Properties

Label 169.2.h.a.12.11
Level $169$
Weight $2$
Character 169.12
Analytic conductor $1.349$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(12,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([21]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.12");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.h (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(14\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

Embedding invariants

Embedding label 12.11
Character \(\chi\) \(=\) 169.12
Dual form 169.2.h.a.155.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05649 - 0.729245i) q^{2} +(-0.277577 - 0.145684i) q^{3} +(-0.124830 + 0.329149i) q^{4} +(2.67487 + 3.01931i) q^{5} +(-0.399497 + 0.0485078i) q^{6} +(0.147281 + 0.597543i) q^{7} +(0.722584 + 2.93164i) q^{8} +(-1.64837 - 2.38807i) q^{9} +O(q^{10})\) \(q+(1.05649 - 0.729245i) q^{2} +(-0.277577 - 0.145684i) q^{3} +(-0.124830 + 0.329149i) q^{4} +(2.67487 + 3.01931i) q^{5} +(-0.399497 + 0.0485078i) q^{6} +(0.147281 + 0.597543i) q^{7} +(0.722584 + 2.93164i) q^{8} +(-1.64837 - 2.38807i) q^{9} +(5.02780 + 1.23924i) q^{10} +(-4.66304 - 3.21866i) q^{11} +(0.0826014 - 0.0731785i) q^{12} +(1.36417 - 3.33752i) q^{13} +(0.591356 + 0.523896i) q^{14} +(-0.302619 - 1.22778i) q^{15} +(2.37430 + 2.10344i) q^{16} +(3.65404 - 0.900639i) q^{17} +(-3.48298 - 1.32092i) q^{18} -4.14676i q^{19} +(-1.32770 + 0.503531i) q^{20} +(0.0461704 - 0.187321i) q^{21} -7.27366 q^{22} -0.237017 q^{23} +(0.226519 - 0.919024i) q^{24} +(-1.35859 + 11.1890i) q^{25} +(-0.992633 - 4.52088i) q^{26} +(0.223005 + 1.83661i) q^{27} +(-0.215065 - 0.0261137i) q^{28} +(-1.37916 - 1.99806i) q^{29} +(-1.21506 - 1.07645i) q^{30} +(-3.53027 + 0.428653i) q^{31} +(-1.95237 - 0.237060i) q^{32} +(0.825446 + 1.57276i) q^{33} +(3.20368 - 3.61621i) q^{34} +(-1.41021 + 2.04304i) q^{35} +(0.991797 - 0.244456i) q^{36} +(1.18387 - 0.143748i) q^{37} +(-3.02400 - 4.38103i) q^{38} +(-0.864884 + 0.727682i) q^{39} +(-6.91869 + 10.0235i) q^{40} +(-2.81798 + 5.36921i) q^{41} +(-0.0878239 - 0.231572i) q^{42} +(-0.697683 + 5.74593i) q^{43} +(1.64150 - 1.13305i) q^{44} +(2.80115 - 11.3647i) q^{45} +(-0.250406 + 0.172843i) q^{46} +(3.58791 - 1.36071i) q^{47} +(-0.352613 - 0.929765i) q^{48} +(5.86283 - 3.07705i) q^{49} +(6.72416 + 12.8118i) q^{50} +(-1.14549 - 0.282337i) q^{51} +(0.928251 + 0.865636i) q^{52} +(4.32424 - 1.06583i) q^{53} +(1.57494 + 1.77774i) q^{54} +(-2.75490 - 22.6886i) q^{55} +(-1.64536 + 0.863550i) q^{56} +(-0.604116 + 1.15105i) q^{57} +(-2.91415 - 1.10519i) q^{58} +(5.19283 + 5.86150i) q^{59} +(0.441896 + 0.0536559i) q^{60} +(-2.34193 - 0.577233i) q^{61} +(-3.41712 + 3.02730i) q^{62} +(1.18420 - 1.33669i) q^{63} +(-7.85292 + 4.12153i) q^{64} +(13.7260 - 4.80859i) q^{65} +(2.01900 + 1.05965i) q^{66} +(-8.97327 + 3.40311i) q^{67} +(-0.159688 + 1.31515i) q^{68} +(0.0657904 + 0.0345295i) q^{69} +3.18684i q^{70} +(-4.12424 + 7.85809i) q^{71} +(5.80989 - 6.55801i) q^{72} +(-11.9374 - 8.23982i) q^{73} +(1.14593 - 1.01520i) q^{74} +(2.00716 - 2.90788i) q^{75} +(1.36490 + 0.517639i) q^{76} +(1.23651 - 3.26041i) q^{77} +(-0.383086 + 1.39950i) q^{78} +(-6.09571 - 16.0731i) q^{79} +12.7952i q^{80} +(-2.88124 + 7.59720i) q^{81} +(0.938292 + 7.72753i) q^{82} +(1.29186 + 2.46144i) q^{83} +(0.0558929 + 0.0385801i) q^{84} +(12.4934 + 8.62356i) q^{85} +(3.45309 + 6.57932i) q^{86} +(0.0917389 + 0.755538i) q^{87} +(6.06652 - 15.9961i) q^{88} +2.78330i q^{89} +(-5.32826 - 14.0495i) q^{90} +(2.19523 + 0.323596i) q^{91} +(0.0295867 - 0.0780137i) q^{92} +(1.04237 + 0.395319i) q^{93} +(2.79831 - 4.05405i) q^{94} +(12.5203 - 11.0921i) q^{95} +(0.507396 + 0.350230i) q^{96} +(-5.77891 + 6.52304i) q^{97} +(3.95012 - 7.52632i) q^{98} +16.4412i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 168 q - 13 q^{2} - 13 q^{3} + q^{4} - 13 q^{5} - 13 q^{6} - 13 q^{7} - 13 q^{8} - 27 q^{9} - 9 q^{10} - 13 q^{11} - 9 q^{12} + 52 q^{13} - 15 q^{14} + 39 q^{15} - 31 q^{16} - 11 q^{17} + 26 q^{18} - 13 q^{20} - 13 q^{21} - 6 q^{22} - 102 q^{23} - 91 q^{24} + 3 q^{25} - 13 q^{26} - 19 q^{27} - 13 q^{28} - 17 q^{29} + 23 q^{30} + 39 q^{31} - 13 q^{33} + 52 q^{34} - 21 q^{35} + 11 q^{36} - 13 q^{37} - 40 q^{38} - 65 q^{39} + 53 q^{40} - 13 q^{41} + 101 q^{42} - 3 q^{43} - 39 q^{44} - 78 q^{45} - 39 q^{46} - 39 q^{47} + 8 q^{48} + 85 q^{49} - 13 q^{50} + 62 q^{51} - 78 q^{52} + 18 q^{53} + 65 q^{54} - 103 q^{55} + 3 q^{56} + 65 q^{57} + 39 q^{58} + 91 q^{59} - 117 q^{60} - 23 q^{61} - 64 q^{62} - 78 q^{63} + 15 q^{64} - 13 q^{65} + 134 q^{66} - 65 q^{67} + 40 q^{68} - 40 q^{69} + 26 q^{71} + 156 q^{72} - 13 q^{73} - 53 q^{74} + 35 q^{75} + 221 q^{76} + 3 q^{77} - 143 q^{78} - 23 q^{79} - 43 q^{81} - 129 q^{82} + 117 q^{83} + 234 q^{84} + 26 q^{85} - 91 q^{86} + 79 q^{87} + 95 q^{88} + 17 q^{90} + 39 q^{91} - 89 q^{92} + 52 q^{93} - 61 q^{94} + 122 q^{95} - 182 q^{96} - 91 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{21}{26}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05649 0.729245i 0.747054 0.515654i −0.132658 0.991162i \(-0.542351\pi\)
0.879711 + 0.475508i \(0.157736\pi\)
\(3\) −0.277577 0.145684i −0.160259 0.0841105i 0.382687 0.923878i \(-0.374999\pi\)
−0.542946 + 0.839768i \(0.682691\pi\)
\(4\) −0.124830 + 0.329149i −0.0624148 + 0.164574i
\(5\) 2.67487 + 3.01931i 1.19624 + 1.35027i 0.921319 + 0.388807i \(0.127113\pi\)
0.274920 + 0.961467i \(0.411349\pi\)
\(6\) −0.399497 + 0.0485078i −0.163094 + 0.0198032i
\(7\) 0.147281 + 0.597543i 0.0556670 + 0.225850i 0.992186 0.124767i \(-0.0398182\pi\)
−0.936519 + 0.350617i \(0.885972\pi\)
\(8\) 0.722584 + 2.93164i 0.255472 + 1.03649i
\(9\) −1.64837 2.38807i −0.549456 0.796025i
\(10\) 5.02780 + 1.23924i 1.58993 + 0.391882i
\(11\) −4.66304 3.21866i −1.40596 0.970463i −0.998357 0.0573033i \(-0.981750\pi\)
−0.407602 0.913160i \(-0.633635\pi\)
\(12\) 0.0826014 0.0731785i 0.0238450 0.0211248i
\(13\) 1.36417 3.33752i 0.378352 0.925662i
\(14\) 0.591356 + 0.523896i 0.158047 + 0.140017i
\(15\) −0.302619 1.22778i −0.0781360 0.317010i
\(16\) 2.37430 + 2.10344i 0.593575 + 0.525861i
\(17\) 3.65404 0.900639i 0.886234 0.218437i 0.230177 0.973149i \(-0.426069\pi\)
0.656057 + 0.754712i \(0.272223\pi\)
\(18\) −3.48298 1.32092i −0.820947 0.311344i
\(19\) 4.14676i 0.951332i −0.879626 0.475666i \(-0.842207\pi\)
0.879626 0.475666i \(-0.157793\pi\)
