4141i −0.477747 0.539265i
\(449\) −10.5493 4.00083i −0.497853 0.188811i 0.0928808 0.995677i \(-0.470392\pi\)
−0.590734 + 0.806866i \(0.701162\pi\)
\(450\) −12.1821 + 23.2111i −0.574270 + 1.09418i
\(451\) 40.2752 21.1381i 1.89649 0.995353i
\(452\) −4.60557 37.9303i −0.216628 1.78409i
\(453\) −0.121283 0.136900i −0.00569835 0.00643211i
\(454\) −37.3311 + 9.20129i −1.75204 + 0.431838i
\(455\) 0.467176 + 5.38323i 0.0219016 + 0.252370i
\(456\) −0.0767118 0.0189078i −0.00359236 0.000885438i
\(457\) 2.30287 + 4.38775i 0.107724 + 0.205250i 0.933351 0.358966i \(-0.116871\pi\)
−0.825627 + 0.564216i \(0.809178\pi\)
\(458\) 4.06297 2.13241i 0.189850 0.0996410i
\(459\) 2.08517 + 5.49815i 0.0973275 + 0.256632i
\(460\) −8.29520 + 3.14596i −0.386766 + 0.146681i
\(461\) 18.8843 13.0349i 0.879529 0.607095i −0.0403983 0.999184i \(-0.512863\pi\)
0.919928 + 0.392088i \(0.128247\pi\)
\(462\) 0.968236 3.92829i 0.0450464 0.182761i
\(463\) −12.7404 + 8.79409i −0.592098 + 0.408696i −0.826086 0.563543i \(-0.809438\pi\)
0.233988 + 0.972239i \(0.424822\pi\)
\(464\) −3.81748 + 31.4398i −0.177222 + 1.45955i
\(465\) −0.315884 0.832917i −0.0146488 0.0386256i
\(466\) 7.40397 14.1071i 0.342982 0.653498i
\(467\) 10.2699 14.8785i 0.475233 0.688493i −0.509911 0.860227i \(-0.670322\pi\)
0.985143 + 0.171734i \(0.0549370\pi\)
\(468\) 11.8816 16.0110i 0.549225 0.740110i
\(469\) 12.4106 + 17.9798i 0.573068 + 0.830232i
\(470\) 0.722780 0.0877614i 0.0333393 0.00404813i
\(471\) −3.42269 + 0.843616i −0.157709 + 0.0388718i
\(472\) 1.23966 1.79596i 0.0570601 0.0826658i
\(473\) −5.11073 + 5.76882i −0.234992 + 0.265251i
\(474\) −1.71324 3.26431i −0.0786919 0.149935i
\(475\) 6.19525 + 0.752240i 0.284258 + 0.0345151i
\(476\) 16.5447 2.00889i 0.758327 0.0920775i
\(477\) −21.0919 18.6858i −0.965732 0.855564i
\(478\) −13.1064 18.9879i −0.599473 0.868487i
\(479\) 19.7502 + 2.39811i 0.902411 + 0.109573i 0.558572 0.829456i \(-0.311349\pi\)
0.343839 + 0.939029i \(0.388273\pi\)
\(480\) 0.158359 + 1.30421i 0.00722808 + 0.0595286i
\(481\) −6.82153 + 7.18798i −0.311035 + 0.327744i
\(482\) 6.10966 50.3176i 0.278287 2.29190i
\(483\) −0.864355 + 3.50683i −0.0393295 + 0.159566i
\(484\) 7.80272 0.354669
\(485\) −11.6953 −0.531054
\(486\) −3.00907 + 12.2083i −0.136494 + 0.553779i
\(487\) −33.3310 + 12.6408i −1.51037 + 0.572809i −0.964273 0.264911i \(-0.914658\pi\)
−0.546100 + 0.837720i \(0.683888\pi\)
\(488\) 1.19670i 0.0541721i
\(489\) −4.38433 1.66276i −0.198266 0.0751924i
\(490\) 2.99847 0.739057i 0.135457 0.0333872i
\(491\) −17.1518 15.1951i −0.774048 0.685747i 0.180576 0.983561i \(-0.442204\pi\)
−0.954624 + 0.297814i \(0.903742\pi\)
\(492\) −1.27637 5.17846i −0.0575434 0.233463i