\(20\) −1.32770 + 0.503531i −0.296883 + 0.112593i
\(21\) 0.0461704 0.187321i 0.0100752 0.0408767i
\(22\) −7.27366 −1.55075
\(23\) −0.237017 −0.0494214 −0.0247107 0.999695i \(-0.507866\pi\)
−0.0247107 + 0.999695i \(0.507866\pi\)
\(24\) 0.226519 0.919024i 0.0462380 0.187595i
\(25\) −1.35859 + 11.1890i −0.271717 + 2.23779i
\(26\) −0.992633 4.52088i −0.194671 0.886618i
\(27\) 0.223005 + 1.83661i 0.0429174 + 0.353456i
\(28\) −0.215065 0.0261137i −0.0406435 0.00493502i
\(29\) −1.37916 1.99806i −0.256104 0.371031i 0.673750 0.738959i \(-0.264683\pi\)
−0.929854 + 0.367928i \(0.880067\pi\)
\(30\) −1.21506 1.07645i −0.221839 0.196532i
\(31\) −3.53027 + 0.428653i −0.634056 + 0.0769883i −0.431253 0.902231i \(-0.641928\pi\)
−0.202803 + 0.979220i \(0.565005\pi\)
\(32\) −1.95237 0.237060i −0.345133 0.0419067i
\(33\) 0.825446 + 1.57276i 0.143692 + 0.273782i
\(34\) 3.20368 3.61621i 0.549426 0.620174i
\(35\) −1.41021 + 2.04304i −0.238368 + 0.345336i
\(36\) 0.991797 0.244456i 0.165299 0.0407427i
\(37\) 1.18387 0.143748i 0.194628 0.0236321i −0.0226423 0.999744i \(-0.507208\pi\)
0.217270 + 0.976112i \(0.430285\pi\)
\(38\) −3.02400 4.38103i −0.490558 0.710696i
\(39\) −0.864884 + 0.727682i −0.138492 + 0.116522i
\(40\) −6.91869 + 10.0235i −1.09394 + 1.58485i
\(41\) −2.81798 + 5.36921i −0.440094 + 0.838530i 0.559856 + 0.828590i \(0.310856\pi\)
−0.999951 + 0.00993983i \(0.996836\pi\)
\(42\) −0.0878239 0.231572i −0.0135515 0.0357324i
\(43\) −0.697683 + 5.74593i −0.106396 + 0.876247i 0.837599 + 0.546286i \(0.183959\pi\)
−0.943995 + 0.329961i \(0.892964\pi\)
\(44\) 1.64150 1.13305i 0.247466 0.170813i
\(45\) 2.80115 11.3647i 0.417571 1.69415i
\(46\) −0.250406 + 0.172843i −0.0369204 + 0.0254843i
\(47\) 3.58791 1.36071i 0.523350 0.198481i −0.0787600 0.996894i \(-0.525096\pi\)
0.602110 + 0.798413i \(0.294327\pi\)
\(48\) −0.352613 0.929765i −0.0508953 0.134200i
\(49\) 5.86283 3.07705i 0.837547 0.439578i
\(50\) 6.72416 + 12.8118i 0.950939 + 1.81186i
\(51\) −1.14549 0.282337i −0.160400 0.0395351i
\(52\) 0.928251 + 0.865636i 0.128725 + 0.120042i
\(53\) 4.32424 1.06583i 0.593980 0.146403i 0.0691445 0.997607i \(-0.477973\pi\)
0.524835 + 0.851204i \(0.324127\pi\)
\(54\) 1.57494 + 1.77774i 0.214323 + 0.241920i
\(55\) −2.75490 22.6886i −0.371471 3.05934i
\(56\) −1.64536 + 0.863550i −0.219870 + 0.115397i
\(57\) −0.604116 + 1.15105i −0.0800171 + 0.152460i
\(58\) −2.91415 1.10519i −0.382647 0.145119i
\(59\) 5.19283 + 5.86150i 0.676049 + 0.763102i 0.981987 0.188950i \(-0.0605084\pi\)
−0.305938 + 0.952052i \(0.598970\pi\)
\(60\) 0.441896 + 0.0536559i 0.0570486 + 0.00692695i
\(61\) −2.34193 0.577233i −0.299853 0.0739072i 0.0865188 0.996250i \(-0.472426\pi\)
−0.386372 + 0.922343i \(0.626272\pi\)
\(62\) −3.41712 + 3.02730i −0.433974 + 0.384468i
\(63\) 1.18420 1.33669i 0.149196 0.168407i
\(64\) −7.85292 + 4.12153i −0.981615 + 0.515192i
\(65\) 13.7260 4.80859i 1.70250 0.596433i
\(66\) 2.01900 + 1.05965i 0.248522 + 0.130434i
\(67\) −8.97327 + 3.40311i −1.09626 + 0.415756i −0.835412 0.549624i \(-0.814771\pi\)
−0.260847 + 0.965380i \(0.584002\pi\)
\(68\) −0.159688 + 1.31515i −0.0193650 + 0.159485i
\(69\) 0.0657904 + 0.0345295i 0.00792023 + 0.00415686i
\(70\) 3.18684i 0.380900i
\(71\) −4.12424 + 7.85809i −0.489458 + 0.932584i 0.508002 + 0.861356i \(0.330384\pi\)
−0.997460 + 0.0712281i \(0.977308\pi\)
\(72\) 5.80989 6.55801i 0.684702 0.772868i
\(73\) −11.9374 8.23982i −1.39717 0.964398i −0.998888 0.0471360i \(-0.984991\pi\)
−0.398284 0.917262i \(-0.630394\pi\)
\(74\) 1.14593 1.01520i 0.133211 0.118015i
\(75\) 2.00716 2.90788i 0.231767 0.335773i
\(76\) 1.36490 + 0.517639i 0.156565 + 0.0593772i
\(77\) 1.23651 3.26041i 0.140914 0.371558i
\(78\) −0.383086 + 1.39950i −0.0433760 + 0.158463i
\(79\) −6.09571 16.0731i −0.685821 1.80836i −0.581055 0.813864i \(-0.697360\pi\)
−0.104765 0.994497i \(-0.533409\pi\)
\(80\) 12.7952i 1.43054i
\(81\) −2.88124 + 7.59720i −0.320137 + 0.844133i
\(82\) 0.938292 + 7.72753i 0.103617 + 0.853363i
\(83\) 1.29186 + 2.46144i 0.141801 + 0.270178i 0.945991 0.324194i \(-0.105093\pi\)
−0.804190 + 0.594372i \(0.797401\pi\)
\(84\) 0.0558929 + 0.0385801i 0.00609841 + 0.00420943i
\(85\) 12.4934 + 8.62356i 1.35510 + 0.935357i
\(86\) 3.45309 + 6.57932i 0.372357 + 0.709466i
\(87\) 0.0917389 + 0.755538i 0.00983545 + 0.0810022i
\(88\) 6.06652 15.9961i 0.646693 1.70519i
\(89\) 2.78330i 0.295030i 0.989060 + 0.147515i \(0.0471274\pi\)
−0.989060 + 0.147515i \(0.952873\pi\)
\(90\) −5.32826 14.0495i −0.561648 1.48094i
\(91\) 2.19523 + 0.323596i 0.230122 + 0.0339221i
\(92\) 0.0295867 0.0780137i 0.00308463 0.00813349i
\(93\) 1.04237 + 0.395319i 0.108089 + 0.0409927i
\(94\) 2.79831 4.05405i 0.288623 0.418143i
\(95\) 12.5203 11.0921i 1.28456 1.13802i
\(96\) 0.507396 + 0.350230i 0.0517859 + 0.0357452i
\(97\) −5.77891 + 6.52304i −0.586759 + 0.662314i −0.964650 0.263536i \(-0.915111\pi\)
0.377890 + 0.925850i \(0.376650\pi\)
\(98\) 3.95012 7.52632i 0.399022 0.760273i
\(99\) 16.4412i 1.65241i
\(100\) −3.51324 1.84389i −0.351324 0.184389i
\(101\) −1.54440 + 12.7193i −0.153674 + 1.26562i 0.688031 + 0.725681i \(0.258475\pi\)
−0.841705 + 0.539938i \(0.818448\pi\)
\(102\) −1.41609 + 0.537052i −0.140214 + 0.0531761i
\(103\) −3.19950 1.67922i −0.315256 0.165459i 0.299672 0.954042i \(-0.403123\pi\)
−0.614928 + 0.788583i \(0.710815\pi\)
\(104\) 10.7701 + 1.58761i 1.05610 + 0.155678i
\(105\) 0.689078 0.361656i 0.0672471 0.0352940i
\(106\) 3.79128 4.27947i 0.368242 0.415659i
\(107\) 11.0152 9.75862i 1.06488 0.943401i 0.0663601 0.997796i \(-0.478861\pi\)
0.998520 + 0.0543947i \(0.0173229\pi\)
\(108\) −0.632356 0.155862i −0.0608485 0.0149978i
\(109\) 15.1624 + 1.84105i 1.45230 + 0.176341i 0.808338 0.588719i \(-0.200367\pi\)
0.643960 + 0.765059i \(0.277290\pi\)
\(110\) −19.4561 21.9614i −1.85507 2.09394i
\(111\) −0.349558 0.132570i −0.0331786 0.0125830i
\(112\) −0.907209 + 1.72854i −0.0857232 + 0.163332i
\(113\) 0.207083 0.108686i 0.0194808 0.0102243i −0.454955 0.890515i \(-0.650345\pi\)
0.474435 + 0.880290i \(0.342652\pi\)
\(114\) 0.201150 + 1.65662i 0.0188394 + 0.155157i
\(115\) −0.633989 0.715626i −0.0591198 0.0667324i
\(116\) 0.829820 0.204532i 0.0770469 0.0189903i
\(117\) −10.2189 + 2.24373i −0.944738 + 0.207433i
\(118\) 9.76066 + 2.40579i 0.898541 + 0.221471i
\(119\) 1.07634 + 2.05080i 0.0986680 + 0.187996i
\(120\) 3.38072 1.77434i 0.308617 0.161974i
\(121\) 7.48347 + 19.7323i 0.680316 + 1.79385i
\(122\) −2.89517 + 1.09799i −0.262117 + 0.0994078i
\(123\) 1.56441 1.07984i 0.141058 0.0973655i
\(124\) 0.299592 1.21549i 0.0269042 0.109154i
\(125\) −20.8184 + 14.3699i −1.86205 + 1.28528i
\(126\) 0.276329 2.27578i 0.0246174 0.202742i
\(127\) −2.16202 5.70078i −0.191848 0.505863i 0.804232 0.594316i \(-0.202577\pi\)
−0.996080 + 0.0884529i \(0.971808\pi\)
\(128\) −3.46301 + 6.59821i −0.306089 + 0.583205i
\(129\) 1.03075 1.49330i 0.0907524 0.131478i
\(130\) 10.9948 15.0898i 0.964304 1.32347i
\(131\) 8.90953 + 12.9077i 0.778429 + 1.12775i 0.988671 + 0.150100i \(0.0479596\pi\)
−0.210241 + 0.977649i \(0.567425\pi\)
\(132\) −0.620710 + 0.0753679i −0.0540259 + 0.00655993i
\(133\) 2.47787 0.610740i 0.214858 0.0529578i
\(134\) −6.99849 + 10.1391i −0.604578 + 0.875882i
\(135\) −4.94879 + 5.58602i −0.425924 + 0.480768i
\(136\) 5.28070 + 10.0615i 0.452816 + 0.862769i
\(137\) −5.04786 0.612921i −0.431268 0.0523654i −0.0979753 0.995189i \(-0.531237\pi\)
−0.333293 + 0.942823i \(0.608160\pi\)
\(138\) 0.0946875 0.0114971i 0.00806034 0.000978702i
\(139\) −9.32241 8.25894i −0.790717 0.700514i 0.167715 0.985836i \(-0.446361\pi\)
−0.958432 + 0.285322i \(0.907900\pi\)
\(140\) −0.496427 0.719199i −0.0419558 0.0607834i
\(141\) −1.19415 0.144997i −0.100566 0.0122109i
\(142\) 1.37323 + 11.3096i 0.115239 + 0.949081i
\(143\) −17.1035 + 11.1722i −1.43027 + 0.934265i
\(144\) 1.10946 9.13726i 0.0924553 0.761438i
\(145\) 2.34368 9.50868i 0.194632 0.789653i
\(146\) −18.6207 −1.54106
\(147\) −2.07566 −0.171198
\(148\) −0.100468 + 0.407614i −0.00825841 + 0.0335057i
\(149\) 9.31900 3.53423i 0.763442 0.289535i 0.0580129 0.998316i \(-0.481524\pi\)
0.705429 + 0.708780i \(0.250754\pi\)
\(150\) 4.53586i 0.370352i
\(151\) 10.4903 + 3.97845i 0.853689 + 0.323762i 0.742343 0.670020i \(-0.233715\pi\)
0.111346 + 0.993782i \(0.464484\pi\)
\(152\) 12.1568 2.99638i 0.986047 0.243039i
\(153\) −8.17400 7.24153i −0.660828 0.585443i
\(154\) −1.07127 4.34632i −0.0863256 0.350237i
\(155\) −10.7373 9.51238i −0.862438 0.764053i
\(156\) −0.131552 0.375512i −0.0105326 0.0300650i
\(157\) −8.77032 + 7.76982i −0.699947 + 0.620099i −0.936148 0.351605i \(-0.885636\pi\)
0.236201 + 0.971704i \(0.424098\pi\)
\(158\) −18.1613 12.5358i −1.44483 0.997296i
\(159\) −1.35558 0.334121i −0.107505 0.0264975i
\(160\) −4.50657 6.52890i −0.356276 0.516155i
\(161\) −0.0349081 0.141628i −0.00275114 0.0111618i
\(162\) 2.49621 + 10.1275i 0.196121 + 0.795693i
\(163\) 2.79411 0.339267i 0.218852 0.0265734i −0.0103762 0.999946i \(-0.503303\pi\)
0.229228 + 0.973373i \(0.426380\pi\)
\(164\) −1.41550 1.59777i −0.110532 0.124765i
\(165\) −2.54067 + 6.69919i −0.197791 + 0.521531i
\(166\) 3.15984 + 1.65841i 0.245251 + 0.128718i
\(167\) 6.44840 4.45101i 0.498992 0.344429i −0.291835 0.956469i \(-0.594266\pi\)
0.790827 + 0.612039i \(0.209651\pi\)
\(168\) 0.582518 0.0449423
\(169\) −9.27808 9.10589i −0.713699 0.700453i
\(170\) 19.4879 1.49465
\(171\) −9.90278 + 6.83539i −0.757284 + 0.522716i
\(172\) −1.80417 0.946904i −0.137567 0.0722007i
\(173\) 5.26767 13.8897i 0.400493 1.05601i −0.571416 0.820660i \(-0.693606\pi\)
0.971910 0.235354i \(-0.0756249\pi\)
\(174\) 0.647894 + 0.731321i 0.0491167 + 0.0554413i
\(175\) −6.88598 + 0.836109i −0.520531 + 0.0632039i
\(176\) −4.30116 17.4505i −0.324212 1.31538i
\(177\) −0.587487 2.38353i −0.0441582 0.179157i
\(178\) 2.02971 + 2.94054i 0.152133 + 0.220403i
\(179\) 17.9096 + 4.41433i 1.33863 + 0.329942i 0.842682 0.538411i \(-0.180975\pi\)
0.495946 + 0.868353i \(0.334821\pi\)
\(180\) 3.39102 + 2.34065i 0.252751 + 0.174462i
\(181\) −4.76371 + 4.22028i −0.354084 + 0.313691i −0.821349 0.570426i \(-0.806778\pi\)
0.467265 + 0.884118i \(0.345240\pi\)
\(182\) 2.55522 1.25898i 0.189406 0.0933219i
\(183\) 0.565972 + 0.501407i 0.0418378 + 0.0370651i
\(184\) −0.171264 0.694847i −0.0126258 0.0512248i
\(185\) 3.60073 + 3.18997i 0.264731 + 0.234531i
\(186\) 1.38954 0.342491i 0.101886 0.0251127i
\(187\) −19.9378 7.56140i −1.45799 0.552944i
\(188\) 1.35081i 0.0985181i
\(189\) −1.06461 + 0.403753i −0.0774390 + 0.0293687i
\(190\) 5.13883 20.8491i 0.372810 1.51255i
\(191\) 6.96811 0.504195 0.252097 0.967702i \(-0.418880\pi\)
0.252097 + 0.967702i \(0.418880\pi\)
\(192\) 2.78023 0.200646
\(193\) −3.42240 + 13.8852i −0.246349 + 0.999479i 0.709285 + 0.704922i \(0.249018\pi\)
−0.955634 + 0.294557i \(0.904828\pi\)
\(194\) −1.34849 + 11.1058i −0.0968157 + 0.797349i
\(195\) −4.51055 0.664895i −0.323007 0.0476141i
\(196\) 0.280952 + 2.31385i 0.0200680 + 0.165275i
\(197\) −17.7596 2.15640i −1.26532 0.153637i −0.539772 0.841811i \(-0.681490\pi\)
−0.725546 + 0.688174i \(0.758413\pi\)
\(198\) 11.9897 + 17.3700i 0.852069 + 1.23444i
\(199\) −8.12589 7.19891i −0.576029 0.510317i 0.324052 0.946039i \(-0.394955\pi\)
−0.900081 + 0.435722i \(0.856493\pi\)
\(200\) −33.7837 + 4.10208i −2.38887 + 0.290061i
\(201\) 2.98655 + 0.362633i 0.210655 + 0.0255782i
\(202\) 7.64384 + 14.5641i 0.537819 + 1.02473i
\(203\) 0.990804 1.11839i 0.0695408 0.0784953i
\(204\) 0.235921 0.341791i 0.0165178 0.0239301i
\(205\) −23.7490 + 5.85361i −1.65870 + 0.408834i
\(206\) −4.60481 + 0.559125i −0.320832 + 0.0389561i
\(207\) 0.390691 + 0.566013i 0.0271549 + 0.0393407i
\(208\) 10.2592 5.05481i 0.711350 0.350488i
\(209\) −13.3470 + 19.3365i −0.923233 + 1.33753i
\(210\) 0.464271 0.884594i 0.0320377 0.0610428i
\(211\) −5.23303 13.7984i −0.360256 0.949918i −0.985528 0.169511i \(-0.945781\pi\)
0.625272 0.780407i \(-0.284988\pi\)
\(212\) −0.188977 + 1.55636i −0.0129790 + 0.106892i
\(213\) 2.28959 1.58039i 0.156880 0.108287i
\(214\) 4.52107 18.3427i 0.309054 1.25388i
\(215\) −19.2149 + 13.2631i −1.31045 + 0.904537i
\(216\) −5.22314 + 1.98088i −0.355390 + 0.134782i
\(217\) −0.776081 2.04636i −0.0526838 0.138916i
\(218\) 17.3616 9.11206i 1.17587 0.617147i
\(219\) 2.11315 + 4.02628i 0.142794 + 0.272071i
\(220\) 7.81183 + 1.92544i 0.526673 + 0.129813i
\(221\) 1.97882 13.4240i 0.133110 0.902999i
\(222\) −0.465981 + 0.114854i −0.0312746 + 0.00770850i
\(223\) 3.02855 + 3.41853i 0.202807 + 0.228921i 0.841111 0.540863i \(-0.181902\pi\)
−0.638304 + 0.769784i \(0.720364\pi\)
\(224\) −0.145893 1.20154i −0.00974789 0.0802811i
\(225\) 28.9595 15.1991i 1.93064 1.01328i
\(226\) 0.139524 0.265840i 0.00928098 0.0176834i
\(227\) 26.0286 + 9.87135i 1.72758 + 0.655184i 0.999539 0.0303511i \(-0.00966252\pi\)