\(493\) −22.8769 20.2672i −1.03032 0.912788i
\(494\) −9.42529 2.66874i −0.424064 0.120072i
\(495\) 5.90705 5.23319i 0.265502 0.235215i
\(496\) −18.5109 12.7772i −0.831165 0.573712i
\(497\) −13.9155 3.42986i −0.624194 0.153850i
\(498\) −0.394239 0.571154i −0.0176663 0.0255940i
\(499\) 6.89626 + 27.9792i 0.308719 + 1.25252i 0.896333 + 0.443381i \(0.146221\pi\)
−0.587614 + 0.809141i \(0.699933\pi\)
\(500\) −2.95454 11.9870i −0.132131 0.536076i
\(501\) −5.38001 + 0.653252i −0.240361 + 0.0291851i
\(502\) 35.9089 + 40.5327i 1.60269 + 1.80906i
\(503\) −0.184885 + 0.487503i −0.00824363 + 0.0217367i −0.939075 0.343713i \(-0.888315\pi\)
0.930831 + 0.365449i \(0.119085\pi\)
\(504\) −1.33599 0.701180i −0.0595096 0.0312331i
\(505\) −3.07145 + 2.12007i −0.136678 + 0.0943419i
\(506\) −52.4778 −2.33292
\(507\) 1.96620 2.46816i 0.0873221 0.109615i
\(508\) 24.0441 1.06678
\(509\) −28.2028 + 19.4670i −1.25007 + 0.862858i −0.994582 0.103955i \(-0.966850\pi\)
−0.255484 + 0.966813i \(0.582235\pi\)
\(510\) −1.19011 0.624617i −0.0526989 0.0276585i
\(511\) −1.91127 + 5.03961i −0.0845497 + 0.222939i
\(512\) 20.6750 + 23.3373i 0.913716 + 1.03137i
\(513\) 1.97455 0.239753i 0.0871784 0.0105854i
\(514\) −12.7528 51.7403i −0.562504 2.28217i
\(515\) 0.182138 + 0.738962i 0.00802595 + 0.0325626i
\(516\) 0.513361 + 0.743732i 0.0225995 + 0.0327410i
\(517\) 2.02626 + 0.499428i 0.0891148 + 0.0219648i
\(518\) −9.68597 6.68574i −0.425577 0.293755i
\(519\) −1.66082 + 1.47136i −0.0729019 + 0.0645854i
\(520\) −0.0507142 0.584376i −0.00222397 0.0256266i
\(521\) 25.8689 + 22.9178i 1.13334 + 1.00405i 0.999916 + 0.0129887i \(0.00413454\pi\)
0.133420 + 0.991060i \(0.457404\pi\)
\(522\) −10.3923 42.1630i −0.454857 1.84543i
\(523\) −10.5647 9.35951i −0.461962 0.409263i 0.399778 0.916612i \(-0.369087\pi\)
−0.861741 + 0.507349i \(0.830626\pi\)
\(524\) 16.6457 4.10280i 0.727172 0.179232i
\(525\) −2.23250 0.846676i −0.0974343 0.0369520i
\(526\) 19.0531i 0.830756i
\(527\) 20.2954 7.69703i 0.884082 0.335288i
\(528\) −0.955360 + 3.87605i −0.0415767 + 0.168683i
\(529\) 23.8475 1.03685
\(530\) 13.0106 0.565146
\(531\) −6.50870 + 26.4068i −0.282453 + 1.14596i
\(532\) 0.679525 5.59639i 0.0294611 0.242634i
\(533\) 8.67605 + 41.2315i 0.375802 + 1.78594i
\(534\) −0.165978 1.36695i −0.00718259 0.0591539i
\(535\) 5.12678 + 0.622504i 0.221650 + 0.0269132i
\(536\) −1.34723 1.95180i −0.0581914 0.0843049i
\(537\) 0.0751027 + 0.0665352i 0.00324092 + 0.00287121i
\(538\) −46.3227 + 5.62459i −1.99711 + 0.242493i
\(539\) 8.78712 + 1.06695i 0.378488 + 0.0459568i
\(540\) −0.868684 1.65514i −0.0373822 0.0712258i
\(541\) −5.10628 + 5.76380i −0.219536 + 0.247805i −0.847953 0.530072i \(-0.822165\pi\)
0.628417 + 0.777877i \(0.283703\pi\)
\(542\) 25.8570 37.4604i 1.11066 1.60906i
\(543\) −4.45393 + 1.09779i −0.191136 + 0.0471109i
\(544\) −31.7791 + 3.85869i −1.36252 + 0.165440i
\(545\) −1.48759 2.15515i −0.0637214 0.0923163i
\(546\) 3.25690 + 1.85435i 0.139382 + 0.0793588i
\(547\) −20.2903 + 29.3955i −0.867550 + 1.25686i 0.0976161 + 0.995224i \(0.468878\pi\)
−0.965166 + 0.261639i \(0.915737\pi\)
\(548\) 2.55738 4.87268i 0.109246 0.208151i
\(549\) −5.28869 13.9451i −0.225716 0.595163i
\(550\) 4.18164 34.4389i 0.178306 1.46848i
\(551\) −8.50822 + 5.87280i −0.362462 + 0.250190i
\(552\) 0.0938299 0.380683i 0.00399367 0.0162029i
\(553\) −13.7940 + 9.52133i −0.586582 + 0.404888i
\(554\) −21.1114 + 8.00649i −0.896937 + 0.340163i
\(555\) 0.163090 + 0.430034i 0.00692280 + 0.0182539i
\(556\) 17.2847 9.07173i 0.733036 0.384727i
\(557\) 11.4297 + 21.7774i 0.484291 + 0.922739i 0.997904 + 0.0647170i \(0.0206145\pi\)
−0.513613 + 0.858022i \(0.671693\pi\)
\(558\) 29.9441 + 7.38055i 1.26763 + 0.312444i
\(559\) −3.85192 6.01101i −0.162919 0.254239i
\(560\) 6.14818 1.51539i 0.259808 0.0640369i
\(561\) −2.55465 2.88360i −0.107857 0.121746i
\(562\) 3.09652 + 25.5022i 0.130619 + 1.07574i
\(563\) 32.4623 17.0375i 1.36812 0.718047i 0.388986 0.921244i \(-0.372825\pi\)
0.979138 + 0.203197i \(0.0651330\pi\)
\(564\) 0.113719 0.216673i 0.00478843 0.00912358i
\(565\) 13.0991 + 4.96782i 0.551082 + 0.208998i
\(566\) −22.5871 25.4955i −0.949405 1.07166i
\(567\) 18.2856 + 2.22027i 0.767921 + 0.0932425i
\(568\) 1.51059 + 0.372327i 0.0633830 + 0.0156225i
\(569\) 7.61885 6.74971i 0.319399 0.282963i −0.488155 0.872757i \(-0.662330\pi\)
0.807553 + 0.589795i \(0.200791\pi\)
\(570\) −0.301482 + 0.340303i −0.0126277 + 0.0142537i
\(571\) 33.6850 17.6792i 1.40967 0.739853i 0.423550 0.905873i \(-0.360784\pi\)
0.986123 + 0.166019i \(0.0530913\pi\)
\(572\) −7.18864 + 25.3883i −0.300572 + 1.06154i
\(573\) −0.574261 0.301395i −0.0239901 0.0125910i
\(574\) −46.7899 + 17.7451i −1.95297 + 0.740664i
\(575\) −3.73299 + 30.7440i −0.155677 + 1.28211i
\(576\) −18.2674 9.58747i −0.761142 0.399478i
\(577\) 40.2841i 1.67705i −0.544863 0.838525i \(-0.683418\pi\)
0.544863 0.838525i \(-0.316582\pi\)
\(578\) −0.342339 + 0.652273i −0.0142394 + 0.0271310i
\(579\) 1.78824 2.01850i 0.0743165 0.0838860i
\(580\) 7.99578 + 5.51909i 0.332007 + 0.229168i
\(581\) −2.36175 + 2.09233i −0.0979821 + 0.0868046i
\(582\) −4.60799 + 6.67583i −0.191007 + 0.276722i
\(583\) 34.8687 + 13.2240i 1.44411 + 0.547680i
\(584\) 0.207478 0.547074i 0.00858549 0.0226381i
\(585\) 3.17356 + 6.58559i 0.131210 + 0.272281i