0.728039 + 0.685535i \(0.240432\pi\)
\(228\) −0.303454 0.342528i −0.0200967 0.0226845i
\(229\) 25.5964 + 3.10797i 1.69146 + 0.205381i 0.908848 0.417128i \(-0.136963\pi\)
0.782613 + 0.622508i \(0.213886\pi\)
\(230\) −1.19167 0.293721i −0.0785765 0.0193674i
\(231\) −0.818216 + 0.724876i −0.0538347 + 0.0476933i
\(232\) 4.86104 5.48698i 0.319143 0.360238i
\(233\) 25.3547 13.3072i 1.66104 0.871781i 0.669377 0.742923i \(-0.266561\pi\)
0.991663 0.128858i \(-0.0411311\pi\)
\(234\) −9.15997 + 9.82256i −0.598806 + 0.642121i
\(235\) 13.7056 + 7.19325i 0.894055 + 0.469236i
\(236\) −2.57752 + 0.977525i −0.167782 + 0.0636315i
\(237\) −0.649554 + 5.34956i −0.0421931 + 0.347491i
\(238\) 2.63268 + 1.38174i 0.170651 + 0.0895647i
\(239\) 3.89120i 0.251701i 0.992049 + 0.125850i \(0.0401660\pi\)
−0.992049 + 0.125850i \(0.959834\pi\)
\(240\) 1.86405 3.55165i 0.120324 0.229258i
\(241\) 9.60583 10.8427i 0.618766 0.698442i −0.352669 0.935748i \(-0.614726\pi\)
0.971435 + 0.237306i \(0.0762644\pi\)
\(242\) 22.2959 + 15.3898i 1.43324 + 0.989291i
\(243\) 6.06102 5.36959i 0.388814 0.344459i
\(244\) 0.482337 0.698786i 0.0308785 0.0447352i
\(245\) 24.9729 + 9.47096i 1.59546 + 0.605077i
\(246\) 0.865326 2.28168i 0.0551712 0.145474i
\(247\) −13.8399 5.65688i −0.880612 0.359939i
\(248\) −3.80757 10.0397i −0.241781 0.637525i
\(249\) 0.871443i 0.0552255i
\(250\) −11.5153 + 30.3634i −0.728293 + 1.92035i
\(251\) −1.88166 15.4969i −0.118769 0.978153i −0.923257 0.384183i \(-0.874483\pi\)
0.804488 0.593970i \(-0.202440\pi\)
\(252\) 0.292146 + 0.556637i 0.0184035 + 0.0350648i
\(253\) 1.10522 + 0.762876i 0.0694844 + 0.0479616i
\(254\) −6.44143 4.44619i −0.404171 0.278979i
\(255\) −2.21157 4.21379i −0.138494 0.263877i
\(256\) −0.984964 8.11191i −0.0615603 0.506994i
\(257\) −0.901021 + 2.37580i −0.0562042 + 0.148198i −0.960178 0.279390i \(-0.909868\pi\)
0.903973 + 0.427589i \(0.140637\pi\)
\(258\) 2.32933i 0.145018i
\(259\) 0.260258 + 0.686244i 0.0161716 + 0.0426411i
\(260\) −0.130666 + 5.11814i −0.00810353 + 0.317414i
\(261\) −2.49815 + 6.58709i −0.154632 + 0.407731i
\(262\) 18.8257 + 7.13965i 1.16306 + 0.441089i
\(263\) −9.64281 + 13.9700i −0.594601 + 0.861429i −0.998576 0.0533413i \(-0.983013\pi\)
0.403975 + 0.914770i \(0.367628\pi\)
\(264\) −4.01430 + 3.55636i −0.247063 + 0.218879i
\(265\) 14.7848 + 10.2052i 0.908226 + 0.626903i
\(266\) 2.17247 2.45221i 0.133203 0.150355i
\(267\) 0.405482 0.772581i 0.0248151 0.0472812i
\(268\) 3.37835i 0.206365i
\(269\) −13.2606 6.95971i −0.808514 0.424341i 0.00920541 0.999958i \(-0.497070\pi\)
−0.817720 + 0.575617i \(0.804762\pi\)
\(270\) −1.15478 + 9.51047i −0.0702777 + 0.578789i
\(271\) −19.7700 + 7.49777i −1.20094 + 0.455457i −0.872288 0.488993i \(-0.837364\pi\)
−0.328655 + 0.944450i \(0.606595\pi\)
\(272\) 10.5702 + 5.54768i 0.640914 + 0.336377i
\(273\) −0.562202 0.409632i −0.0340260 0.0247920i
\(274\) −5.78000 + 3.03358i −0.349183 + 0.183265i
\(275\) 42.3486 47.8017i 2.55372 2.88255i
\(276\) −0.0195779 + 0.0173445i −0.00117845 + 0.00104402i
\(277\) 12.8600 + 3.16971i 0.772683 + 0.190449i 0.605896 0.795544i \(-0.292815\pi\)
0.166787 + 0.985993i \(0.446661\pi\)
\(278\) −15.8719 1.92719i −0.951930 0.115585i
\(279\) 6.84285 + 7.72398i 0.409671 + 0.462422i
\(280\) −7.00844 2.65795i −0.418834 0.158843i
\(281\) −9.96651 + 18.9896i −0.594552 + 1.13282i 0.383319 + 0.923616i \(0.374781\pi\)
−0.977871 + 0.209209i \(0.932911\pi\)
\(282\) −1.36735 + 0.717643i −0.0814248 + 0.0427350i
\(283\) −0.939128 7.73442i −0.0558254 0.459763i −0.993638 0.112621i \(-0.964075\pi\)
0.937813 0.347142i \(-0.112848\pi\)
\(284\) −2.07165 2.33841i −0.122930 0.138759i
\(285\) −5.09129 + 1.25489i −0.301582 + 0.0743333i
\(286\) −9.92250 + 24.2760i −0.586730 + 1.43547i
\(287\) −3.62337 0.893080i −0.213881 0.0527168i
\(288\) 2.65210 + 5.05316i 0.156277 + 0.297760i
\(289\) −2.51191 + 1.31835i −0.147760 + 0.0775503i
\(290\) −4.45807 11.7550i −0.261787 0.690276i
\(291\) 2.55439 0.968753i 0.149741 0.0567893i
\(292\) 4.20227 2.90062i 0.245919 0.169746i
\(293\) 1.60772 6.52277i 0.0939240 0.381065i −0.905102 0.425195i \(-0.860206\pi\)
0.999026 + 0.0441304i \(0.0140517\pi\)
\(294\) −2.19292 + 1.51367i −0.127894 + 0.0882787i
\(295\) −3.80749 + 31.3575i −0.221681 + 1.82570i
\(296\) 1.27687 + 3.36682i 0.0742163 + 0.195692i
\(297\) 4.87155 9.28197i 0.282676 0.538595i
\(298\) 7.26814 10.5297i 0.421032 0.609970i
\(299\) −0.323331 + 0.791048i −0.0186987 + 0.0457475i
\(300\) 0.706570 + 1.02364i 0.0407938 + 0.0591001i
\(301\) −3.53620 + 0.429372i −0.203823 + 0.0247486i
\(302\) 13.9842 3.44680i 0.804700 0.198341i
\(303\) 2.28169 3.30560i 0.131080 0.189901i
\(304\) 8.72249 9.84565i 0.500269 0.564687i
\(305\) −4.52151 8.61502i −0.258901 0.493295i
\(306\) −13.9166 1.68978i −0.795560 0.0965985i
\(307\) −15.9474 + 1.93636i −0.910164 + 0.110514i −0.562207 0.826996i \(-0.690048\pi\)
−0.347957 + 0.937510i \(0.613125\pi\)
\(308\) 0.918807 + 0.813992i 0.0523539 + 0.0463815i
\(309\) 0.643471 + 0.932229i 0.0366058 + 0.0530326i
\(310\) −18.2807 2.21968i −1.03827 0.126069i
\(311\) −2.10029 17.2974i −0.119096 0.980847i −0.922656 0.385623i \(-0.873986\pi\)
0.803560 0.595224i \(-0.202937\pi\)
\(312\) −2.75825 2.00972i −0.156155 0.113778i
\(313\) 3.08829 25.4344i 0.174561 1.43764i −0.597388 0.801952i \(-0.703795\pi\)
0.771949 0.635685i \(-0.219282\pi\)
\(314\) −3.59968 + 14.6045i −0.203142 + 0.824178i
\(315\) 7.20347 0.405869
\(316\) 6.05135 0.340415
\(317\) −0.417869 + 1.69536i −0.0234698 + 0.0952209i −0.981509 0.191417i \(-0.938692\pi\)
0.958039 + 0.286638i \(0.0925378\pi\)
\(318\) −1.67582 + 0.635555i −0.0939754 + 0.0356402i
\(319\) 13.7561i 0.770194i
\(320\) −33.4497 12.6858i −1.86990 0.709158i
\(321\) −4.47924 + 1.10403i −0.250007 + 0.0616211i
\(322\) −0.140161 0.124172i −0.00781088 0.00691984i
\(323\) −3.73474 15.1524i −0.207806 0.843103i
\(324\) −2.14094 1.89671i −0.118941 0.105373i
\(325\) 35.4901 + 19.7980i 1.96863 + 1.09819i
\(326\) 2.70455 2.39603i 0.149791 0.132704i
\(327\) −3.94053 2.71995i −0.217912 0.150414i
\(328\) −17.7768 4.38159i −0.981560 0.241933i
\(329\) 1.34152 + 1.94352i 0.0739601 + 0.107150i
\(330\) 2.20115 + 8.93042i 0.121169 + 0.491603i
\(331\) 6.80569 + 27.6118i 0.374075 + 1.51768i 0.792751 + 0.609545i \(0.208648\pi\)
−0.418676 + 0.908136i \(0.637506\pi\)
\(332\) −0.971443 + 0.117955i −0.0533149 + 0.00647360i
\(333\) −2.29474 2.59023i −0.125751 0.141944i