\(586\) −12.3103 32.4595i −0.508533 1.34089i
\(587\) 11.4771i 0.473712i 0.971545 + 0.236856i \(0.0761169\pi\)
−0.971545 + 0.236856i \(0.923883\pi\)
\(588\) 0.368049 0.970465i 0.0151781 0.0400213i
\(589\) −0.885006 7.28868i −0.0364660 0.300325i
\(590\) −5.83577 11.1191i −0.240255 0.457768i
\(591\) 4.67548 + 3.22725i 0.192323 + 0.132751i
\(592\) 9.55715 + 6.59683i 0.392797 + 0.271128i
\(593\) −4.58216 8.73059i −0.188167 0.358522i 0.773037 0.634361i \(-0.218737\pi\)
−0.961204 + 0.275839i \(0.911044\pi\)
\(594\) −1.33277 10.9763i −0.0546842 0.450365i
\(595\) −2.16690 + 5.71366i −0.0888344 + 0.234237i
\(596\) 6.90990i 0.283040i
\(597\) 0.105632 + 0.278528i 0.00432322 + 0.0113994i
\(598\) 13.2437 46.7730i 0.541573 1.91269i
\(599\) −4.88753 + 12.8874i −0.199699 + 0.526564i −0.997033 0.0769750i \(-0.975474\pi\)
0.797334 + 0.603539i \(0.206243\pi\)
\(600\) 0.242349 + 0.0919107i 0.00989384 + 0.00375224i
\(601\) 4.08808 5.92261i 0.166756 0.241588i −0.730693 0.682707i \(-0.760803\pi\)
0.897449 + 0.441118i \(0.145418\pi\)
\(602\) 6.34671 5.62269i 0.258673 0.229164i
\(603\) 24.3250 + 16.7903i 0.990590 + 0.683755i
\(604\) −0.939429 + 1.06040i −0.0382248 + 0.0431469i
\(605\) −1.32953 + 2.53320i −0.0540530 + 0.102989i
\(606\) 2.58855i 0.105153i
\(607\) −30.4988 16.0070i −1.23791 0.649705i −0.286631 0.958041i \(-0.592536\pi\)
−0.951277 + 0.308336i \(0.900228\pi\)
\(608\) −1.30523 + 10.7496i −0.0529341 + 0.435952i
\(609\) 3.69830 1.40258i 0.149863 0.0568354i
\(610\) 6.09749 + 3.20021i 0.246880 + 0.129573i
\(611\) −0.956496 + 1.67995i −0.0386957 + 0.0679634i
\(612\) 19.9651 10.4785i 0.807042 0.423568i
\(613\) 21.3923 24.1469i 0.864025 0.975283i −0.135855 0.990729i \(-0.543378\pi\)
0.999881 + 0.0154456i \(0.00491667\pi\)
\(614\) −16.4703 + 14.5914i −0.664689 + 0.588863i
\(615\) 1.89870 + 0.467989i 0.0765632 + 0.0188711i
\(616\) 1.98224 + 0.240688i 0.0798667 + 0.00969758i
\(617\) −2.47528 2.79401i −0.0996508 0.112483i 0.696569 0.717489i \(-0.254709\pi\)
−0.796220 + 0.605007i \(0.793170\pi\)
\(618\) 0.493574 + 0.187188i 0.0198545 + 0.00752980i
\(619\) −6.94133 + 13.2256i −0.278995 + 0.531582i −0.984121 0.177501i \(-0.943199\pi\)
0.705125 + 0.709083i \(0.250891\pi\)
\(620\) −6.10964 + 3.20659i −0.245369 + 0.128780i
\(621\) 1.18978 + 9.79870i 0.0477441 + 0.393208i
\(622\) 16.3452 + 18.4499i 0.655381 + 0.739772i
\(623\) −6.07856 + 1.49823i −0.243532 + 0.0600253i
\(624\) −3.21359 1.82969i −0.128646 0.0732462i
\(625\) −17.5713 4.33092i −0.702850 0.173237i
\(626\) 8.93035 + 17.0154i 0.356929 + 0.680071i
\(627\) −1.15386 + 0.605592i −0.0460807 + 0.0241850i
\(628\) 9.68243 + 25.5305i 0.386371 + 1.01878i
\(629\) −10.4785 + 3.97396i −0.417804 + 0.158452i