\(334\) 3.56682 9.40492i 0.195168 0.514614i
\(335\) −34.2774 17.9901i −1.87277 0.982907i
\(336\) 0.503641 0.347638i 0.0274759 0.0189652i
\(337\) −13.6513 −0.743636 −0.371818 0.928306i \(-0.621265\pi\)
−0.371818 + 0.928306i \(0.621265\pi\)
\(338\) −16.4427 2.85431i −0.894362 0.155254i
\(339\) −0.0733153 −0.00398194
\(340\) −4.39798 + 3.03570i −0.238514 + 0.164634i
\(341\) 17.8415 + 9.36393i 0.966170 + 0.507085i
\(342\) −5.47754 + 14.4431i −0.296192 + 0.780993i
\(343\) 5.55887 + 6.27467i 0.300151 + 0.338800i
\(344\) −17.3491 + 2.10657i −0.935403 + 0.113578i
\(345\) 0.0717258 + 0.291003i 0.00386159 + 0.0156671i
\(346\) −4.56373 18.5158i −0.245348 0.995415i
\(347\) −4.73333 6.85741i −0.254098 0.368125i 0.675088 0.737738i \(-0.264106\pi\)
−0.929186 + 0.369613i \(0.879490\pi\)
\(348\) −0.260136 0.0641178i −0.0139448 0.00343707i
\(349\) −12.1092 8.35835i −0.648188 0.447412i 0.198068 0.980188i \(-0.436533\pi\)
−0.846256 + 0.532776i \(0.821149\pi\)
\(350\) −6.66526 + 5.90491i −0.356273 + 0.315631i
\(351\) 6.43395 + 1.76117i 0.343419 + 0.0940041i
\(352\) 8.34094 + 7.38943i 0.444574 + 0.393858i
\(353\) −5.31201 21.5517i −0.282730 1.14708i −0.924806 0.380439i \(-0.875773\pi\)
0.642076 0.766641i \(-0.278073\pi\)
\(354\) −2.35885 2.08976i −0.125371 0.111069i
\(355\) −34.7578 + 8.56703i −1.84475 + 0.454691i
\(356\) −0.916121 0.347439i −0.0485543 0.0184142i
\(357\) 0.726059i 0.0384271i
\(358\) 22.1405 8.39679i 1.17016 0.443784i
\(359\) −1.36833 + 5.55153i −0.0722177 + 0.292999i −0.995935 0.0900765i \(-0.971289\pi\)
0.923717 + 0.383075i \(0.125135\pi\)
\(360\) 35.3413 1.86265
\(361\) 1.80437 0.0949666
\(362\) −1.95521 + 7.93261i −0.102764 + 0.416929i
\(363\) 0.797433 6.56745i 0.0418544 0.344702i
\(364\) −0.380541 + 0.682162i −0.0199457 + 0.0357550i
\(365\) −7.05258 58.0833i −0.369149 3.04022i
\(366\) 0.963594 + 0.117001i 0.0503679 + 0.00611577i
\(367\) 0.666386 + 0.965426i 0.0347851 + 0.0503949i 0.839991 0.542601i \(-0.182560\pi\)
−0.805206 + 0.592996i \(0.797945\pi\)
\(368\) −0.562748 0.498551i −0.0293353 0.0259888i
\(369\) 17.4671 2.12089i 0.909303 0.110409i
\(370\) 6.13041 + 0.744367i 0.318705 + 0.0386978i
\(371\) 1.27376 + 2.42694i 0.0661302 + 0.126001i
\(372\) −0.260237 + 0.293747i −0.0134927 + 0.0152301i
\(373\) 7.28414 10.5529i 0.377159 0.546408i −0.587734 0.809054i \(-0.699980\pi\)
0.964892 + 0.262646i \(0.0845951\pi\)
\(374\) −26.5782 + 6.55094i −1.37433 + 0.338741i
\(375\) 7.87217 0.955854i 0.406517 0.0493601i
\(376\) 6.58169 + 9.53522i 0.339425 + 0.491741i
\(377\) −8.54999 + 1.87729i −0.440347 + 0.0966853i
\(378\) −0.830319 + 1.20292i −0.0427070 + 0.0618717i
\(379\) 0.340934 0.649595i 0.0175126 0.0333674i −0.876543 0.481324i \(-0.840156\pi\)
0.894055 + 0.447957i \(0.147848\pi\)
\(380\) 2.08803 + 5.50567i 0.107113 + 0.282435i
\(381\) −0.230383 + 1.89738i −0.0118029 + 0.0972056i
\(382\) 7.36176 5.08145i 0.376660 0.259990i
\(383\) −8.38380 + 34.0144i −0.428392 + 1.73806i 0.218837 + 0.975761i \(0.429774\pi\)
−0.647230 + 0.762295i \(0.724073\pi\)
\(384\) 1.92250 1.32701i 0.0981073 0.0677186i
\(385\) 13.1517 4.98778i 0.670272 0.254201i
\(386\) 6.50997 + 17.1654i 0.331349 + 0.873695i
\(387\) 14.8718 7.80530i 0.755974 0.396766i
\(388\) −1.42567 2.71639i −0.0723774 0.137904i
\(389\) 14.3326 + 3.53266i 0.726690 + 0.179113i 0.585272 0.810837i \(-0.300988\pi\)
0.141418 + 0.989950i \(0.454834\pi\)
\(390\) −5.25023 + 2.58684i −0.265856 + 0.130990i
\(391\) −0.866068 + 0.213466i −0.0437989 + 0.0107955i
\(392\) 13.2572 + 14.9643i 0.669589 + 0.755809i
\(393\) −0.592643 4.88085i −0.0298949 0.246206i
\(394\) −20.3354 + 10.6729i −1.02448 + 0.537691i
\(395\) 32.2243 61.3982i 1.62138 3.08928i
\(396\) −5.41161 2.05235i −0.271943 0.103135i
\(397\) −14.8552 16.7680i −0.745559 0.841562i 0.246261 0.969203i \(-0.420798\pi\)
−0.991820 + 0.127641i \(0.959259\pi\)
\(398\) −13.8347 1.67984i −0.693471 0.0842027i
\(399\) −0.776774 0.191458i −0.0388873 0.00958487i
\(400\) −26.7611 + 23.7082i −1.33805 + 1.18541i
\(401\) −12.0831 + 13.6390i −0.603403 + 0.681101i −0.968255 0.249964i \(-0.919581\pi\)
0.364852 + 0.931065i \(0.381120\pi\)
\(402\) 3.41972 1.79481i 0.170560 0.0895168i
\(403\) −3.38525 + 12.3671i −0.168631 + 0.616050i
\(404\) −3.99376 2.09609i −0.198697 0.104284i
\(405\) −30.6452 + 11.6222i −1.52277 + 0.577511i
\(406\) 0.231200 1.90411i 0.0114743 0.0944992i
\(407\) −5.98312 3.14019i −0.296572 0.155653i
\(408\) 3.56216i 0.176353i
\(409\) −4.34647 + 8.28150i −0.214919 + 0.409494i −0.968918 0.247381i \(-0.920430\pi\)
0.753999 + 0.656875i \(0.228122\pi\)
\(410\) −20.8220 + 23.5031i −1.02832 + 1.16074i
\(411\) 1.31188 + 0.905524i 0.0647101 + 0.0446662i
\(412\) 0.952106 0.843493i 0.0469069 0.0415559i
\(413\) −2.73769 + 3.96623i −0.134713 + 0.195165i
\(414\) 0.825524 + 0.313080i 0.0405723 + 0.0153870i
\(415\) −3.97627 + 10.4846i −0.195188 + 0.514668i
\(416\) −3.45455 + 6.19267i −0.169373 + 0.303621i
\(417\) 1.38450 + 3.65061i 0.0677990 + 0.178771i
\(418\) 30.1621i 1.47528i
\(419\) 7.07596 18.6578i 0.345683 0.911492i −0.643584 0.765375i \(-0.722553\pi\)
0.989267 0.146116i \(-0.0466774\pi\)
\(420\) 0.0330212 + 0.271954i 0.00161127 + 0.0132700i
\(421\) 1.58500 + 3.01997i 0.0772482 + 0.147184i 0.921017 0.389523i \(-0.127360\pi\)
−0.843768 + 0.536707i \(0.819668\pi\)
\(422\) −15.5910 10.7617i −0.758960 0.523872i
\(423\) −9.16368 6.32523i −0.445553 0.307543i
\(424\) 6.24925 + 11.9070i 0.303490 + 0.578253i
\(425\) 5.11290 + 42.1085i 0.248012 + 2.04256i
\(426\) 1.26645 3.33934i 0.0613595 0.161792i
\(427\) 1.48442i 0.0718360i
\(428\) 1.83701 + 4.84380i 0.0887953 + 0.234134i
\(429\) 6.37515 0.609437i 0.307795 0.0294239i
\(430\) −10.6284 + 28.0248i −0.512547 + 1.35148i
\(431\) 16.3677 + 6.20744i 0.788403 + 0.299002i 0.715751 0.698356i \(-0.246085\pi\)
0.0726519 + 0.997357i \(0.476854\pi\)
\(432\) −3.33373 + 4.82975i −0.160394 + 0.232371i
\(433\) −10.7005 + 9.47984i −0.514235 + 0.455572i −0.879889 0.475178i \(-0.842384\pi\)
0.365655 + 0.930751i \(0.380845\pi\)
\(434\) −2.31222 1.59601i −0.110990 0.0766109i
\(435\) −2.03581 + 2.29796i −0.0976096 + 0.110179i
\(436\) −2.49870 + 4.76088i −0.119666 + 0.228005i
\(437\) 0.982851i 0.0470162i
\(438\) 5.16867 + 2.71273i 0.246969 + 0.129619i
\(439\) −0.899113 + 7.40486i −0.0429123 + 0.353415i 0.955399 + 0.295319i \(0.0954259\pi\)
−0.998311 + 0.0580957i \(0.981497\pi\)