\(630\) −7.14538 + 4.93210i −0.284679 + 0.196500i
\(631\) 1.39686 5.66727i 0.0556080 0.225610i −0.936563 0.350500i \(-0.886012\pi\)
0.992171 + 0.124890i \(0.0398577\pi\)
\(632\) 1.49741 1.03359i 0.0595637 0.0411139i
\(633\) −0.304827 + 2.51048i −0.0121158 + 0.0997826i
\(634\) 14.8657 + 39.1976i 0.590391 + 1.55673i
\(635\) −4.09694 + 7.80606i −0.162582 + 0.309774i
\(636\) 2.48399 3.59869i 0.0984968 0.142697i
\(637\) −3.16854 + 7.56262i −0.125542 + 0.299642i
\(638\) 32.6464 + 47.2965i 1.29248 + 1.87249i
\(639\) −19.2483 + 2.33717i −0.761452 + 0.0924571i
\(640\) −1.26140 + 0.310907i −0.0498612 + 0.0122897i
\(641\) −2.43651 + 3.52989i −0.0962364 + 0.139422i −0.868144 0.496312i \(-0.834687\pi\)
0.771908 + 0.635734i \(0.219303\pi\)
\(642\) 2.37531 2.68117i 0.0937461 0.105818i
\(643\) −2.86678 5.46219i −0.113055 0.215408i 0.822354 0.568976i \(-0.192660\pi\)
−0.935409 + 0.353569i \(0.884968\pi\)
\(644\) 27.7721 + 3.37214i 1.09437 + 0.132881i
\(645\) −0.328931 + 0.0399394i −0.0129516 + 0.00157261i
\(646\) −8.29205 7.34611i −0.326246 0.289029i
\(647\) −16.4635 23.8515i −0.647246 0.937698i −0.999998 0.00198097i \(-0.999369\pi\)
0.352752 0.935717i \(-0.385246\pi\)
\(648\) −1.98498 0.241021i −0.0779775 0.00946819i
\(649\) −4.33852 35.7309i −0.170302 1.40256i
\(650\) 29.6398 + 12.4183i 1.16257 + 0.487085i
\(651\) −0.338595 + 2.78858i −0.0132706 + 0.109293i
\(652\) −8.69202 + 35.2649i −0.340406 + 1.38108i
\(653\) 1.31978 0.0516470 0.0258235 0.999667i \(-0.491779\pi\)
0.0258235 + 0.999667i \(0.491779\pi\)
\(654\) −1.81631 −0.0710233
\(655\) −1.50431 + 6.10323i −0.0587783 + 0.238473i
\(656\) 46.1676 17.5091i 1.80254 0.683614i
\(657\) 7.29197i 0.284487i
\(658\) −2.14675 0.814157i −0.0836892 0.0317391i
\(659\) 34.3952 8.47767i 1.33985 0.330243i 0.496699 0.867923i \(-0.334545\pi\)
0.843149 + 0.537680i \(0.180699\pi\)
\(660\) 0.916655 + 0.812085i 0.0356807 + 0.0316104i
\(661\) −5.93095 24.0628i −0.230687 0.935935i −0.966069 0.258282i \(-0.916844\pi\)
0.735382 0.677653i \(-0.237003\pi\)
\(662\) −40.4142 35.8038i −1.57074 1.39156i
\(663\) 3.21484 1.54921i 0.124854 0.0601664i
\(664\) 0.256380 0.227133i 0.00994946 0.00881446i
\(665\) 1.70112 + 1.17420i 0.0659665 + 0.0455334i
\(666\) −15.4601 3.81057i −0.599066 0.147656i
\(667\) −29.1438 42.2221i −1.12845 1.63485i
\(668\) 10.0461 + 40.7587i 0.388696 + 1.57700i
\(669\) 1.24658 + 5.05758i 0.0481957 + 0.195537i
\(670\) −13.5477 + 1.64498i −0.523392 + 0.0635513i
\(671\) 13.0887 + 14.7741i 0.505283 + 0.570347i
\(672\) 1.46909 3.87367i 0.0566714 0.149430i
\(673\) −30.0871 15.7909i −1.15977 0.608696i −0.228689 0.973499i \(-0.573444\pi\)
−0.931085 + 0.364803i \(0.881136\pi\)