\(440\) 64.5242 24.4708i 3.07607 1.16660i
\(441\) −17.0123 8.92876i −0.810111 0.425179i
\(442\) −7.69880 15.6255i −0.366195 0.743227i
\(443\) 12.6032 6.61465i 0.598794 0.314271i −0.137954 0.990439i \(-0.544053\pi\)
0.736748 + 0.676167i \(0.236360\pi\)
\(444\) 0.0872704 0.0985079i 0.00414167 0.00467498i
\(445\) −8.40365 + 7.44498i −0.398371 + 0.352926i
\(446\) 5.69258 + 1.40310i 0.269552 + 0.0664385i
\(447\) −3.10162 0.376605i −0.146702 0.0178128i
\(448\) −3.61938 4.08543i −0.171000 0.193019i
\(449\) −15.2324 5.77687i −0.718859 0.272627i −0.0320716 0.999486i \(-0.510210\pi\)
−0.686787 + 0.726858i \(0.740980\pi\)
\(450\) 19.5117 37.1764i 0.919789 1.75251i
\(451\) 30.4220 15.9667i 1.43252 0.751842i
\(452\) 0.00992362 + 0.0817284i 0.000466768 + 0.00384418i
\(453\) −2.33227 2.63259i −0.109580 0.123690i
\(454\) 34.6977 8.55221i 1.62844 0.401375i
\(455\) 4.89492 + 7.49364i 0.229477 + 0.351307i
\(456\) −3.81097 0.939321i −0.178465 0.0439877i
\(457\) −7.65811 14.5913i −0.358231 0.682553i 0.637929 0.770095i \(-0.279791\pi\)
−0.996161 + 0.0875418i \(0.972099\pi\)
\(458\) 29.3089 15.3825i 1.36952 0.718778i
\(459\) 2.46899 + 6.51020i 0.115243 + 0.303870i
\(460\) 0.314688 0.119345i 0.0146724 0.00556450i
\(461\) 17.8162 12.2976i 0.829783 0.572758i −0.0757047 0.997130i \(-0.524121\pi\)
0.905488 + 0.424372i \(0.139505\pi\)
\(462\) −0.335828 + 1.36251i −0.0156241 + 0.0633895i
\(463\) 22.0050 15.1889i 1.02266 0.705889i 0.0662131 0.997806i \(-0.478908\pi\)
0.956444 + 0.291916i \(0.0942929\pi\)
\(464\) 0.928270 7.64499i 0.0430939 0.354910i
\(465\) 1.59462 + 4.20466i 0.0739487 + 0.194987i
\(466\) 17.0829 32.5487i 0.791348 1.50779i
\(467\) −16.0731 + 23.2859i −0.743773 + 1.07754i 0.250230 + 0.968186i \(0.419494\pi\)
−0.994003 + 0.109354i \(0.965122\pi\)
\(468\) 0.537102 3.64362i 0.0248275 0.168426i
\(469\) −3.35510 4.86070i −0.154924 0.224446i
\(470\) 19.7255 2.39511i 0.909870 0.110478i
\(471\) 3.56637 0.879032i 0.164330 0.0405037i
\(472\) −13.4315 + 19.4589i −0.618236 + 0.895670i
\(473\) 21.7475 24.5479i 0.999953 1.12871i
\(474\) 3.21489 + 6.12546i 0.147665 + 0.281352i
\(475\) 46.3980 + 5.63373i 2.12889 + 0.258493i
\(476\) −0.809376 + 0.0982760i −0.0370977 + 0.00450448i
\(477\) −9.67322 8.56973i −0.442906 0.392381i
\(478\) 2.83764 + 4.11103i 0.129791 + 0.188034i
\(479\) −5.74639 0.697738i −0.262559 0.0318805i −0.0118016 0.999930i \(-0.503757\pi\)
−0.250758 + 0.968050i \(0.580680\pi\)
\(480\) 0.299767 + 2.46881i 0.0136824 + 0.112685i
\(481\) 1.13524 4.14730i 0.0517625 0.189101i
\(482\) 2.24148 18.4603i 0.102097 0.840843i
\(483\) −0.0109431 + 0.0443981i −0.000497931 + 0.00202018i
\(484\) −7.42902 −0.337683
\(485\) −35.1529 −1.59621
\(486\) 2.48768 10.0929i 0.112843 0.457823i
\(487\) 19.5789 7.42531i 0.887207 0.336473i 0.131448 0.991323i \(-0.458037\pi\)
0.755759 + 0.654850i \(0.227268\pi\)
\(488\) 7.28278i 0.329676i
\(489\) −0.825007 0.312884i −0.0373081 0.0141491i
\(490\) 33.2903 8.20532i 1.50390 0.370679i
\(491\) 19.7827 + 17.5260i 0.892782 + 0.790936i 0.978685 0.205368i \(-0.0658391\pi\)
−0.0859032 + 0.996303i \(0.527378\pi\)
\(492\) 0.160141 + 0.649719i 0.00721973 + 0.0292916i
\(493\) −6.83905 6.05887i −0.308015 0.272878i
\(494\) −18.7470 + 4.11621i −0.843468 + 0.185197i
\(495\) −49.6411 + 43.9782i −2.23120 + 1.97667i
\(496\) −9.28357 6.40799i −0.416845 0.287727i
\(497\) −5.30297 1.30706i −0.237871 0.0586298i
\(498\) −0.635495 0.920674i −0.0284772 0.0412564i
\(499\) 10.0347 + 40.7125i 0.449216 + 1.82254i 0.559741 + 0.828668i \(0.310901\pi\)
−0.110525 + 0.993873i \(0.535253\pi\)
\(500\) −2.13108 8.64613i −0.0953048 0.386667i
\(501\) −2.43837 + 0.296071i −0.108938 + 0.0132275i
\(502\) −13.2890 15.0001i −0.593115 0.669489i
\(503\) −11.1500 + 29.4002i −0.497155 + 1.31089i 0.418241 + 0.908336i \(0.362647\pi\)
−0.915396 + 0.402555i \(0.868122\pi\)
\(504\) 4.77438 + 2.50579i 0.212668 + 0.111617i
\(505\) −42.5346 + 29.3595i −1.89276 + 1.30648i
\(506\) 1.72398 0.0766402
\(507\) 1.24880 + 3.87925i 0.0554614 + 0.172284i
\(508\) 2.14629 0.0952262
\(509\) 6.11533 4.22111i 0.271057 0.187097i −0.424780 0.905296i \(-0.639649\pi\)
0.695838 + 0.718199i \(0.255033\pi\)
\(510\) −5.40938 2.83906i −0.239532 0.125716i
\(511\) 3.16549 8.34670i 0.140033 0.369236i
\(512\) −16.8390 19.0073i −0.744188 0.840014i
\(513\) 7.61600 0.924749i 0.336254 0.0408287i
\(514\) 0.780615 + 3.16708i 0.0344314 + 0.139694i
\(515\) −3.48815 14.1520i −0.153706 0.623610i
\(516\) 0.362849 + 0.525677i 0.0159735 + 0.0231417i
\(517\) −21.1102 5.20320i −0.928427 0.228837i
\(518\) 0.775400 + 0.535220i 0.0340691 + 0.0235162i
\(519\) −3.48569 + 3.08805i −0.153005 + 0.135550i
\(520\) 24.0152 + 36.7650i 1.05314 + 1.61225i
\(521\) −28.3216 25.0908i −1.24079 1.09925i −0.991403 0.130845i \(-0.958231\pi\)
−0.249391 0.968403i \(-0.580230\pi\)
\(522\) 2.16432 + 8.78098i 0.0947296 + 0.384333i
\(523\) 21.9771 + 19.4700i 0.960992 + 0.851364i 0.988951 0.148245i \(-0.0473623\pi\)
−0.0279590 + 0.999609i \(0.508901\pi\)
\(524\) −5.36072 + 1.32130i −0.234184 + 0.0577212i
\(525\) 2.03320 + 0.771090i 0.0887360 + 0.0336531i
\(526\) 21.7912i 0.950142i
\(527\) −12.5137 + 4.74582i −0.545105 + 0.206731i
\(528\) −1.34835 + 5.47047i −0.0586794 + 0.238072i
\(529\) −22.9438 −0.997558
\(530\) 23.0622 1.00176
\(531\) 5.43799 22.0628i 0.235989 0.957443i
\(532\) −0.108287 + 0.891825i −0.00469484 + 0.0386655i
\(533\) 14.0756 + 16.7296i 0.609684 + 0.724638i
\(534\) −0.135012 1.11192i −0.00584253 0.0481176i
\(535\) 58.9285 + 7.15521i 2.54770 + 0.309347i
\(536\) −16.4606 23.8473i −0.710991 1.03005i
\(537\) −4.32821 3.83446i −0.186776 0.165469i
\(538\) −19.0851 + 2.31735i −0.822817 + 0.0999080i
\(539\) −37.2426 4.52207i −1.60415 0.194779i
\(540\) −1.22088 2.32619i −0.0525382 0.100103i
\(541\) 17.5030 19.7568i 0.752513 0.849412i −0.240098 0.970749i \(-0.577180\pi\)
0.992611 + 0.121337i \(0.0387181\pi\)
\(542\) −15.4192 + 22.3385i −0.662310 + 0.959522i
\(543\) 1.93712 0.477458i 0.0831300 0.0204897i
\(544\) −7.34753 + 0.892151i −0.315023 + 0.0382507i
\(545\) 34.9989 + 50.7046i 1.49919 + 2.17195i
\(546\) −0.892684 0.0227901i −0.0382034 0.000975328i
\(547\) 25.4024 36.8018i 1.08613 1.57353i 0.301607 0.953432i \(-0.402477\pi\)
0.784524 0.620099i \(-0.212908\pi\)
\(548\) 0.831865 1.58499i 0.0355355 0.0677072i
\(549\) 2.48188 + 6.54419i 0.105924 + 0.279299i
\(550\) 9.88189 81.3847i 0.421365 3.47026i