\(674\) −16.3824 + 11.3080i −0.631027 + 0.435567i
\(675\) −6.52526 −0.251157
\(676\) −20.8142 12.8143i −0.800548 0.492859i
\(677\) 1.49123 0.0573127 0.0286564 0.999589i \(-0.490877\pi\)
0.0286564 + 0.999589i \(0.490877\pi\)
\(678\) 7.99681 5.51980i 0.307116 0.211987i
\(679\) 32.6555 + 17.1389i 1.25320 + 0.657731i
\(680\) 0.235228 0.620245i 0.00902057 0.0237853i
\(681\) −3.14183 3.54639i −0.120395 0.135898i
\(682\) −40.5171 + 4.91967i −1.55148 + 0.188384i
\(683\) 2.37094 + 9.61930i 0.0907217 + 0.368072i 0.998702 0.0509413i \(-0.0162221\pi\)
−0.907980 + 0.419014i \(0.862376\pi\)
\(684\) −1.82526 7.40536i −0.0697904 0.283151i
\(685\) 1.14619 + 1.66054i 0.0437936 + 0.0634460i
\(686\) −38.5598 9.50413i −1.47222 0.362869i
\(687\) 0.465349 + 0.321207i 0.0177542 + 0.0122548i
\(688\) −6.26231 + 5.54792i −0.238748 + 0.211512i
\(689\) −20.5861 + 27.7409i −0.784268 + 1.05684i
\(690\) −1.68876 1.49611i −0.0642898 0.0569558i
\(691\) −2.14754 8.71291i −0.0816962 0.331455i 0.915845 0.401531i \(-0.131522\pi\)
−0.997542 + 0.0700764i \(0.977676\pi\)
\(692\) 12.8644 + 11.3968i 0.489030 + 0.433243i
\(693\) −24.1627 + 5.95557i −0.917865 + 0.226233i
\(694\) −59.3090 22.4930i −2.25134 0.853821i
\(695\) 7.15736i 0.271494i
\(696\) −0.401468 + 0.152257i −0.0152176 + 0.00577128i
\(697\) −11.4033 + 46.2651i −0.431931 + 1.75241i
\(698\) −4.78078 −0.180955
\(699\) 1.96327 0.0742578
\(700\) −4.42598 + 17.9569i −0.167286 + 0.678707i
\(701\) −3.09636 + 25.5008i −0.116948 + 0.963153i 0.809602 + 0.586980i \(0.199683\pi\)
−0.926549 + 0.376173i \(0.877240\pi\)
\(702\) 10.1195 + 1.58218i 0.381934 + 0.0597154i
\(703\) 0.456927 + 3.76313i 0.0172333 + 0.141929i
\(704\) 27.1038 + 3.29100i 1.02151 + 0.124034i
\(705\) 0.0509674 + 0.0738391i 0.00191954 + 0.00278094i
\(706\) −2.67557 2.37035i −0.100696 0.0892092i
\(707\) 11.6830 1.41857i 0.439383 0.0533508i
\(708\) −4.18967 0.508718i −0.157457 0.0191188i
\(709\) 5.00072 + 9.52808i 0.187806 + 0.357835i 0.961094 0.276220i \(-0.0890818\pi\)
−0.773288 + 0.634054i \(0.781390\pi\)
\(710\) 5.93672 6.70117i 0.222801 0.251490i
\(711\) −12.8814 + 18.6620i −0.483092 + 0.699879i
\(712\) 0.659857 0.162640i 0.0247292 0.00609519i
\(713\) 36.1701 4.39184i 1.35458 0.164476i
\(714\) 2.40767 + 3.48811i 0.0901048 + 0.130539i
\(715\) −7.01760 6.65983i −0.262443 0.249064i
\(716\) 0.441491 0.639609i 0.0164993 0.0239033i
\(717\) 1.32127 2.51747i 0.0493437 0.0940165i
\(718\) −15.7190 41.4476i −0.586628 1.54681i
\(719\) 0.212595 1.75087i 0.00792844 0.0652966i −0.988208 0.153120i \(-0.951068\pi\)
0.996136 + 0.0878232i \(0.0279911\pi\)
\(720\) 7.05036 4.86651i 0.262751 0.181364i
\(721\) 0.574354 2.33024i 0.0213901 0.0867828i