\(551\) −8.28549 + 5.71906i −0.352974 + 0.243640i
\(552\) −0.0536888 + 0.217824i −0.00228515 + 0.00927121i
\(553\) 8.70656 6.00971i 0.370241 0.255559i
\(554\) 15.8980 6.02932i 0.675441 0.256161i
\(555\) −0.534754 1.41003i −0.0226990 0.0598524i
\(556\) 3.88213 2.03750i 0.164639 0.0864092i
\(557\) −3.35111 6.38501i −0.141991 0.270542i 0.804067 0.594539i \(-0.202665\pi\)
−0.946058 + 0.323997i \(0.894973\pi\)
\(558\) 12.8621 + 3.17022i 0.544496 + 0.134206i
\(559\) 18.2254 + 10.1670i 0.770853 + 0.430016i
\(560\) −7.64567 + 1.88449i −0.323088 + 0.0796341i
\(561\) 4.43269 + 5.00348i 0.187148 + 0.211247i
\(562\) 3.31851 + 27.3304i 0.139983 + 1.15286i
\(563\) 2.37398 1.24596i 0.100051 0.0525110i −0.413955 0.910297i \(-0.635853\pi\)
0.514007 + 0.857786i \(0.328161\pi\)
\(564\) 0.196791 0.374954i 0.00828641 0.0157884i
\(565\) 0.882077 + 0.334528i 0.0371092 + 0.0140737i
\(566\) −6.63246 7.48650i −0.278783 0.314681i
\(567\) −4.96400 0.602739i −0.208468 0.0253127i
\(568\) −26.0172 6.41266i −1.09166 0.269069i
\(569\) −8.32818 + 7.37813i −0.349136 + 0.309307i −0.819404 0.573216i \(-0.805696\pi\)
0.470269 + 0.882523i \(0.344157\pi\)
\(570\) −4.46379 + 5.03858i −0.186968 + 0.211043i
\(571\) 0.669203 0.351225i 0.0280053 0.0146983i −0.450662 0.892694i \(-0.648812\pi\)
0.478668 + 0.877996i \(0.341120\pi\)
\(572\) −1.54228 7.02422i −0.0644860 0.293697i
\(573\) −1.93419 1.01514i −0.0808018 0.0424081i
\(574\) −4.47934 + 1.69879i −0.186964 + 0.0709060i
\(575\) 0.322008 2.65197i 0.0134286 0.110595i
\(576\) 22.7870 + 11.9596i 0.949460 + 0.498315i
\(577\) 44.9989i 1.87333i −0.350229 0.936664i \(-0.613896\pi\)
0.350229 0.936664i \(-0.386104\pi\)
\(578\) −1.69242 + 3.22463i −0.0703953 + 0.134127i
\(579\) 2.97283 3.35563i 0.123546 0.139455i
\(580\) 2.83721 + 1.95838i 0.117809 + 0.0813174i
\(581\) −1.28055 + 1.13447i −0.0531262 + 0.0470657i
\(582\) 1.99224 2.88626i 0.0825810 0.119639i
\(583\) −23.5946 8.94826i −0.977190 0.370599i
\(584\) 15.5304 40.9502i 0.642652 1.69453i
\(585\) −34.1087 24.8523i −1.41022 1.02752i
\(586\) −3.05815 8.06369i −0.126331 0.333108i
\(587\) 4.44919i 0.183638i 0.995776 + 0.0918189i \(0.0292681\pi\)
−0.995776 + 0.0918189i \(0.970732\pi\)
\(588\) 0.259104 0.683201i 0.0106853 0.0281747i
\(589\) 1.77752 + 14.6392i 0.0732415 + 0.603198i
\(590\) 18.8447 + 35.9056i 0.775824 + 1.47821i
\(591\) 4.61550 + 3.18585i 0.189856 + 0.131048i
\(592\) 3.11324 + 2.14891i 0.127953 + 0.0883197i
\(593\) −3.18730 6.07289i −0.130887 0.249384i 0.811189 0.584784i \(-0.198821\pi\)
−0.942076 + 0.335400i \(0.891128\pi\)
\(594\) −1.62206 13.3589i −0.0665541 0.548122i
\(595\) −3.31291 + 8.73542i −0.135816 + 0.358117i
\(596\) 3.50851i 0.143714i
\(597\) 1.20680 + 3.18206i 0.0493909 + 0.130233i
\(598\) 0.235271 + 1.07152i 0.00962093 + 0.0438179i
\(599\) −8.08973 + 21.3309i −0.330537 + 0.871556i 0.661988 + 0.749515i \(0.269713\pi\)
−0.992525 + 0.122041i \(0.961056\pi\)
\(600\) 9.97519 + 3.78309i 0.407235 + 0.154444i
\(601\) −5.46268 + 7.91406i −0.222828 + 0.322821i −0.918414 0.395621i \(-0.870529\pi\)
0.695586 + 0.718443i \(0.255145\pi\)
\(602\) −3.42285 + 3.03238i −0.139505 + 0.123591i
\(603\) 22.9181 + 15.8192i 0.933299 + 0.644210i
\(604\) −2.61900 + 2.95624i −0.106566 + 0.120288i
\(605\) −39.5605 + 75.3763i −1.60836 + 3.06448i
\(606\) 5.15625i 0.209458i
\(607\) 4.54929 + 2.38765i 0.184650 + 0.0969118i 0.554515 0.832174i \(-0.312904\pi\)
−0.369865 + 0.929085i \(0.620596\pi\)
\(608\) −0.983032 + 8.09600i −0.0398672 + 0.328336i
\(609\) −0.437955 + 0.166094i −0.0177468 + 0.00673048i
\(610\) −11.0594 5.80442i −0.447782 0.235014i
\(611\) 0.353103 13.8310i 0.0142850 0.559541i
\(612\) 3.40390 1.78650i 0.137594 0.0722151i
\(613\) 2.32850 2.62833i 0.0940473 0.106157i −0.699603 0.714532i \(-0.746640\pi\)
0.793650 + 0.608375i \(0.208178\pi\)
\(614\) −15.4362 + 13.6753i −0.622955 + 0.551890i
\(615\) 7.44496 + 1.83502i 0.300210 + 0.0739950i
\(616\) 10.4518 + 1.26908i 0.421116 + 0.0511328i
\(617\) 13.4484 + 15.1801i 0.541410 + 0.611126i 0.954006 0.299788i \(-0.0969161\pi\)
−0.412595 + 0.910914i \(0.635378\pi\)
\(618\) 1.35965 + 0.515645i 0.0546930 + 0.0207423i
\(619\) −11.7821 + 22.4488i −0.473561 + 0.902295i 0.525124 + 0.851026i \(0.324019\pi\)
−0.998685 + 0.0512692i \(0.983673\pi\)
\(620\) 4.47132 2.34673i 0.179572 0.0942468i
\(621\) −0.0528559 0.435308i −0.00212104 0.0174683i
\(622\) −14.8330 16.7430i −0.594749 0.671333i
\(623\) −1.66314 + 0.409928i −0.0666324 + 0.0164234i
\(624\) −3.58413 0.0915025i −0.143480 0.00366303i
\(625\) −44.3555 10.9327i −1.77422 0.437306i
\(626\) −15.2851 29.1234i −0.610917 1.16400i
\(627\) 6.52184 3.42293i 0.260457 0.136698i
\(628\) −1.46263 3.85664i −0.0583653 0.153897i
\(629\) 4.19645 1.59150i 0.167324 0.0634575i
\(630\) 7.61041 5.25309i 0.303206 0.209288i
\(631\) 0.842945 3.41996i 0.0335571 0.136147i −0.951774 0.306800i \(-0.900742\pi\)
0.985331 + 0.170654i \(0.0545879\pi\)
\(632\) 42.7158 29.4846i 1.69914 1.17283i
\(633\) −0.557627 + 4.59247i −0.0221637 + 0.182534i
\(634\) 0.794856 + 2.09586i 0.0315678 + 0.0832374i
\(635\) 11.4293 21.7767i 0.453557 0.864180i
\(636\) 0.279192 0.404480i 0.0110707 0.0160387i
\(637\) −2.27183 23.7649i −0.0900130 0.941600i
\(638\) 10.0316 + 14.5332i 0.397153 + 0.575376i
\(639\) 25.5640 3.10403i 1.01130 0.122794i
\(640\) −29.1851 + 7.19348i −1.15364 + 0.284347i
\(641\) 4.47209 6.47894i 0.176637 0.255903i −0.724658 0.689109i \(-0.758002\pi\)
0.901295 + 0.433206i \(0.142618\pi\)
\(642\) −3.92717 + 4.43286i −0.154993 + 0.174951i
\(643\) −0.967152 1.84275i −0.0381408 0.0726711i 0.865640 0.500667i \(-0.166912\pi\)
−0.903781 + 0.427996i \(0.859220\pi\)
\(644\) 0.0509741 + 0.00618937i 0.00200866 + 0.000243895i
\(645\) 7.26585 0.882233i 0.286092 0.0347379i
\(646\) −14.9955 13.2849i −0.589992 0.522687i
\(647\) −3.67601 5.32561i −0.144519 0.209372i 0.744039 0.668136i \(-0.232908\pi\)
−0.888558 + 0.458764i \(0.848292\pi\)
\(648\) −24.3542 2.95713i −0.956722 0.116167i
\(649\) −5.34819 44.0463i −0.209935 1.72897i
\(650\) 51.9326 4.96453i 2.03696 0.194725i
\(651\) −0.0826986 + 0.681084i −0.00324121 + 0.0266938i
\(652\) −0.237119 + 0.962029i −0.00928629 + 0.0376760i
\(653\) −4.93481 −0.193114 −0.0965570 0.995327i \(-0.530783\pi\)
−0.0965570 + 0.995327i \(0.530783\pi\)
\(654\) −6.14666 −0.240353
\(655\) −15.1404 + 61.4270i −0.591584 + 2.40015i
\(656\) −17.9846 + 6.82064i −0.702179 + 0.266301i
\(657\) 42.0898i 1.64208i
\(658\) 2.83460 + 1.07502i 0.110504 + 0.0419088i
\(659\) −3.25931 + 0.803349i −0.126965 + 0.0312940i −0.302286 0.953217i \(-0.597750\pi\)
0.175321 + 0.984511i \(0.443904\pi\)
\(660\) −1.88788 1.67251i −0.0734856 0.0651025i
\(661\) −2.01450 8.17313i −0.0783548 0.317898i 0.918666 0.395036i \(-0.129268\pi\)
−0.997020 + 0.0771382i \(0.975422\pi\)
\(662\) 27.3259 + 24.2086i 1.06205 + 0.940896i
\(663\) −2.50494 + 3.43793i −0.0972838 + 0.133518i
\(664\) −6.28258 + 5.56588i −0.243811 + 0.215998i
\(665\) 8.47199 + 5.84779i 0.328530 + 0.226768i
\(666\) −4.31329 1.06313i −0.167137 0.0411955i
\(667\) 0.326885 + 0.473574i 0.0126570 + 0.0183369i
\(668\) 0.660092 + 2.67810i 0.0255397 + 0.103619i
\(669\) −0.342632 1.39011i −0.0132469 0.0537449i
\(670\) −49.3330 + 5.99011i −1.90590 + 0.231418i
\(671\) 9.06258 + 10.2295i 0.349857 + 0.394907i
\(672\) −0.134548 + 0.354773i −0.00519029 + 0.0136857i
\(673\) 24.6133 + 12.9181i 0.948773 + 0.497954i 0.866787 0.498679i \(-0.166181\pi\)
0.0819862 + 0.996633i \(0.473874\pi\)
\(674\) −14.4226 + 9.95517i −0.555536 + 0.383459i
\(675\) −20.8528 −0.802623
\(676\) 4.15537 1.91718i 0.159822 0.0737379i
\(677\) 11.6742 0.448676 0.224338 0.974511i \(-0.427978\pi\)
0.224338 + 0.974511i \(0.427978\pi\)
\(678\) −0.0774571 + 0.0534648i −0.00297472 + 0.00205330i
\(679\) −4.74892 2.49242i −0.182247 0.0956505i
\(680\) −16.2536 + 42.8573i −0.623299 + 1.64350i
\(681\) −5.78685 6.53200i −0.221752 0.250307i
\(682\) 25.6780 3.11787i 0.983261 0.119390i
\(683\) 1.85348 + 7.51985i 0.0709213 + 0.287739i 0.995684 0.0928045i \(-0.0295831\pi\)
−0.924763 + 0.380543i \(0.875737\pi\)
\(684\) −1.01370 4.11274i −0.0387598 0.157255i
\(685\) −11.6518 16.8805i −0.445192 0.644972i
\(686\) 10.4487 + 2.57537i 0.398932 + 0.0983280i
\(687\) −6.65221 4.59169i −0.253798 0.175184i
\(688\) −13.7428 + 12.1750i −0.523938 + 0.464168i
\(689\) 2.34177 15.8862i 0.0892142 0.605216i
\(690\) 0.287990 + 0.255137i 0.0109636 + 0.00971290i
\(691\) −4.68472 19.0066i −0.178215 0.723047i −0.990234 0.139416i \(-0.955478\pi\)
0.812019 0.583631i \(-0.198369\pi\)
\(692\) 3.91421 + 3.46769i 0.148796 + 0.131822i
\(693\) −9.82433 + 2.42148i −0.373196 + 0.0919845i
\(694\) −10.0015 3.79305i −0.379650 0.143982i
\(695\) 50.2388i 1.90567i
\(696\) −2.14868 + 0.814885i −0.0814453 + 0.0308881i
\(697\) −5.46128 + 22.1573i −0.206861 + 0.839266i
\(698\) −18.8885 −0.714941
\(699\) −8.97651 −0.339523
\(700\) 0.584370 2.37088i 0.0220871 0.0896109i
\(701\) −0.800917 + 6.59615i −0.0302502 + 0.249133i 0.969737 + 0.244150i \(0.0785091\pi\)
−0.999988 + 0.00498259i \(0.998414\pi\)
\(702\) 8.08174 2.83126i 0.305026 0.106859i
\(703\) −0.596090 4.90924i −0.0224820 0.185156i
\(704\) 49.8843 + 6.05705i 1.88008 + 0.228284i
\(705\) −2.75642 3.99336i −0.103813 0.150399i
\(706\) −21.3285 18.8954i −0.802710 0.711139i
\(707\) −7.82780 + 0.950467i −0.294395 + 0.0357460i
\(708\) 0.857870 + 0.104164i 0.0322407 + 0.00391474i
\(709\) −19.3732 36.9126i −0.727577 1.38628i −0.914776 0.403961i \(-0.867633\pi\)
0.187199 0.982322i \(-0.440059\pi\)
\(710\) −30.4739 + 34.3979i −1.14367 + 1.29093i
\(711\) −28.3357 + 41.0513i −1.06267 + 1.53955i
\(712\) −8.15964 + 2.01117i −0.305795 + 0.0753718i
\(713\) 0.836733 0.101598i 0.0313359 0.00380487i
\(714\) −0.529475 0.767077i −0.0198151 0.0287071i
\(715\) −79.4820 21.7566i −2.97246 0.813651i
\(716\) −3.68862 + 5.34389i −0.137850 + 0.199711i
\(717\) 0.566885 1.08011i 0.0211707 0.0403374i
\(718\) 2.60279 + 6.86300i 0.0971354 + 0.256125i
\(719\) 3.39762 27.9819i 0.126710 1.04355i −0.781170 0.624318i \(-0.785377\pi\)
0.907880 0.419231i \(-0.137700\pi\)
\(720\) 30.5558 21.0912i 1.13875 0.786022i
\(721\) 0.532184 2.15915i 0.0198196 0.0804111i
\(722\) 1.90630 1.31582i 0.0709452 0.0489699i
\(723\) −4.24597 + 1.61028i −0.157909 + 0.0598871i
\(724\) −0.794448 2.09479i −0.0295254 0.0778521i
\(725\) 24.2300 12.7169i 0.899879 0.472293i
\(726\) −3.94680 7.51999i −0.146479 0.279093i
\(727\) −6.24507 1.53927i −0.231617 0.0570885i 0.121799 0.992555i \(-0.461134\pi\)
−0.353416 + 0.935466i \(0.614980\pi\)
\(728\) 0.637570 + 6.66944i 0.0236299 + 0.247186i
\(729\) 21.2026 5.22598i 0.785283 0.193555i
\(730\) −49.8079 56.2215i −1.84347 2.08085i
\(731\) 2.62566 + 21.6242i 0.0971134 + 0.799800i
\(732\) −0.235688 + 0.123698i −0.00871126 + 0.00457202i
\(733\) −0.163936 + 0.312354i −0.00605511 + 0.0115371i −0.888465 0.458945i \(-0.848228\pi\)
0.882410 + 0.470482i \(0.155920\pi\)
\(734\) 1.40806 + 0.534008i 0.0519726 + 0.0197106i
\(735\) −5.55213 6.26706i −0.204793 0.231164i
\(736\) 0.462743 + 0.0561872i 0.0170569 + 0.00207109i
\(737\) 52.7961 + 13.0131i 1.94477 + 0.479343i
\(738\) 16.9073 14.9785i 0.622365 0.551367i
\(739\) 17.5218 19.7780i 0.644548 0.727545i −0.331896 0.943316i \(-0.607688\pi\)
0.976444 + 0.215771i \(0.0692266\pi\)
\(740\) −1.49945 + 0.786973i −0.0551209 + 0.0289297i
\(741\) 3.01752 + 3.58647i 0.110851 + 0.131752i
\(742\) 3.11555 + 1.63517i 0.114375 + 0.0600289i
\(743\) −46.0776 + 17.4749i −1.69042 + 0.641093i −0.996851 0.0792952i \(-0.974733\pi\)
−0.693571 + 0.720388i \(0.743964\pi\)
\(744\) −0.405732 + 3.34150i −0.0148749 + 0.122506i
\(745\) 35.5980 + 18.6833i 1.30421 + 0.684503i
\(746\) 16.4610i 0.602680i
\(747\) 3.74864 7.14243i 0.137156 0.261328i
\(748\) 4.97765 5.61860i 0.182001 0.205436i
\(749\) 7.45352 + 5.14479i 0.272346 + 0.187987i
\(750\) 7.61984 6.75059i 0.278237 0.246497i
\(751\) −11.4866 + 16.6412i −0.419152 + 0.607247i −0.974504 0.224368i \(-0.927968\pi\)
0.555352 + 0.831615i \(0.312583\pi\)
\(752\) 11.3809 + 4.31622i 0.415021 + 0.157397i
\(753\) −1.73533 + 4.57570i −0.0632391 + 0.166748i
\(754\) −7.66400 + 8.21838i −0.279106 + 0.299296i
\(755\) 16.0481 + 42.3153i 0.584049 + 1.54001i
\(756\) 0.400815i 0.0145775i
\(757\) 9.91962 26.1559i 0.360535 0.950652i −0.624916 0.780692i \(-0.714867\pi\)
0.985451 0.169960i \(-0.0543640\pi\)
\(758\) −0.113519 0.934916i −0.00412321 0.0339577i
\(759\) −0.195644 0.372769i −0.00710144 0.0135307i
\(760\) 41.5649 + 28.6902i 1.50772 + 1.04070i
\(761\) 12.8538 + 8.87231i 0.465949 + 0.321621i 0.777802 0.628509i \(-0.216334\pi\)
−0.311854 + 0.950130i \(0.600950\pi\)
\(762\) 1.14025 + 2.17257i 0.0413070 + 0.0787040i
\(763\) 1.13303 + 9.33136i 0.0410185 + 0.337818i
\(764\) −0.869826 + 2.29354i −0.0314692 + 0.0829775i
\(765\) 44.0499i 1.59263i
\(766\) 15.9474 + 42.0499i 0.576203 + 1.51932i