\(722\) 27.7176 19.1321i 1.03154 0.712022i
\(723\) 5.84020 2.21490i 0.217199 0.0823729i
\(724\) 12.5997 + 33.2227i 0.468264 + 1.23471i
\(725\) 30.0308 15.7614i 1.11532 0.585363i
\(726\) 0.922150 + 1.75701i 0.0342242 + 0.0652087i
\(727\) 25.1108 + 6.18925i 0.931308 + 0.229547i 0.675652 0.737221i \(-0.263862\pi\)
0.255656 + 0.966768i \(0.417709\pi\)
\(728\) −0.714774 + 1.70601i −0.0264913 + 0.0632290i
\(729\) 23.1765 5.71249i 0.858388 0.211574i
\(730\) −2.23264 2.52013i −0.0826339 0.0932744i
\(731\) −0.973189 8.01493i −0.0359947 0.296443i
\(732\) 2.04930 1.07555i 0.0757442 0.0397536i
\(733\) 8.80957 16.7852i 0.325389 0.619977i −0.666727 0.745302i \(-0.732305\pi\)
0.992116 + 0.125325i \(0.0399975\pi\)
\(734\) 46.3124 + 17.5640i 1.70942 + 0.648298i
\(735\) 0.252355 + 0.284850i 0.00930825 + 0.0105068i
\(736\) −53.3447 6.47722i −1.96631 0.238753i
\(737\) −37.9799 9.36120i −1.39901 0.344824i
\(738\) −50.6754 + 44.8945i −1.86539 + 1.65259i
\(739\) 24.2224 27.3415i 0.891036 1.00577i −0.108895 0.994053i \(-0.534731\pi\)
0.999931 0.0117184i \(-0.00373017\pi\)
\(740\) 3.15440 1.65555i 0.115958 0.0608594i
\(741\) −0.248563 1.18126i −0.00913120 0.0433945i
\(742\) −36.3283 19.0666i −1.33365 0.699956i
\(743\) −40.6684 + 15.4235i −1.49198 + 0.565833i −0.959772 0.280781i \(-0.909406\pi\)
−0.532207 + 0.846614i \(0.678637\pi\)
\(744\) 0.0367562 0.302714i 0.00134755 0.0110980i
\(745\) 2.24334 + 1.17740i 0.0821897 + 0.0431365i
\(746\) 12.0560i 0.441402i
\(747\) −1.98380 + 3.77981i −0.0725834 + 0.138296i
\(748\) −19.7878 + 22.3358i −0.723513 + 0.816678i
\(749\) −13.4027 9.25124i −0.489725 0.338033i
\(750\) 2.35005 2.08196i 0.0858117 0.0760225i
\(751\) 27.8237 40.3095i 1.01530 1.47092i 0.138321 0.990387i \(-0.455829\pi\)
0.876979 0.480529i \(-0.159555\pi\)
\(752\) 2.11821 + 0.803329i 0.0772430 + 0.0292944i
\(753\) −2.36626 + 6.23932i −0.0862314 + 0.227374i
\(754\) −50.3938 + 17.1614i −1.83523 + 0.624981i
\(755\) −0.184193 0.485676i −0.00670345 0.0176756i
\(756\) 5.89450i 0.214381i
\(757\) −4.91150 + 12.9506i −0.178512 + 0.470697i −0.994168 0.107840i \(-0.965607\pi\)
0.815657 + 0.578536i \(0.196376\pi\)
\(758\) 5.02295 + 41.3677i 0.182442 + 1.50254i
\(759\) −3.00525 5.72603i −0.109084 0.207842i
\(760\) −0.184665 0.127465i −0.00669849 0.00462363i
\(761\) −27.1955 18.7717i −0.985837 0.680474i −0.0380160 0.999277i \(-0.512104\pi\)
−0.947821 + 0.318803i \(0.896719\pi\)
\(762\) 2.84160 + 5.41422i 0.102940 + 0.196137i
\(763\) 0.995368 + 8.19760i 0.0360348 + 0.296773i
\(764\) −1.78137 + 4.69707i −0.0644475 + 0.169934i
\(765\) 8.26726i 0.298903i
\(766\) 5.83813 + 15.3939i 0.210940 + 0.556204i
\(767\) 32.9415